(新)人教版七年级数学下册6.2《立方根》教学设计

合集下载

人教版七年级数学下册6.2《立方根》第一课时优秀教学案例

人教版七年级数学下册6.2《立方根》第一课时优秀教学案例
3.重点强调:教师强调立方根在实际生活中的应用,让学生体会数学与生活的紧密联系。
(五)作业小结
1.布置作业:布置具有层次性的作业,让学生在实践中巩固知识,提高解决问题的能力。
2.作业要求:强调作业的完成要求,如认真审题、仔细计算、书写规范等。
3.作业反馈:教师对学生的作业进行及时反馈,给予肯定和鼓励,同时指出存在的问题,帮助学生进一步提高。
人教版七年级数学下册6.2《立方根》第一课时优秀教学案例
一、案例背景
本节课为人教版七年级数学下册6.2《立方根》第一课时,主要内容是让学生理解立方根的概念,掌握求立方根的方法,并能够运用立方根解决实际问题。在学习本节课之前,学生已经掌握了有理数的乘方知识,为本节课的学习打下了基础。
在制定教学案例时,我以学生的认知发展水平和生活经验为出发点,设计了丰富多样的教学活动。首先,我通过生活情境引入立方根的概念,让学生感受到数学与生活的紧密联系。接着,我引导学生通过观察、思考、讨论,探索求立方根的方法,培养学生的推理能力和合作精神。在练习环节,我设计了一系列具有层次性的题目,让学生在实践中巩固知识,提高解决问题的能力。
五、案例亮点
1.生活情境导入:通过展示立方体模型和创设问题情境,激发学生的学习兴趣,使学生感受到数学与生活的紧密联系。
2.问题导向:引导学生自主探究立方根的定义和求法,培养学生的推理能力和探究精神,让学生在思考中发现问题、解决问题。
3.小组合作:组织学生进行小组讨论和分享,培养学生的合作能力和团队精神,让学生在交流中互相学习、共同进步。
(一)导入新课
1.实物引入:展示立方体模型,如魔方、立方体积木等,让学生观察并思考这些立方体的特点。
2.问题激发:提问学生“你知道立方根吗?你能举个例子吗?”引导学生思考立方根的概念。

人教版数学七年级下册6.2立方根教学设计

人教版数学七年级下册6.2立方根教学设计
-已知一个立方体的体积为64立方厘米,求其边长。
2.能力提升题:
-计算√27、√64、√125的值,并说明它们分别对应哪个整数的立方。
-如果一个立方体的体积是1000立方厘米,求其表面积。
3.实践应用题:
-生活中有哪些物体的体积可以用立方根来表示?请举例说明。
-利用立方根的概念,设计一个实际问题的解决方案,并解释其原理。
2.提高题:计算带分数的立方根,如√2.5、√4.5等。
3.应用题:解决实际问题,如已知一个立方体的体积,求其边长。
4.拓展题:研究立方根的性质,如证明一个数的立方根唯一性。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学内容,并进行以下归纳:
1.立方根的定义:一个数的立方根,就是使得这个数等于其立方的那个数。
(二)过程与方法
1.通过引入生活中的实际例子,激发学生学习立方根的兴趣,引导学生主动探究立方根的性质和计算方法。
2.采用小组合作、讨论交流等形式,培养学生独立思考、合作解决问题的能力。
3.设计丰富的练习题,巩固学生对立方根知识的掌握,提高学生的运算速度和准确率。
4.引导学生运用类比、联想等方法,将立方根与已学的平方根、算术平方根等知识进行联系,形成知识体系。
1.请举例说明立方根在生活中的应用。
2.请思考立方根与平方根的联系和区别。
3.如何计算一个数的立方根?请给出具体步骤。
要求学生在规定时间内进行讨论,并选派代表进行汇报。我在此过程中进行巡回指导,解答学生的疑问。
(四)课堂练习
在课堂练习环节,我会设计以下四类题目,帮助学生巩固所学知识:
1.基础题:计算简单立方根,如√8、√27等。
4.拓展探究题:
-研究立方根的性质,例如:证明一个数的立方根唯一性,讨论立方根的有界性。

数学人教版七年级下册6.2立方根(第一课时)教案

数学人教版七年级下册6.2立方根(第一课时)教案

6.2立方根(第一课时)教案一、教学目标知识与技能:1、了解立方根的概念,初步学会用根号表示一个数的立方根,让学生体会一个数的立方根的唯一性.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根,分清一个数的立方根与平方根的区别。

3、能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力。

过程与方法1、帮助学生了解数的立方根的概念和性质,会用三次根号表示数的立方根,让学生体会一个数的立方根的惟一性.2、帮助学生了解开立方运算与立方运算之间的互逆关系,掌握用立方运算求一个数的立方根的方法,帮助学生了解用计算器求某些数的立方根的方法..3、帮助学生认识平方根与立方根的区别.情感、态度与价值观1、通过立方根的学习,认识数学与人类生活的密切联系,激发学生的学习兴趣.2、通过探究活动,锻炼克服困难的意志,增强自信心,激发学生的探索热情.二、教学重难点教学重点:了解数的立方根的概念和性质,会用三次根号表示数的立方根,用立方运算求一个数的立方根.教学难点:用立方运算求一个数的立方根,认识平方根与立方根的区别.三、教学方法:讨论比较法、讲练结合,合作,交流,探究.四、教学用具:多媒体、黑板、粉笔五、教学过程:Ⅰ、复习师:请同学们回忆上节课我们是怎样定义平方根的?它的符号怎么表示?生:如果a x =2,那么x 叫做a 的平方根(或二次方根)。

符号表示:“a ±”其中0≥a 师:昨天我们还学习了一种新的运算,是什么运算呢?它是怎么定义的?生:开立方:求一个数a 的平方根的运算,叫做开平方。

↔平方(互为逆运算)师:那么平方根有什么样的性质呢?生:正数有两个平方根,它们是互为相反数;0的平方根还是0;负数没有平方根。

Ⅱ、设计情境,导入新课问题1:要制作一种容积为327m 的正方体形状的包装箱,这种包装箱的棱长应该是多少?你是怎么知道的?设这种包装箱的棱长为m x ,则3x =27.这就是求一个数,使它的立方等于27.因为33=27, 所以x=3. 即这种包装箱的边长应为3 m.本题是已知一个数x 的立方,求这个数的值,而平方根是已知一个数的平方,求这个数,从而学生可以类比平方根的概念归纳出立方根的概念。

【核心素养目标】数学人教版七年级下册6.2 立方根 教案含反思(表格式)

【核心素养目标】数学人教版七年级下册6.2 立方根 教案含反思(表格式)

6.2立方根主要师生活动一、创设情境导入新知想一想二阶魔方由几个小立方体构成______三阶魔方由几个小立方体构成______四阶魔方由几个小立方体构成______师生活动:学生独立思考,直接作答填空.教师顺势提问:如果一个魔方由27 个小立方体构成,它应该是几阶魔方?二、探究新知知识点一:立方根的概念及性质问题要做一个体积为27 cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?师生活动:学生独立思考,利用方程思想进行计算.总结归纳一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.想一想:如果问题中正方体的体积为5 cm3,那么其边长又该是多少?师生活动:学生思考并猜想可以利用方程思想计算,得到( x )3=5 .教师顺势引发思考:能否找到一个正数( x )来表示其边长?类比于平方根,一个数a的立方根如何表示?立方根的表示一个数a的立方根可以表示为:师生活动:教师提问,例如思考中( x )3=5,x 的值是多少?预设:5的立方根是,所以x=.平方根与立方根的区别和联系师生活动:学生独立思考完成填空.设计意图:培养学生观察图表获取信息的能力,培养数感和自主探究的习惯.设计意图:培养数形结合思想,渗透立方根几何意义;发展迁移思想,为后面学习立方根符号做准备.设计意图:进一步认识立方根,发展符号意识设计意图:梳理所学,巩固学生对平方根立方根的认识和理解,培养自主学习的能力.例1求下列各数的立方根:(1) -27;(2) ;(3) ;(4) 0.216;(5) -5.师生活动:学生独立思考完成计算,选几名学生板书,其他同学判断正误.自主探究填空:你能归纳出立方根的另一性质吗?师生活动:学生独立思考,共同作答完成填空;教师选学生回答问题,其他同学判断是够正确.总结一般地,例2的算术平方根是 .例3计算:.师生活动:学生独立思考并计算,选两名学生板书计算过程,教师巡视,再根据板书和学生的易错点来纠正.易错提醒计算的算术平方根时,注意先计算= 4,再计算4 的算术平方根;在进行混合运算时,不要忘记负号.知识点二:用计算器求立方根设计意图:锻炼计算立方根的能力.设计意图:培养学生的观察和总结能力,提高解题技巧.设计意图:提高学生计算立方根的能力;在计算中纠正易错点,不混淆开立方与开平方的运算方法.364364364三、当堂练习 由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.例4 用计算器求下列各数的立方根:343, -1.331.师生活动:学生独立思考,教师引导完成操作.依次按键 、.例5 用计算器求 的近似值(精确到 0.001). 师生活动:学生独立完成操作.三、当堂练习 1.算一算 (1) = , = ; (2) 0.125的立方根是 = ; (3) = , = . 2. 比较 3,4, 的大小. 3. 立方根概念的起源与几何中的正方体有关,如果一个正方体的体积为 V ,那么这个正方体的边长为多少? 4.一个长方体的长为 9 cm ,宽为 3 cm ,高为 4 cm ,而另一个正方体的体积是它的二倍,求这个正方体的棱长.设计意图:学会如何使用计算器计算立方根,感受计算器的便捷;观察计算结果,认识到一个数的立方根可能是无限不循环小数.设计意图:学会使用计算器计算立方根并求立方根的近似值.设计意图:考查学生对计算立方根的掌握. 设计意图:考查学生对立方根概念的掌握,发展逆向思维.设计意图:考查学生对立方根几何意义的掌握. 设计意图:考查学生运用立方根几何意义的进行计算的能力. 板书设计6.2 立方根一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.333331.64(1)27=_______ ________125(2) 0.125(3)1________ 10________.-=-==算一算: -,;的立方根是________; -,333331.64(1)27=_______ ________125(2) 0.125(3)1________ 10________.-=-==算一算:-,;的立方根是________; -,35032通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与。

人教版七年级数学下册教案 6-2 立方根

人教版七年级数学下册教案 6-2 立方根

6.2 立方根一、教学目标【知识与技能】1.了解立方根的概念,会用开立方运算求一个数的立方根.2.了解立方根的性质,并学会用计算器计算一个数的立方根或立方根的近似值.3.分清一个数的立方根与平方根的区别.【过程与方法】1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.【情感态度与价值观】1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】立方根的概念、求法和性质.【教学难点】立方根的求法,立方根与平方根的联系及区别.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?(二)探索新知1.出示课件4-7,探究立方根的概念和性质教师问:如图所示,二阶魔方由几个小立方体构成呢?学生答:二阶魔方由8个小立方体构成.教师问:三阶魔方由几个小立方体构成呢?学生答:三阶魔方由27个小立方体构成.教师问:四阶魔方由几个小立方体构成呢?学生答:四阶魔方由64个小立方体构成.教师问:如果一个魔方由27个小立方体构成,它应该是几阶魔方?学生答:解:设这个魔方为x 阶,则: x3 =27. 因为33 =27, 所以x =3.即这个魔方为3阶魔方.教师问:因为3的立方等于27,那么3就叫做27的立方根.想一想:什么数的立方等于-27?学生答:(-3)3=-27,因为-3的立方等于-27,那么-3就叫做-27的立方根.总结点拨:(出示课件8)立方根的定义一般地,如果一个数的立方等于a,这个数就叫做a的立方根或三次方根.教师问:如何表示一个数的立方根?师生一起解答:一个数a的立方根可以表示为:根指数被开方数读作:三次根号 a其中a是被开方数,3是根指数,3不能省略.教师出示问题:完成下表:填一填:教师依次展示学生答案:如下表所示:总结点拨:(出示课件10)立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.教师强调:1.立方根是它本身的数有1, -1, 0;2.平方根是它本身的数只有0.考点1:求一个数的立方根求下列各数的立方根.(出示课件11)(1) 27 (2)-27 (3) 1(4)-0.064 (5) 027师生共同讨论后解答: 教师依次展示学生解答过程:学生1解:(1)∵33=27,∴27的立方根是3,即 √273=3 . 学生2解:(2)∵(-3)3=-27,∴-27的立方根是-3,即 √−273=-3 . 学生3解:(3)∵(13)3=127,∴127的立方根是13,即 √1273=13.学生4解:(4)∵(-0.4)3=-0.064,∴-0.064的立方根是-0.4,即 √−0.0643=-0.4 . 学生5解:(5)∵03=0,∴0的立方根是0,即 √03=0 . 出示课件13,学生自主练习后口答,教师订正. 2.出示课件14-15,探究立方根的性质 教师出示问题:完成下面的问题: 因为√−83= _______;-√83=_________. 学生答:√−83= __-2_____;-√83=____-2_____. 教师问:所以可以得到:√−83和-√83有何关系呢? 学生答:√−83= -√83. 教师问:完成下面的问题:因为√−273= _______;-√273=_________. 所以√−273______ -√273.学生答:因为√−273= __-3_____;-√273=___-3______. 所以√−273___=___ -√273.教师问:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗? 学生答:互为相反数的数的立方根也互为相反数.即:√−a 3= -√a 3. 教师问:完成下面的问题:√233= _______;√(−2)33=_________. √433= _______;√(−3)33=_________.√033= _______.教师依次展示学生答案: 学生1答:√233= ___2____;√(−2)33=___-2______. 学生2答:√433= ___4____;√(−3)33=___-3______.学生3答:√033= ___0____.教师总结如下:√233= ___2____;√(−2)33=___-2______.√433= ___4____;√(−3)33=___-3______. √033= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有√a 33=a. 教师出示问题:完成下面的问题:(√83)3= _______;(√−83)3==_________. (√273)3= _______;(√−273)3==_________. (√03)3= _______. 教师依次展示学生答案:学生1答:(√83)3= ___8____;(√−83)3=___-8______. 学生2答:(√273)3= __27_____;(√−273)3==___-27____. 学生3答:(√03)3= ___0____. 教师总结如下:解答如下:(√83)3= ___8____;(√−83)3=___-8______. (√273)3= __27_____;(√−273)3==___-27______. (√03)3= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有(√a 3)3=a. 3.出示课件16,探究立方根的有关计算教师问:类似开平方运算,求一个数的立方根的运算叫作“开立方”.观察下面的问题,开立方和立方是什么关系呢?学生答:“开立方”与“立方”互为逆运算. 考点2:立方根的计算求下列各式的值:(出示课件17) (1)√643;(2)-√183;(3)√−27643学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√643=4; 学生2解:(2)-√183 =-12; 学生3解:(3)√−27643=-34.出示课件18,学生自主练习后口答,教师订正.教师总结:平方根与立方根的区别和联系(出示课件19)4.出示课件20,探究利用计算器求立方根教师问:由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.请同学们完成下面的题目:用计算器求下列各数的立方根:343,-1.331.教师依次展示学生解答过程: 学生1显示:7所以:√3433=7.学生1显示:-1.1所以:√−1.3313=-1.1.教师强调:不同的计算器的按键方式可能有所差别! 出示课件21,学生自主练习,教师给出答案。

人教版七年级数学下“6.2立方根”说课稿(优秀篇)

人教版七年级数学下“6.2立方根”说课稿(优秀篇)
探究:填空,你能发现其中的规律吗?
因为 , ,所以 ;
因为 , ,所以
由两个例子可归纳出:一般地, ,探讨了一个数的立方根与它的相反数的立方根之间的关系,由此可以将求负数的立方根的问题转化为求正数得出立方根的出问题,引导学生体会这种转化的思想。
(四)典例讲解
例1:求下列各式的值:
(1) (2) (3)
分析:此题的本质还是求立方根.(请三明同学在黑板上板演,其他同学在练习本上完成,并充分利用错误资源,及时给于指导和帮助)
(六)回顾交流,课堂小结
1.本节课你学到了哪些知识,获得了哪些数学思想方法?
2.你认为本节课的易错知识点有哪些?
(1)立方根的根指数不能省略;(2)一个数的立方根只有一个,不能跟平方根相混淆;(3)表示一个负数的立方根时不能直接将负号提前。
(选做题)教材52页第6题
设计意图:检测学生对于课堂知识的理解与掌握程度,从而更好地调整课堂教学。
九、教学评价设计
1.你对于本节课的掌握情况是( )
A.非常好 B.比较好 C.一般
2.谈谈你本节课的收获和不足?
3.通过本节课的学习你对老师有哪些建议?
十、板书设计
主板
副板
1.立方根的概念:
2.立方根的表示方法:
3.开立方的概念:
4.探索立方根的特点:
例题讲解和板演
六、教学方法分析
本节课主要采用通过创设问题情境—启发学生独立思考-引导学生自主探究-发挥小组合作交流—鼓励学生归纳、总结的学习方式,启发学生深度思考,以实现学生对于知识的主动建构!整堂课注意留给学生足够探索和交流的空间,关注数学思想方法的引导和渗透!
七、教学准备:ppt
八、教学过程分析
(一)学前温故

人教版数学七年级下册6.2《立方根》教学设计

人教版数学七年级下册6.2《立方根》教学设计

人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。

本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。

但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。

三. 教学目标1.了解立方根的概念,掌握求立方根的方法。

2.能够应用立方根解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.立方根的概念和求法。

2.负数的立方根的理解。

3.应用立方根解决实际问题。

五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。

六. 教学准备1.PPT课件。

2.练习题和实际问题。

3.教学工具,如黑板、粉笔等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。

”引导学生思考和讨论,引出立方根的概念。

2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。

同时,讲解如何求一个数的立方根,以及负数的立方根。

3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。

练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。

4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。

如“一个立方体的体积是-8立方米,求这个立方体的棱长。

”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。

引导学生思考和讨论,培养学生的数学思维能力。

人教版七年级数学下册6.2《立方根》说课稿

人教版七年级数学下册6.2《立方根》说课稿

人教版七年级数学下册6.2《立方根》说课稿一. 教材分析《立方根》是人教版七年级数学下册第六章第二节的内容。

本节课的主要内容是让学生理解立方根的概念,掌握求立方根的方法,以及能够运用立方根解决一些实际问题。

教材通过引入立方根的概念,让学生通过观察、思考、操作、交流等活动,体验数学的探索过程,培养学生的数学思维能力和解决问题的能力。

二. 学情分析七年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。

但是,学生对立方根的概念可能还比较陌生,需要通过实例和操作来帮助理解。

此外,学生可能对求立方根的方法不够熟悉,需要通过练习和指导来提高。

三. 说教学目标1.知识与技能目标:学生能够理解立方根的概念,掌握求立方根的方法,能够运用立方根解决一些实际问题。

2.过程与方法目标:通过观察、思考、操作、交流等活动,学生能够体验数学的探索过程,培养数学思维能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与数学学习,对数学产生兴趣和信心,培养良好的学习习惯和合作意识。

四. 说教学重难点1.教学重点:学生能够理解立方根的概念,掌握求立方根的方法。

2.教学难点:学生能够运用立方根解决一些实际问题,理解并应用立方根的性质。

五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等,激发学生的学习兴趣,引导学生主动参与数学学习。

2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果和学生的学习兴趣。

六. 说教学过程1.导入:通过一个实际问题,引入立方根的概念,激发学生的兴趣。

2.探究:学生通过观察、操作、思考等活动,理解立方根的概念,掌握求立方根的方法。

3.练习:学生进行一些练习题,巩固对立方根的理解和运用。

4.应用:学生通过解决一些实际问题,运用立方根的知识,提高解决问题的能力。

5.总结:教师引导学生总结立方根的概念和求法,加深对知识的理解。

七. 说板书设计板书设计要清晰、简洁,能够突出立方根的概念和求法。

(新人教版)数学七年级下册:6.2《立方根》教案(3份)

(新人教版)数学七年级下册:6.2《立方根》教案(3份)

《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。

(新)人教版七年级数学下册6.2《立方根》教学设计

(新)人教版七年级数学下册6.2《立方根》教学设计

课题:6.2 立方根教学目标:了解立方根和开立方的概念;掌握立方根的性质;会求一个数的立方根.重点:立方根的运算难点:立方根的概念及其运算教学流程:一、知识回顾问题1:什么叫做平方根?如果一个数的平方等于a,那么这个数叫做a的平方根(也叫二次方根).即:x2=a,那么x叫做a的平方根a的平方根记作:_______9的平方根记作:_______144的平方根记作:_______答案:,追问:怎么求一个数的平方根?填空:(1)2的平方根是________;(2)0的平方根是________;(3)-16的平方根是____________.答案:0,没有平方根问题2:平方根具有什么性质呢?正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、探究1问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的棱长应该是多?追问1:你还记得正方体的体积与棱长有什么关系吗?答案:V=a3追问2:谁的立方等于27呢?解:设这种包装箱的棱长为x m,则x3=27∵33=27∴x=3定义:如果一个数的立方等于a,那么这个数叫做a的立方根(也叫三次方根).即:x3=a,那么x叫做a的立方根∵33=27∴____是27的立方根答案:3练习1:求下列各数的立方根:解:(1)∵(-3)3=-27∴-27的立方根是-3(2)∵(32)3=338∴338的立方根是32(3)∵(-4)3=-64∴-64的立方根是-4填空:答案:1,-8,27,-27,1,-2,3,-3定义:求一个数的立方根的运算,叫做开立方.追问:左右两图中的运算有什么关系?想一想:到现在我们学了哪些运算?答案:加、减、乘、除、乘方、开方.三、探究2根据立方根的意义填空.∵( 2 )3=8,∴8的立方根是();∵()3=0.064 , ∴0.064的立方根是();∵()3=0,∴0的立方根是();∵()3=-8 ,∴-8的立方根是();∵()3=827-,∴827-的立方根是().答案:2,0.4,0.4,0,0,-2,-2,23-,23-追问:你能发现正数、0和负数的立方根各有什么特点吗?立方根的性质:(1)正数的立方根是正数;(2)负数的立方根是负数;(3)0的立方根是0.一个数a读作:“三次根号a”,被开方数:a;根指数:3;根指数3,不能省略!8的立方根,表示为:__________的立方根8的根指数是2,根指数2,可以省略!思考:你能归纳出平方根和立方根的异同点吗?练习2(1)827的立方根是23±()(2) 25的平方根是5 ()(3)-64没有立方根()(4)-4的平方根是±2()(5) 0的平方根和立方根都是0 ()答案:×,×,×,×,√追问1:立方根是它本身的数有那些?答案:0,±1追问2:算术平方根是它本身的数有那些?答案:0,1四、探究3填空,你能发现其中的规律吗?______,______ ,=______,______ ,______答案:-2,-2,=,-3,-3,=规律:=.例:求下列各式的值 :123.();(解:14;122-();334-( 练习3:求下列各式的值 :3123.();()解:12;325-=-();339=-() 五、探究4问题1:用计算器求下列各式的值:(1(20.001).解:(1) 8 、=,显示:2.2=.(2) 1845、=,显示:12.264 940 81.12.265≈.强调:有些计算器要用到第二功能键来求一个数的立方根.答案:如第(1)问中,按键顺序为:2nd F、8 、=问题2:利用计算器计算,并将计算结果填在表中,你发现了什么规律?规律:被开方数的小数点向右(或向左)移动3位,其算术平方根的小数点向右(或向左)移动1位.问题3:0.001)吗?并利用刚才的得到规律说出4.624≈0.4624≈0.04624≈46.24≈想一想:答:不能六、应用提高1. 你能比较3,4解:∵33=27,∴ 3= ∵ 43=64 ,∴4=∴34强调:被开方数越大,对应的立方根也越大.2. 求下列各式中的 x :(1)9x 3+72=0; (2)2(x -1)3=54.解: (1) 9x 3+72=09x 3=-72x3=-8∵(-2)3=-8∴x=-2(2) 2(x-1)3=54(x-1)3=27∵33=27∴x-1=3x=4七、体验收获今天我们学习了哪些知识?1.什么是立方根?2.如何求一个数的立方根?3.立方根有什么性质?八、达标测评1. 8的立方根是()A.2B.±2C.4D.±4答案:A2.的绝对值是()A.-27B. 27C.-3D. 3答案:D3. 1的平方根是_______;1立方根是_______.答案:1;±1=4______答案:-25.现在要做一个体积为64cm3的立方体魔方,它的棱长要取多长?解:设魔方的棱长为x cm, 则x3=64x=4答:这个魔方的棱长为4cm .6. 比较下列各组数的大小.(12.5; (232. 解: (1)∵9 < 2.53,2.5(2)∵ 4>33()2,32 九、布置作业教材52页习题6.2第3、5题.。

人教版数学七年级下册6.2《立方根》教案

人教版数学七年级下册6.2《立方根》教案

人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。

通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。

二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。

但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。

因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。

三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。

2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。

2.难点:立方根与平方根的联系与区别。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。

3.小组合作学习:分组讨论,培养学生的团队协作能力。

六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。

2.黑板:准备黑板,用于板书重要知识点和示例。

3.练习题:准备一定数量的练习题,用于巩固所学知识。

七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。

例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。

引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。

2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。

通过PPT展示立方根的性质,让学生观察、思考、归纳。

3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。

教师在旁边巡回指导,解答学生的疑问。

人教版七年级数学下册6.2《立方根》教学设计

人教版七年级数学下册6.2《立方根》教学设计

人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。

本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。

教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。

但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。

三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。

2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。

四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。

2.难点:立方根在实际问题中的应用。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。

2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。

3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。

六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。

2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。

3.教学工具:黑板、粉笔、直尺等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。

”让学生思考并讨论,激发学生的学习兴趣。

2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。

同时,引导学生回顾平方根的知识,对比二者之间的异同。

(人教版)七年级下册数学配套教案:6.2《 立方根》

(人教版)七年级下册数学配套教案:6.2《 立方根》

(人教版)七年级下册数学配套教案:6.2《立方根》一. 教材分析人教版七年级下册数学第6.2节《立方根》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。

本节内容主要介绍立方根的概念、性质和求法,旨在让学生理解并掌握立方根的知识,能够运用立方根解决一些实际问题。

教材通过引入立方根的概念,让学生通过观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。

二. 学情分析学生在学习本节内容前,已经掌握了有理数、整式乘法等基础知识,具备了一定的数学思维能力。

但部分学生对抽象的数学概念理解起来较为困难,需要通过具体的操作和实例来帮助理解。

此外,学生的学习兴趣和学习积极性也需要进一步激发。

三. 教学目标1.知识与技能目标:让学生理解立方根的概念,掌握立方根的性质和求法,能够运用立方根解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生的学习兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:立方根的概念、性质和求法。

2.难点:立方根的应用和解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。

同时,学生进行小组合作学习,激发学生的学习兴趣,培养学生的合作意识。

六. 教学准备1.准备相关教学案例和实例。

2.准备教学课件和板书设计。

3.准备练习题和作业。

七. 教学过程1.导入(5分钟)通过设置问题,引导学生回顾已学知识,如整式乘法、有理数等,为新课的学习做好铺垫。

2.呈现(10分钟)介绍立方根的概念,让学生通过观察、操作、思考,理解立方根的定义和性质。

通过PPT展示立方根的图形,帮助学生形成直观的认识。

3.操练(10分钟)让学生通过实际操作,求解一些立方根的问题。

教师引导学生运用立方根的性质和求法,培养学生的动手能力和解决问题的能力。

人教版数学七年级下册6.2《立方根》教学设计1

人教版数学七年级下册6.2《立方根》教学设计1

人教版数学七年级下册6.2《立方根》教学设计1一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容。

本节课主要介绍了立方根的概念、性质和求法。

通过本节课的学习,学生能够理解立方根的定义,掌握立方根的性质,学会运用立方根解决实际问题。

教材中通过丰富的实例和生动的语言,引导学生探究立方根的奥秘,激发学生的学习兴趣。

二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的逻辑思维能力。

但在学习新知识时,部分学生可能对抽象的概念理解起来较为困难,需要通过具体的实例和实践活动来帮助他们理解和掌握。

此外,学生对于新知识的学习兴趣和积极性较高,但有时可能会因为缺乏自主学习能力而影响学习效果。

三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求立方根的方法。

2.过程与方法:通过观察、操作、交流等活动,培养学生的动手能力、观察能力和创新能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:立方根的概念、性质和求法。

2.难点:立方根的应用和实际问题的解决。

五. 教学方法1.情境教学法:通过设置生动有趣的情境,激发学生的学习兴趣,引导学生主动探究。

2.启发式教学法:引导学生通过观察、思考、讨论,自主发现规律,培养学生的创新能力。

3.实践活动法:学生进行动手操作,让学生在实践中感受和理解立方根的概念和性质。

六. 教学准备1.教学课件:制作多媒体课件,展示立方根的实例和性质。

2.教学素材:准备一些立方体的教具,如正方体、长方体等。

3.练习题:设计一些有关立方根的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的立方体,如冰淇淋、魔方等,引导学生关注立方体的特点。

提问:“你们知道这些立方体有什么特殊的性质吗?”从而引出本节课的主题——立方根。

2.呈现(10分钟)展示立方根的定义,引导学生观察和思考立方根与立方体的关系。

人教版七年级下册6.2立方根第七章:立方根教学设计

人教版七年级下册6.2立方根第七章:立方根教学设计

人教版七年级下册6.2立方根第七章:立方根教学设计一、教学背景本课程是人教版七年级下册数学教材“6.2立方根”章节的教学设计。

在学习此章节之前,学生应该具备以下知识点:平方数、完全平方数、立方数、完全立方数、乘法分配律、乘除律、指数运算等。

此章节是整个教材中比较重要的一个章节,主要是介绍立方根的概念、计算方法和应用,是学生进一步学习代数和数学基础的重要环节。

二、教学目标知识目标•了解立方根的概念、计算方法和应用;•熟练掌握计算并简化立方根的方法;•锻炼学生的代数计算能力。

能力目标•学会运用所学知识解决实际问题;•提高分析和推理能力;•培养学生的创新意识和实践能力。

情感目标•帮助学生认识数学知识与生活实际的紧密联系,激发学生的学习兴趣和对数学的好奇心;•培养学生的耐心、细致和严谨精神。

三、教学过程3.1 导入环节通过和学生的交流,让学生回忆平方根的概念和计算方法,引出立方根的概念。

让学生反思:如果根号内的数字是2的幂次方,我们会怎么计算它的根号呢?当数字为3的幂次方时我们怎么计算它的立方根?3.2 讲授环节3.2.1 立方根的概念立方根是一个数的三次方的算术平方根,记作∛a。

我们可以将∛a表示为 a的 1/3 次幂,即∛a=a^(1/3),或者写成 a 的 3 次方根。

3.2.2 立方根的计算方法•性质1:对于a、b为非负实数,则∛ab=∛a×∛b;•性质2:对于a、b为正实数,则∛(a/b)=∛a/∛b;•注意事项:当数字a为负数时,则∛a为负数。

3.2.3 立方根的应用掌握了立方根的概念和计算方法之后,我们将学习一些关于立方根的应用。

在此过程中,我们将以一些例子来说明:例1:水箱的体积为1000升,求水箱的边长。

解析:设水箱的边长为x,则水箱的体积为x³,因此,题目所求即为1000=x³,解得x=10(单位:m)。

例2:一个正方体的表面积为96平方厘米,求正方体的边长。

人教版数学七年级下册教学设计6.2《 立方根》

人教版数学七年级下册教学设计6.2《 立方根》

人教版数学七年级下册教学设计6.2《立方根》一. 教材分析《立方根》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了整数乘法、平方根的基础上进行的。

通过学习立方根,让学生体会数学与现实生活的联系,培养学生的空间想象力,提高学生的数学素养。

本节课的内容包括:立方根的定义、求一个数的立方根、立方根的性质及应用等。

二. 学情分析学生在学习本节课之前,已经掌握了平方根的知识,对乘法运算也有一定的了解。

但立方根的概念和求法对学生来说是一个新的知识点,需要通过实例和练习来理解和掌握。

同时,学生对于空间几何图形中的立方体可能还不够熟悉,需要通过观察和操作来提高空间想象力。

三. 教学目标1.知识与技能:理解立方根的概念,掌握求一个数的立方根的方法,了解立方根的性质及应用。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力,提高学生的数学素养。

3.情感态度价值观:培养学生对数学的兴趣,体会数学与现实生活的联系,培养学生的团队协作精神。

四. 教学重难点1.重点:立方根的概念,求一个数的立方根的方法。

2.难点:立方根的性质及应用。

五. 教学方法1.情境教学法:通过实物和几何图形,引导学生观察和操作,激发学生的学习兴趣。

2.启发式教学法:通过提问和讨论,引导学生思考和探索,培养学生的空间想象力。

3.合作学习法:分组讨论和交流,培养学生团队协作精神,提高学生的沟通能力。

六. 教学准备1.教具准备:立方体模型、多媒体课件。

2.学具准备:练习本、笔。

七. 教学过程1.导入(5分钟)通过展示一个立方体模型,引导学生观察和思考,提问:“谁能说出立方体的特点?”、“立方体的体积怎么计算?”等问题,激发学生的学习兴趣,引出立方根的概念。

2.呈现(10分钟)讲解立方根的定义,用多媒体展示立方根的图形,让学生直观地理解立方根的概念。

同时,通过例题讲解求一个数的立方根的方法,让学生学会如何求一个数的立方根。

人教版数学七年级下册6.2立方根优秀教学案例

人教版数学七年级下册6.2立方根优秀教学案例
(五)作业小结
在作业小结环节,我会布置一些与立方根相关的练习题,让学生在课后进行巩固和提高。同时,我会提醒学生及时总结和反思自己的学习情况,找出自己的不足之处,为今后的学习做好准备。在下一节课开始时,我会及时批改作业,并对学生的学习情况进行反馈,帮助他们纠正错误,提高解题能力。
五、案例亮点
1.启发式教学:本案例中,我运用启发式教学法,通过提问和引导,激发学生的思维,培养他们的抽象思维和逻辑推理能力。例如,在讲解立方根的概念时,我提出问题:“什么是立方根?”“如何快速找出一个数的立方根?”等问题,引导学生进行思考和探索。
在学生小学生进行思考和讨论。例如,我会让学生探讨如何快速找出一个数的立方根,以及立方根在实际生活中的应用。学生可以结合自己的经验和知识,与小组成员进行交流和讨论。通过小组讨论,学生可以互相学习,共同提高。
(四)总结归纳
在总结归纳环节,我会让学生回顾本节课所学的立方根的知识,让他们自己总结和归纳立方根的性质和计算方法。我会引导学生通过整理和概括,形成系统化的知识结构。同时,我会强调立方根在数学和其他学科中的应用,让学生认识到学习立方根的重要性。
为了达到这个目标,我会在课堂上运用生动的例子和动画演示,帮助学生直观地理解立方根的概念。通过大量的练习题,让学生在实践中掌握立方根的计算方法。此外,我还会在课堂上引导学生思考立方根在实际生活中的应用,激发他们的学习兴趣。
(二)过程与方法
在本节课中,我将采用启发式教学法和小组合作学习法,引导学生主动探索、发现和总结立方根的性质和计算方法。
2.小组合作学习:我组织学生进行小组合作学习,让他们在小组活动中共同探索立方根的性质和计算方法。通过小组合作,学生可以互相学习、互相启发,从而提高他们的合作能力和解决问题的能力。

最新人教版七年级数学下册6.2《立方根》教案

最新人教版七年级数学下册6.2《立方根》教案
2.提升数学运算能力:在立方根的计算过程中,训练学生熟练运用数学运算法则,增强数学运算速度和准确性。
3.增强数学建模和解决问题的能力:结合实际例题,让学生学会运用立方根知识建立数学模型,解决生活中的实际问题,提高解决问题的能力。
4.培养学生的逻辑推理能力:通过立方根性质和计算方法的探讨,引导学生运用逻辑推理分析问题,培养严谨的数学思维。
本节课将紧扣新教材要求,注重培养学生的核心素养,提高学生在实际情境中运用数学知识解决问题的能力。
三、教学难点与重点
1.教学重点
-立方根的定义与性质:理解立方根的概念,掌握立方根的性质,明确一个数的立方根与原数的符号相同,以及负数也有立方根。
-举例:讲解2的立方根是8,-2的立方根是-8,强调符号性质。
-立方根的计算方法:熟练掌握使用计算器或手算法求解立方根,了解计算过程中的关键步骤。
-举例:演示如何使用计算器求解一个具体数的立方根,如64的立方根是4。
-立方根的应用:结合实际例题,让学生学会将立方根应用于解决生活中的问题,如体积、密度等。
-举例:计算一个立方体的体积,已知边长为a,则体积为a^3。
五、教学反思
在今天的《立方根》教学中,我尝试了多种方法让学生理解和掌握立方根的概念及其应用。从学生的反应来看,导入新课时的生活化问题设置起到了很好的效果,大家对于这个数学概念产生了浓厚的兴趣。但在教学过程中,我也发现了一些值得反思的地方。
首先,对于立方根的定义和性质的讲解,我发现有些学生仍然难以理解。在今后的教学中,我需要更加注意用简单易懂的语言和生动形象的比喻来解释抽象的数学概念,让学生能够更直观地感受立方根的意义。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:6.2 立方根
教学目标:
了解立方根和开立方的概念;掌握立方根的性质;会求一个数的立方根.
重点:
立方根的运算
难点:
立方根的概念及其运算
教学流程:
一、知识回顾
问题1:什么叫做平方根?
如果一个数的平方等于a,那么这个数叫做a的平方根(也叫二次方根).即:x2=a,那么x叫做a的平方根
a的平方根记作:_______
9的平方根记作:_______
144的平方根记作:_______
答案:,
追问:怎么求一个数的平方根?
填空:
(1)2的平方根是________;
(2)0的平方根是________;
(3)-16的平方根是____________.
答案:0,没有平方根
问题2:平方根具有什么性质呢?
正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
二、探究1
问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的棱长应该是多?
追问1:你还记得正方体的体积与棱长有什么关系吗?
答案:V=a3
追问2:谁的立方等于27呢?
解:设这种包装箱的棱长为x m,则
x3=27
∵33=27
∴x=3
定义:如果一个数的立方等于a,那么这个数叫做a的立方根(也叫三次方根).即:x3=a,那么x叫做a的立方根
∵33=27
∴____是27的立方根
答案:3
练习1:求下列各数的立方根:
解:(1)∵(-3)3=-27
∴-27的立方根是-3
(2)∵(3
2
)3=
3
3
8

3
3
8
的立方根是
3
2
(3)∵(-4)3=-64
∴-64的立方根是-4
填空:
答案:1,-8,27,-27,1,-2,3,-3
定义:求一个数的立方根的运算,叫做开立方.追问:左右两图中的运算有什么关系?
想一想:到现在我们学了哪些运算?
答案:加、减、乘、除、乘方、开方.
三、探究2
根据立方根的意义填空.
∵( 2 )3=8,∴8的立方根是();
∵()3=0.064 , ∴0.064的立方根是();
∵()3=0,∴0的立方根是();
∵()3=-8 ,∴-8的立方根是();
∵()3=
8
27
-,∴
8
27
-的立方根是().
答案:2,0.4,0.4,0,0,-2,-2,
2
3
-,
2
3
-
追问:你能发现正数、0和负数的立方根各有什么特点吗?
立方根的性质:
(1)正数的立方根是正数;(2)负数的立方根是负数;(3)0的立方根是0.
一个数a
读作:“三次根号a”,
被开方数:a;根指数:3;根指数3,不能省略!
8的立方根,表示为:__________的立方根
8
的根指数是2,根指数2,可以省略!
思考:你能归纳出平方根和立方根的异同点吗?
练习2
(1)8
27
的立方根是
2
3
±()
(2) 25的平方根是5 ()
(3)-64没有立方根()
(4)-4的平方根是±2()
(5) 0的平方根和立方根都是0 ()
答案:×,×,×,×,√
追问1:立方根是它本身的数有那些?
答案:0,±1
追问2:算术平方根是它本身的数有那些?
答案:0,1
四、探究3
填空,你能发现其中的规律吗?
______,______ ,
=______,______ ,
______
答案:-2,-2,=,-3,-3,=
规律:=.
例:求下列各式的值 :
123.();(
解:14;
122-();334-( 练习3:求下列各式的值 :
3123.();()
解:12;
325-=-();339=-() 五、探究4
问题1:用计算器求下列各式的值:
(1(20.001).
解:(1) 8 、=,
显示:2.
2=.
(2) 1845、=,
显示:12.264 940 81.
12.265≈.
强调:有些计算器要用到第二功能键来求一个数的立方根.
答案:如第(1)问中,按键顺序为:2nd F
、8 、=
问题2:利用计算器计算,并将计算结果填在表中,你发现了什么规律?
规律:被开方数的小数点向右(或向左)移动3位,其算术平方根的小数点向右(或向左)移动
1位.
问题3:0.001
)吗?并利用刚才的得到规律说出
4.624≈0.4624
≈0.04624≈
46.24≈
想一想:
答:不能
六、应用提高
1. 你能比较3,4
解:∵33=27,
∴ 3= ∵ 43=64 ,
∴4=
∴34
强调:被开方数越大,对应的立方根也越大.
2. 求下列各式中的 x :
(1)9x 3+72=0; (2)2(x -1)3=54.
解: (1) 9x 3+72=0
9x 3=-72
x3=-8
∵(-2)3=-8
∴x=-2
(2) 2(x-1)3=54
(x-1)3=27
∵33=27
∴x-1=3
x=4
七、体验收获
今天我们学习了哪些知识?
1.什么是立方根?
2.如何求一个数的立方根?
3.立方根有什么性质?
八、达标测评
1. 8的立方根是()
A.2
B.±2
C.4
D.±4
答案:A
2.的绝对值是()
A.-27
B. 27
C.-3
D. 3
答案:D
3. 1的平方根是_______;1立方根是_______.
答案:1;±1
=
4______
答案:-2
5.现在要做一个体积为64cm3的立方体魔方,它的棱长要取多长?
解:设魔方的棱长为x cm, 则
x3=64
x=4
答:这个魔方的棱长为4cm .
6. 比较下列各组数的大小.
(12.5; (232. 解: (1)∵9 < 2.53,
2.5
(2)∵ 4>33()2,
32 九、布置作业
教材52页习题6.2第3、5题.。

相关文档
最新文档