(完整版)求导数练习题

合集下载

导数的计算练习题及答案

导数的计算练习题及答案

导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。

解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。

f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。

化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。

2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。

(完整版)高等数学——导数练习题

(完整版)高等数学——导数练习题


y = 阳)的图象 征 点 M(l, 只1))处的切线方程是 y = ;川,那么
f(l)+ f ’(1) =

y = x3 - 2x2 - 4x + 2 在点 (1, - 3)处的切线方程是

= 4. 假设尸(2x2-3) (x2-4),那么 y'
产3cosx-4sinx , 那么 y’=

2x- 6y+l=O 垂直 , 且与 曲 线尸}+3} - 1 相切的直线方程是
一 . 选择题
fun !(与+~) - f(xo) = k ,那么 lin1 j(与+ 2·~) - j(岛) 等于( )
•Ax 0
~
•1'.x 0
~
A. 2k
B. k
C. .!._ k
2
f (x) =sin a -cosx,那么/(α)等于(
A. sin a
C. sin α +cos α
B. cos a
37. 函数 f(x) = 2x - sinx 在 (-∞,+∞)上〔 )
A . 是增函数 B . 是减函数 c . 有最大值
38. 函数 y = 旦王的最大值为( )
x
D . 有最小值
A. e- 1
B. e
二 . 填空题
C. e2
D. !Q
3
1. f'(x) 是 f忡:对巾+ l 的导函数,那么 f同 的值是
y,
A. 1 个
B. 2 个
c. 3 个
D. 4 个
30. 以下求导运算正确 的选项是(
A、 (x + 去问古
x
np

O X /
l
’E’

导数的运算练习题

导数的运算练习题

导数的运算练习题在微积分学中,导数是非常重要的概念之一,它用于描述函数在某一点附近的变化率。

掌握导数的运算是学习微积分的基础,本文将为大家提供一些导数的运算练习题,帮助读者巩固掌握导数的计算方法。

1. 计算下列函数的导数:(1)f(x) = x^3 + 2x^2 - 5x + 1(2)g(x) = sin(x) - cos(x)(3)h(x) = e^x + ln(x)(4)i(x) = √(x^2 + 1)2. 计算下列函数的导数:(1)f(x) = 2x^3 - 3x^2 + 4x - 1(2)g(x) = cos(x) + sin(x) + tan(x)(3)h(x) = ln(x^2) - e^(2x)(4)i(x) = √x + 1/x3. 计算下列函数的导数:(1)f(x) = x^4 + 2x^3 - 3x^2 + 4x - 1(2)g(x) = sin(2x) - cos(2x)(3)h(x) = e^(x^2) + ln(x^3)(4)i(x) = ln(x) + e^x4. 计算下列函数的导数:(1)f(x) = x^5 + 2x^4 - 3x^3 + 4x^2 - 5x + 1(2)g(x) = sin(x)cos(x)(3)h(x) = ln(x) + e^x - x(4)i(x) = e^(2x) + ln(x^2)通过以上的练习题,读者可以熟悉导数的计算方法,掌握常用函数的导数运算规则。

在计算导数时,读者需要注意以下几点:1. 基本函数的导数规则:对于多项式函数,求导后,指数降低1,系数不变;对于三角函数,求导后,正弦变余弦,余弦变负正弦;对于指数函数,求导后,底数不变,指数变形式的导数。

2. 乘法法则:若函数为两个函数的乘积,则导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。

3. 除法法则:若函数为两个函数的商,则导数等于分子函数的导数乘以分母函数,减去分母函数的导数乘以分子函数,再除以分母函数的平方。

(完整版)导数的计算练习题及答案

(完整版)导数的计算练习题及答案

【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。

9.设y=(2x+a)2,且2'|20x y ==,则a=________。

10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。

导数练习题含答案完整版

导数练习题含答案完整版

导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。

函数求导练习题(含解析)

函数求导练习题(含解析)

一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。

(完整版)导数求导练习题

(完整版)导数求导练习题

1.若f (x )=sin α-cos x ,则f ′(α)等于A .sin αB .cos αC .sin α+cos αD .2sin α 2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316C .313D .3103.函数y =x sin x 的导数为A .y ′=2x sin x +x cos xB .y ′=xx 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x4.函数y =x 2cos x 的导数为 A .y ′=2x cos x -x 2sin x B .y ′=2x cos x +x 2sin x C .y ′=x 2cos x -2x sin x D .y ′=x cos x -x 2sin x5.若y =(2x 2-3)(x 2-4),则y ’= .6. 若y =3cosx -4sinx ,则y ’= .7.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______.8.质点运动方程是s =t 2(1+sin t ),则当t =2时,瞬时速度为___________.9.求曲线y=x3+x2-1在点P (-1,-1)处的切线方程.1.函数y =22x ax +(a >0)的导数为0,那么x 等于A .aB .±aC .-aD .a 22.函数y =xxsin 的导数为A .y ′=2sin cos x xx x +B .y ′=2sin cos x xx x -C .y ′=2cos sin x xx x -D .y ′=2cos sin x xx x +3.若21,2xy x+=-则y ’= . 4.若423335,x x y x-+-=则y ’= . 5.若1cos ,1cos xy x+=-则y ’= .6.已知f (x )=354337xx x x ++,则f ′(x )=___________.7.已知f (x )=xx++-1111,则f ′(x )=___________.8.已知f (x )=xx2cos 12sin +,则f ′(x )=___________.9.求过点(2,0)且与曲线y =x1相切的直线的方程.10.质点的运动方程是23,s t t=+求质点在时刻t=4时的速度.1.函数y =2)13(1-x 的导数是 A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x2.已知y =21sin2x +sin x ,那么y ′是 A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数3.函数y =sin 3(3x +4π)的导数为A .3sin 2(3x +4π)cos (3x +4π)B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)4.若y=(sinx-cosx 3),则y ’= .5. 若y=2cos 1x +,则y ’= .6. 若y=sin 3(4x+3),则y ’= .7.函数y =(1+sin3x )3是由___________两个函数复合而成.8.曲线y =sin3x 在点P (3π,0)处切线的斜率为___________.9.求曲线2211(2,)(3)4y M x x =-在处的切线方程.10. 求曲线sin 2(,0)y x M π=在处的切线方程.同步练习1.函数y =cos (sin x )的导数为A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )2.函数y =cos2x +sin x 的导数为A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos3.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为 A .2y -8x +7=0 B .2y +8x +7=0 C .2y +8x -9=0 D .2y -8x +9=04.函数y =x sin (2x -2π)cos (2x +2π)的导数是______________.5.函数y =)32cos(π-x 的导数为______________.6.函数y =cos 3x 1的导数是___________.同步练习1.函数y =ln (3-2x -x 2)的导数为A .32+xB .2231x x --C .32222-++x x xD .32222-+-x x x2.函数y =lncos2x 的导数为A .-tan2xB .-2tan2xC .2tan xD .2tan2x3.函数y =x ln 的导数为A .2x x lnB .xx ln 2C .xx ln 1 D .xx ln 214.在曲线y =59++x x 的切线中,经过原点的切线为________________. 5.函数y =log 3cos x 的导数为___________. 6.函数y =x 2lnx 的导数为 .7. 函数y =ln (lnx )的导数为 . 8. 函数y =lg (1+cosx )的导数为 . 9. 求函数y =ln 22132x x +-的导数.10. 求函数y =12.求函数y =ln (21x +-x )的导数.同步练习1.下列求导数运算正确的是A .(x +x 1)′=1+21xB .(log 2x )′=2ln 1xC .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x 2.函数y =xxa 22-(a >0且a ≠1),那么y ′为A .xxa 22-ln aB .2(ln a )xx a 22-C .2(x -1)xxa 22-·ln aD .(x -1)xxa 22-ln a3.函数y =sin32x 的导数为 A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x4.设y =xx e e 2)12(+,则y ′=___________.5.函数y =x22的导数为y ′=___________.6.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________.7.求函数y=e 2x lnx 的导数.8.求函数y =x x (x >0)的导数.。

求导的练习题

求导的练习题

求导的练习题数学中的求导,是指通过对函数进行变换,求出其导数的过程。

求导是微积分的基础概念,具有广泛的应用。

下面将为您提供一些求导的练习题,帮助您加深对求导的理解和掌握。

1. 求下列函数的导数:1) f(x) = x^2 + 3x - 2解:将 f(x) = x^2 + 3x - 2 写成幂函数形式,得 f(x) = x^2 + 3x^1 - 2x^0对于幂函数 f(x) = ax^n,其中 a 是常数,n 是整数:f'(x) = n * a * x^(n-1)由此可得:f'(x) = 2 * 1 * x^(2-1) + 3 * 1 * x^(1-1) - 2 * 0 * x^(0-1)= 2x + 3所以函数 f(x) = x^2 + 3x - 2 的导数为 f'(x) = 2x + 3。

2) g(x) = 5sin(x)解:根据三角函数的导数公式,sin(x) 的导数为 cos(x)。

所以 g'(x) = 5 * cos(x)3) h(x) = (1/2)x^(-1/2)解:将 h(x) 写成分数幂函数形式,得 h(x) = 1/2 * x^(-1/2)对于分数幂函数 f(x) = a * x^(m/n),其中 a 是常数,m 和 n 是整数:f'(x) = (m/n) * a * x^((m/n)-1)由此可得:h'(x) = -1/2 * (1/2) * x^((-1/2)-1)= -1/4 * x^(-3/2)所以函数 h(x) = (1/2)x^(-1/2) 的导数为 h'(x) = -1/4 * x^(-3/2)。

2. 求下列复合函数的导数:1) f(x) = sin(2x)解:根据复合函数求导法则,如果 y = f(g(x)),则 y' = f'(g(x)) * g'(x)。

注意到 f(x) = sin(x) 的导数为 f'(x) = cos(x),而 g(x) = 2x,则 g'(x) = 2。

导数高中试题及解析答案

导数高中试题及解析答案

导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。

解析:首先,我们需要找到函数 \( f(x) \) 的导数。

根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。

2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。

解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。

因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。

3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。

解析:这是一个复合函数,我们可以使用链式法则来求导。

首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。

对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。

(完整版)导数练习题(含答案)

(完整版)导数练习题(含答案)

导数概念及其几何意义、导数的运算一、选择题:1 已知,若,则a 的值等于32()32f x ax x =++(1)4f '-=ABCD1931031631332 已知直线与曲线,则b 的值为1y kx =+3y x ax b =++切于点(1,3)A3B-3C5D-53 函数的导数为2y x a a =+2()(x-)ABCD 222()x a -223()x a +223()x a -222()x a +4 曲线在点处的切线与坐标轴围成的三角形的面积为313y x x =+4(1,)3A B C D192913235已知二次函数的导数为,对于任意实数x ,有,则2y ax bx c =++(),(0)0f x f ''>()0f x ≥的最小值为(1)(0)f f 'A3BC 2 D52326 已知函数在处的导数为3,则的解析式可能为()f x 1x =()f x A B2()(1)3(1)f x x x =-+-()2(1)f x x =-CD 2()2(1)f x x =-()1f x x =-7 下列求导数运算正确的是AB211(1x x x'+=+21(log )ln 2x x '=CD 3(3)3log x x e '=⋅2(cos )2sin x x x x'=-8 曲线在处的切线的倾斜角为32153y x x =-+1x =AB C D6π34π4π3π9 曲线在点处的切线方程为3231y x x =-+(1,1)-A BCD 34y x =-32y x =-+43y x =-+45y x =-10设函数的图像上的点处的切线斜率为k ,若,则函数的sin cos y x x x =+(,)x y ()k g x =()k g x =图像大致为11 一质点的运动方程为,则在一段时间内相应的平均速度为253s t =-[1,1]t +∆ABCD 36t ∆+36t -∆+36t ∆-36t -∆-12 曲线上的点到直线的最短距离是()ln(21)f x x =-230x y -+=ABCD 013 过曲线上的点的切线平行于直线,则切点的坐标为32y x x =+-0P 41y x =-0P A B(0,1)(1,0)-或(1,4)(1,0)--或CD (1,4)(0,2)---或(2,8)(1,0)或14 点P 在曲线上移动,设点P 处切线的倾斜角为,则角的取值范围是323y x x =-+ααABC D [0,]2π3[0,)[,)24πππ 3[,)4ππ3(,]24ππ二、填空题15 设是二次函数,方程有两个相等实根,且,则的表达式()y f x =()0f x =()22f x x '=+()y f x =是______________16 函数的导数为_________________________________2sin x y x=17 已知函数的图像在点处的切线方程是,则_________()y f x =(1,(1))M f 122y x =+(1)(1)f f '+=18 已知直线与曲线有公共点,则k 的最大值为___________________________y kx =ln y x =三、解答题19 求下列函数的导数(1)(2) (3)(4) 1sin 1cos xy x-=+y =y =+tan y x x =⋅20 已知曲线与,直线与都相切,求直线的方程21:C y x =22:(2)C y x =--l 12,C C l 21 设函数,曲线在点处的切线方程为()bf x ax x=-()y f x =(2,(2))f74120x y --=(1)求的解析式()f x(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并()y f x =0x =y x =求此定值。

完整版)导数大题练习带答案

完整版)导数大题练习带答案

完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。

Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。

+\infty)$。

Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。

m+3]$ 上的最值。

$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。

m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。

Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。

证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。

2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。

Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。

$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。

导数基础训练试题及答案

导数基础训练试题及答案

导数基础训练试题及答案一、单项选择题(每题3分,共30分)1. 函数f(x)=x^2在x=1处的导数是()。

A. 0B. 1C. 2D. 32. 函数f(x)=3x^3+2x^2+5的导数是()。

A. 9x^2+4xB. 9x^2+4x+5C. 3x^2+4xD. 3x^2+4x+53. 函数f(x)=sin(x)的导数是()。

A. cos(x)B. sin(x)C. -cos(x)D. -sin(x)4. 如果函数f(x)的导数为f'(x)=6x,那么f(x)可能是()。

A. 3x^2+CB. 2x^3+CC. x^3+CD. x^2+C5. 函数f(x)=e^x的导数是()。

A. e^xC. -e^xD. -e^(-x)6. 函数f(x)=ln(x)的导数是()。

A. 1/xB. xC. ln(x)D. 17. 函数f(x)=x^(1/3)的导数是()。

A. 1/3x^(-2/3)B. 1/3x^(1/3)C. x^(-2/3)D. x^(2/3)8. 函数f(x)=sqrt(x)的导数是()。

A. 1/(2sqrt(x))B. 1/2sqrt(x)C. 2/sqrt(x)D. 2sqrt(x)9. 函数f(x)=x^5-5x^3+x的导数是()。

A. 5x^4-15x^2+1B. 5x^4-15x^2+xC. 5x^4-15x^2+1+xD. 5x^4-15x^210. 函数f(x)=cos(x)的导数是()。

A. -sin(x)B. sin(x)D. cos(x)二、填空题(每题4分,共20分)1. 函数f(x)=x^3的导数是______。

2. 函数f(x)=1/x的导数是______。

3. 函数f(x)=tan(x)的导数是______。

4. 函数f(x)=x^2-6x+10的导数是______。

5. 函数f(x)=ln(x)+x的导数是______。

三、解答题(每题10分,共50分)1. 求函数f(x)=x^2+3x-5在x=2处的导数值。

导数练习(全)

导数练习(全)

导数的计算基本初等函数的导数公式1、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-;()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=; ()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 2、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦; ()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 3、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =.复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.习题1、 已知()2f x x =,则()3f '=( ).A .0B .2xC .6D .9 解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6.答案 C 2、 ()0f x =的导数为( ).A .0B .1C .不存在D .不确定 解析 常数函数导数为0.答案 A3、 曲线n y x =在2x =处的导数为12,则n 等于( ).A .1B .2C .3D .4解析 对y =x n 进行求导,得n ·2n -1=12,代入验证可得n =3.答案 C4、 设函数()y f x =是一次函数,已知()01f =,()13f =-,则()f x '=________.解析 ∵f (x )=ax +b ,由f (0)=1,f (1)=-3,可知a =-4,b =1,∴f (x )=-4x +1,∴f ′(x )=-4.5、 函数()f x =的导数是________. 解析 ()78fx x =,∴()1878f x x -'=⋅6、 在曲线31y x x =+-上求一点P ,使过P 点的切线与直线47y x =-平行. 解 ∵y ′=3x 2+1. ∴3x 20+1=4,∴x 0=±1. 当x 0=1时,y 0=1,此时切线为y -1=4(x -1) 即y =4x -3与y =4x -7平行. ∴点为P (1,1),当x 0=-1时,y 0=-3, 此时切线y =4x +1也满足条件. ∴点也可为P (-1,-3),综上可知点P 坐标为(1,1)或(-1,-3).7、 设()()()()()()()01021+1sin ,,,,n n f x x f x f x f x f x f x f x '''==== ,n N ∈,则()2010f x =( ).A .sin xB .sin x -C .cos xD .cos x -解析 f 0(x )=sin x ,f 1(x )=f 0′(x )=cos x ,f 2(x )=f 1′(x )=-sin x ,f 3(x )=f 2′(x )=-cos x ,f 4(x )=f 3′(x )=sin x ,….由此继续求导下去,发现四个一循环,从0到2 010共2 011个数,2 011=4×502+3,所以f 2 010(x )=f 2(x )=-sin x .8、 下列结论①()sin cos x x '=-;②211x x'⎛⎫= ⎪⎝⎭;③()31log 3ln x x '=;④()1ln x x '=.其中正确的有( ).A .0个B .1个C .2个D .3个解析 在①中(sin x )′=cos x ,在②中⎝⎛⎭⎫1x ′=-1x 2,在③中(log 3x )′=1x ln 3,④正确.答案 B9、 曲线y =()16,8Q 处的切线的斜率是________. 解析 ∵34y x =∴1434y x -'=∴1638x y ='=答案 3810、曲线9y x=在点()3,3M 处的切线方程是________. 解析 ∵y ′=-9x 2,∴y ′|x =3=-1,∴过点(3,3)的斜率为-1的切线方程为:y -3=-(x -3)即x +y -6=0.答案 x +y -6=011、已知()()cos ,f x x g x x ==,求适合()()0f x g x ''+≤的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1, 由f ′(x )+g ′(x )≤0,得-sin x +1≤0,即sin x ≥1,但sin x ∈[-1,1], ∴sin x =1,∴x =2k π+π2,k ∈Z .12、求下列函数的导数:⑴3244log log y x x =-;⑵2212x y x x +=-;⑶22sin 2sin 124x x y ⎛⎫=-- ⎪⎝⎭.解 (1)∵y =log 4x 3-log 4x 2=log 4x ,∴y ′=(log 4x )′=1x ln 4. (2)∵y =2x 2+1x -2x =2x 2+1-2x 2x =1x .∴y ′=(1x )′=-1x 2.(3)∵y =-2sin x 2(2sin 2x 4-1)=2sin x 2(1-2sin 2x 4)=2sin x 2cos x2=sin x .∴y ′=(sin x )′=cos x .13、函数y =cos x1-x的导数是( ).A.()2sin sin 1x x xx -+- B.()2sin sin cos 1x x x xx ---C.()2cos sin sin 1x x x xx -+- D.cos sin sin 1x x x xx-+-解析 y ′=⎝⎛⎭⎫cos x 1-x ′=-sin x 1-x -cos x · -1 1-x 2=cos x -sin x +x sin x1-x 2.答案 C14、已知()3232f x ax x =++,若()14f '-=,则a 的值为( ).A.193 B.103 C.133D.163 解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103.答案 B15、已知11x f x x ⎛⎫= ⎪+⎝⎭,则()f x '等于( ).A.11x + B .11x -+ C.()211x + D .()211x -+ 解析 令1x =t ,则f (t )=1t1+1t =11+t ,∴f (x )=11+x ,f ′(x )=⎝⎛⎭⎫11+x ′=-11+x 2.答案 D16、若质点的运动方程是sin s t t =,则质点在2t =时的瞬时速度为________. 解析 s ′=(t sin t )′=sin t +t cos t ,∴s ′(2)=sin 2+2cos 2.答案 sin 2+2cos 2 17、若()()3log 1f x x =-,则()2f '=________. 解析 f ′(x )=[log 3(x -1)]′=1x-1l n 3,∴f ′(2)=1ln 3.答案 1ln 318、过原点作曲线x y e =的切线,求切点的坐标及切线的斜率. 解 ∵(e x )′=e x ,设切点坐标为(x 0,e x 0), 则过该切点的直线的斜率为e x 0, ∴所求切线方程为y -e x 0=e x 0(x -x 0). ∵切线过原点,∴-e x 0=-x 0·e x 0,x 0=1. ∴切点为(1,e),斜率为e.19、函数()()y x a x b =--在x a =处的导数为( ).A .abB .()a a b --C .0D .a b -解析 ∵y =x 2-(a +b )x +ab ,∴y ′=2x -(a +b ),∴y ′|x =a =2a -(a +b )=a -b .答案 D20、当函数()220x a y a x+=>在0x x =处的导数为0时,那么0x =( ).A .aB .a ±C .a -D .2a解析 y ′=⎝⎛⎭⎫x 2+a 2x ′=2x ·x -x 2+a 2x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .答案 B 21、若()()22f x x a =+,且()220f '=,则a =_______.解析 f ′(x )=2(2x +a )·2=4(2x +a ),f ′(2)=16+4a =20,∴a =1.答案 1 22、函数()345f x x x =++的图象在1x =处的切线在x 轴上的截距为________.解析 f ′(x )=3x 2+4,f ′(1)=7,f (1)=10,∴y -10=7(x -1),当y =0时,x =-37.答案 -3723、曲线2cos3x y e x =⋅在()0,1处的切线与直线L ,求直线L 的方程. 解 y ′=(e 2x )′·cos 3x +e 2x ·(cos 3x )′ =2e 2x ·cos 3x -3e 2x ·sin 3x, ∴y ′|x =0=2.∴经过点(0,1)的切线方程为y -1=2(x -0),即y =2x +1. 设适合题意的直线方程为y =2x +b , 根据题意,得5=|b -1|5,∴b =6或-4. ∴适合题意的直线方程为y =2x +6或y =2x -4. 24、求证:可导的奇函数的导函数是偶函数.证明 设f (x )是奇函数,则f (-x )=-f (x ),两边对等求导,得f ′(-x )·(-x )′=-f ′(x ), 即-f ′(-x )=-f ′(x ),∴f ′(-x )=f ′(x ). 故命题成立.导数在研究函数中的应用函数的单调性与导数设函数()y f x =在[,]a b 上连续,在(,)a b 内可导.(1)如果在(,)a b 内'()0f x >,那么函数()y f x =在[,]a b 上单调递增; (2)如果在(,)a b 内'()0f x <,那么函数()y f x =在[,]a b 上单调递减. 求可导函数单调区间的一般步骤和方法: ⑴确定函数的()f x 的定义区间;⑵求'()f x ,令'()0f x =,解此方程,求出它在定义区间内的一切实根;⑶把函数()f x 的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把 函数()f x 的定义区间分成若干个小区间;⑷确定'()f x 在各个区间内的符号,根据'()f x 的符号判定函数()f x 在每个相应小区间内的增减性. 习题1、 在下列结论中,正确的有( ).⑴单调增函数的导数也是单调增函数; ⑵单调减函数的导数也是单调减函数; ⑶单调函数的导数也是单调函数; ⑷导函数是单调的,则原函数也是单调的.A .0个B .2个C .3个D .4个 解析 分别举反例:(1)y =ln x . (2)y =1x (x >0).(3)y =2x . (4)y =x 2,故选A.2、 函数21ln 2y x x =-的单调减区间是( ). A .()0,1 B .()()0,1,1-∞- C .(),1-∞ D .(),-∞+∞解析 ∵y =12x 2-ln x 的定义域为(0,+∞),∴y ′=x -1x ,令y ′<0,即x -1x <0,解得:0<x <1或x <-1.又∵x >0,∴0<x <1,故选A.3、 若函数()326f x x ax x =--+在()0,1内单调递减,则实数a 的取值范围是( ).A .1a ≥B .1a =C .1a ≤D .01a <<解析 ∵f ′(x )=3x 2-2ax -1,又f (x )在(0,1)内单调递减,∴不等式3x 2-2ax -1<0在(0,1)内恒成立,∴f ′(0)≤0,且f ′(1)≤0,∴a ≥1.答案 A4、 函数()2ln 2y x x =--的递减区间为________. 解析 f ′(x )=2x -1x 2-x -2,令f ′(x )<0得x <-1或12<x <2,注意到函数定义域为(-∞,-1)∪(2,+∞),故递减区间为(-∞,-1).5、 若三次函数()3f x ax x =+在区间(),-∞+∞内是增函数,则a 的取值范围是________. 解析 f ′(x )=3ax 2+1,∴f (x )在R 上为增函数,∴3ax 2+1≥0在R 上恒成立.又a ≠0,∴a >0. 答案 (0,+∞)6、 已知1x >,证明:()ln 1x x >+. 证明 设f (x )=x -ln(1+x )(x >1), f ′(x )=1-11+x =x1+x,由x >1,知f ′(x )>0.∴f (x )在(1,+∞)上单调递增.又f (1)=1-ln 2>0, 即f (1)>0.∵x >1,∴f (x )>0,即x >ln(1+x ). 7、 当0x >时,()2f x x x=+的单调递减区间是( ).A .()2,+∞B .()0,2C .)+∞ D .(解析 f ′(x )=1-2x 2=x 2-2x 2=x -2x +2x 2.由f ′(x )<0且x >0得0<x <2,故选D.8、 已知函数()y f x =的导函数()2f x ax bx c '=++的图象如图所示,则()y f x =的图象可能是( ).解析 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间上单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项满足题意.9、 使sin y x ax =+为R 上的增函数的a 的范围是________.解析 ∵y ′=cos x +a >0,∴a >-cos x ,对x ∈R 恒成立.∴a >1.答案 (1,+∞) 10、已知()()221f x x xf '=+,则()0f '=________. 解析 ∵f (x )=x 2+2xf ′(1),∴f ′(x )=2x +2f ′(1),∴f ′(1)=2×1+2f (1),∴f ′(1)=-2.∴f ′(0)=2×0+2f ′(1)=2×(-2)=-4.11、已知函数()38f x x ax =++的单调递减区间为()5,5-,求函数()y f x =的递增区间. 解 f ′(x )=3x 2+a .∵(-5,5)是函数y =f (x )的单调递减区间,则-5,5是方程3x 2+a =0的根, ∴a =-75.此时f ′(x )=3x 2-75,令f ′(x )>0,则3x 2-75>0,解得x >5或x <-5,∴函数y =f (x )的单调递增区间为(-∞,-5)和(5,+∞).12、求下列函数的单调区间,并画出大致图象:(1)9y x x=+; (2)()2ln 23y x x =++. 解 (1)函数y =x +9x 的定义域为{x |x ∈R ,且x ≠0}.∵y =x +9x ,∴y ′=1-9x 2.当y ′>0,即x >3或x <-3时,函数y =x +9x 单调递增;当y ′<0,即-3<x <0或0<x <3时,函数y =x +9x单调递减.故函数y =x +9x 的单调递增区间为(-∞,-3),(3,+∞),单调递减区间为(-3,0),(0,3).函数y =x +9x的大致图象如图(1)所示.(2)函数y =ln(2x +3)+x 2的定义域为⎝⎛⎭⎫-32,+∞.∵y =ln(2x +3)+x 2, ∴y ′=22x +3+2x =4x 2+6x +22x +3=2 2x +1 x +1 2x +3.当y ′>0,即-32<x <-1或x >-12时,函数y =ln(2x +3)+x 2单调递增;当y ′<0,即-1<x <-12时,函数y =ln(2x +3)+x 2单调递减.故函数y =ln(2x +3)+x 2的单调递增区间为⎝⎛⎭⎫-32,-1,⎝⎛⎭⎫-12,+∞,单调递减区间为⎝⎛⎭⎫-1,-12. 函数y =ln(2x +3)+x 2的大致图象如图(2)所示.函数的极值与导数函数的极值函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()(),f x f x <则称0()f x 是函数的一个极大值,记作0=()y f x 极大值;如果对0x 附近的所有点都有0()(),f x f x >则称0()f x 是函数的一个极小值,记作0=().y f x 极小值极大值与极小值统称为极值,称0x 为极值点. 求函数的极值的三个基本步骤 ⑴求导数'()f x ;⑵求方程'()0f x =的所有实数根;⑶检验'()f x 在方程'()0f x =的根左右的符号,如果是左正右负(左负右正),则()f x 在这个根处取得极大(小)值. 求函数最值⑴求函数()f x 在区间(,)a b 上的极值;⑵将极值与区间端点函数值(),()f a f b 比较,其中最大的一个就是最大值,最小的一个就是最小值. 习题1、 下列函数存在极值的是( ).A .1y x=B .x y x e =-C .3223y x x x =++-D .3y x = 解析 A 中f ′(x )=-1x 2,令f ′(x )=0无解,且f (x )为双曲函数,∴A 中函数无极值.B 中f ′(x )=1-e x ,令f ′(x )=0可得x =0.当x <0时,f ′(x )>0;当x >0时,f ′(x )<0.∴y =f (x )在x =0处取极大值,f (0)=-1.C 中f ′(x )=3x 2+2x +2,Δ=4-24=-20<0.∴y =f (x )无极值,D 也无极值.故选B. 2、 函数313y x x =+-有( ).A .极小值1-,极大值1B .极小值2-,极大值3C .极小值2-,极大值2D .极小值1-,极大值3 解析 f ′(x )=-3x 2+3,由f ′(x )=0可得x 1=1,x 2=-1.由极值的判定方法知f (x )的极大值为f (1)=3,极小值为f (-1)=1-3+1=-1,故选D. 3、 函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点解析 f ′(x )的符号由正变负,则f (x 0)是极大值,f ′(x )的符号由负变正,则f (x 0)是极小值,由图象易知有两个极大值点,两个极小值点.答案 C4、 设方程33x x k -=有3个不等的实根,则常数k 的取值范围是________.解析 设f (x )=x 3-3x -k ,则f ′(x )=3x 2-3.令f ′(x )=0得x =±1,且f (1)=-2-k ,f (-1)=2-k ,又f (x )的图象与x 轴有3个交点,故⎩⎪⎨⎪⎧2-k >0,-2-k <0,∴-2<k <2.答案 (-2,2)5、 已知函数21x y x =-,当x =_______时取得极大值________;当x =________时取得极小值________.解析 y ′=(x 2x -1)′=x 2′x -1 -x 2x -1 ′x -1 2=x 2-2x x -1 2.y ′>0⇒x >2,或x <0,y ′<0⇒0<x <2,且x ≠1,∴y =x 2x -1在x =0处取得极大值0,在x =2处取得极小值4. 答案 0 0 2 4 6、 求函数()2x f x x e -=的极值.解 函数的定义域为R ,f ′(x )=2x e -x +x 2·e -x ·(-x )′=2x e -x -x 2 ·e -x =x (2-x )e -x .令f ′(x )=0,即x (2-x )·e-x=0;得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:极小值 极大值=4e-2=4e2. 7、 函数()3226187f x x x x =--+ ( )A .在1x =-处取得极大值17,在3x =处取得极小值47-B .在1x =-处取得极小值17,在3x =处取得极大值47-C .在1x =-处取得极小值17-,在3x =处取得极大值47D .以上都不对解析 f ′(x )=6x 2-12x -18,令f ′(x )=0,解得x 1=-1,x 2=3.当x 变化时,f ′(x ),f (x )的变化情况如下表:极大值极小值∴当8、 三次函数当1x =时有极大值4,当3x =时有极小值0,且函数过原点,则此函数是( ).A .3269y x x x =++B .3269y x x x =-+C .3269y x x x =--D .3269y x x x =+-解析 三次函数过原点,可设f (x )=x 3+bx 2+cx ,则f ′(x )=3x 2+2bx +c .由题设有⎩⎪⎨⎪⎧f ′ 1=3+2b +c =0,f ′ 3=27+6b +c =0,解得b =-6,c =9.∴f (x )=x 3-6x 2+9x ,f ′(x )=3x 2-12x +9=3(x -1)(x -3).当x =1时,函数f (x )取得极大值4,当x =3时,函数取得极小值0,满足条件.答案 B9、 函数()()323323f x x ax a x =++++既有极大值又有极小值,则实数a 的取值范围是________. 解析 ∵f ′(x )=3x 2+6ax +3(a +2),令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0,∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实数根,即Δ=4a 2-4a -8>0,解得a >2或a <-1.答案 (-∞,-1)∪(2,+∞)10、函数36y x x a =-+的极大值为________,极小值为________.解析 ∵y ′=3x 2-6,令y ′=0,得x =±2,当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0,∴函数在x =-2时取得极大值a +42,在x =2时取得极小值a -4 2. 答案 a +42 a -4 211、已知函数32y ax bx =+,当1x =时函数有极大值3,(1)求a 、b 的值; (2)求函数y 的极小值.解 (1)y ′=3ax 2+2bx ,当x =1时,y ′=3a +2b =0,又y =a +b =3,即⎩⎪⎨⎪⎧ 3a +2b =0,a +b =3,解得⎩⎪⎨⎪⎧a =-6,b =9.经检验,x =1是极大值点,符合题意,故a ,b 的值分别为-6,9. (2)y =-6x 3+9x 2,y ′=-18x 2+18x ,令y ′=0,得x =0或x =1.∴当x =0时,函数y 取得极小值0. 12、设函数()()3203a f x x bx cx d a =+++>,且方程()90f x x '-=的两个根分别为1、4. (1)当3a =且曲线()y f x =过原点时,求()f x 的解析式; (2)若()f x 在(),-∞+∞ 内无极值点,求a 的取值范围. 解 由f (x )=a3x 3+bx 2+cx +d ,得f ′(x )=ax 2+2bx +c .∵f ′(x )-9x =ax 2+(2b -9)x +c =0的两个根分别为1,4,∴⎩⎪⎨⎪⎧a +2b +c -9=0,16a +8b +c -36=0,(*)(1)当a =3时,由(*)式得⎩⎪⎨⎪⎧2b +c -6=0,8b +c +12=0,解得b =-3,c =12,又因为曲线y =f (x )过原点,所以d =0,故f (x )=x 3-3x 2+12x . (2)由于a >0,∵f (x )=a3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点,∴f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立.由(*)式得2b =9-5a ,c =4a ,又Δ=(2b )2-4ac =9(a -1)(a -9).解⎩⎪⎨⎪⎧a >0,Δ=9 a -1 a -9 ≤0.得a ∈[1,9],即a 的取值范围为[1,9].函数的最大(小)值与导数1、 函数x y xe -=,[]0,4x ∈的最大值是( ).A .0 B.1e C.44e D.22e解析 y ′=e -x -x ·e -x =e -x (1-x ),令y ′=0,∴x =1, ∴f (0)=0,f (4)=4e 4,f (1)=e -1=1e,∴f (1)为最大值,故选B. 2、 函数()33f x x ax a =--在()0,1内有最小值,则a 的取值范围为( ).A .01a ≤<B .01a <<C .11a -<<D .102a << 解析 ∵f ′(x )=3x 2-3a ,令f ′(x )=0,可得a =x 2,又∵x ∈(0,1),∴0<a <1,故选B.3、 设()()()20f x x ax bx c a =++≠在1x =和1x =-处均有极值,则下列点中一定在x 轴上的是( ).A .(),a bB .(),a cC .(),b cD .(),a b c +解析 f ′(x )=3ax 2+2bx +c ,由题意知-1,1是方程3ax 2+2bx +c =0的两根,由根与系数的关系知1-1=-2b 3a,所以b =0,故选A 4、 函数2cos y x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是________. 解析 y ′=1-2sin x =0,x =π6,比较0,π6,π2处的函数值,得y max =π6+ 3. 5、 函数()sin cos f x x x =+在,22x ππ⎡⎤∈-⎢⎥⎣⎦的最大、最小值分别是________. 解析 f ′(x )=cos x -sin x =0,即tan x =1,x =k π+π4,(k ∈Z ), 而x ∈⎣⎡⎦⎤-π2,π2,当-π2<x <π4时,f ′(x )>0; 当π4<x <π2时,f ′(x )<0,∴f ⎝⎛⎭⎫π4是极大值. 又f ⎝⎛⎭⎫π4=2,f ⎝⎛⎭⎫-π2=-1,f ⎝⎛⎭⎫π2=1, ∴函数最大值为f ⎝⎛⎭⎫π4=2,最小值为f ⎝⎛⎭⎫-π2=-1. 答案2 -16、 求函数()543551f x x x x =+++在区间[]1,4-上的最大值与最小值.解 f ′(x )=5x 4+20x 3+15x 2=5x 2(x +3)(x +1),由f ′(x )=0得x =0或x =-1或x =-3(舍),列表: 1 2 625又f (0)=1,∴函数y =x 5+5x 4+5x 3+1在区间[-1,4]上的最大值为2 625,最小值为0.7、 函数32343x y x x =+--在[]0,2上的最小值是( ). A .173- B .103- C .4- D .643- 解析 y ′=x 2+2x -3(x ∈[0,2]),令x 2+2x -3=0,知x =-3或x =1为极值点.当x =1时,y min =-173,故选A. 8、 已知函数()3226f x x x m =-+(m 为常数)在[]2,2-上有最大值3,那么此函数在[]2,2-上的最小值为( ).A .37-B .29-C .5-D .11-解析 ∵f ′(x )=6x 2-12x =6x (x -2),由f ′(x )=0得x =0或2.∵f (0)=m ,f (2)=-8+m ,f (-2)=-40+m ,显然f (0)>f (2)>f (-2),∴m =3,最小值为f (-2)=-37. 答案 A9、 函数()241x f x x =+,[]2,2x ∈-的最大值是________,最小值是________. 解析 ∵y ′=4 x 2+1 -2x ·4x x 2+1 2=-4x 2+4x 2+12,令y ′=0可得x =1或-1. 又∵f (1)=2,f (-1)=-2,f (2)=85,f (-2)=-85,∴最大值为2,最小值为-2. 答案 2 -210、如果函数()3232f x x x a =-+在[]1,1-上的最大值是2,那么()f x 在[]1,1-上的最小值是________. 解析 f ′(x )=3x 2-3x ,令f ′(x )=0得x =0,或x =1.∵f (0)=a ,f (-1)=-52+a , f (1)=-12+a ,∴f (x )max =a =2. ∴f (x )min =-52+a =-12.答案 -1211、已知函数()3239f x x x x a =-+++(1)求()f x 的单调递减区间;(2)若()f x 在区间[]2,2-上的最大值为20,求它在该区间上的最小值. 解 (1)∵f ′(x )=-3x 2+6x +9.令f ′(x )<0,解得x <-1或x >3,∴函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(2)∵f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,∴f (2)>f (-2).于是有22+a =20,∴a =-2.∴f (x )=-x 3+3x 2+9x -2.∵在(-1,3)上f ′(x )>0,∴f (x )在[-1,2]上单调递增. 又由于f (x )在[-2,-1]上单调递减,∴f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值, ∴f (-1)=1+3-9-2=-7,即f (x )最小值为-7.12、已知函数()()20ax f x x e a -=>,求函数在[]1,2上的最大值. 解 ∵f (x )=x 2e-ax (a >0), ∴f ′(x )=2x e -ax +x 2(-a )e-ax =e -ax (-ax 2+2x ). 令f ′(x )>0,即e -ax (-ax 2+2x )>0,得0<x <2a. ∴f (x )在(-∞,0),⎝⎛⎭⎫2a ,+∞上是减函数,在⎝⎛⎭⎫0,2a 上是增函数. 当0<2a<1,即a >2时,f (x )在(1,2)上是减函数, ∴f (x )max =f (1)=e -a . 当1≤2a≤2,即1≤a ≤2时,f (x )在⎝⎛⎭⎫1,2a 上是增函数, 在⎝⎛⎭⎫2a ,2上是减函数,∴f (x )max =f ⎝⎛⎭⎫2a =4a 2e -2. 当2a>2,即0<a <1时,f (x )在(1,2)上是增函数, ∴f (x )max =f (2)=4e -2a .综上所述,当0<a <1时,f (x )的最大值为4e-2a ;当1≤a ≤2时,f (x )的最大值为4a 2e -2; 当a >2时,f (x )的最大值为e -a .。

(完整版)导数基础练习测试

(完整版)导数基础练习测试

导数基础练习(共2页,共17题)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是()A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0 3.若函数f(x)=sin2x,则f′()的值为()A.B.0 C.1 D.﹣4.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx 5.的导数是()A.B.C.D.6.y=xlnx的导数是()A.x B.lnx+1 C.3x D.17.函数y=cose xA.﹣e x sine x B.cose x C.﹣e x D.sine x8.已知,则f′()=()A.﹣1+ B.﹣1 C.1 D.09.函数的导数是()A.B.C.e x﹣e﹣x D.e x+e﹣x10.函数y=x2﹣2x在﹣2处的导数是()A.﹣2 B.﹣4 C.﹣6 D.﹣811.设y=ln(2x+3),则y′=()A.B.C.D.12.已知函数,则f′(x)等于()A.B.C.0 D.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()A.4 B.5 C.6 D.714.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12) D.(2,4)二.填空题(共2题)15.求导:()′=_________.16.函数y=的导数是_________.三.解答题(共1题)17.求函数y=e x5 +2的导数.导数基础练习(试题解析)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x考点:简单复合函数的导数.考查学生对复合函数的认识,要求学生会对简单复合函数求导.分析:将f(x)=sin2x看成外函数和内函数,分别求导即可.解答:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,∴可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x.∴选D.红色sin2x、蓝色sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是()A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0考点:简单复合函数的导数;直线的点斜式方程.考查学生对切线方程的理解,要求写生能够熟练掌握.分析:先要求出在给定点的函数值,然后再求出给定点的导数值.将所求代入点斜式方程即可.解答:对f(x)=lnx+2x求导,得f′(x)=+2.∴在点(1,f(1))处可以得到f(1)=ln1+2=2,f′(1)=1+2=3.∴在点(1,f(1))处的切线方程是:y﹣f(1)=f′(1)(x﹣1),代入化简可得,3x﹣y﹣1=0.∴选B.3.若函数f(x)=sin2x,则f′()的值为()A.B.0 C.1 D.﹣考点:简单复合函数的导数.计算题.求函数在某点处的导数值,应该先利用导数的运算法则及初等函数的导数公式求出导函数,再求导函数值.分析:先利用复合函数的导数运算法则求出f(x)的导函数,将x=代入求出值.解答:解:f′(x)=cos2x(2x)′=2cos2x,∴f′()=2cos=1,∴选C.红色sin2x、蓝色2cos2x4.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.x cosx﹣sinx D.c osx﹣sinx考点:导数的乘法与除法法则;导数的加法与减法法则.计算题.本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题.分析:利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解答:解:∵f(x)=xsinx+cosx,∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx,∴选B.红色xsinx+cosx、蓝色xcosx5.的导数是()A.B.C.D.考点:导数的乘法与除法法则.计算题.本题考查导数的除法运算法则,解题时认真计算即可,属于基础题.分析:利用导数的四则运算法则,按规则认真求导即可解答:解:y′===∴选A.红色、绿色y′=6.y=xlnx的导数是()A.x B.lnx+1 C.3x D.1考点:导数的乘法与除法法则.导数的综合应用.本题考查导数的乘法法则,考查了基本初等函数的导数公式,属于基础题.分析:直接由导数的乘法法则结合基本初等函数的导数公式求解.解答:解:∵y=xlnx,∴y′=(xlnx)′=x′lnx+x(lnx)′=.∴选B.红色xlnx、绿色lnx+17.函数y=cose x的导数是()A.﹣e x sine x B.cose x C.﹣e x D.sine x考点:导数的乘法与除法法则.导数的概念及应用.本题主要考查导数的基本运算,要求熟练掌握常见函数的导数公式以及导数的运算法则.分析:根据导数的运算法则即可得到结论.解答:解:函数的导数为f′(x)=﹣sine x(e x)′=﹣e x sine x,∴选A.红色cose x、绿色﹣e x sine x8.已知,则f′()=()A.﹣1+B.﹣1 C.1 D.0考点:导数的加法与减法法则.计算题.本题主要考查了导数的运算,以及求函数值,解题的关键是正确求解导函数,属于基础题.分析:本题先对已知函数进行求导,再将代入导函数解之即可.解答:解:∴选B.红色、绿色-sinx9.函数的导数是()A.B.C.e x﹣e﹣x D.e x+e﹣x考点:导数的加法与减法法则.计算题.本题考查导数的运算,牢记求导公式是解本题的关键.分析:根据求导公式(u+v)′=u′+v′及(e x)′=e x即可求出函数的导数.解答:解:∵,∴y′==.∴选A.红色、蓝色10.函数y=x2﹣2x在﹣2处的导数是()A.﹣2 B.﹣4 C.﹣6 D.﹣8考点:导数的加法与减法法则.计算题;导数的概念及应用.本题考查导数的加法与减法法则,考查基本初等函数的导数公式,是基础的计算题.分析:求出原函数的导函数,在导函数解析中取x=﹣2计算即可得到答案.解答:解:由y=x2﹣2x,得y′=2x﹣2.∴y′|x=﹣2=2×(﹣2)﹣2=﹣6.∴选C.红色y=x2﹣2x、蓝色y′=2x﹣211.设y=ln(2x+3),则y′=()A.B.C.D.考点:导数的运算.导数的概念及应用.本题主要考查导数的计算,要求熟练掌握复合函数的导数公式,属于基础题.分析:根据复合函数的导数公式即可得到结论.解答:解:∵y=ln(2x+3),∴,∴选:D红色ln(2x+3)、蓝色12.已知函数,则f′(x)等于()A.B.C.0 D.考点:导数的运算.导数的概念及应用.本题考查了常数的导数,只要理解常数c′=0即可解决此问题.分析:我们知道:若函数f(x)=c为常数,则f′(x)=0,∴可得出答案.解答:解:∵函数,∴f′(x)=0.∴选C.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()A.4 B.5 C.6 D.7考点:导数的几何意义.计算题.本题考查函数在某点导数的几何意义的应用.分析:曲线y=x2+3x在点A(2,10)处的切线的斜率k就等于函数y=x2+3x在点A(2,10)处的导数值.解答:解:曲线y=x2+3x在点A(2,10)处的切线的斜率,k=y′=2x+3=2×2+3=7,∴答案为7.红色x2+3x、蓝色2x+314.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12)D.(2,4)考点:导数的几何意义.考核导数的几何意义及两条直线平行斜率的关系.分析:首先求出弦AB的斜率,再利用导数的几何意义求出P点坐标.解答:解:设点P(x0,y0),∵A(4,0),B(2,4),∴kAB==﹣2.∵过点P的切线l平行于弦AB,∴kl=﹣2,∴根据导数的几何意义得知,曲线在点P的导数y′=4﹣2x=4﹣2x=﹣2,即x0=3,∵点P(x0,y)在曲线y=4x﹣x2上,∴y0=4x0﹣x02=3.∴选B.红色4x ﹣x 2、蓝色4﹣2x二.填空题(共2题)15.求导:()′=, .考点: 简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式是解决本题的关键.分析: 根据复合函数的导数公式进行求解即可. 解答: 解:=(x 2+1)21,则函数的导数为y′=(x 2+1)21-(x 2+1)′=(x 2+1)21-×2x =,∴答案为:红色、蓝色精心整理16.函数y=的导数是.考点:简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式进行计算是解决本题的关键.分析:根据复合函数的导数公式进行计算即可.解答:解:函数的导数为y′==,∴答案为:红色、蓝色三.解答题(共1题)17.求函数y=e x5-+2的导数.考点:简单复合函数的导数.导数的概念及应用.本题考查导数的运算,以及导数基本知识的考查.分析:直接利用复合函数的导数求解运算法则求解即可.解答:解:函数y=e x5-+2的导数:y′=﹣5e x5-.∴答案为:y′=﹣5e x5-.红色e x5-+2、蓝色﹣5e x5-。

(完整)高等数学——导数练习题

(完整)高等数学——导数练习题

16 61.若 limf(x o x) f(x 。

) x 0 A.2k B. k k ,则 lim 匕 2 x) f(x。

)x 01 C. ^k D. 2以上都不是 2.若f (x) =sin a — cosx ,则?q ??等于(等于()A. C. 3. f (x ) A. C. COS a 2sin asin sin =ax +3x +2,若?冬1 ) = 4,则a 的值等于()19 313 3 a a+COS aB. D . B. D.163 10 34.函数y= .. x sin x 的导数为()A. y ' =2 x sin x+ x cosxB.=sin x + •、xcosx 2.xC. 5.函数 A. C. 6.函数 ,sin x y= .x y=x 2cosx 的导数为()y ' =2xcosx — x 2sin x y ' =x 2cosx — 2xsin x2旦(a>0)的导数为0, + x cosx D .B. D .!y !y sin x----- ——x cosx=2xcosx+x 2sin x2・=xcosx — x sin x 2xy=- x 那么x 等于A. a C. — a 7.函数y=s^的导数为( x =xcosx sin x一 2 x=xsi nx cosx 2xA. C. 8.函数y=- (3x的导数是((3x 1)2 B. D .B. D .xcosx sin x y = — xxsin x cosx2x(3x 1)36 (3x 1)29.已知y=l sin2 x+sinx,那么2A.仅有最小值的奇函数C.仅有最大值的偶函数y'是()B .既有最大值,又有最小值的偶函数D .非奇非偶函数10.函数y=sin3(3x+ )的导数为(42A. 3sin (3x+ — ) cos4 (3笃) 2.9sin (3x+ — ) cos (3x+ —) 4C. 9sin 2(3x+ )411.函数y=cos (sin x)的导数为(A . —[ sin (sin x)] cosxC . [ sin (sinx) ] cosx12.函数y=cos2x+sin x的导数为(A—2sin2x+42xC. —2sin2x+sin x2仮13.过曲线丫=丄上点P (1, 1)且与过x 1 2 ()A.C. 2y—8x+7=0 2y+8x—9=014. 函数y=ln (3 —2x—x2)的导数为A•丄x 3C.x22x 315. 函数y=lncos2 x的导数为(A. —ta n2 xC. 2tanx16.已知y £x3 bx2 (b 2)x()A. b 1,或b 2B. b42—9sin (3x+ )4cos (3x+—)4B.—sin D. sin(cosx)(sin x)B. 2sin2x+cos x2jxD. 2sin2x—cos x2( xP点的切线夹角最大的直线的方程为B.D.2y+8x+7=02y—8x+9=0B.D.13 2x x22x 2x22x 3B.—2ta n2xD. 2tan2x3是R上的单调增函数,贝U b的取值范围是1,或b 2 C. 1 b 2 D. 1 b 217.函数f (x) (x 3)e x的单调递增区间是()A. ( ,2)B.(0,3)C.(1,4)D. (2,)2函数 y=a x 2x (a>0且 a ^ 1),那么??为()函数y (x 1)2(x 1)在x 1处的导数等于( )A. 1B. 2C. 3D. 4已知函数f(x)在x 1处的导数为3,则f(x)的解析式可能为()A. f(x) (x 1) 3(x 1)B. f(x)2(x 1) C. f(x) 2(x 1)2D . f(x) x 1 函数f (x) 3 x ax2 3x 9,已知f (x)在 :x 3时取得极值,则a=()A.2B.3C.4D.5 函数f (x) x 3 3x 2 1是减函数的区间为( )A. (2,) B .(,2) C. (,0)D.(0, 2)函数y= x 3 -3x 2- 9x (- 2< x< 2)有( )A.极大值5,极小值—27B. 极大值5,极小值—11D.极小值—27,无极大18.19. 20.21.22. 23.24. 25.26.27.A. a x2 2x ln aC. 2 (x — 1) a x2 2x • ln a 函数y=sin32x 的导数为()2x 2xA. 2 (cos3 )• 3 • In3C. COS32"已知曲线y A. 1 曲线y x 3 B. 2 (lna ) a" 2x D.(x — 1) a x2 2x ln a2x2xB.( ln3 )• 3 • cos32x2xD. 3 • cos32—的一条切线的斜率为4-,则切点的横坐标为( 2B. 2C. 3D. 43x 2 1在点(1,— 1)处的切线方程为( )A. y 3x 4B. y 3x 2 C .y 4x 3 D . y 4x 5C.极大值5,无极小值 三次函数f x ax 3 x 在xA. a 0, 内是增函数,贝9( )B. a 0xC. a 134.设AB 为过抛物线y 2 2px (p 0)的焦点的弦,贝U |AB 的最小值为()A. P B . p C . 2p D .无法确定235. 函数y x 3 3x 的极大值为m ,极小值为n ,则m 门为( )A . 0B . 1C . 2D. 4128.在函数y x 3 8x 的图象上,其切线的倾斜角小于点的个数是( )A. 3B. 2C. 17的点中,坐标为整数的D. 0 29. 函数f (x )的定义域为开区间(a,b ),导函数f (x )在(a,b )内的图象如图所示, 则函数f (x )在开区间(a,b )内有极小值点(A. 1个B. 2个C. 3个D. 4个30.下列求导运算正确的是()1 1A 、(x -^) 1-3 Bx x 31. 已知函数f (x )=ax 2+ c,且f (1)=2,则a 的值为() A. 0 B .2 C32. 函数y = x 3 + x 的递增区间是( A. (0,) B . (,1) C33. 函数y= dn x 的导数为( ).-1 D . 1 ).(,) D . (1,)A . 2xIn x x 2、In x C.D.1 2x. InxD.a、(3?亍=3?????3??36. 函数y 4x2—单调递增区间是()x1A. (0, ) B . ( ,1) C . (―, ) D . (1,)237. 函数f(x) 2x sinx在(,)上( )A.是增函数 B •是减函数 C •有最大值 D •有最小值38. 函数y ln^的最大值为()x1 2 10A. e B . e C . e D3二.填空题11. f (x)是f (x) —X3 2x 1的导函数,贝U f ( 1)的值是 ____________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档