初二平行四边形的动点问题学案 (含答案经典)
初二动点问题(含答案)
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形.82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2,∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.OE CDAαlOCA(备用图)CBAED图1NMA BCDEMACBEDNM(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△A DC ≌△C EB ;②DE =AD+BE; (2)当直线MN绕点C 旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN 绕点C旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)① ∵∠A CD=∠ACB =90° ∴∠CAD +∠AC D=90° ∴∠BC E+∠A CD=90° ∴∠CAD=∠BCE ∵AC =B C ∴△ADC ≌△CE B② ∵△ADC ≌△CEB ∴CE=A D,CD=BE ∴DE=CE+CD =AD +B E (2) ∵∠ADC=∠C EB=∠ACB =90° ∴∠A CD=∠CBE 又∵AC=B C ∴△ACD ≌△CBE ∴C E=A D,CD =BE ∴DE=CE -CD =A D-BE (3) 当M N旋转到图3的位置时,D E=BE-AD(或AD=BE-DE,B E=AD+DE 等) ∵∠A DC=∠CEB=∠ACB=90° ∴∠A CD =∠CB E, 又∵AC=BC, ∴△ACD ≌△CBE, ∴AD=CE ,CD=BE, ∴DE=C D-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABC D是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF.经过思考,小明展示了一种正确的解题思路:取AB 的中点M,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边B C上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“A E=E F”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(A SA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠. ANE ECF ∴△≌△(AS A). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,A B=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P的运动时间为t. 求(1)△ PA B为等腰三角形的t值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠AB M=45 °,其他条件不变,直接写出△ PA B为直角三角形的t值AD F C GE B 图1 A D FGB 图3A D F CGE B 图2AD F C G B M A D FC G B N7、在等腰梯形ABCD中,AD‖BC,E为AB的中点,过点E作EF‖BC交CD于点F.AB=4,BC=6,∠B=60°。
初二平行四边形动点练习题
初二平行四边形动点练习题平行四边形是初中数学中的重要概念之一,对于初二学生来说,掌握平行四边形的性质和相关定理是非常重要的。
本文将介绍一些初二平行四边形的动点练习题,帮助同学们巩固对平行四边形的理解和运用。
题一:在平行四边形ABCD中,点E是AD的中点,连接BE交AC于点F,若AB=6cm,BC=8cm,则证明DE=2cm。
解答:首先,根据平行四边形的性质,我们知道对角线互相平分。
可以观察到平行四边形的一条对角线AD被点E平分,即AE=ED。
我们需要证明DE=2cm。
由于平行四边形ABCD的对角线互相平分,所以线段BF也被点E 平分,即BE=EF。
根据题意可知,AB=6cm,BC=8cm,因此AC=AB+BC=6cm+8cm=14cm。
根据线段等分定理可得:EF:FC=EA:AC代入已知长度得:EF:FC=AE:AC3:FC=3:14根据比例关系可以得出FC=14/3 cm。
又因为BE=EF,所以线段BE的长度也为14/3 cm。
根据平行四边形的性质,DE=BA=BE-AE。
代入已知长度得:DE=14/3 cm-6cmDE=2cm故证明了DE=2cm。
题二:在平行四边形ABCD中,E为AD上任意一点,F为BC上任意一点。
连接CF交BE于点G,若BE=2x,EG=x+3,CF=x+4,证明AD=3x+7。
解答:在平行四边形ABCD中,我们要证明AD=3x+7。
首先,我们需要找到平行四边形内部的有关线段长度。
通过观察,我们可以看出线段BE和线段EG之间存在特定关系。
根据题意,我们知道BE=2x,EG=x+3,代入得:BG=BE-EG=2x-(x+3)=x-3。
同理,我们可以确定线段CF和线段FG之间的关系。
根据题意,我们知道CF=x+4,代入得:CG=CF-FG=x+4-(x-3)=7。
现在我们需要确定线段AD的长度。
由于平行四边形ABCD的对角线互相平分,所以线段BE也被点G 平分,即BG=1/2BE=x-3/2。
四边形中的动点问题(带答案)
四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠ EFB =2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 _____3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ +PQ 的最小值为___________4、如图,在Rt△ABC中,∠ B=90°,AC=60cm,∠A=60°,点 D 从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点 A 出发沿AB 方向以2cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t ≤15).过点 D 作DF⊥ BC于点F,连接DE,EF.(1) 求证:AE=DF;(2) 四边形AEFD能够成为菱形吗如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△ DEF为直角三角形请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点 A 出发沿射线AG以1cm/s 的速度运动,同时点 F 从点 B 出发沿射线BC以2cm/s 的速度运动,设运动时间为t.(1)连接EF,当EF经过AC边的中点 D 时,(1)求证:△ ADE≌△ CDF;:(2)当t 为____ s 时,四边形ACFE是菱形;6、在菱形ABCD中,∠ B=60°,点E在射线BC上运动,∠ EAF=60°,点 F 在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点 E 在BC的延长线上时(如图2),线段EC、CF、AB 有怎样的相等关系写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠ DAB=60°,点E是AD边的中点.点M 是AB边上一动点不与点 A 重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为____ 时,四边形AMDN 是矩形;②当AM 的值为____ 时,四边形AMDN 是菱形.8、如图,△ ABC中,点O 是边AC上一个动点,过O 作直线MN ∥BC,设MN 交∠ BCA的平分线于点E,交∠ BCA 的外角平分线于点F.(1)探究:线段OE与OF 的数量关系并加以证明;(2)当点O 运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形(3)当点O 在边AC上运动时,四边形BCFE会是菱形吗若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D 重合)分别向直线AB、AD 作垂线,垂足分别为E、F.(1)BD的长是___ ;(2)连接PC,当PE+PF+PC取得最小值时,此时PB 的长是__10、如图,∠ MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON 上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为_____ .11、如图,已知矩形ABCD,AD=4,CD=10,P 是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN 是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEN有可能是矩形吗若有可能,求出AP 的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A 运动,其速度为/s。
初二平行四边形的动点问题学案-(含答案经典)
程第十一讲平行四边形中的动点问题时间:年月日刘满江老师学生姓名:一、兴趣导入二、学前测试①AD∥BC;②AD=BC;③OA=OC;④OB=OD程于点H,则的值为()∴.三、方法培养:知识要点:平行四边形的概念:两组对边分别平行的四边形叫平行四边形平行四边形的性质:边:对边平行且相等角:内角和为______,外角和___________,邻角______,对角__________对角线:互相平分平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离叫性质:平行线之间的距离处处相等。
推广:夹在两条平行线之间平行线段相等平行四边形的判定:定义:两组对边分别平行的四边形是平行四边形定理1:两组对角分别相等的四边形是平行四边形定理2:两组对边分别相等的四边形是平行四边形定理3:对角线互相平分的四边形是平行四边形定理4:一组对边平行且相等的四边形是平行四边形例11.如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.程动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒).(1)当t 为何值时,四边形PQCD 的面积是梯形ABCD 的面积的一半;(2)四边形PQCD 能为平行四边形吗?如果能,求出t 的值;如果不能,请说明理由.(3)四边形PQCD 能为等腰梯形吗?如果能,求出t 的值;如果不能,请说明理由. 考点:等腰梯形的判定;平行四边形的判定;直角梯形。
专题:动点型。
分析:(1)根据:路程=速度×时间,表示线段的长度,再利用:S 梯形ABPQ =S 梯形PQDC ,列方程求解;(2)只要能满足DQ=PC 即可,由此建立等量关系,列方程求解;(3)当四边形PQCD 为等腰梯形时,作PE ⊥BC ,DF ⊥BC ,垂足为E 、F ,需要满足QE=CF ,由此建立等量关系,列方程求解.解答:解:(1)由已知得:AQ=t ,QD=16﹣t ,BP=2t ,PC=21﹣2t , 依题意,得12)22116(2112)2(21⨯-+-=⨯+t t t t 解得; (2)能;当四边形PQDC 为平行四边形时,DQ=PC ,即16﹣t=21﹣2t 解得t=5;(3)不能作QE ⊥BC ,DF ⊥BC ,垂足为E 、F ,当四边形PQCD 为等腰梯形时,PE=CF ,即t ﹣2t=21﹣16解得t=﹣5,不合实际.点评:本题考查了梯形计算面积的方法,根据平行四边形、等腰梯形的性质列方程求解的问题. 变式练习:如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒).(1)设△DPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,四边形PCDQ 是平行四边形?(3)分别求出当t 为何值时,①PD=PQ ,②DQ=PQ .考点:直角梯形;勾股定理;平行四边形的判定与性质。
部编数学八年级下册专题19四边形中的动图问题(解析版)含答案
专题19 四边形中的动图问题(解析版)类型一平行四边形及特殊平行四边形的存在性问题1.如图,平行四边形OABC的顶点O为坐标原点,A点在X轴正半轴上,∠COA=60°,OA=10cm,OC =4cm,点P从C点出发沿CB方向,以1cm/s的速度向点B运动;点Q从A点同时出发沿AO方向,以3cm/s的速度向原点运动,其中一个动点达到终点时,另一个动点也随之停止运动.(1)求点C,B的坐标(结果用根号表示)(2)从运动开始,经过多少时间,四边形OCPQ是平行四边形;(3)在点P、Q运动过程中,四边形OCPQ有可能成为菱形吗?若能,求出运动时间;若不能,请说明理由.思路引领:(1)过C作CE⊥OA于E,过B作BF⊥OA于F,根据直角三角形的性质算出OE的长,再利用勾股定理即可求出CE的长,从而得到C点坐标;根据平行线间的距离相等可知CE=BF=证明Rt△COE≌Rt△BAF,从而得到AF的长,即可得到B点坐标;(2)根据平行四边形的性质可知CP=OQ,设时间为x秒,表示出OQ、CP的长,可得到方程10﹣3x=x,解方程即可;(3)如果四边形OCPQ菱形,则CO=QO=CP=4cm,根据运动速度,算出运动时间,计算可发现不能成为菱形.解:(1)过C作CE⊥OA于E,过B作BF⊥OA于F,∵∠COA=60°,∴∠1=30°,∴OE=12CO=2cm,在Rt△COE中,CE==∴C点坐标是(2,,∵四边形OABC是平行四边形,∴CO=AB,CO∥AB,∵CE⊥OA,过B作BF⊥OA,∴CE=BF=,∴Rt△COE≌Rt△BAF,∴AF=EO=2,∴OF=OA+AF=12(cm),∴B点坐标是(12,;(2)设从运动开始,经过x秒,四边形OCPQ是平行四边形,10﹣3x=x,解得:x=2.5,故运动开始,经过2.5秒,四边形OCPQ是平行四边形;(3)不能成为菱形,如果四边形OCPQ菱形,则CO=QO=CP=4cm,∵OA=10cm,∴AQ=10﹣4=6(cm),则Q的运动时间是:6÷3=2(秒),这时CP=2×1=2(cm)∵CP≠4cm,∴四边形OCPQ不能成为菱形.总结提升:此题主要考查了平行四边形的性质,矩形的性质,直角梯形的性质,菱形的性质,是一道综合题,关键是需要同学们熟练掌握各种特殊四边形的性质,并能熟练应用.2.(2022春•广信区期末)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.思路引领:(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=CQ,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4×10,根据菱形的面积求出面积即可.解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.总结提升:本题考查了菱形、矩形的判定与性质.解决此题注意结合方程的思想解题.3.(2021春•睢县期中)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连结EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,以A、C、F、E为顶点的四边形是平行四边形?思路引领:(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,∠EAD=∠FCD∠AED=∠CFDAD=CD,∴△ADE≌△CDF(AAS);(2)解:当t=2或6时,A、C、E、F为顶点的四边形是平行四边形.理由如下:①当点F在C的左侧时,根据题意,得AE=tcm,BF=2tcm,则CF=BC﹣BF=(6﹣2t)cm,∵AG∥BC,当AE=CF时,四边形AECF是平行四边形,即t=6﹣2t,解得t=2;②当点F在C的右侧时,根据题意,得AE=tcm,BF=2tcm,则CF=BF﹣BC=(2t﹣6)cm,∵AG∥BC,当AE=CF时,四边形AEFC为平行四边形,即t=2t﹣6,解得t=6,综上可得:当t=2或6时,A、C、E、F为顶点的四边形是平行四边形.总结提升:此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解决本题的关键是注意掌握分类讨论思想、数形结合思想与方程思想的应用.类型二动点最值问题4.(2021春•灌云县期末)如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△PAB =13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为( )A.B.C.D.思路引领:过P点作MN∥AB,交AD于M,交BC于N,作A点关于MN的对称点A',连接A'B交MN于点P,AP+PB=A'B即为所求,由面积关系可得AM=23AD=4,在Rt△ABA'中求出A'B即可.解:过P点作MN∥AB,交AD于M,交BC于N,作A点关于MN的对称点A',连接A'B交MN于点P,∴AP+PB=A'P+PB=A'B,此时PA+PB的值最小,∵S△PAB =13S矩形ABCD,∴12×AB×AM=13×BA×AD,∴AM=23 AD,∵AD=6,∴AM=4,∴AA'=8,∵AB=10,在Rt△ABA'中,A'B=故选:B.总结提升:本题考查轴对称求最短距离,通过面积关系,能确定P点所在直线是解题的关键.5.(自贡中考)如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是 形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是 .思路引领:根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作ME⊥AD,交AB于点P,此时PE+PF最小,求出ME即可.解:∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,故答案为菱;如图作出F关于AB的对称点M,再过M作ME⊥AD,交AB于点P,此时PE+PF最小,此时PE+PF=ME,过点A作AN⊥BC,∵AD∥BC,∴ME=AN,作CH⊥AB,∵AC =BC ,∴AH =12,由勾股定理可得,CH ∵12×AB ×CH =12×BC ×AN ,可得,AN =∴ME =AN =4,∴PE +PF总结提升:此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.6.(2020•锦州模拟)如图,已知平行四边形ABCD 中,AB =BC ,BC =10,∠BCD =60°,两顶点B 、D 分别在平面直角坐标系的y 轴、x 轴的正半轴上滑动,连接OA ,则OA 的长的最小值是 .思路引领:利用菱形的性质以及等边三角形的性质得出A 点位置,进而求出AO 的长.解:如图所示:过点A 作AE ⊥BD 于点E ,当点A ,O ,E 在一条直线上,此时AO 最短,∵平行四边形ABCD 中,AB =BC ,BC =10,∠BCD =60°,∴AB =AD =CD =BC =10,∠BAD =∠BCD =60°,∴△ABD 是等边三角形,∴AE 过点O ,E 为BD 中点,∵∠BOD =90°,BD =10,∴EO =5,故AO 的最小值为:AO =AE ﹣EO =AB sin60°―12×BD =―5.故答案为:―5.总结提升:此题主要考查了菱形的性质以及等边三角形的判定与性质,得出当点A,O,E在一条直线上,此时AO最短是解题关键.7.(2022•利州区校级模拟)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为( )A.0.5B.2.5C D.1思路引领:由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在线段轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EHG,连接BH,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,延长HM交CD于点N.则△EFB≌△EHG,∴HE=BE=1,∠BEH=60°,∠GHE=∠FBE=90°,∴△EBH为等边三角形.∵四边形ABCD是矩形,∴∠FBE=90°,∴∠GHE=∠FBE=90°,∴点G在垂直于HE的直线HN上,作CM⊥HN,由垂线段最短可知,CM即为CG的最小值,作EP⊥CM,连接BH,EH,则四边形HEPM为矩形,∴MP=HE=1,∠HEP=90°,∴∠PEC=30°.∵EC=BC﹣BE=3,∴CP=12EC=32,∴CM=MP+CP=1+32=52,即CG的最小值为5 2.方法二:以CE为边作等边三角形CEH,连接FH,则△CEG≌△EFH,∴CG=FH,当FH⊥AB时,FH最小=1+32=52.故选:B.总结提升:本题考查了旋转的性质,线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.8.(2022秋•射阳县月考)如图,△APB中,AB=4,∠APB=90°,在AB的同侧作正△ABD、正△APE 和正△BPC,则四边形PCDE面积的最大值是 .思路引领:先延长EP 交BC 于点F ,得出PF ⊥BC ,再判定四边形PCDE 平行四边形,根据平行四边形的性质得出:四边形CDEP 的面积=EP ×CF =a ×12b =12ab ,最后根据a 2+b 2=8,判断12ab 的最大值即可.解:如图,延长EP 交BC 于点F ,∵∠APB =90°,∠APE =∠BPC =60°,∴∠EPC =150°,∴∠CPF =180°﹣150°=30°,∴PF 平分∠BPC ,又∵PB =PC ,∴PF ⊥BC ,设Rt △ABP 中,AP =a ,BP =b ,则CF =12CP =12b ,a 2+b 2=42=16,∵△APE 和△ABD 都是等边三角形,∴AE =AP ,AD =AB ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB ,在△EAD 和△PAB 中,AE =AP ∠EAD =∠PAB AD =AB,∴△EAD ≌△PAB (SAS ),∴ED =PB =CP ,同理可得:△APB ≌△DCB (SAS ),∴EP=AP=CD,∴四边形PCDE是平行四边形,∴四边形PCDE的面积=EP×CF=a×12b=12ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=16,∴12ab≤4,即四边形PCDE面积的最大值为4.故答案为:4.总结提升:本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.9.(2022春•番禺区校级期中)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,C,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值.思路引领:(1)连接CF,根据FG垂直平分CE和菱形的对称性即可得到CF=EF,CF=AF,从而求证结论.(2)利用M和N分别是AE和EF的中点,点G为CE中点,即可得到MN+NG=12(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,结合已知推断△ABC为等边三角形,即可求解.解:(1)证明:连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A 和C 关于对角线BD 对称,∴CF =AF ,∴AF =EF ;(2)连接AC ,∵M 和N 分别是AE 和EF 的中点,点G 为CE 中点,∴MN =12AF ,NG =12CF ,即MN +NG =12(AF +CF ),当点F 与菱形ABCD 对角线交点O 重合时,AF +CF 最小,即此时MN +NG 最小,∵菱形ABCD 边长为1,∠ABC =60°,∴△ABC 为等边三角形,AC =AB =1,即MN +NG 的最小值为12;总结提升:本题考查了菱形的性质,中位线的性质、等边三角形性质的知识,关键在于熟悉各个知识点在本题的灵活运用.属于拔高题.类型三 求运动路径的长10.(2022•虞城县二模)如图,矩形ABCD 中.AB =AD =1,点E 为CD 中点,点P 从点D 出发匀速沿D ﹣A ﹣B 运动,连接PE ,点D 关于PE 的对称点为Q ,连接PQ ,EQ ,当点Q 恰好落在矩形ABCD的对角线上时(不包括对角线端点),点P 走过的路径长为 12或1 .思路引领:当点Q 恰好落在矩形ABCD 的对角线上时存在两种情况:①如图1,点P 在AD 上,点Q 在AC 上,连接DQ ,证明AP =PD 可得结论;②如图2,点P 在AB 上,连接PD ,根据30°角的三角函数列式可得AP 的长,从而计算结论.解:如图1,点P 在AD 上,点Q 在AC 上,连接DQ ,∵E 为CD 的中点,∴DE =CE ,∵点D 关于PE 的对称点为Q ,∴PE ⊥DQ ,DE =EQ =EC ,∴∠DQC =90°,∴DQ ⊥AC ,∴PE ∥AC ,∴PD =AP =12AD =12,即点P 走过的路径长为12;如图2,点P 在AB 上,连接PD ,∵E 为CD 的中点,且CD =∴DE =CE ∵∠DFE =90°,∴cos ∠EDF =cos30°=DF DE,∴DF =34,∵BD 2,∴BF =2―34=54,cos ∠ABD =cos30°=BF PB ,∴BP 5=∴AP ==∴此时点P 走过的路径长为1综上,点P 走过的路径长为12或1+故答案为:12或1+总结提升:本题主要考查了矩形的性质,对称的性质,解直角三角形,勾股定理等知识,掌握矩形的性质,勾股定理,直角三角形的性质等知识是解题的关键,并注意运用分类讨论的思想.11.如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.(1)当点B '恰好落在边CD 上时,线段BM 的长为 cm ;(2)点M 从点A 运动到点B 的过程中,若边MB ′与边CD 交于点E ,求点E 相应运动的路径长度.(3)当点A 与点B '距离最短时,求AM 的长.思路引领:(1)运用矩形性质和翻折性质得出:MB′=NB′,再利用勾股定理即可求得答案;(2)探究点E的运动轨迹,寻找特殊位置解决问题即可.(3)如图5中,连接AN,当点B′落在AN上时,AB′的值最小,此时MN平分∠ANB.利用面积法求出AM:BM=2,可得结论.解:(1)如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′cm),∴BM=NB′=cm).(2)如图1中,点B'恰好落在边CD上时,BM=NB′=cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt △ADE 中,则有x 2=22+(4﹣x )2,解得x =52,∴DE =4―52=32(cm ),如图3中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=5﹣1﹣2=2(cm ),如图4中,当点M 运动到点B ′落在CD 时,DB ′(即DE ″)=5﹣1―(4―(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=2―32+2﹣(432)(cm ).(3)如图5中,连接AN ,当点B ′落在AN 上时,AB ′的值最小,此时MN 平分∠ANB .过点M 作MP ⊥AN 于点P ,MQ ⊥BN 于点Q .在Rt △ADN 中,AN ===∵S △AMN S △MNB =AM BM =12⋅AN⋅MP 12⋅BN⋅MQ =2,∴AM =23AB =103.总结提升:本题属于四边形综合题,考查了矩形的性质,翻折变换,勾股定理,轨迹等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型.类型四 平移、翻折及旋转问题12.(2019春•江北区期中)如图,在菱形ABCD 中,∠A =60°,AD =8,F 是AB 的中点.过点F 作FE ⊥AD ,垂足为E .将△AEF 沿点A 到点B 的方向平移,得到△A ′E ′F ′.设P 、P ′分别是EF 、E ′F ′的中点,当点A ′与点B 重合时,四边形PP ′F ′F 的面积为( )A .B .C .D .―8思路引领:如图,连接BD ,DF ,DF 交PP ′于H .首先证明四边形PP ′CD 是平行四边形,再证明DF ⊥PP ′,求出FH 即可解决问题.解:如图,连接BD ,DF ,DF 交PP ′于H .由题意PP ′=AA ′=AB =CD ,PP ′∥AA ′∥CD ,∴四边形PP ′CD 是平行四边形,∵四边形ABCD 是菱形,∠A =60°,∴△ABD 是等边三角形,∵AF =FB ,∴DF ⊥AB ,DF ⊥PP ′,在Rt △AEF 中,∵∠AEF =90°,∠A =60°,AF =4,∴AE =2,EF =∴PE =PF =在Rt △PHF 中,∵∠FPH =30°,PF∴HF =12PF∴平行四边形PP ′FF ′的面积8=故选:B .总结提升:本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.13.(2021•海南模拟)如图,正方形ABCD 的边长为1;将其绕顶点C 按逆时针方向旋转一定角度到CEFG 的位置,使得点B 落在对角线CF 上,则阴影部分的面积是( )A .14B .2―C 1D .12思路引领:依据△BFH 、△CEF 为等腰直角三角形,即可得到阴影部分的面积.解:正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到CEFG 位置,使得点B 落在对角线CF 上,∴EF =CE =1,∴CF =∴BF =―1,∵∠BFE =45°,∴BH =BF ―1,∴阴影部分的面积=12×1×1―12×―1)2―1,故选:C .总结提升:本题考查了正方形的性质及旋转的性质,本题关键是利用△BFH 、△CEF 为等腰直角三角形求解线段的长.14.(2020•湘西州)在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的正半轴上,∠ABO =30°,矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,OD =2.将矩形CODE 沿x 轴向右平移,当矩形CODE 与△ABO 重叠部分的面积为CODE 向右平移的距离为 .思路引领:由已知得出AD =OA ﹣OD =4,由矩形的性质得出∠AED =∠ABO =30°,在Rt △AED 中,AE =2AD =8,由勾股定理得出ED =解:∵点A (6,0),∴OA =6,∵OD =2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED∵OD=2,∴点E的坐标为(2,;∴矩形CODE的面积为2=∵将矩形CODE沿x轴向右平移,矩形CODE与△ABO重叠部分的面积为∴矩形CODE与△ABO不重叠部分的面积为如图,设ME′=x,则FE′,依题意有x×÷2=解得x=±2(负值舍去).故矩形CODE向右平移的距离为2.故答案为:2.总结提升:考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质是解题的关键(2022•大连模拟)如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD 边的中点E处,折痕为FG,点F、G分别在边AB、AD上,则GE= .思路引领:过点E作EH⊥AD于H,根据勾股定理可求DH的长度,由折叠的性质得出AG=GE,在Rt△HGE中,由勾股定理可求出答案.解:过点E作EH⊥AD于H,∵ABCD是菱形,∴AB∥CD,AD=AB=4,∴∠BAD=∠HDE=60°,∵E是CD中点,∴DE=2,在Rt△DHE,中,DE=2,HE⊥DH,∠HDE=60°,∴DH=1,HE=∵将菱形纸片翻折,使点A落在CD边的中点E处,∴AG=GE,在Rt△HGE中,GE2=GH2+HE2,∴GE2=(4﹣GE+1)2+3,∴GE=2.8.故答案为:2.8.总结提升:本题考查了折叠问题,菱形的性质,勾股定理,关键是添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度.。
初二动点问题(含标准答案)
初二动点问题(含答案)作者:日期: 2动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目•解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题•关键:动中求静•数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD 中,AD // BC,/ B=90 ° , AB=14cm,AD=18cm,BC=21cm,点P 从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A , C同时出发,设移动时间为t秒。
当t= _____ 时,四边形是平行四边形;6当t= _____ 时,四边形是等腰梯形• 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1 , N为对角线AC上任意一点,则DN+MN的最小值为_________ 53、如图,在只也ABC中,ACB 90°, B 60°, BC 2•点°是AC的中点,过点°的直线l从与AC重合的位置开始,绕点°作逆时针旋转,交AB边于点D •过点C作2CE // AB 交直线I 于点E ,设直线I 的旋转角为(1)①当度时,四边形EDBC 是等腰梯形,此时AD 的长为②当度时,四边形EDBC 是直角梯形,此时 AD 的长为(2)当 90°时,判断四边形 EDBC 是否为菱形,并说明理由.解:(1 [① 30, 1 :② 60, 1.5;(2)当/% =900时,四边形 EDBC 是菱形•v/a =/ACB=90°,「. BC//ED. T CE//AB,二四边形 EDBC 是平行四边形 在 Rt △ABC 中,/ ACB=900,/ B=60°,BC=2, /./ A=30°.137AC3••• AB=4,AC=2 '3. ••• A°= 2 = 3 •在 Rt △ AOD 中,/ A=30,二 AD=2.B• BD=2. • BD=BC. 又•••四边形 EDBC 是平行四边形, •四边形EDBC 是菱形 4、C ,A(1) 当直线 MN 绕点C 旋转到图1的位置时,求证:①△ ADC ◎△ CEB •,②DE=AD + BE ;⑵当直线 MN 绕点C 旋转到图2的位置时,求证: DE=AD-BE ;⑶当直线MN 绕点C 旋转到图3的位置时,试问 DE 、AD 、BE 具有怎样的等量关系?请写出这个等量 关系,并加以证明•解:(1 [① •••/ ACD= / ACB=90 •••/ CAD+ / ACD=90 /-Z BCE+ / ACD=90•••/ CAD= Z BCE •/ AC=BCADC ◎△ CEB② •/△ ADC ◎△ CEB • CE=AD , CD=BE • DE=CE+CD=AD+BE(2) T Z ADC= Z CEB= Z ACB=90°ACD= Z CBE又 ■: AC=BCACD ◎△ CBE • CE=AD , CD=BE • DE=CE-CD=AD-BE(3) 当 MN 旋转至U 图 3 的位置时,DE=BE-AD(或 AD=BE-DE , BE=AD+DE 等)•/Z ADC= Z CEB= Z ACB=90° /Z ACD= Z CBE , 又 ■: AC=BC ,ACD ◎△ CBE ,• AD=CE , CD=BE ,• DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题: 如图1,四边形ABCD 是正方形,点E 是边BC 的中点. AEF 90°,且EF 交正方形外角 DCG 的平行线CF 于点F ,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB 的中点 M 连接 ME 则 AM =EC,易证△ AME ECF ,所以 AE EF .在此基础上,同学们作了进一步的研究:(1 )小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点 E 是边BC 上(除B, C 外)的任意 一点”,其它条件不变,那么结论“ AE=EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明 过程;如果不正确,请说明理由;(3) 若AB=5且Z ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF' 仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 解:(1)正确. 证明:在 AB 上取一点M ,使AM45°DCFBM BE . BME QCF 是外角平分线,AMEQ AEBBAE(2)正确.证明:在BA 的延长线上取一点 NBN BE . N PCEQ 四边形ABCD 是正方形, ADAE BEA . NAE △ ANEECF (ASA ). AE EF .ECF . BAE 90°, CEF . AEB△6、如图,射线MB 上,MB=9,A 是射线 MB 方向以1个单位/秒的速度移动,设 求(PAB 为等腰三角形的t 值;MB 外一点,AB=5且A 到射线 P 的运动时间为t.(2)△ PAB 为直角三角形的t 值; 如果不正确,请说明理由. MB 的距离为3,动点P 从图沿射线2 >过P 作PG 丄IVIN 于G VMN/7AB^NM=NP过N 作NR 丄MP^R 则有:RM=0.5FM= V宀 忑 J :Rt ANMRM^RM- y MN=」CMV3 再A — {5・X j ■亍:、x=43。
八下数学平行四边形中的动点问题
动点问题练习题1.(宁夏回族自治区)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.2.如图,在四边形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.CP Q BA M N C1. 如图,在平面直角坐标系中,在四边形OABC 中,OA ∥BC ,点A 的坐标为(6,0),点B 的 坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ?(2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值?若有最小值,最小值是多少?(3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直? 若存在,求出这时的t 值;若不存在,请说明理由. 2.(河北卷)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒). (1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.3.(山东济宁)如图,A 、B 分别为x 轴和y 轴正半轴上的点。
初二动点问题(含答案)
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC =23. ∴AO =12AC=3 .在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.O E CDA α lOCA (备用图) CB AE D 图1 N M A B C D EM N 图2A CB E D N M 图3(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G E B N7、在等腰梯形ABCD中,AD‖BC,E为AB的中点,过点E作EF‖BC交CD于点F.AB=4,BC=6, ∠B=60°。
人教版八年级下册数学《平行四边形》动点问题带答案
《平行四边形》动点问题(一) 1. 如图,在△ABC 中,△ACB=90°,CD△AB 于点D ,点P 在线段DB 上,点M 是边AC 的中点,连接MP ,作△MPQ=90°,点Q 在边BC 上,若AC=6,BC=8,则( )A .当CQ=4时,点P 与点D 重合B .当CQ=4时,△MPA=30°C .当PD=57时,CQ=4 D .当PM=PQ 时,CQ=4 【答案】C2. 如图,在平行四边形ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF=6cm ,BF=12cm ,△FBM=△CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动 时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.【答案】3或5秒3. 已知四边形ABCD ,△ABC=45°,△C=△D=90°,含30°角(△P=30°)的直角三角板PMN (如图)在图中平移,直角边MN△BC ,顶点M 、N 分别在边AD 、BC 上,延长NM 到点Q ,使QM=PB .若BC=10,CD=3,则当点M 从点A 平移到点D 的过程中,点Q 的运动路径长为__________。
【答案】27△当P点有8个时,x=22-2;△当△PEF是等边三角形时,P点有4个A.△△B.△△C.△△D.△△【答案】B6.如图,在△ABCD中,AB=8cm,BC=16cm,△A=60°.点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E运动速度为2cm/s,点F的运动速度为1cm/s,它们同时出发,同时停止运动,经过s时,EF=AB.7.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化【答案】C8.如图,E是△ABCD边AD上动点,连接CE作△ECDN,过A点作AM△EN,交EN延长线于点M,作矩形AMEF,动点E从A出发,沿着AD方向运动到终点D,在整个运动变化的过程中,记△ECDN的面积为S2,矩形AMEF的面积为S1,则S1+S2大小变化情况是()A.一直在减小B.一直不变C.先减小后增大D.先增大后减小【答案】C9. 如图,在矩形OAHC 中,OC=8,OA=12,B 为CH 中点,连接AB .动点M 从点O 出发沿OA 边向点A 运动,动点N 从点A 出发沿AB 边向点B 运动,两个动点同时出发,速度都是每秒1个单位长度,连接CM ,CN ,MN ,设运动时间为t (秒)(0<t <10).则t= 时,△CMN 为直角三角形.【答案】27或424141 10. 如图,已知矩形ABCD ,AB=8,AD=4,E 为CD 边上一点,CE=5,点P 从B 点出发,以每秒1个单位的速度沿着BA 边向终点A 运动,连接PE ,设点P 运动的时间为t 秒,则当t 的值为 时,△PAE 是以PE 为腰的等腰三角形.动点.若点P 从点F 出发,沿F→A→D→C 的路线运动,当△FPE=30°时,FP 的长为__________。
初二数学《平行四边形中的动点问题》(附练习及答案)
四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。
解决这类问题关键是动中求静,灵活运用有关数学知识。
数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。
这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。
解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。
1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
(完整版)初二平行四边形的动点问题学案(含答案经典)
第十一讲平行四边形中的动点问题时间:年月日刘满江老师学生姓名:一、兴趣导入二、学前测试1.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD考点:平行四边形的性质.分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解答:解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,故此选项正确,不合题意;∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,故B,C选项正确,不合题意;无法得出AC⊥BD,故此选项错误,符合题意.故选D.点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种考点:平行四边形的判定.分析:根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解答:解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;故选:B.点评:此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.3.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF 交AC于点H,则的值为()A.1B.C.D.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半求出H是AO的中点,再根据平行四边形的对角线互相平分可得AO=CO,然后求出CH=3AH,再求解即可.解答:解:∵点E,F分别是边AD,AB的中点,∴AH=HO,∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,∴CH=3AH,∴=.故选C.三、方法培养:知识要点:平行四边形的概念:两组对边分别平行的四边形叫平行四边形平行四边形的性质:边:对边平行且相等角:内角和为______,外角和___________,邻角______,对角__________对角线:互相平分平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离叫性质:平行线之间的距离处处相等。
初二动点问题(含答案解析)
初⼆动点问题(含答案解析)动态问题所谓“动点型问题”是指题设图形中存在⼀个或多个动点,它们在线段、射线或弧线上运动的⼀类开放性题⽬.解决这类问题的关键是动中求静,灵活运⽤有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平⾏四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正⽅形ABCD的边长为4,点M在边DC上,且DM=1,N为对⾓线AC上任意⼀点,则DN+MN的最⼩值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转⾓为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直⾓梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平⾏四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. ⼜∵四边形EDBC是平⾏四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(备⽤图)CBED图1NMA BCDEMACBEDNM图3(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)①∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB②∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE ⼜∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE ,⼜∵AC=BC ,∴△ACD ≌△CBE ,∴AD=CE ,CD=BE ,∴DE=CD-CE=BE-AD.5、数学课上,张⽼师出⽰了问题:如图1,四边形ABCD 是正⽅形,点E 是边BC 的中点.90AEF ∠=,且EF 交正⽅形外⾓DCG ∠的平⾏线CF 于点F ,求证:AE =EF .经过思考,⼩明展⽰了⼀种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进⼀步的研究:(1)⼩颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意⼀点”,其它条件不变,那么结论“AE =EF ”仍然成⽴,你认为⼩颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)⼩华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意⼀点,其他条件不变,结论“AE =EF ”仍然成⽴.你认为⼩华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取⼀点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外⾓平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=.(2)正确.证明:在BA 的延长线上取⼀点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正⽅形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外⼀点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB ⽅向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三⾓形的t 值;(2)△ PAB 为直⾓三⾓形的t 值;(3)若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直⾓三⾓形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G B N7、在等腰梯形ABCD中,AD‖BC,E为AB的中点,过点E作EF‖BC交CD于点F.AB=4,BC=6, ∠B=60°。
第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形中动点问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对动点问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对平行四边形内动点问题的探究表现得非常积极。他们对于动点的运动规律和性质有了初步的认识,也尝试着将这些知识应用到实际问题中。我觉得这是一个很好的开始,但也发现了一些需要改进的地方。
首先,理论讲授部分,我发现有些同学对动点问题的基本概念掌握不够扎实。可能是我讲解得不够细致,也可能是同学们对这些概念还不够熟悉。在以后的教学中,我需要更加注意这一点,尽量用简单易懂的语言和丰富的例子来帮助他们理解。
3.重点难点解析:在讲授过程中,我会特别强调动点的运动规律和利用平行四边形性质解题这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与动点问题相关的实际问题。
2.实行四边形中的运动规律和性质。
-难点二:在实际问题中,学生可能不知道如何选择合适的定理和性质来解决动点问题。教师应指导学生通过分析问题结构,识别关键信息,进而选择恰当的几何定理进行求解。
-难点三:针对不同动点问题,如路径最短、面积最大等,学生可能不知如何下手。教师应教授学生分类讨论和优化的方法,帮助学生理清思路,找到解题突破口。
4.培养合作意识和团队精神,在小组讨论和探究过程中,学会倾听、交流、表达和协作,共同解决问题。
人教版初二数学8年级下册 第18章(平行四边形)动点问题专项训练(含答案)
人教版数学八年级下期第十八章平行四边形动点问题训练1.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在的直线对着得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)当P在BC何处时,点N是MQ的中点.(3)若AB=3,P是BC的三等分点,求QM的长;2.如图,四边形ABCD是正方形,点E是边BC的动点,连接AE,以AE为边在AE的右上侧作Rt△AEF,使得∠AEF=90°,AE=EF,再过点F作FG⊥BC,交BC的延长于点G.(1)求证:∠BAE=∠GEF;(2)求证:CG=FG;(3)填空:若正方形ABCD的边长是2,当点E从点B运动到点C的过程中,点F也随之运动,则点F运动的痕迹的长是______.3.如图,点P是正方形ABCD(在小学,同学们学习过:正方形四边相等,四个角都是直角)对角线AC上一动点,点E在射线BC上,且PB=PE,连结PD,O为AC 中点.(1)如图①,当点P在线段AO上时,猜想PE与PD的关系,并说明理由;(2)如图②,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由.4.如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,(1)求∠BGE的大小;(2)求证:GC平分∠BGD.5.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD上一点,连接PB,沿PB将△APB折叠,得△A'PB.(1)如图1所示,当∠DPA'=10°时,∠A'PB=______度;(2)如图2所示,当PA'⊥BC时,求线段PA的长度;(3)当点P为AD中点时,点F是边AB上不与点A,B重合的一个动点,将△APF 沿PF折叠,得到△A'PF,连接BA',求△BA'F周长的最小值.6.如图,边长为8的正方形ABCD的対角线AC,BD交于点O,M是AB边上一动点,ME⊥AO,MF⊥BO.(1)求证:四边形OEMF为矩形;(2)连接EF,求EF的最小值.7.如图,在正方形ABCD中,点E是AD边上的一个动点,连接BE,以BE为斜边在正方形ABCD内部构造等腰直角三角形BEF,连接CF.(1)求证:∠DEF+∠CBF=90°;,求△BEF的面积;(2)若AB=3,△BCF的面积为32(3)求证:DE=2CF.8.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NDE≌△MAE;(2)求证:四边形AMDN是平行四边形;(3)当AM的值为何值时,四边形AMDN是矩形?请说明理由.9.如图,已知四边形ABCD为正方形,AB=42,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.10.如图,已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≅△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.11.如图,已知矩形ABCD中,AB=5,AD=2+13.菱形EFGH的顶点H在边AD上,且AH=2,顶点G、E分别是边DC、AB上的动点,连结CF.(1)当四边形EFGH为正方形时,直接写出DG的长;(2)若△FCG的面积等于3,求DG的长;(3)试探究点G运动至什么位置时,△FCG的面积取得最小值.12.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=5,点D是边AB上的一个动点,连接CD,过C点在上方作CE⊥CD,且CE=CD,点P是DE的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.14.如图,D、E分别是△ABC的边AB、AC的中点,O是△ABC内一动点,F、G分别是OB、OC的中点.判断四边形DEGF的形状,并说明理由.15.在正方形ABCD中,如图1,点E是AB边上的一个动点(点E与点A、B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE.(2)如图2,当点E运动到AB中点时,连接DG,若AB=2,求DG的长.16.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设每秒运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,△BPE是直角三角形.参考答案1.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,在△ABP和△BCQ中,AB=BC∠ABC=∠CBP=CQ,∴△ABP≌△BCQ(SAS),∴∠BAP=∠CBQ,∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;(2)解:由折叠的性质得:NQ=CQ,∠BNQ=∠C=90°,∠NBQ=∠CBQ,∴∠BNM=90°,∵点N是MQ的中点,∴NQ=MN,由(1)得:MQ=MB,∴MN=12MB,∴∠MBN=30°,∴∠CBN=60°,∴∠NBQ=∠CBQ=30°,∴CQ=33BC,∴BP=CQ=33BC,即BP=33BC时,点N是MQ的中点.(3)解:∵四边形ABCD是正方形,AB=3,P是BC的三等分点,∴BP=2CP,或CP=2BP,①当BP=2CP时,BP=2,由折叠的性质得:NQ=CQ=BP=2,BN=BC=3,∵∠NQB=∠CQB=∠ABQ,∴MQ=MB,设MQ=MB=x,则MN=x-2,在Rt△MBN中,MB2=BN2+MN2,即x 2=32+(x -2)2,解得:x =134,即MQ =134;②当CP =2BP 时,BP =1,由折叠的性质得:NQ =CQ =BP =1,BN =BC =3,∵∠NQB =∠CQB =∠ABQ ,∴MQ =MB ,设MQ =MB =x ,则MN =x -1,在Rt △MBN 中,MB 2=BN 2+MN 2,即x 2=32+(x -1)2,解得:x =5,即MQ =5;综上所述,若AB =3,P 是BC 的三等分点,QM 的长为134或5.2.解:(1)∵∠AEF =90°,∴∠AEB +∠FEG =90°,∵四边形ABCD 是正方形,∴∠B =90°,∴∠AEB +∠BAE =90°,∴∠BAE =∠GEF ,(2)在△ABE 和△EGF 中,∠ABE =∠EGF ∠BAE =∠GEF AE =EF,∴△ABE ≌△EGF (AAS ),∴BE =GF ,AB =EG ,∴BE =CG ,∴CG =FG ;(3)223.解:(1)当点P在线段AO上时PE=PD且PE⊥PD.理由:当点P在线段AO上时,在△ABP和△ADP中AB=AD∠BAP=∠DAP=45∘AP=AP∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,如图,过点P作PM⊥CD于点M,作PN⊥BC于点N,∵AC平分∠BCD,∴PM=PN,在Rt△PNE与Rt△PMD中,∵PD=PE,PM=PN∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EP N,易得∠MPN=90∘,∴∠DPE=90∘,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)当点P在线段OC上时,(1)中的猜想成立;如图2,当点P在线段OC上时,∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45°,又PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD,①当点E与点C重合时,PE⊥PD;②当点E在BC的延长线上时,如图2所示,∵△BAP≌△DAP,∴∠ABP=∠ADP,∠CDP=∠CBP,∵PB=PE,∴∠CBP=∠PEC,故∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD,综上所述:PE⊥PD,当点P在线段OC上时,(1)中的猜想成立;4.解:(1)∵四边形ABCD是菱形∴AD=AB,∠BAD=60°∴△ADB是等边三角形∴AD=AB=BD,∠DAB=∠ADB=∠ABD∵AE=DF,∠DAB=∠ADB=60°,AD=BD∴△ADE≌△DBF(SAS)∴∠ADE=∠DBF又∠BGE=∠BDE+∠DBF=∠BDE+∠ADE=∠ADB∴∠BGE=∠ADB=60°(2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由(1)得∠ADE=∠DBF∴∠CBF=60°+∠DBF=60°+∠ADE=∠DEB又∠DEB=∠MDC∴∠CBF=∠CDM∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°∴Rt△CBN≌Rt△CDM(AAS)∴CN=CM,且CN⊥BF,CM⊥ED∴点C在∠BGD的平分线上即GC平分∠BGD5.856.(1)证明:∵ME⊥AO,MF⊥BO,∴∠MEO=90°,∠MFO=90°,∵正方形ABCD的対角线AC,BD交于点O,∴∠EOF=90°,∴四边形OEMF为矩形;(2)解:∵边长为8的正方形ABCD的対角线AC,BD交于点O,∴利用勾股定理可以得到OA=OB=42,当M在AB的中点时,EF有最小值,最小值=OE2+OF2=(22)2+(22)2=4.7.证明:(1)过点F作MN⊥AD于点M,交BC于点N,∴∠MEF+∠EFM=90°,∵∠EFB=90°,∴∠BFN +∠EFM =90°,∴∠MEF =∠BFN ,在正方形ABCD 中,AD ∥BC .∴MN ⊥BC ,∴∠FBN +∠BFN =90°,∴∠FBN +∠MEF =90°,即∠DEF +∠CBF =90°;证法二:在正方形ABCD 中,AD ∥BC ,∴∠DEB +∠CBE =180°,即∠DEF +∠BEF +∠EBF +∠CBF =180°,∵∠EFB =90°,∴∠BEF +∠EBF =90°,∴∠DEF +∠CBF =90°;(2)由(1)得MN ⊥AD ,∴正方形ABCD 的性质得四边形MNCD 是矩形,∴MN =CD =AB =3,在△BFN 与△FEM 中,由(1)得∠MEF =∠BFN ,∠EMF =∠FNB =90°,∵△BEF 为等腰直角三角形,∴BF =EF ,在△BFN 与△FEM 中,∠EMF =∠FNB ∠MEF =∠BFN BF =EF,∴△BFN ≌△FEM (AAS ),∵BC =AB =3,∴S △BCF =12BC ⋅FN =32FN =32,∴FN =1.∴BN =FM =MN -FN =2,在Rt △BFN 中,EF =BN 2+FN 2=12+22=5,∴S △BEF =12BF 2=12×(5)2=52;(3)在△BFN与△FEM中由(2)△BFN≌△FEM,MD=NC,∴BN=FM,EM=FN,∵MN=AB=BC,∴FM+FN=BN+NC,∴FN=NC=MD=EM,∴∠FCN=45°,DE=2MD=2CN,CF,在Rt△FNC中,CN=22∴DE=2×2CF=2CF.28.(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,∠NDE=∠MAEDE=AE,∠DEN=∠AEM∴△NDE≌△MAE(ASA);(2)∵△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(3)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.9.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∠DNE=∠FME EN=EM∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,AD=CD∠ADE=∠CDG DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=2AB=2×42=8,∴CE+CG=8是定值.10. (1)∵点F,H分别是BC,CE的中点,∴FH //BE ,FH =12BE ,∴∠CFH =∠CBG .又∵点G 是BE 的中点,∴FH =BG .又∵BF =FC ,∴△BGF ≅△FHC .(2)连接EF ,GH .当四边形EGFH 是正方形时,可知EF ⊥GH且EF =GH .∵在△BEC 中,点G ,H 分别是BE ,EC 的中点,∴GH =12BC =12AD =12a ,且GH //BC ,∴EF ⊥BC .又∵AD //BC ,AB ⊥BC ,∴AB =EF =GH =12a ,∴S 矩形ABCD =AB ⋅AD =12a ⋅a =12a 211.解:(1)∵四边形EFGH 为正方形,∴HG =HE ,∠ADG =∠HAE =90°,∵∠DHG +∠AHE =90°,∠DHG +∠DGH =90°,∴∠DGH =∠AHE ,∴△DGH ≌△AHE (AAS ),∴DG =AH =2;(2)如图,作FM⊥DC,M为垂足,连结GE.∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEG-∠HEG=∠MGE-∠FGE,即∠AEH=∠MGF,又∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离恒等于2,∴S▵FCG=1×2⋅GC=3,2解得GC=3,∴DG=2;(3)设DG=x,则CG=5-x,由(2)可知,S△FCG=5-x.要使△FCG的面积最小,须使x最大,∵在Rt△DHG中,DH=13,∴当GH取得最大时,x最大当点E与点B重合时,HE最大,此时,HE=22+52=29,则GH=HE=29,在Rt△DHG中,x=(29)2−(13)2=4,∴当DG=4时,△FCG的面积取得最小值.12.解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,AB=BC∠ABE=∠BCF∴△ABE≌△BCF(AAS),∠AEB=∠BFC∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.13.解:(1)AP=1DE,理由如下:2连接AE.∵CE⊥CD,∴∠ACE+∠ACD=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACE=∠BCD,在△BCD和△ACE中,CE=CD∠ACE=∠BCD,AC=BC∴△BCD≌△ACE(SAS),∴∠EAC=∠B=45°,∴∠EAD=90°,∵P为DE中点,DE.∴AP=12(2)①当Q在边AB上时,连接AE,EQ.∵P 为DE 中点,CE =CD ,∴PC 垂直平分DE ,∴DQ =QD ,∵AB =5,AQ =2,∴BD =3,设BD =AE =x ,则QD =EQ =3-x ,在Rt △AEQ 中,AE 2+AQ 2=QE 2,即x 2+22=(3-x )2解得x =56;当Q 在BA 延长线上时,连接AE ,EQ ,如图,设BD =AE =x ,同理可得AE 2+AQ 2=QE 2,即x 2+22=(7-x )2解得x =4514.综上可得BD =56或4514.14.解析 四边形DEGF 是平行四边形.理由:∵D 、E 分别是△ABC 的边AB 、AC 的中点,∴DE =12BC ,DE //BC ,∵F、G分别是OB、OC的中点,BC,FG//BC,∴FG=12∴DE=FG,DE//FG,∴四边形DEGF是平行四边形15.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠GBC=90°,又∵四边形ABCD为正方形,∴∠GBA+∠GBC=90°,∴∠GCB=∠FBA,又∵BC=AB,∠FAB=∠EBC=90°,在△ABF与△BCE中,∠GCB=∠FBABC=AB,∠EBC=∠FAB∴△ABF≌△BCE(SAS);(2)解:过点D作DH⊥CE于点H,∵E为AB中点,∴EB=1,∵AB=2,∴BC=2,∴CE=BC2+EB2=22+12=5,在Rt △CEB 中,由CE •BG =EB •BC 得BG =EB ⋅BC CE =1×25=255,∴CG =455,∵∠DCE +∠BCE =∠BCE +∠CBF =90°,∴∠DCE =∠CBF ,又∵DC =BC =2,∠CHD =∠CGB =90°,在△CHD 与△BGC 中,∠CHD =∠CGB =90°∠DCE =∠CBF DC =BC,∴△CHD ≌△BGC (AAS )∴CH =BG =255,∴GH =CG -CH =255=CH ,∵DH =DH ,∠CHD =∠GHD =90°,在△DGH 与△DCH 中,GH =CH ∠GHD =∠CHD DH =DH,∴△DGH ≌△DCH (SAS ),∴DG =DC =2.16.解:(1)在矩形ABCD 中,∠C =∠B =90°,CD =AB =10,在Rt △BCE 中,CE =CD -ED =10-7=3,根据勾股定理得,BE =BC 2+CE 2=42+32=5,(2)①当以P 为直角顶点时,即∠BPE =90°,则∠C =∠B =∠BPE =90°,∴四边形CBPE 是矩形,∴BP =CE =3,即10-t =3,∴t =7,②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得,BE 2+PE 2=BP 2,过点P 作PF ⊥CD 于F ,则PF=AD=4,DF=AP,设AP=t,则EF=7-t,BP=10-t,PE2=42+(7-t)2,∴52+42+(7-t)2=(10-t)2,,解得,t=53∴当t=7或5秒时,△BPE是直角三角形.3。
初二动点问题(含答案)
初二动点问题(含答案)动态问题所谓动点型问题是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。
解决这类问题的关键是从动中求静,灵活运用有关数学知识解决问题。
关键:从动中求静。
数学思想:分类思想、数形结合思想、转化思想。
类型:1.利用图形想到三角形全等、相似及三角函数。
2.分析题目,了解有几个动点,动点的路程、速度(动点怎么动)。
3.结合图形和题目,得出已知或能间接求出的数据。
4.分情况讨论,把每种可能情况列出来,不要漏。
5.动点一般在中考都是压轴题,步骤不重要,重要的是思路。
6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样。
如果后面的题难了,可以反过去看看前面问题的结论。
例题:1.如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2cm/秒的速度移动。
如果P、Q分别从A、C同时出发,设移动时间为t秒。
当t=时,四边形是平行四边形。
当t=时,四边形是等腰梯形。
2.如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为1,B=60°,BC=2.点O是AC的中点,过点O的直线为l。
3.如图,在直角三角形ABC中,∠ACB=90°。
从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D。
过点C作CE∥AB交直线l于点E,设直线l的旋转角为α。
1)当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由。
删除问题明显的第四个例题。
对于其他例题,可以稍作改写,使其更加清晰易懂。
25、在正方形ABCD中,点E是边BC的中点,且∠AEF 为直角,EF交正方形外角∠DCG的平行线CF于点F。
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。
(完整版)初二动点问题(含答案)2
3.分三种情况讨论等腰三角形 PMN ,三种情况各具特殊性,灵活运用几何性质解题.
满分解答
( 1)如图 4,过点 E 作 EG⊥BC 于 G.
在 Rt△ BEG 中, BE
1 AB
2 ,∠ B= 60°,
2
所以 BG BE cos60 1, EG BE sin 60 3 .
所以点 E 到 BC 的距离为 3 .
(3) 如图 3,BD 是正方形 ABCD 的对角线 ,L 在 BD 上,且 BL=BC, 连结 CL ,点 E 是 CL 上任一点 , EF⊥ BD 于点 F, EG⊥ BC 于点 G,猜想 EF、 EG、 BD 之间具有怎样的数量关系,直接写出你的猜想;
(4) 观察图 1、图 2、图 3 的特性,请你根据这一特性构造一个图形,
MD
C
M C
M C
EN
D
E
A
B
A
图1
E
图2
N
(1) 当直线 MN 绕点 C 旋转到图 1 的位置时,求证:①△
B
A
B
D
N
图3
ADC ≌△ CEB;② DE=AD +BE ;
图1
图2
图3
思路点拨
1.先解读这个题目的背景图,等腰梯形
ABCD 的中位线 EF =4,这是 x 的变化范围.平行线间的
距离处处相等, AD 与 EF 、 EF 与 BC 间的距离相等.
2.当点 N 在线段 AD 上时, △PMN 中 PM 和 MN 的长保持不变是显然的, 求证 PN 的长是关键. 图 形中包含了许多的对边平行且相等,理顺线条的关系很重要.
例 ( 10 年房山二模压轴) 25. (1)如图 1,已知矩形 ABCD 中,点 E 是 BC 上的一动点,过点 E
初二动点问题(含答案)
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形.82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB,∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.OE CDAαlOCA(备用图)CBAED图1NMA BCDEMACBEDNM(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CE B;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN 绕点C 旋转到图3的位置时,试问D E、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)① ∵∠AC D=∠ACB=90° ∴∠C AD+∠ACD=90° ∴∠B CE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD,C D=BE ∴DE=C E+CD=AD+BE (2) ∵∠A DC=∠C EB=∠ACB=90° ∴∠ACD=∠C BE 又∵AC=BC ∴△ACD ≌△C BE ∴CE=AD,CD=BE ∴D E=CE-CD=A D-BE(3) 当MN 旋转到图3的位置时,DE=BE-A D(或A D=BE-DE,BE =A D+DE 等) ∵∠AD C=∠CEB=∠ACB =90° ∴∠ACD=∠CBE , 又∵AC =BC, ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE =BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边B C的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF.经过思考,小明展示了一种正确的解题思路:取AB 的中点M,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B,C外)的任意一点”,其它条件不变,那么结论“AE =EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠. ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若A B=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD F C GE B 图1 A D FGB 图3A D F CGE B 图2AD F C G B M A D FC G B N7、在等腰梯形ABCD中,AD‖BC,E为AB的中点,过点E作EF‖BC交CD于点F.AB=4,BC=6, ∠B=60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲平行四边形中的动点问题时间:年月日刘满江老师学生姓名:一、兴趣导入二、学前测试1.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD考点:平行四边形的性质.分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解答:解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,故此选项正确,不合题意;∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,故B,C选项正确,不合题意;无法得出AC⊥BD,故此选项错误,符合题意.故选D.点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种考点:平行四边形的判定.分析:根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解答:解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;故选:B.点评:此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.3.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF 交AC于点H,则的值为()A.1B.C.D.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半求出H是AO的中点,再根据平行四边形的对角线互相平分可得AO=CO,然后求出CH=3AH,再求解即可.解答:解:∵点E,F分别是边AD,AB的中点,∴AH=HO,∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,∴CH=3AH,∴=.故选C.三、方法培养:知识要点:平行四边形的概念:两组对边分别平行的四边形叫平行四边形平行四边形的性质:边:对边平行且相等角:内角和为______,外角和___________,邻角______,对角__________对角线:互相平分平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离叫性质:平行线之间的距离处处相等。
推广:夹在两条平行线之间平行线段相等平行四边形的判定:定义:两组对边分别平行的四边形是平行四边形定理1:两组对角分别相等的四边形是平行四边形定理2:两组对边分别相等的四边形是平行四边形定理3:对角线互相平分的四边形是平行四边形定理4:一组对边平行且相等的四边形是平行四边形例11.如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒).(1)当t 为何值时,四边形PQCD 的面积是梯形ABCD 的面积的一半;(2)四边形PQCD 能为平行四边形吗?如果能,求出t 的值;如果不能,请说明理由.(3)四边形PQCD 能为等腰梯形吗?如果能,求出t 的值;如果不能,请说明理由.考点:等腰梯形的判定;平行四边形的判定;直角梯形。
专题:动点型。
分析:(1)根据:路程=速度×时间,表示线段的长度,再利用:S 梯形ABPQ =S 梯形PQDC ,列方程求解;(2)只要能满足DQ=PC 即可,由此建立等量关系,列方程求解;(3)当四边形PQCD 为等腰梯形时,作PE ⊥BC ,DF ⊥BC ,垂足为E 、F ,需要满足QE=CF ,由此建立等量关系,列方程求解.解答:解:(1)由已知得:AQ=t ,QD=16﹣t ,BP=2t ,PC=21﹣2t ,依题意,得 12)22116(2112)2(21⨯-+-=⨯+t t t t 解得;(2)能;当四边形PQDC 为平行四边形时,DQ=PC ,即16﹣t=21﹣2t 解得t=5;(3)不能作QE ⊥BC ,DF ⊥BC ,垂足为E 、F ,当四边形PQCD 为等腰梯形时,PE=CF ,即t ﹣2t=21﹣16解得t=﹣5,不合实际.点评:本题考查了梯形计算面积的方法,根据平行四边形、等腰梯形的性质列方程求解的问题. 变式练习:如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒).(1)设△DPQ 的面积为S ,求S 与t 之间的函数关系式;(2)当t 为何值时,四边形PCDQ 是平行四边形?(3)分别求出当t 为何值时,①PD=PQ ,②DQ=PQ .考点:直角梯形;勾股定理;平行四边形的判定与性质。
解答:(1)解:直角梯形ABCD 中,AD ∥BC ,∠A=90°,BC=21,AB=12,AD=16,依题意AQ=t ,BP=2t ,则DQ=16﹣t ,PC=21﹣2t ,过点P 作PE ⊥AD 于E ,则四边形ADPE 是矩形,PE=AB=12,∴S △DPQ =DQ •AB=(16﹣t )×12=﹣6t+96.(2)当四边形PCDQ是平行四边形时,PC=DQ,∴21﹣2t=16﹣t解得:t=5,∴当t=5时,四边形PCDQ是平行四边形.(3)∵AE=BP=2t,PE=AB=12,①当PD=PQ时,QE=ED=AQ=t,∴AD=3t即16=3t,解得:t=,∴当t=时,PD=PQ②当DQ=PQ时,DQ2=PQ2∴t2+122=(16﹣t)2解得:t=∴当t=时,DQ=PQ☆专题2:平行四边形的证明【例2】如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P 从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,(1)直角梯形ABCD的面积为cm2;(2)当t=秒时,四边形PQCD成为平行四边形?(3)当t=秒时,AQ=DC;(4)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.考点:直角梯形;平行四边形的判定。
解答:解:(1)作DM⊥BC于点M.则四边形ABMD是平行四边形∴DM=AB=6cm.在直角△CDM中,CM==8cm ∴BC=BM+CM=4+8=12cm∴直角梯形ABCD的面积为(AD+BC)•AB=48cm2;(2)当PD=CQ时,四边形PQCD成为平行四边形即4﹣5x=4x 解得x=;(3)BQ=12﹣5x 在直角△ABQ中,AB2+BQ2=AQ2 即62+(12﹣5x)2=102 解得x=;(4)存在,.连接QD,则CP=14﹣4t,CQ=5t若QP⊥CD,S△DQC=S△DQC,有CQ×AB=CD×QP得QP=3t 在RtS△QPC中QP2+PC2=CQ2,即(3t)2+(14﹣4t)2=(5t)2解之得求得BC=12 CP=14﹣4t=7<10 CQ=5t=<12所以,存在t,使得P点在线段DC上,且PQ⊥DC.变式练习如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B 点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,(1)这个直角梯形ABCD的面积是多少?(2)当t为何值时,四边形PQCD成为平行四边形?(3)是否存在t ,使得P 点在线段DC 上且PQ ⊥DC ?若存在,求出此时t 的值,若不存在,说明理由. 分析:(1)作DM ⊥BC 于点M ,在直角△CDM 中,根据勾股定理即可求得CM ,得到下底边的长,根据梯形面积公式即可求解.(2)当PD=CQ 时,四边形PQCD 成为平行四边形.(3)连接QD ,根据S △DQC =S △DQC ,即可求解.解答:解:(1)作DM ⊥BC 于点M .则四边形ABMD 是平行四边形,∴DM=AB=6cm .在直角△CDM 中,CM==8cm ,∴BC=BM+CM=4+8=12cm , ∴直角梯形ABCD 的面积为 (AD+BC )•AB=48cm 2;二、当PD=CQ 时,四边形PQCD 成为平行四边形,即4﹣5x=4x , 解得x=;(3)存在,.连接QD ,则CP=14﹣4t ,CQ=5t , 若QP ⊥CD ,S △DQC =S △DQC ,有CQ ×AB=CD ×QP ,即5t ×6=10×QP , 得QP=3t , 在RtS △QPC 中, QP 2+PC 2=CQ 2,即(3t )2+(14﹣4t )2=(5t )2解之得 , 求得BC=12, CP=14﹣4t=7<10, CQ=5t=<12,所以,存在t=时,使得P 点在线段DC 上,且PQ ⊥DC .☆专题3:三角形的中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。
逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
【例3】直角三角形AOB 在平面直角坐标系中如图所示,O 与坐标原点重合,点A 在x 轴上,点B 在y 轴上,OB=2,∠BAO=30°,将△AOB 沿直线BE 折叠,使得OB 边落在AB 上,点O 与点D 重合.(1)求直线BE 的解析式;(2)求点D 的坐标;(3)点P 是x 轴上的动点,使△PAB 是等腰三角形,直接写出P 点的坐标;(4)点M 是直线BE 上的动点,过M 点作AB 的平行线交y 轴于点N ,是否存在这样的点M ,使得以点M 、N 、D 、B 为顶点的四边形是平行四边形?如果存在,请求出所有M 点的坐标;如果不存在说明理由. HG F E DCB A考点:一次函数综合题;正比例函数的图象;待定系数法求一次函数解析式。