石油计量表60a,60b,60d,54a,54b,54d石油及液体石油产品vcf自动计算程序excel文件
催化裂化计算方法
d4t为操作温度t时液体密度与4 ℃时水的密度之比。
r可由附录查得。
1.2.3 举例:回炼油流量仪表指示值为150m3/h,设计密度为630kg/m3现在操作温度为360℃,ρ20=850kg/m3求在操作温度下的体积流量是多少?
V20=Vt×VCF20…………………(1)
计算产品在空气中的质量(商业质量)时,应进行空气浮力修正,将标准密度(kg/m3)减去空气浮力修正值1.1kg/m3,再乘以标准体积,就得到产品质量(m),见公式(2)。
m=V20×(ρ20-1.1)…………………(2)
1.1.3 产品数量计算举例
某一产品测得输油温度为40℃,输油体积为1240.62m3,用石油密度计测得该产品40℃下的视密度为753.0kg/m3,计算输油质量。
1.2.1 校正公式
差压式流量计采用下式计算所通过的液体体积流量:
式中V—液体在操作条件下的体积流量,m3/h
ΔP—孔板前后压差,Pa (mmH2O柱或 mmHg柱)
ρ实—操作条件下液体的密度
K—常数,与孔板大小、形状等有关
用差压式流量计所测定的液体质量流量可表示为:
式中G—液体质量流量,t/h
在实际使用时,仪表人员会根据设计条件(设计孔板大小,设计液体密度等)给出仪表指示流量表,供操作人员使用。但是,在生产过程中,由于液体的实际密度和设计时所选用的密度(液体的性质及液体通过节流装置时的温度)不同,因此,实际流量与仪表指示流量值会有差别,需进行校正。校正方法如下:
由产品在试验温度40℃下的视密度753.0kg/m3,查表59B,得 ρ20=770.0kg/m3
由标准密度770.0kg/m3和输油温度40℃,查表60B得
VCF20=0.9775
油量计算知识
46.25
46.50
819.3
819.5
821.2
821.4
823.2 825.1
823.4 825.3
46.25
46.50
17
标准密度的换算方法
油品名称 原油 试验温度 46.15 查表温度 46.25
L’ 802.0 821.2 L
ρt’ 803.6
ρ20
视密度 R’ 804.0 823.3 R
5
石油计量表 GB/T1885-98
组成及范围 标准密度表的使用 体积修正系数表的使用
6
石油计量表 GB/T1885-98
7
石油计量表 GB/T1885-98
《石油计量表》标准化情况
★ISO91-1石油计量表 第1部分:以15℃和60 ℉为标准温度的表 ★ISO91-2石油计量表 第2部分:以20℃为标准温度的表
24
体积修正系数表
体积系数实例 原油:计量温度t=38.25℃ 标准密度ρ20 =827.9kg/m3
求体积系数
25
体积修正系数表
表60A 原油体积修正系数表
20℃密度,kg/m3 温度℃
38.00 38.25 38.50 38.75 822.0 824.0 826.0 828.0 温度℃
20℃体积系数
34
油量计算
有争议时,以F值为准。 对于原油或其它含水油品,计算纯油量的计算式为: mc=m· (1-w) w―原油或其它含水油品的含水率,%; mc―纯 油的质量, kg 。
根据油量计算式可知,若求油品在空气中的重量,首 先应求标准密度和容器内实例1 已知储罐内原油在计量温度38.20℃下的体积为4500m3 。取样后在实验室按GB/T1884测得实验温度40.15℃下的 视密度为833.6kg/m3,含水1.5%,求储罐内原油的标准体 积,质量以及纯油质量。
国家质量监督检验检疫总局办公厅关于做好汽、柴油吨与升折算系数测算工作的通知
国家质量监督检验检疫总局办公厅关于做好汽、柴油吨与升折算系数测算工作的通知文章属性•【制定机关】国家质量监督检验检疫总局(已撤销)•【公布日期】2011.03.17•【文号】国质检办量[2011]236号•【施行日期】2011.03.17•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】正文国家质量监督检验检疫总局办公厅关于做好汽、柴油吨与升折算系数测算工作的通知(2011年3月17日质检办量[2011]236号) 各省、自治区、直辖市质量技术监督局:为做好汽、柴油吨与升折算系数测算工作,现就有关事项通知如下:一、汽、柴油吨与升折算系数的准确关系到油品的公平交易,请各单位予以高度重视,精心组织协调,保证测算工作的质量。
二、为做好本次折算系数测算工作,总局组织起草了《汽、柴油质量与体积换算系数确定方法》(见附件),经专家组审定通过,现印发给你们,请遵照执行。
三、在组织测算工作中,质检系统的参与人员要注意数据的管理,不得对外泄露。
四、测算工作完成后,由各局向当地省级有关主管部门报送测算的折算系数,有关数据不得对外泄露。
五、由于延迟印发了《汽、柴油质量与体积换算系数确定方法》,经与有关部门商议,决定将原定完成测算工作时间延至2011年4月30日前。
六、测算工作中遇有问题,请及时与总局计量司或中国计量科学研究院联系。
计量司联系人:陈伦仁电话:************189****7511中国计量科学研究院联系人:于梅电话:64524604 136****3372刘子勇电话:64524627 137****6838附件:汽、柴油质量与体积换算系数确定方法附件:汽、柴油质量与体积换算系数确定方法1.适用范围本方法适用于本次为当地有关主管部门提供成品油(指汽油和柴油,以下简称油品)质量与体积换算系数的确定。
2.技术依据GB/T 1884-2000《原油和液体石油产品密度实验室测定法(密度计法)》GB/T 1885-1998《石油计量表》GB/T 4756-1998《石油液体手工取样法》GB/T 8927-2008《石油和液体石油产品温度测量法》GB/T 19779-2005《石油和液体石油产品油量计算静态计量》3.系数确定原则采用现场抽样测试和抽取原始测试数据统计的方法,确定质量与体积换算系数。
石油工程全套资料表格
石油工程全套资料表格1. 简介本文档为石油工程全套资料表格的说明和使用指南。
旨在为石油工程师和相关专业人士提供一个清晰的数据整理和管理工具。
2. 表格内容石油工程全套资料表格包含以下主要内容:- 油井信息:记录油井的基本信息,包括井号、井口坐标、井深等。
- 钻井数据:记录钻井过程中的各项数据,包括井眼轨迹、井壁稳定性评估等。
- 生产数据:记录井口和底孔的生产数据,包括产量、压力等。
- 地质数据:记录油藏地质特征和油藏结构等数据。
- 设备信息:记录油井设备的相关信息,包括管柱、套管等设备的规格和材质。
- 安全数据:记录油井施工和运营过程中的安全数据,包括事故记录、安全评估等。
3. 使用指南石油工程全套资料表格的使用指南如下:- 创建:根据需要,使用电子表格软件(如Excel)创建表格,并按照上述内容规划和设计表格各列。
- 数据输入:根据实际情况,填写各项数据,确保准确性和完整性。
- 数据更新:随着石油工程的进行,及时更新表格中的相关数据,保持数据的最新性。
- 数据备份:定期备份表格数据,以防数据丢失或损坏。
- 数据分析:根据表格中的数据,进行数据分析和统计,辅助决策和优化工程过程。
4. 注意事项在使用石油工程全套资料表格时,需要注意以下事项:- 数据准确性:填写数据时要确保准确性,避免录入错误或遗漏。
- 数据保密:对于涉及机密或敏感信息的数据,要采取相应的保密措施,确保信息安全。
- 数据备份:定期备份数据,避免数据丢失或损坏导致信息丢失。
5. 总结石油工程全套资料表格是一个重要的数据整理和管理工具,可以帮助石油工程师和相关专业人士更好地管理和分析工程数据。
合理使用表格,并注意数据准确性和安全性,将为石油工程的进行提供有力支持。
以上为石油工程全套资料表格的相关介绍和使用指南,希望对您有所帮助。
石油测量表ASTMD1250 04
Designation:D1250–041.Scope1.1The API MPMS Chapter11.1–2004/Adjunct to IP200/ 04/Adjunct to ASTM D1250–04(ADJD1250CD)for tempera-ture and pressure volume correction factors for generalized crude oils,refined products,and lubricating oils,provides the algorithm and implementation procedure for the correction of temperature and pressure effects on density and volume of liquid hydrocarbons.Natural gas liquids(NGLs)and liquefied petroleum gases(LPGs)are excluded from consideration.The combination of density and volume correction factors for both temperature and pressure is collectively referred to in the standard/adjunct(s)as a V olume Correction Factor(VCF).The temperature portion of this correction is termed the Correction for the effect of Temperature on Liquid(CTL).The pressure portion is termed the Correction for the effect of Pressure on Liquid(CPL).1.2Including the pressure correction in API MPMS Chapter 11.1–2004/Adjunct to IP200/04/Adjunct to ASTM D1250–04 (ADJD1250CD)represents an important change from the “temperature only”correction factors given in the1980Petro-leum Measurement Tables.However,if the pressure is one atmosphere(the standard pressure)then there is no pressure correction and the standard/adjunct(s)will give VCF values consistent with the1980Petroleum Measurement Tables. 1.3API MPMS Chapter11.1–2004/Adjunct to IP200/04/ Adjunct to ASTM D1250–04(ADJD1250CD)covers general procedures for the conversion of input data to a form that is consistent with the computation procedures used to generate VCF values.Two sets of procedures are included for comput-ing volume correction factor:one set for data expressed in customary units(temperature in°F,pressure in psig);the other for the metric system of units(temperature in°C,pressure in kPa or bar).In contrast to the1980Petroleum Measurement Tables,the metric procedures require the procedure for cus-tomary units be usedfirst to compute density at60°F.This value is then further corrected to give the metric output.The metric procedures now incorporate the base temperature of 20°C in addition to15°C.1.4The procedures recognize three distinct commodity groups:crude oil,refined products,and lubricating oils.A procedure is also provided for determining volume correction for special applications where the generalized commodity groups’parameters may not adequately represent the thermal expansion properties of the liquid and a precise thermal expansion coefficient has been determined by experiment.2.Referenced Documents2.1API Standards:API Manual of Petroleum Measurement Standards(MPMS): Chapter11.1–2004Temperature and Pressure V olume Cor-rection Factors for Generalized Crude Oils,Refined Prod-ucts,and Lubricating Oils3Chapter11.2.1Compressibility Factors for Hydrocarbons: 0–90°API Gravity RangeChapter11.2.1M Compressibility Factors for Hydrocar-bons:638–1074Kilograms per Cubic Meter Range2.2ISO Standards:ISO91–1:1992Petroleum measurement tables—Part1: Tables based on reference temperatures of15°C and60°F ISO91–2:1991Petroleum measurement tables—Part2: Tables based on a reference temperature of20°C2.3ASTM Adjuncts:Adjunct to ASTM D1250:ADJD1250CD—Temperature and Pressure V olume Correction Factors for Generalized Crude Oils,Refined Products,and Lubricating Oils43.Sponsorship3.1The revision of the ASTM/API/IP set of implementa-tion procedures is the result of close cooperation between ASTM International,the American Petroleum Institute(API), and the Energy Institute.2To meet the objective of worldwide standardized measurement practices,it is expected to result in the acceptance of the revised tables by the International Organization for Standardization(ISO),and specifically ISO/TC28/SC3,as revisions to International Standards ISO 91–1and ISO91–2.API MPMS Chapter11.1–2004/Adjunct to IP200/04/Adjunct to ASTM D1250–04(ADJD1250CD)ap-plies to all crude oils,refined products,and lubricants previ-ously covered by Tables5,6,23,24,53,54,59,and60.The API designation for the complete set of implementation pro-cedures is the Manual of Petroleum Measurement Standards (MPMS)Chapter11Section1.The IP designation for the complete set of implementation procedures is the Adjunct to IP 200.4.Significance and Use4.1The expanded limits of API MPMS Chapter11.1–2004/ Adjunct to IP200/04/Adjunct to ASTM D1250–04 (ADJD1250CD)are defined in a mixture of terms of customary and metric units.Table1shows the defining limits and their associated units in bold italics.Also shown in Table1are the limits converted to their equivalent units(and,in the case of the densities,other base temperatures).4.2Note that only the precision levels of the defining values shown in Table1are correct.The other values showing converted units have been rounded to the significant digits shown;as rounded values,they may numerically fall just outside of the actual limits established by the defining values.4.3Table2provides a cross-reference between the histori-cal table designations and the corresponding section in API MPMS Chapter11.1–2004/Adjunct to IP200/04/Adjunct to ASTM D1250–04(ADJD1250CD).Note that procedure para-graphs11.1.6.3(U.S.customary units)and11.1.7.3(metric1This guide is under the jurisdiction of ASTM Committee D02on Petroleum Products and Lubricants and the API Committee on Petroleum Measurement,and is the direct responsibility of Subcommittee D02.02/COMQ,the joint ASTM-API Committee on Static Petroleum Measurement.Current edition approved May1,2004.Published May2004.Originallyapproved in1952,replacing former D206and st previous edition approved in2002as D1250–80(2002).2The organization that publishes IP test methods and guides.3Available on CD-ROM from API.Order Product Number H11013.4Available on CD-ROM from ASTM International Headquarters.Order Adjunct No.ADJD1250CD.units)provide methods for correcting on-line density measure-ments from live conditions to base conditions and then to compute VCF factors for continuous volume corrections to base conditions.4.4When a glass hydrometer is used to measure the density of a liquid,special corrections must be made to account for the thermal expansion of the glass when the temperature is different from that at which the hydrometer was calibrated.The 1980CTL Tables had generalized equations to correct glass hydrometer readings,and these corrections were part of the printed odd-numbered tables.However,detailed procedures to correct a glass hydrometer reading are beyond the scope of API MPMS Chapter 11.1–2004/Adjunct to IP 200/04/Adjunct to ASTM D 1250–04(ADJD1250CD).The user should refer to the appropriate sections of API MPMS Chapter 9or other appropriate density/hydrometer standards for guidance.4.5The set of correlations given in API MPMS Chapter 11.1–2004/Adjunct to IP 200/04/Adjunct to ASTM D 1250–04(ADJD1250CD)is intended for use with petroleum fluids comprising either crude oils,refined products,or lubricating oils that are single-phase liquids under normal operating conditions.The liquid classifications listed here are typical terms used in the industry,but local nomenclature may vary.The list is illustrative and is not meant to be all-inclusive.4.6Crude Oils —A crude oil is considered to conform to the commodity group Generalized Crude Oils if its density falls in the range between approximately –10°API to 100°API.Crude oils that have been stabilized for transportation or storage purposes and whose API gravities lie within that range are considered to be part of the Crude Oil group.Also,aviation jet B (JP-4)is best represented by the Crude Oil correlation.4.7Refined Products —A refined product is considered to conform to the commodity group of Generalized Refined Products if the fluid falls within one of the refined product groups.Note the product descriptors are generalizations.The commercial specification ranges of some products may place their densities partly within an adjacent class (for example,a low density diesel may lie in the jet fuel class).In such cases,the product should be allocated to the class appropriate to its density,not its descriptor.The groups are defined as follows:4.7.1Gasoline —Motor gasoline and unfinished gasoline blending stock with a base density range between approxi-mately 50°API and 85°API.This group includes substances with the commercial identification of:premium gasoline,unleaded gasoline,motor spirit,clear gasoline,low lead gas,motor gasoline,catalyst gas,alkylate,catalytic cracked gaso-line,naphtha,reformulated gasoline,and aviation gasoline.4.7.2Jet Fuels —Jet fuels,kerosene,and Stoddard solvents with a base density range between approximately 37°API and 50°API.This group includes substances with the commercial identification of:aviation kerosene K1and K2,aviation jet A and A-1,kerosene,Stoddard solvent,JP-5and JP-8.4.7.3Fuel Oils —Diesel oils,heating oils,and fuel oils with a base density range between approximately –10°API and 37°API.This group includes substances with the commercial identification of:No.6fuel oil,fuel oil PA,low sulfur fuel oil,LT (low temperature)fuel oil,fuel oil,fuel oils LLS (light low sulfur),No.2furnace oil,furnace oil,auto diesel,gas oil,No.2burner fuel,diesel fuel,heating oil,and premium diesel.4.8Lubricating Oils —A lubricating oil is considered to conform to the commodity group Generalized Lubricating Oils if it is a base stock derived from crude oil fractions by distillation or asphalt precipitation.For the purpose of API MPMS Chapter 11.1–2004/Adjunct to IP 200/04/Adjunct to ASTM D 1250–04(ADJD1250CD),lubricating oils have ini-tial boiling points greater than 700°F (370°C)and densities in the range between approximately –10°API to 45°API.4.9Special Applications —Liquids that are assigned the special applications category are generally relatively pure products or homogeneous mixtures with stable (unchanging)TABLE 1Range Limits APhysical UnitsCrude OilRefined ProductsLubricating OilsDensity,kg/m 3@60°F 610.6to 1163.5610.6to 1163.5800.9to 1163.5Relative Density @60°F 0.61120to 1.164640.61120to 1.164640.80168to 1.1646API Gravity @60°F 100.0to -10.0100.0to -10.045.0to -10.0Density,kg/m 3@15°C 611.16to 1163.79611.16to 1163.86801.25to 1163.85Density,kg/m 3@20°C606.12to 1161.15606.12to 1160.62798.11to 1160.71Temperature,°C –50.00to 150.00–50.00to 150.00–50.00to 150.00Temperature,°F –58.0to 302.0–58.0to 302.0–58.0to 302.0Pressure,psig 0to 15000to 15000to 1500kPa (gage)0to 1.03431040to 1.03431040to 1.0343104bar (gage)0to 103.40to 103.40to 103.4a 60,per °F 230.0310-6to 930.0310-6230.0310-6to 930.0310-6230.0310-6to 930.0310-6a 60,per °C414.0310-6to 1674.0310-6414.0310-6to 1674.0310-6414.0310-6to 1674.0310-6ADefining limits and their associated units appear in bold italics .TABLE 2Historical Table Cross-ReferenceHistorical Table DesignationProcedure Paragraph in Current StandardHistorical Table DesignationProcedure Paragraph in Current Standard5A,B &D 11.1.6.253A,B &D 11.1.7.223A,B,&D 11.1.6.259A,B,&D 11.1.7.26A,B,C &D 11.1.6.154A,B,C &D 11.1.7.124A,B,C &D11.1.6.160A,B,C &D11.1.7.1chemical composition that are derived from petroleum(or are petroleum-based with minor proportions of other constituents) and have been tested to establish a specific thermal expansion factor for the particularfluid.These tables should be consid-ered for use when:4.9.1The generalized commodity groups’parameters are suspected of not adequately representing the thermal expansion properties of the liquid.4.9.2A precise thermal expansion coefficient can be deter-mined by experiment.A minimum of10temperature/density data points is recommended to use this method.See11.1.5.2of API MPMS Chapter11.1–2004/Adjunct to IP200/04/Adjunct to ASTM D1250–04(ADJD1250CD)for the procedure to calculate the thermal expansion coefficient from measured density data.4.9.3Buyer and seller agree that,for their purpose,a greater degree of equity can be obtained using factors specifically measured for the liquid involved in the transaction.4.9.4Specific Examples:MTBE with an a60value of789.031026°F21Gasohol with an a60value of714.3431026°F214.10Refer to paragraphs11.1.2.4and11.1.2.5in API MPMS Chapter11.1–2004/Adjunct to IP200/04/Adjunct to ASTM D1250–04(ADJD1250CD)for a complete description of the suitability of the implementation procedures for specific hydrocarbon liquids.5.Historical Background5.1The1980Petroleum Measurement Tables were based on data obtained using the International Practical Temperature Scale1968(IPTS–68).This has been superseded by the International Temperature Scale1990(ITS–90).API MPMS Chapter11.1–2004/Adjunct to IP200/04/Adjunct to ASTM D1250–04(ADJD1250CD)takes this into account by correct-ing the input temperature values to an IPTS–68basis before any other calculations are performed.Standard densities are also adjusted to take into account the small shifts in the associated standard temperatures.5.2The accepted value of the standard density of water at 60°F has changed slightly from the value used in the1980 Petroleum Measurement Tables.This new water density only affects those tables based on relative density and API gravity, that is,the historical Tables5,6,23and24.It also affects the intraconversion tables,API MPMS Chapter11.1–1980V ol-umes XI and XII/Adjunct to ASTM D1250–80 (ADJD125011).55.3In1988the IP produced implementation procedures for 20°C(Tables59A,B and D and60A,B and D)by extending the procedures used for the15°C tables.This was in response to the needs of countries that use20°C as their standard temperature.Although API never published these tables,they were adopted internationally as the reference document for International Standard ISO91–2.ISO91–2complements ISO 91–1,the International Standard for temperatures of60°F and 15°C that is based on V olume X of API MPMS Chapter 11.1–1980/Adjunct to IP200/Adjunct to ASTM D1250–80 (ADJD125010).5The2004revision to API MPMS Chapter 11.1/Adjunct to IP200/Adjunct to ASTM D1250 (ADJD1250CD)incorporates the20°C tables.The procedures adopted for the metric tables give results that are identical to those obtained using the60°F tables.Furthermore,these procedures may be adapted to provide tables at any desired temperature base.5.4Implementation procedures for the lubricating oil tables first appeared in the IP’s Petroleum Measurement Paper No2: Guidelines for Users of the Petroleum Measurement Tables (API Standard2540;IP200;ANSI/ASTM D1250),and later in their20°C tables.The implementation procedures are now incorporated in API MPMS Chapter11.1–2004/Adjunct to IP 200/04/Adjunct to ASTM D1250–04(ADJD1250CD).5.5Rounding of density in metric tables changed from 0.5kg/m3to0.1kg/m3to improve discrimination.5.6To satisfy industry needs,the tables have been extended to lower temperatures and higher densities(that is,lower API gravities).5.7Real-time density measurement using density meters has become more prevalent in the industry.These density measurements are often made at pressures greater than atmo-spheric.This pressure effect must be taken into account simultaneously with any temperature effect when determining the density at standard conditions.Hence,pressure and tem-perature corrections have been combined into one procedure.5.8Rounding and truncation of initial and intermediate values have been eliminated.Rounding will only be applied to thefinal VCF values.5.9Thefinal VCF values will now be rounded to a consistent5decimal digits.API MPMS Chapter11.1–2004/ Adjunct to IP200/04/Adjunct to ASTM D1250–04 (ADJD1250CD)also provides a mechanism to provide inter-mediate unrounded factors that,when combined,give the overall rounded CTPL(VCF).5.10The1980Petroleum Measurement Tables’implemen-tation procedure used integer arithmetic in order to allow all existing computer equipment to achieve consistent results.This procedure now uses a double-precisionfloating-point math procedure.5.11Revised API MPMS Chapters11.2.1and11.2.1M are now incorporated into API MPMS Chapter11.1–2004.The 1984versions of both will continue to be available on an historical basis.65.12Previous editions of the printed tables were based on density measurements made using a glass hydrometer.API MPMS Chapter11.1–2004/Adjunct to IP200/04/Adjunct to ASTM D1250–04(ADJD1250CD)is based on the input of density values and no glass hydrometer corrections are applied. If density is measured using a glass hydrometer,hydrometer5When ordering from ASTM International,request ADJD125001for V ol1; ADJD125002for V ol II;ADJD125003for V ol III;ADJD125004for V ol IV; ADJD125005for V ol V;ADJD125006for V ol VI;ADJD125007for V ol VII; ADJD125008for V ol VIII;ADJD125009for V ol IX;ADJD125010for V ol X;andfor V ol XI/XII–ADJD125011.The adjunct number for the complete set is ADJD1250CS.6Available from the American Petroleum Institute(API),1220L St.,NW, Washington,DC20005.readings shall be corrected to density values before they areapplied in the calculations.6.Keywords6.1crude oil;density correction;lubricants;lubricating oils;Petroleum Measurement Tables;petroleum products;volumecorrection;volume correction factorANNEX(Mandatory Information)A1.GUIDE FOR PETROLEUM MEASUREMENT TABLES[ASTM D1250–80,API MPMS Chapter11.1–1980,IP200/80(90)]7A1.1ScopeA1.1.1These Petroleum Measurement Tables5are for use in the calculation of quantities of crude petroleum and petroleum products at reference conditions in any of three widely used systems of measurement.These tables are provided for stan-dardized calculation of measured quantities of petroleumfluids regardless of point of origin,destination,or units of measure used by custom or statute.A1.1.2The Petroleum Measurement Tables published in 1980,except for Tables33and Tables34(which are being reissued without change),represent a major conceptual depar-ture from previous versions.Inherent in the Petroleum Mea-surement Tables is the recognition of the present and future position of computers in the petroleum industry.The actual standard represented by the Petroleum Measurement Tables is neither the hardcopy printed tables nor the set of equations used to represent the density data but is an explicit implemen-tation procedure used to develop computer subroutines for Tables5,Tables6,Tables23,Tables24,Tables53,and Tables54.The standardization of an implementation procedure implies the standardization of the set of mathematical expres-sions,including calculational sequence and rounding proce-dures,used within the computer code.Absolute adherence to the outlined procedures will ensure that all computers and computer codes of the future,meeting the stated specifications and restrictions,will be able to produce identical results. Hence,the published implementation procedures are the pri-mary standard,the distributed subroutines are the secondary standard,and the published tables are produced for conve-nience.N OTE A1.1—The present collection of tables supersedes all previous editions of the Petroleum Measurement Tables ANSI/ASTM D1250, IP200,and API Standard2540.A1.2Referenced DocumentsD287Test Method for API Gravity of Crude Petroleum and Petroleum Products(Hydrometer Method)8Petroleum Measurement Tables—19809Historical Edition Petroleum Measurement Table—195210A1.3SponsorshipA1.3.1The complete collection of the new jointly issued ASTM-API-IP tables is the result of close cooperation between the American Society for Testing and Materials,American Petroleum Institute,and the Institute of Petroleum(London). To meet the objective of worldwide standardized measurement practices,the American National Standards Institute and the British Standards Institution have also been closely involved, resulting in the acceptance of the revised tables as an American National Standard and a British Standard.In addition,in their respective capacities as Secretariat of the International Orga-nization for Standardization/TC28and of TC28/SC3,ANSI and BSI have been instrumental in progressing the revised tables toward their adoption as an International Standard by the International Organization for Standardization.The ASTM Designation D1250applies to all35tables described in Section A1.5.The Energy Institute designation for the com-plete set of tables is IP200/80.A1.4Significance and UseA1.4.1This guide is expected to apply to crude petroleum regardless of source and to all normally liquid petroleum products derived therefrom.There are three primary sets of tables in current use.These are in terms of°API(Tables5and Tables6),relative density(Tables23and Tables24),and7The1980edition of the Petroleum Measurement Tables may still be in use(see the Introduction and Usage Guidelines).For that reason,Guide D1250–80has been included as this mandatory annex.8For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.9Available from ASTM International Headquarters.Order Adjunct No. ADJD1250CS.10Available from ASTM International Headquarters.Order Adjunct No.ADJD1250AM.density in kilogram per cubic metre(Tables53and Tables54). To maximize accuracy and maintain convenience of use in primary tables(Tables5,Tables6,Tables23,Tables24, Tables53,and Tables54),crude oils and products are pre-sented in separate tables.For example,for Table6there are: Table6A,Generalized Crude Oils;Table6B,Generalized Products;and Table6C,V olume Correction Factors for Indi-vidual and Special Applications.The subsidiary tables are based on averages of the crude oil and product volume correction factors obtained from the primary tables and,hence are not included in the precision statement that encompass the primary tables.A1.4.2The ranges for the primary tables are as follows: Table A Table B°API°F°API°F0to400to3000to400to30040to500to25040to500to25050to1000to20050to850to200Table Ca A°F270to510310−60to300510to5300to250530to9300to200A Alpha is the coefficient of thermal expansion at60°F.The ranges of the subsidiary tables,except Tables33and Tables34,encompass the range of Table A.A1.4.3All tables that involve reduction of gravity to stan-dard temperature are based on the assumption that the mea-surement has been made by means of a glass hydrometer(Test Method D287),and that correction for the thermal expansion of standard hydrometer glass has been incorporated.To accom-modate the growing use of on-line densitometers,which are not dependent on hydrometer corrections,the computer sub-routines optionally allow for the exclusion of the hydrometer correction.A1.5Available TablesVolume I:Table5A—Generalized Crude Oils,Correction of Observed API Gravity to API Gravity at60°FTable6A—Generalized Crude Oils,Correction of V olume to 60°F Against API Gravity at60°FVolume II:Table5B—Generalized Products,Correction of Observed API Gravity to API Gravity at60°FTable6B—Generalized Products,Correction of V olume to 60°F Against API Gravity at60°FVolume III:Table6C—V olume Correction Factors for Individual and Special Applications,V olume Correction to60°F Against Thermal Expansion Coefficients at60°FVolume IV:Table23A—Generalized Crude Oils,Correction of Ob-served Relative Density to Relative Density60/60°FTable24A—Generalized Crude Oils,Correction of V olume to60°F Against Relative Density60/60°FVolume V:Table23B—Generalized Products,Correction of Observed Relative Density to Relative Density60/60°FTable24B—Generalized Products,Correction of V olume to 60°F Against Relative Density60/60°FVolume VI:Table24C—V olume Correction Factors for Individual and Special Applications,V olume Correction to60°F Against Thermal Expansion Coefficients at60°FVolume VII:Table53A—Generalized Crude Oils,Correction of Ob-served Density to Density at15°CTable54A—Generalized Crude Oils,Correction of V olume to15°C Against Density at15°CVolume VIII:Table53B—Generalized Products,Correction of Observed Density to Density at15°CTable54B—Generalized Products,Correction of V olume to 15°C Against Density at15°CVolume IX:Table54C—V olume Correction Factors for Individual and Special Applications,V olume Correction to15°C Against Thermal Expansion Coefficients at15°CVolume X:Background,Development,and Implementation Procedures Volumes XI and XII:Tables2,Tables3,Tables4,Tables8,Tables9,Tables10, Tables11,Tables12,Tables13,Tables14,Tables21, Tables22,Tables26,Tables27,Tables28,Tables29, Tables30,Tables31,Tables51,Tables52,and Tables58 Reissued Without Change:Table33—Specific Gravity Reduction to60°F for Liquefied Petroleum Gases and Natural GasTable34—Reduction of V olume to60°F Against Specific Gravity60/60°F for Liquefied Petroleum GasesA1.6Keywordsdensity;gravity;hydrometer;temperature;volume correctionASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website().。
石油流量计种类及原理
石油流量计种类及原理详解石油流量计是石油行业中常用的一种测量设备,其作用是测量石油在管道中的流量。
根据原理和结构的不同,石油流量计可分为以下几类:
1、差压式流量计
差压式流量计是一种常用的流量测量设备,它主要通过测量管道前后的差压来计算石油的流量。
通常它由一个测量设备、一个信号收发器和一个累积仪器组成。
差压式流量计具有结构简单、精度高、可靠性好等特点。
2、涡轮式流量计
涡轮式流量计是一种利用流体力的旋转来计算石油流量的设备。
通常它由一个涡轮、一个信号发生器和一个累积仪器组成。
涡轮式流量计的优点是能够满足各种压力、温度、密度和粘度,可靠性也比较高。
3、推进式流量计
推进式流量计主要通过测量流体前后速度的差异来计算石油的流量。
主要由一个流体进口孔、一个传感器和一个计算器组成。
推进式流量计具有结构简单、易于安装、使用方便等优点。
总之,石油流量计在现代油气行业的发展中起到了非常重要的作用。
只有使用合适的石油流量计,并正确的维护和保养它们,我们才能够更加准确的了解石油的流量,更好的保障石油行业的正常运转。
油品计量标准
油品计量标准
一、计量单位
在油品计量中,常用的计量单位包括立方米、升、毫升等。
其中,立方米是大型油罐和油轮等储油设施中常用的计量单位,而升和毫升则适用于小规模油品计量。
二、计量准确度
油品计量的准确度是指计量结果的可靠性。
在油品贸易和运输中,准确的计量对于保障交易双方的利益至关重要。
为了提高计量准确度,一般采用以下措施:
1. 使用高精度的计量设备,如高精度的流量计和体积管等;
2. 对计量设备进行定期检定和维护,确保设备精度符合要求;
3. 采取可靠的测量方法,如通过取样、化验等方法对油品进行测量;
4. 对计量人员进行专业培训,提高计量人员的技能水平。
三、计量规程
油品计量规程是指在进行油品计量时必须遵守的规则和程序。
一般来说,油品计量规程包括以下内容:
1. 确定计量的油品品种和规格;
2. 确定计量的方式和方法,如采用流量计还是体积管等进行计量;
3. 确定计量的程序和步骤,如先进行取样、后进行化验等;
4. 确定计量的记录和报告要求,如记录计量设备的型号和参数、
报告计量结果等。
四、计量检定
油品计量检定是指对计量设备进行定期检查和校准,以确保其精度符合要求。
一般来说,油品计量检定包括以下内容:
1. 对计量设备进行外观检查,查看是否有损坏或磨损等现象;
2. 对计量设备的精度进行检查,一般采用标准物质进行比对,以确保其精度符合要求;
3. 对计量设备进行校准,一般采用标准物质进行校准,以使其精度达到最佳状态;
4. 对计量设备进行标记和记录,以便日后维护和管理。
石油计量知识
1/10/2014
14
柴油的性能要求:
一、燃烧性好 二、蒸发性好 三、有合适的粘度 四、含硫量少 五、安定性好
2000-2002年是中国汽柴油标准的分水岭
1/10/2014
15
世界典型地区排放法规
00 01 02 EURO III EPA 04 ~EURO III ex PM EURO II EURO II EURO I EURO I EURO II EURO II EURO III 03 04 05 06 EURO IV EPA 07 ~EURO IV ex PM EURO III EURO III EURO III EURO IV ?
1/10/2014 11
柴
油
柴油 柴油的牌号是以根据其凝点制定的。但使用要求则是按其 冷滤点确定,对于轻柴油的选择以保证最低气温高于冷滤点为 原则。一般按下列情况选用:
柴油规格
10号
使用情况
有预热设备的高速柴油机或夏季使用
物料平衡(1)
物料平衡(1)
差压式流量计计量液化气
• 用差压式流量计计量液化气时,其体积 或质量校正公式同油品流量计
物料平衡(1)
液化气计量计算例题
物料平衡(1)
干气计量
• 混合干气和净干气分子量计算 • 混合干气体积流量校正 • 混合干气质量流量计算 • 净干气质量流量计算
物料平衡(1)
物料平衡(1)
液化气温度下液化石油气密度的求取
• 当液化石油气温度不是20℃时,应使用 SH/T 0221—92 中的附录B中的表B2,利 用液化石油气20℃密度ρ20 和液化气温度 (-25到50℃),求出液化气温度下液化 石化油气密度ρt。
物料平衡(1)
物料平衡(1)
液化石化油气质量G的求取
混合干气体积流量校正
物料平衡(1)
干气计量方法
物料平衡(1)
干气计算例题
某干气表的设计条件为:压力0.7MPa(表), 40℃, 标准状态下密度1.036 Kg / m3。 现实际条件为:压力0.6MPa(表),56℃, 干气表读数为5500 m3 /h。
物料平衡(1)
干气例题计算结果
物料平衡(1)
焦炭计量
• 主风体积流量校正 • 焦炭质量流量计算
物料平衡(1)
主风体积流量校正
物料平衡(1)
焦炭质量流量计算
物料平衡(1)
物料平衡(1)
焦炭计算例题
• 已知干烟气组成为CO2=9.6%, CO=10%, O2=0%; 湿空气流量10000Nm3/h; 空气分子湿度 0.03
物料平衡(ቤተ መጻሕፍቲ ባይዱ)
物料平衡(1)
产品计量
• 计算产品在空气中的质量(商业质量) 时,应进行空气浮力修正,将标准密度 (kg/m3)减去空气浮力修正值1.1kg/m3, 再乘以标准体积,就得到产品质量(m), 见公式。
油品计量计算知识
2、玻璃液体水银温度计
其检定证书结果中要求每间隔10℃给出一个修正值,当未修正测量结果不能直 接查表得到时,修正值则要采用线性比例内插法计算求得。 线性比例内插法的基本公式为: 内插值=基本值1+(基本值1-基本值2)/(基本值对应值1-基本值对应值2)*(给定 值-基本值对应值1)
二、油量计算前期准备及计量器具的修正
有效容积值。
(3)、容量静压力修正值表:一般按介质为水的密度编制,储存高度从基准 点起,以0.1m 间隔累加至安全高度所对应的一列罐容积增大值。当测得值不为表 载值时,按比例插值计算。 (4)、底量表:专门对罐底最高点水平面以下的容量给出的一个表。对罐底 容量可直接查此表得到。
五、计量温度下体积的计算
二、油量计算前期准备及计量器具的修正
1、量油高,水高,测油温,取样 2、测油品的视温度,视密度
二、油量计算前期准备及计量器具的修正
正值=未修正测量结果+修正值=未修正测量结果-示值误差
1、量油尺:量油尺的修正值采取就近的原则. 举例:用101号石油尺测得某容器内的液面高度读数为7.685m,求准确值(真值)
解:(1)在101号石油尺的检定证书中找到:7.685m介于0~7m和0~8m两个检定范
围之间,由于7.685m更靠近0~8m的检定范围,所以就近取0~8m的修正值:+1.2mm (2)正值=未修正测量结果+修正值=7.685+0.0012=7.6862m (3)修约至"毫米",则结果为7.686m
2、GB/T1885《石油计量表》的组成:
石油计量表按原油(A)、产品(B)、润滑油(D)分三类建立,每一类内 又有标准密度表(59)和体积修正系数表(60),具体如下: 标准密度表: 表59A:原油标准密度表 表59B:产品标准密度表 表59D:润滑油标准密度表 体积修正系数表: 表60A:原油体积修正系数表 表60B:产品体积修正系数表 表60D:润滑油体积修正系数表
计量计算知识
计量计算知识讲座
标准密度的换算方法
16
计量计算知识讲座
标准密度的换算方法
表59A 原油标准密度表
视密度kg/m3 温度 45.75 46.00 800.0 802.0 818.9 819.1 820.9 821.0 804.0 806.0 温度 45.75 46.00 20℃密度,kg/m3 822.8 825.8 823.0 824.9
计量计算知识
计量计算知识讲座
目录
静态油量计算
动态油量计算
计量的差量分析和油品损耗
2
计量计算知识讲座
静态油量计算
试验温度t’
:在读取密度计时的液体试样温度,
℃。
视密度ρ’:在试验温度下,玻璃密度计在液体试
样中的读数。
标准密度ρ20:在标准温度下的密度,kg/m3
或
g/cm3 。
计量温度t:油品在计量时的温度,℃
换算系数F 0.99770 0.99780 0.99790 0.99800
20℃密度g/cm3 0.6796~0.7195 0.7196~0.7645 0.7646~0.8157 0.8158~0.8741
换算系数F 0.99840 0.99850 0.99860 0.99870
0.5823~0.6114
5
计量计算知识讲座
组成及范围 标准密度表的使用 体积修正系数表的使用
6
计量计算知识讲座
7
计量计算知识讲座
《石油计量表》标准化情况 ★ISO91-1石油计量表 第1部分:以15℃和60 ℉为标准温度的表 ★ISO91-2石油计量表 第2部分:以20℃为标准温度的表
计量计算知识讲座
《油品计量计算知识》
=821.2+2×1.6/2=822.8
整理课件
18
计量计算知识讲座
标准密度的换算方法
练习:求标准密度
1、原油:试验温度t=45.85℃
视密度ρt =801.7kg/m3 2、原油:试验温度t=46.05℃
视密度ρt =804.2kg/m3 3、原油:试验温度t=46.40℃
视密度ρt =805.9kg/m3
整理课件
26
计量计算知识讲座
体积修正系数表
油品名称 原油 计量温度 38.25 查表温度 38.25
标准密度
L’ 826.0
ρ20
827.9
R’ 828.0
R’ _ L’ 2
ρ20 -L’
1.9
0.9835
0.9836 0.0001
L
VCF
R
R-L
VCF _ L
VCF=L+(R-L)(ρ20 –L)/(R’ -L’) =0.9835+0.0001×1.9/2=0.983595≈0.9836
整理课件
3
计量计算知识讲座
静态油量计算
标准体积V20:在标准温度20℃下的体积,m3。 体积修正系数VCF:石油在标准温度下的体积
与其在非标准温度下的体积之比。 原油含水率:原油所含水分的质量百分比。 空气浮力修正值:1.1 kg/m3,0.0011g/cm3
整理课件
4
计量计算知识讲座
静态油量计算
两种方法比较而言,还是采用F值的方法比较 准确。
GB1885-83虽然已被GB/T1885-98代替,但 GB1885-83的表5即F值表可以继续使用。
整理课件
34
计量计算知识讲座
石油计量表和静态计量 共66页共68页
石油计量表和静态计量 共66页
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不所向披 靡。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
带油检定容积表
带油检定容积表摘要:一、油检定容积表的概述1.油检定容积表的定义2.油检定容积表的作用二、油检定容积表的分类1.按测量介质分类2.按测量范围分类3.按测量精度分类三、油检定容积表的使用方法1.使用前的准备2.测量过程中的操作3.测量结束后的处理四、油检定容积表的维护与保养1.日常维护2.定期检查3.常见故障及处理方法五、油检定容积表的发展趋势1.技术方面的进步2.市场需求的变化3.行业发展的影响正文:油检定容积表是一种用于测量液体体积的仪器,广泛应用于石油、化工、能源、环保等领域。
通过对液体体积的准确测量,可以有效保证生产过程的顺利进行,提高产品质量和生产效率。
本文将详细介绍油检定容积表的概述、分类、使用方法、维护与保养以及发展趋势。
一、油检定容积表的概述油检定容积表,顾名思义,是一种用于检测液体容积的仪器。
它可以精确测量液体的体积,并将测量结果以数字形式显示出来。
油检定容积表具有测量准确、操作简便、性能稳定等特点,是液体体积检测的理想设备。
二、油检定容积表的分类油检定容积表根据测量介质、测量范围和测量精度的不同,可以分为多种类型。
按测量介质分类,可以分为石油检定容积表、化工检定容积表等;按测量范围分类,可以分为小量程检定容积表、中量程检定容积表、大量程检定容积表等;按测量精度分类,可以分为普通精度检定容积表、高精度检定容积表等。
三、油检定容积表的使用方法使用油检定容积表前,应先了解其性能指标、操作方法以及注意事项。
在测量过程中,应按照操作规程进行,确保测量结果的准确性。
测量结束后,要对设备进行适当处理,以延长其使用寿命。
四、油检定容积表的维护与保养为了保证油检定容积表的正常运行,需要定期进行维护与保养。
日常维护包括保持设备清洁、避免剧烈震动等;定期检查包括检查密封性能、测量精度等;在发现故障时,要及时进行处理,防止故障扩大。
五、油检定容积表的发展趋势随着科技的进步,油检定容积表在技术上也在不断突破。