大学物理答案第六章

合集下载

大学物理第6章题解

大学物理第6章题解

第6章 光的干涉6.1 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为500D mm =,双缝的间距 1.2d mm =,求:⑴第4级明条纹到中心的距离;⑵第4级明条纹的宽度.解:(1)为明条纹的条件1222r r jλ-= (0,1, 2.....)j =±±12sin r r d j θλ-==由于00,sin /r d tg y r θθ==,y 表示观察点p 到0p 的距离 ,所以r y jdλ=,(0,1, 2.....)j =±± 第4级明条纹得到中心的距离:4/y D d λ=⨯3953450010589.3109.8101.210m ----⨯⨯⨯⨯==⨯⨯ (2):6.2 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为600D mm =,问⑴ 1.0,10d mm d mm ==两种情况相邻明条纹间距分别为多大?⑵若相邻条纹的最小分辨距离为0.065mm ,能分清干涉条纹的双缝间距最大是多少?解:(1)相邻两条强度最大值的条纹顶点间的距离为1i j r y y y dλ+∆=-=0600d r mm ==由此可知,当 1.0d mm =时39360010589.3101.010y ---⨯⨯⨯∆=⨯ 0.3538mm ≈当10d mm =时39360010589.3101010y ---⨯⨯⨯∆=⨯0.03538mm ≈(2)令能分清干涉条纹的双缝间距最大为d ,则有390360010589.310 5.440.06510r d mm y λ---⨯⨯⨯===∆⨯6.3 用白光作光源观察杨氏双缝干涉.设两缝的间距为d ,缝面与屏距离为D ,试求能观察到的清晰可见光谱的级次?解:白光波长在390~750范围,为明纹的条件为sin d k θλ=±在θ=0处,各种波长的光波程差均为零,所以各种波长的零级条纹在屏上0x =处重叠形成中央白色条纹.中央明纹两侧,由于波长不同,同一级次的明纹会错开,靠近中央明纹的两侧,观察到的各种色光形成的彩色条纹在远处会重叠成白色条纹最先发生重叠的是某一级的红光r λ ,和高一级的紫光v λ,因此从紫光到清晰可见光谱的级次可由下式求得:(1)r v k k λλ=+因而: 3901.08750390v r vk λλλ===--由于k 只能取整数,因此从紫光到红光排列清晰可见的光谱只有正负各一级6.4 在杨氏双缝干涉实验中,入射光的波长为λ,现在S2缝上放置一片厚度为d ,折射率为n 的透明介质,试问原来的零级明纹将如何移动?如果观测到零级明纹移到了原来的k 级明纹处,求该透明介质的厚度.解:(1)在小孔2s 未贴薄片时,从两小孔1s 和2s 到屏上0p 点的光程差为零,当小孔2s 被薄片贴住时,零光程差从0p 到p 点的光程差变化量为d y r δ'=,(其中d '为双缝间距) p 点的光程差的变化量等于2s 到p 的光程差的增加,即nd d δ=-,(透明介质的厚度) 00(1)dn d y r -=(1)n dr y d -='(2)如果观察到的零级条纹移动到了原来的k 级明纹处 说明p 离0p 的距离0k r y d λ='00(1)k r n dr d dλ-='' 1k n d λ-=6.5 在双缝干涉实验中,双缝间距0.20d mm =,缝屏间距 1.0D m =,若第二级明条纹离屏中心的距离为6.0mm ,试计算此单色光的波长.解:令单色光的波长为λ,由为明条纹需要满足的条件120sin y r r d j dr θλ-==≈ 可知,33600.210 6.0100.6106002 1.0y d nm r j λ---⨯⨯⨯≈==⨯=⨯6.6 一束平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃上,油膜的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到500nm 与700nm 这两个波长的单色光在反射中消失.试求油膜层的厚度.解:由于油膜前后表面反射光都有半波损失,所以光程差为2nd δ=,而膜厚又是均匀的,因此干涉的效果不是产生条纹,而是增透或者是显色反射相消的条件是 : 2(21)2nd k λ=+1λ,2λ两波先后消失,1λ反射消失在k 级,2λ反射消失在1k +级则有 []122(21)2(1)122nd k k λλ=+=-+K =322122220,1, 2......)0.70 1.220.635r k r i n r ==±±===≈14(21)2 6.73102d k d mm nλ-=+=≈⨯6.7 利用等厚干涉可测量微小的角度.折射率 1.4n =的劈尖状板,在某单色光的垂直照射下,量出两相邻明条纹间距0.25l cm =,已知单色光在空气中的波长700nm λ=,求劈尖顶角θ.解:相长干涉的条件为022nd j λλ+=相邻两条纹对应的薄膜厚度差为02012d d d nλ'∆=-=对于劈尖板, 1.4n =,则02012 1.4d d d λ'∆=-=⨯条纹间距x ∆与相应的厚度变化之间的关系为02019422.870010102.80.2510d d d x l rad λθθθ---'∆=-=∆==⨯==⨯⨯6.8 用波长为680nm 的单色光,垂直照射0.12L m =长的两块玻璃片上,两玻璃片的一边互相接触,另一边夹着一块厚度为0.048h mm =云母片,形成一个空气劈尖.求: ⑴两玻璃片间的夹角?⑵相邻明条纹间空气膜的厚度差是多少?⑶相邻两暗条纹的间距是多少?⑷在这0.12m 内呈现多少条明纹?解:(1)两玻璃间的夹角为330.048100.4100.12tg θθ--⨯≈==⨯ (2)相邻两亮条纹对应的薄膜厚度差为002012d d d nλ∆=-=097020168010 3.410222d d d m n λλ--⨯∆=-====⨯(3)条纹间距与相应厚度变化之间的关系00201733.4100.850.410d d d xx mmθ--∆=-=∆⨯∆==⨯ (4)在这0.12m 内呈现的明条纹数为002222nd j nd j λλλλ+=+⇒=当00.048d mm =时J=142说明在这0.12 m 内呈现了142条明条纹6.9. 用500nm λ=的平行光垂直入射到劈形薄膜的上表面上,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面介质的折射率1n 大于薄膜的折射率 1.5n =.求:⑴膜下面介质的折射率2n 与n 的大小关系;⑵第10级暗纹处薄膜的厚度?⑶使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么样的变化?若 2.0e m μ∆=,原来的第10条暗纹处将被哪级暗纹占据?解:(1) (2)因为空气膜的上下都是玻璃,求反射光的光程差时应计入半波损失,0d =处(棱)反射光相消,是暗条纹,从棱算到地10条暗纹之间有9各整条纹间隔,膜厚是2λ的9倍, 9 2.252d um λ=⨯=(3)使膜的下表面向下平移一微小距离e ∆后,膜上表面向上平移,条纹疏密不变,整体向棱方向平移,原来地10条暗纹处的膜厚增加e ∆,干涉级增加 : /82k e λ∆=∆=因此原来的第10条暗纹倍第18条暗纹代替6.10. 白光垂直照射在空气中的厚度为0.40m μ的玻璃片上,玻璃的折射率为1.5.试问在可见光范围内(400700nm nm ),哪些波长的光在反射中加强?哪些波长的光在透射中加强? 解:(1)反射光加强的条件是2,(0,1, 2....)2nd k k λδλ=+==±±透射光加强的条件是2,(0,1, 2....)nd k k δλ===±±对于反射光中波长为λ的成分,在玻璃片表面反射光的光程差2,(0,1, 2....)2nd k k λδλ=+==±± 421ndk λ=- 当 14234254271,44 1.50.4 2.442, 1.50.40.8343, 1.50.40.48544, 1.50.40.3437k nd um umnd k um um nd k um umnd k um umλλλλ===⨯⨯====⨯⨯====⨯⨯====⨯⨯=在白光范围内22480,2(0,1, 2.....)2 1.50.41, 1.22,600,4003,400nd knm nd k j umkk umk nm nm knmλδλλλλλλ====±±⨯⨯=========2480,nm λ=反射光加强 对于透射光2nd k δλ==时,透射光加强22 1.50.4nd k um kλ⨯⨯==当 1, 1.22,6003,400k umk nm k nmλλλ======所以600,400nm nm λλ==时,透射光加强。

大学物理 第六章(中国农业出版社 张社奇主编)答案

大学物理 第六章(中国农业出版社 张社奇主编)答案

6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)

0.03
cos[4
(t

9 20
)


]

0.03
cos[4
t

14
5
]m
(2) uT u 2 20 2 10m

4
O点振动比A点振动在相位上提前
2 x 2 5

10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75


0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0

波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75

大学物理第6章真空中的静电场课后习题及答案

大学物理第6章真空中的静电场课后习题及答案

⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。

试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。

3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。

求该直线段受到的电场⼒。

解:先求均匀带电圆环在其轴线上产⽣的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。

+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。

在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。

大学物理参考答案(白少民)第6章 电磁感应 电磁场

大学物理参考答案(白少民)第6章 电磁感应 电磁场
E =− 1 dB r 2 dt
则电子在涡旋电场中所受的力为:
F = −eE = 1 dB F e dB e r ,加速度 a = = r 2 dt m 2m dt
图 6.22 题 6.14 示图
在 a 点, r = 5cm = 5 ×10 −2 m
aa = 1 ×1.76 ×1011 × ( −1.0 ×10 −2 ) × 5 ×10 −2 = −4.4 ×10 7 m / s 2 ,方向向右。 2
f m = IlB = ε υBl cos θ υcos θ 2 2 lB lB = l B R R R υ 2 2 dυ l B cos θcos θ = Rm dt
沿斜面方向应用牛二得:
g sin θ −
图 6.21 题 6.13 示图
这是 υ 对 t 的常微分方程,解之得:
4
− mgR sin θ υ= 2 2 − Ce 2 B l cos θ
ε
R
dt = −
∫ (6 − 8t )dt = − 10
0
1
100
× (6 − 4) = −20C 6 = 0.75s 8
(4)由 ε = −N (6 − 8t ) 知,电动势开始反转的时刻 t =
6.11 如图 6.19(a)表示一根长度为 L 的铜棒平行于一载有电流 i 的长直导线,从距 离电流为 a 处开始以速度 υ 向下运动。求铜棒所产生的感应电动势。已知 υ= 5m·s-1 , i=100A,L= 20cm ,a =1cm。 又如图 6.19(b)所示若铜线运动的方向 υ 与电流方向平行。 设铜棒的上端距电流为 a,问此时铜棒的感应电动势又为多少。 解:在图(a)中: µ i ε = ∫ υ × B ⋅ dl = υBL = υ 0 L 2πa

大学物理学习指导详细标准答案

大学物理学习指导详细标准答案

大学物理学习指导详细答案————————————————————————————————作者:————————————————————————————————日期:2第六章 相对论【例题精选】例6-1 当惯性系S 和S ′的坐标原点O 和O ′重合时,有一点光源从坐标原点发出一光脉冲,在S 系中经过一段时间t 后(在S ′系中经过时间t ′),此光脉冲的球面方程(用直角坐标系)分别为:S 系 ; S ′系 .22222t c z y x =++ 22222t c z y x '='+'+'例6-2 下列几种说法中正确的说法是: (1) 所有惯性系对物理基本规律都是等价的.(2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.(A) 只有(1)、(2) 正确. (B) 只有(1)、(3) 正确. (C) 只有(2)、(3) 正确. (D) (1)、(2)、(3)都正确. [ D ] 例6-3 经典的力学相对性原理与狭义相对论的相对性原理有何不同?答:经典力学相对性原理是指对不同的惯性系,牛顿定律和其它力学定律的形式都是相同的.狭义相对论的相对性原理指出:在一切惯性系中,所有物理定律的形式都是相同的,即指出相对性原理不仅适用于力学现象,而且适用于一切物理现象。

也就是说,不仅对力学规律所有惯性系等价,而且对于一切物理规律,所有惯性系都是等价的. 例6-4 有一速度为u 的宇宙飞船沿x 轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为 ;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为 . c c 例6-5 关于同时性的以下结论中,正确的是(A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生.(B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生.(C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.(D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生. [ C ] 例6-6静止的μ子的平均寿命约为 τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,试论证此μ子有无可能到达地面. 证明:考虑相对论效应,以地球为参照系,μ子的平均寿命:62106.31)/(1-⨯=-=c v ττ s则μ 子的平均飞行距离: =⋅=τv L 9.46 km .μ 子的飞行距离大于高度,有可能到达地面.例6-7 两惯性系中的观察者O 和O ′以0.6 c (c 为真空中光速)的相对速度互相接近.如果O 测得两者的初始距离是20 m ,则O 相对O ′运动的膨胀因子γ= ;O ′测得两者经过时间∆t ′= s 后相遇.1.25(或5/4) 8.89×10-8例6-8 两个惯性系S 和S ′,沿x (x ′)轴方向作匀速相对运动. 设在S ′系中某点先后发生两个事件,用静止于该系的钟测出两事件的时间间隔为τ0 ,而用固定在S 系的钟测出这两个事件的时间间隔为τ .又在S ′系x ′轴上放置一静止于该系、长度为l 0的细杆,从S 系测得此杆的长度为l, 则 (A) τ < τ0;l < l 0. (B) τ < τ0;l > l 0.(C) τ > τ0;l > l 0. (D) τ > τ0;l < l 0. [ D ]例6-9 α 粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的(A) 2倍. (B) 3倍. (C) 4倍. (D) 5倍. [ A ] 例6-10 匀质细棒静止时的质量为m 0,长度为l 0,当它沿棒长方向作高速的匀速直线运动时,测得它的长为l ,那么,该棒的运动速度v = ;该棒所具有的动能E K = .c)(020lll c m - 例6-11 观察者甲以0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为l 、截面积为S ,质量为m 的棒,这根棒安放在运动方向上,则甲测得此棒的密度为 ;乙测得此棒的密度为 .lSm925 例6-12 根据相对论力学,动能为0.25 MeV 的电子,其运动速度约等于(A) 0.1c (B) 0.5 c (C) 0.75 c (D) 0.85 c (c 表示真空中的光速,电子的静能m 0c 2 = 0.51 MeV) [ C ] 例6-13 令电子的速率为v ,则电子的动能E K 对于比值v / c 的图线可用下列图中哪一个图表示? (c 表示真空中光速)OE K v /c1.0(A)OE K v /c 1.0(B)OE K v /c1.0(C)OE K v /c1.0(D)[ D ]【练习题】6-1 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . [ B ] 6-2 假定在实验室中测得静止在实验室中的μ+子(不稳定的粒子)的寿命为2.2×10-6 s ,当它相对于实验室运动时实验室中测得它的寿命为1.63×10-5s .则 μ+子相对于实验室的速度是真空中光速的多少倍?为什么? 答:设μ+子相对于实验室的速度为v μ+子的固有寿命τ0 =2.2×10-6 s μ+子相对实验室作匀速运动时的寿命τ0 =1.63×10-5 s按时间膨胀公式:20)/(1/c v -=ττ移项整理得: 202)/(τττ-=c v 20)/(1ττ-=c = 0.99c则 μ+子相对于实验室的速度是真空中光速的0.99倍.6-3 在S 系中的x 轴上相隔为∆x 处有两只同步的钟A 和B ,读数相同.在S '系的x '轴上也有一只同样的钟A ',设S '系相对于S 系的运动速度为v , 沿x 轴方向, 且当A '与A 相遇时,刚好两钟的读数均为零.那么,当A '钟与B 钟相遇时,在S 系中B 钟的读数是 ;此时在S '系中A '钟的读数是 .x /v 2)/(1)/(c x v v -∆6-4 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?为什么?答:没对准.根据相对论同时性,如题所述在K '系中同时发生,但不同地点(x '坐标不同)的两事件(即A '处的钟和B '处的钟有相同示数),在K 系中观测并不同时;因此,在K 系中某一时刻同时观测,这两个钟的示数必不相同. 6-5 边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x ,y 轴平行.今有惯性系K '以 0.8c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从K '系测得薄板的面积为 (A) 0.6a 2. (B) 0.8 a 2. (C) a 2. (D) a 2/0.6 . [ A ] 6-6 狭义相对论确认,时间和空间的测量值都是 ,它们与观察者的 密切相关.相对的 运动6-7 地球的半径约为R 0 = 6376 km ,它绕太阳的速率约为=v 30 km ·s -1,在太阳参考系中测量地球的半径在哪个方向上缩短得最多?缩短了多少? (假设地球相对于太阳系来说近似于惯性系) 答:在太阳参照系中测量地球的半径在它绕太阳公转的方向缩短得最多.20)/(1c R R v -=其缩短的尺寸为: ∆R = R 0- R ))/(11(20c R v --= 220/21c R v ≈∆R =3.2 cm6-8 有一直尺固定在K ′系中,它与Ox ′轴的夹角θ′=45°,如果K ′系以匀速度沿Ox 方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角(A) 大于45°. (B) 小于45°. (C) 等于45°.(D) K ′系沿Ox 正方向运动时大于45°,K ′系沿Ox 负方向运动时小于45°. [ A ]6-9 在狭义相对论中,下列说法中哪些是错误的? (A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的. (D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这只时钟比与他相对静止的相同的时钟走得慢些. [ C ] 6-10 观察者甲以 0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1 kg 的物体,则甲测得此物体的总能量为 ;乙测得此物体的总能量为 .9×1016 J 1.5×1017 J 6-11 一个电子以0.99 c 的速率运动,电子的静止质量为9.11×10-31 kg ,则电子的总能量是 J ,电子的经典力学的动能与相对论动能之比是 .5.8×10-13 8.04×10-2 6-12 一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0.由此可算出其面积密度为m 0 /ab .假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为(A) ab c m 20)/(1v - (B) 20)/(1c ab m v - (C) ])/(1[20c ab m v - (D) 2/320])/(1[c ab m v - [ C ] 6-13 一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.观察者A 测得其密度是多少?为什么? 答:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为2201c x x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -==∵质量 2201cm m v -=故相应密度为 V m /=ρ2222011/cV c m v v --=)1(2200c V m v -=6-14 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍. [ B ]。

大学物理第6章(题库)含答案

大学物理第6章(题库)含答案

06章一、填空题 (一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。

2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。

4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。

5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。

6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。

7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。

理想气体做功为 500 J 。

补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。

8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。

9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。

(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。

大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答第6章机械波习题一习题六6-1平面谐波沿x轴负向传播,波长=1.0m,质点处质点的振动频率=2.0Hz,振幅a=0.1M,当t=0时,它只是沿Y轴负方向通过平衡位置移动,求出该平面波的波函数?0时,原点处粒子的振动状态为Y0?0,v0?0,因此已知原点处振动的初始相位为,取波动方程为2y?acos[2?(tx?)??0]则有t?x?y?0.1cos[2?(2t?)?]12? 0.1cos(4?t?2?x?6-2已知波源在原点的一列平面简谐波,波函数为y=acos(bt?cx),其中a,b,c为正值恒量.求:(1)波的振幅、速度、频率、周期和波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解:(1)已知平面简谐波的波动方程2) my?acos(bt?cx)(x?0)比较波动方程和标准方程的形式y?acos(2??t?2?比较,可知:波振幅为a,频率??波长??x?)b、 2号?2.b、波速u,cc12?波动周期Tb(2)将x?l代入波动方程即可得到该点的振动方程Y助理文书主任(bt?cl)(3)因任一时刻t同一波线上两点之间的位相差为将x2?x1?d,及??6-3沿绳索传播的平面谐波的波函数为y=0.05cos(10?T?4?X),其中X,y以米为单位,T以秒为单位。

发现:(1)波的速度、频率和波长;(2)绳子上各质元振动时的最大速度和最大加速度;2.(x2?x1)2?代入上式,即得ccd.第六章机械波练习2(3)当t=1s时,求素数元素在x=0.2m处的相位。

什么时候是起源阶段?此阶段表示的运动状态为t=1.25s时刻到达哪一点?解决方案:(1)给出方程和标准公式的问题1?1相比,得振幅a?0.05m,频率??5s,波长??0.5m,波速u2.5m?s.(2)绳索上每个点的最大振动速度和加速度为y?acos(2??t?2?x)vmax??A.10?? 0.05? 0.5? Ms一amax??2a?(10?)2?0.05?5?2m?s?2(3) x?0.2m处的振动滞后于原点的时间为x0.2??0.08su2.5故x?0.2m,t?1s时的位相就是原点(x?0),在t0?1?0.08?0.92s时的位相,即??9.2π.让这个相位代表的运动状态为t?如果它在1.25秒到达x点,那么x?x1?u(t?t1)?0.2?2.5(1.25?1.0)?0.825m6-4图6-4显示了在时间T沿x轴传播的平面余弦波的波形曲线。

大学物理习题答案第六章

大学物理习题答案第六章

[习题解答]6-2 一个运动质点的位移与时间的关系为m ,其中x的单位是m,t的单位是s。

试求:(1)周期、角频率、频率、振幅和初相位;(2) t = 2 s时质点的位移、速度和加速度。

解(1)将位移与时间的关系与简谐振动的一般形式相比较,可以得到角频率s 1, 频率, 周期, 振幅, 初相位.(2) t = 2 s时质点的位移.t = 2 s时质点的速度.t = 2 s时质点的加速度.6-3 一个质量为2.5 kg的物体系于水平放置的轻弹簧的一端,弹簧的另一端被固定。

若弹簧受10 N的拉力,其伸长量为5.0 cm,求物体的振动周期。

解根据已知条件可以求得弹簧的劲度系数,于是,振动系统的角频率为.所以,物体的振动周期为.6-4求图6-5所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。

解以平衡位置O为坐标原点,建立如图6-5所示的坐标系。

若物体向右移动了x,则它所受的力为.根据牛顿第二定律,应有图6-5,改写为.所以,.6-5 求图6-6所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。

解以平衡位置O为坐标原点,建立如图6-6所示的图6-6坐标系。

当物体由原点O向右移动x时,弹簧1伸长了x1 ,弹簧2伸长了x2 ,并有.物体所受的力为,式中k是两个弹簧串联后的劲度系数。

由上式可得, .于是,物体所受的力可另写为,由上式可得,所以.装置的振动角频率为,装置的振动频率为.6-6仿照式(6-15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式。

解由教材中的例题6-3,单摆的角位移θ与时间t的关系可以写为θ = θ0 cos (ω t+ϕ) ,单摆系统的机械能包括两部分, 一部分是小物体运动的动能,另一部分是系统的势能,即单摆与地球所组成的系统的重力势能.单摆系统的总能量等于其动能和势能之和,即,因为, 所以上式可以化为.于是就得到,由此可以求得单摆系统中物体的速度为.这就是题目所要求推导的单摆系统中物体的速度与角位移的关系式。

大学物理(肖剑荣主编)-习题答案-第6章

大学物理(肖剑荣主编)-习题答案-第6章

面,且端点 MN 的连线与长直导线垂直.半圆环的半径为 b ,环心 O 与导线相距
a .设半圆环以速度 v 平行导线平移.求半圆环内感应电动势的大小和方向及
MN 两端的电压 U M - U N .
解: 作辅助线 MN ,则在 MeNM 回路中,沿 v! 方向运动时 dFm = 0

e MeNM = 0
ò F12 =
2a
3 a
3
µ 0 Ia 2π r
dr
=
µ0Ia ln 2 2π
∴ M = F12 = µ0a ln 2 I 2π
6-16 一矩形线圈长为 a =20cm,宽为 b =10cm,由 100 匝表面绝缘的导线绕成,
放在一无限长导线的旁边且与线圈共面.求:题 10-16 图中(a)和(b)两种情况下,
第六章 课后习题解答
桂林理工大学 理学院 胡光辉
(《大学物理·上册》主编:肖剑荣 梁业广 陈鼎汉 李明)
6-1 一半径 r =10cm
的圆形回路放在 B =0.8T
的均匀磁场中.回路平面与
! B

直.当回路半径以恒定速率 dr =80cm·s-1 收缩时,求回路中感应电动势的大小. dt
解: 回路磁通
=
µ0Iv p
ln
a a
+ -
b b
6-12 磁感应强度为 B! 的均匀磁场充满一半径为 R 的圆柱形空间,一金属杆放在
dB 图中位置,杆长为 2 R ,其中一半位于磁场内、另一半在磁场外.当 >0 时,
dt
求:杆两端的感应电动势的大小和方向.
解: ∵ e ac = e ab + e bc
e ab
= - dF1 dt

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案

第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。

6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。

设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。

解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。

(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。

试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。

解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

大学物理2-1第六章(振动与波)习题答案

大学物理2-1第六章(振动与波)习题答案

精品习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm 。

现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时。

求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间。

[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系rad/s 07.74200m 1.0N/m 2001030602=====⨯=-m k A k ω设振动方程为 ()φ+=t x 07.7cos0=t 时 1.0=x φcos 1.01.0= 0=φ故振动方程为 ()m 07.7cos 1.0t x =(2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 2.0200400===k mg x精品因而有 ()N 3005.02.0200=-⨯=F(3)设第一次越过平衡位置时刻为1t ,则()107.7cos 1.00t = 07.5.01π=t第一次运动到上方5cm 处时刻为2t ,则()207.7cos 1.005.0t =- ()07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二经过点B ,若已知该质点在A 、B 两点具有相同的速率,且AB =10cm ,求:(1)质点的振动方程:(1)质点在A 点处的速率。

[解] 由旋转矢量图和||||b a v v =可知421=T s精品由于4/2s 8/1,s 81ππνων====-T精品(1) 以AB 的中点为坐标原点,x 轴指向右方。

t =0时, φcos 5A x =-=t =2s 时, φφωsin )2cos(5A A x -=+==由以上二式得 1tan =φ因为在A 点质点的速度大于零,所以43πφ-= cm x A 25cos /==φ所以,运动方程为:)SI ()4/34/cos(10252ππ-⨯=-t x(2)速度为: )434sin(41025d d 2πππ-⨯-==-t t x v 当t =2s 时 m/s 1093.3)434sin(41025d d 22--⨯=-⨯-==πππt t x v6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ; (2)速度为12s cm 时的位移。

大学物理第六章练习答案

大学物理第六章练习答案

第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后 A (A) 温度不变,熵增加; B 温度升高,熵增加;C 温度降低,熵增加;D 温度不变,熵不变; 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值; C A 等容降压过程; B 等温膨胀过程; C 等压压缩过程; D 绝热膨胀过程; 3. 一定量的理想气体,分别经历如图11所示的abc 过程图中虚线ac 为等温线和图12所示的def 过程图中虚线df 为绝热线 ; 判断这两过程是吸热还是放热: A A abc 过程吸热,def 过程放热; B abc 过程放热,def 过程吸热; C abc 过程def 过程都吸热; D abc 过程def 过程都放热;4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B A p =B p ,则无论经过的是什么过程,系统必然 B(A) 对外做正功; B 内能增加; C 从外界吸热; D 向外界放热; 二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量; 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J,则该过程中需吸热__-200__ ___J;3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J,气体向外界放热620J,则气体的内能 减少,填增加或减少,21E E = -380 J;4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B,将从外界吸热416 J,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C,将从外界吸热582 J,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J ;图.2图1图3三.计算题1. 一定量氢气在保持压强为×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了×104J 的热量;1 求氢气的摩尔数2 氢气内能变化多少3 氢气对外做了多少功4 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量解: 1由,22p m i Q vC T vR T +=∆=∆ 得 422 6.01041.3(2)(52)8.3150Q v mol i R T ⨯⨯===+∆+⨯⨯ 24,541.38.3150 4.291022V m i E vC T v R T J ∆=∆=⨯∆=⨯⨯⨯=⨯ 344(6.0 4.29)10 1.7110A Q E J =-∆=-⨯=⨯ 444.2910Q E J =∆=⨯2. 一定量的理想气体,其体积和压强依照V =aP 的规律变化,其中a 为常数,试求:1 气体从体积1V 膨胀到2V 所做的功;2体积为1V 时的温度1T 与体积为2V 时的温度2T 之比;1:⎰⎰⎪⎪⎭⎫⎝⎛-===21212122211V V V V V V a dV Va PdV W 2: 111nRT V P =1221V V T T = 3. 一热力学系统由如图3所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功;1 如果它沿adb 过程到达状态b 时,对外做了220J 的功,它吸收了多少热量2 当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量 是真吸了热,还是放了热解: 根据热力学第一定律 Q E W =+1∵a 沿acb 过程达到状态b,系统的内能变化是:560356204ab acb acb E Q W J J J =-=-=由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿acb 过程到达状态b 时204ab E J =系统吸收的热量是:204220424ab acb Q E W J J J =+=+=2系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化:204ba ab E E J =-=-[]204(282)486ba ba Q W J J ∴+=-+-=-即系统放出热量486J第六章 热力学基础练 习 二一. 选择题1. 如图1所示,一定量的理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程, A →C 等温过程,A →D 绝热过程;其中吸热最多的过程 AA 是A →B ; B 是A →C ; C 是A →D ; D 既是A →B,也是A → C,两者一样多;2. 用公式V E C T ∆=μ∆ 式中V C 为定容摩尔热容量,μ为气体摩尔数,计算理想气体内能增量时,此式 D(A) 只适用于准静态的等容过程; B 只适用于一切等容过程; C 只适用于一切准静态过程; D 适用于一切始末态为平衡态的过程;3. 用下列两种方法: 1 使高温热源的温度1T 升高T ∆, 2 使低温热源的温度2T 降低同样的T ∆值,分别可使卡诺循环的效率升高1∆η和2∆η,两者相比: BA 1∆η> 2∆η;B 2∆η>1∆η;C 1∆η= 2∆η;D 无法确定哪个大; 二. 填空题1. 同一种理想气体的定压摩尔热容P C 大于定容摩尔热容V C , 其原因是 除了增加内能还需对外做功 ;1 2图1图32. 常温常压下,一定量的某种理想气体视为刚性分子,自由度为i ,在等压过程中吸热为Q,对外做功为A ,内能增加为E ∆, 则A/Q =i +22, ∆E/Q = ii +2; 3.一卡诺热机可逆的,低温热源的温度为27℃,热机效率40%,其高温热源温度为C 127T 1=;今欲将热机效率提高为50%,若低温热源保持不变,则高温热源的温度增加C 200T =∆;4.如图2所示,一定量的理想气体经历a →b →c 过程, 在此过程中气体从外界吸收热Q ,系统内能变化∆E , 请在以下空格内填上>0或<0或=0; Q >0 , ∆E >0 ; 三. 计算题1. 如图3所示两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为0V ,其中装有温度相同、压强均为0P 的同种理想气体,现保持气体温度不变,用外力缓慢移动活塞忽略摩擦,使左室气体的体积膨胀为右室的2倍,问外力必须做多少功 解:x V P S V V P S P F 0010011===, xl VP F -=002 ()()[]89ln ln 003221003221322121V P x l x V P dx F F Fdx W l l l l l l =-=-==⎰⎰2. 比热容比γ = 的理想气体,进行如图4所示的ABCA 循环,状态A 的温度为300K; 1求状态B 、C 的温度;2计算各过程中气体吸收的热量、气体所做的功和气体内能的增量;RT MmPV =得:KT C K T B R mMA CB 75:225:3002400:==⨯=⨯A C →等体过程,EJ T i R m M Q W ∆-==∆==15002图2图4图5JE W Q J T R i m M E J PdV W BA 50050021000=∆+=-=∆=∆==→⎰C B →等压过程JE W Q J T R i m M E J PdV W 140010002400-=∆+=-=∆=∆-==⎰3. 如图5为一循环过程的T —V 图线;该循环的工质是一定质量的理想气体;其,V m C 和γ均已知且为常量;已知a 点的温度为1T ,体积为1V ,b 点的体积为2V ,ca 为绝热过程;求:1 c 点的温度;2 循环的效率;解: 1c a 为绝热过程,11112r r a c a c V V T T T V V --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭2a b 等温过程,工质吸热211lnV Q vRT V = bc 为等容过程,工质放热为11..1.12()11r c V m b c V m V m T V Q vC T T vC T vC T T V -⎡⎤⎛⎫⎛⎫⎢⎥=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦循环过程的效率112.2211111ln r V mV V C Q V Q RV η-⎛⎫- ⎪⎝⎭=-=-第六章 热力学基础练 习 三一. 选择题1. 理想气体卡诺循环过程的两条绝热线下的面积大小图1中阴影部分分别为S 1和S 2 ,则二者的大小关系是 BA S 1 > S 2 ;B S 1 = S 2 ;C S 1 < S 2 ;D 无法确定; 2. 在下列说法中,哪些是正确的 C1 可逆过程一定是平衡过程;2 平衡过程一定是可逆的;3 不可逆过程一定是非平衡过程;4 非平衡过程一定是不可逆的;A 1、4 ;B 2、3 ;C 1、2、3、4 ;D 1、3 ; 3. 根据热力学第二定律可知 DA 功可以全部转换为热,但热不能全部转换为功;B 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C 不可逆过程就是不能向相反方向进行的过程;D 一切自发过程都是不可逆的;4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”;对此说法,有以下几种评论,哪种是正确的 CA 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律; 二. 填空题1. 如图2的卡诺循环:1abcda,2dcefd,3abefa ,其效率分别为:1η= 1/3 , 2η= 1/2 ,3η= 2/3 ;2. 卡诺致冷机,其低温热源温度为T 2=300K ,高温热源温度为T 1=450K ,每一循环从低温热源吸热Q 2=400J ,已知该致冷机的致冷系数ω=Q 2/A=T 2/T 1-T 2 式中A 为外界对系统做的功,则每一循环中外界必须做功A= 200J ;3. 1 mol 理想气体设γ = C p / C V 为已知的循环过程如图3的T —V 图所示,其中CA 为绝热过程,A 点状态参量T 1,V 1和B 点的状态参量T 1,V 2为已知,试求C 点的状态量:V c =2V ,T c =1121T VV r -⎪⎪⎭⎫ ⎝⎛,P c =r r V V RT 2111-;三. 计算题1. 一热机在1000K 和300K 的两热源之间工作,如果 1 高温热源提高为1100K ;2 低温热源降低为200K,从理论上说,热机效率各可增加多少为了提高热机效率哪一种方案为好 热机在1000K 和300K 的两热源之间工作,121T T T -=η,%7010003001000=-=η 解: 高温热源提高为1100K :%73.72110030011001=-=η,效率提高:%73.2=η∆低温热源降低为200K : %80100020010002=-=η,效率提高:%10=η∆提高热机效率降低低温热源的温度的方案为好;2. 1 mol 单原子分子理想气体的循环过程如图4的T —V 图所示, 其中c 点的温度为T c =600K,试求: 1ab 、bc 、ca 各个过程系统吸收的热量;2经一循环系统所做的净功;3循环的效率;注: 循环效率η=A/Q 1,A 为循环过程系统对外做的净功,Q 1为循环过程系统从外界吸收的热量,1n2=解: 由b b b a a a T VP T V P =,得K T b 300=J V V RT Q baca 0.34562ln 60031.8ln=⨯⨯== 等温过程 ()()J T T C Q b c v bc 5.373930060031.823=-⨯=-= 等容过程 ()()J T T C Q a b b ab 5.623260030031.825-=-⨯=-= 等压过程图2图3图4()6232.524932ab ab b a iW Q E R T T J=-∆=---=-J Q W ca ca 0.3456==%38.132********=+-==bcca Q Q Q A η。

大学物理课后习题答案(高教版 共三册)

大学物理课后习题答案(高教版 共三册)

第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。

解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。

解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。

大学物理电场部分答案

大学物理电场部分答案

02/εδE o x 02/εδE o x2/εδ02/εδ-Eox 02/εδ02/εδ-oEx 第六章 电荷的电现象和磁现象序号 学号 姓名 专业、班级一 选择题[ C ]1 .一带电体可作为点电荷处理的条件是 (A)电荷必须呈球形分布。

(B)带电体的线度很小。

(C)带电体的线度与其它有关长度相比可忽略不计。

(D)电量很小。

[ D ]2.真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图线应是(设场强方向向右为正、向左为负)(A ) (B ) (C )(D )二 填空题1. 在点电荷系的电场中,任一点的电场强度等于 ________________________________略________________________________________________, 这称为场强叠加原理。

2.静电场中某点的电场强度,其数值和方向等于_________略_______________________________________________________________________________________________________。

3.两块“无限大”的带电平行电板,其电荷面密度分别为δ(δ> 0)及-2δ,如图所示,试写出各区域的电场强度E。

Ⅰ区E 的大小 02εσ , 方向 向右 。

Ⅱ区E的大小23εσ , 方向 向右 。

δ-xoI II IIIσ2-σ02/εσ0/εσ02/2ε022εσⅢ区E的大小2εσ, 方向 向左 。

4.A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小都为E 0 , 两平面外侧电场强度大小都为 E 0 / 3 ,方向如图。

则A 、B 两平面上的电荷面密度分别为A δ= 3/E 200ε- ,Bδ =3/E 400ε 。

三 计算题1.一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷 q ,如图所示,试以a , q , θ0表示出圆心O 处的电场强度。

大学物理第六章 习题答案

大学物理第六章 习题答案

第六章 热力学基础 习题答案一、单选题1-5 DAACD 6-10 ADCDA二、填空题1. 500J; 700J2. 3/2 P 1V 1;03. 1/2; 24.33.3% ; 8.31⨯103J5. 320K ; 4三、计算题1.解:由题意可知:气体经历等压变化,且对外做功为:(1)若气体为单原子分子,即: i=3(2)若气体为双原子分子,即: i=52.解:(1)因为气体为卡诺循环,且高温T 1 = 1000 K ,低温T 2 = 300 K 该循环的效率满足:(2)若低温热源不变,设高温热源温度为T 1,则有:解得: T 1 = 1500 K 即高温热源温度需提高500K(3)若高温热源不变,设低温热源温度为T 2,则有:JT R MV p A 200=∆=∆=μJ A T R i M Q p 50025221==∆+=μJ A T R i M Q p 70027222==∆+=μ%7010003001000112=-=-=T T η%8030011112=-=-=T T T T η%80100010001212=-=-=T T T η解得: T 2 = 200 K 即低温热源温度需降低100K3.解:氦气(1)定容过程,V =常量,W =0 由Q E W =∆+ 知21()623 J V M Q E C T T μ=∆=-=(2)定压过程,P =常量 321() 1.0410 J P M Q C T T μ=-=⨯与(1)相同(3)与(1)相同 (外界对系统做功)4.解:(1)等容过程等温过程(2)等温过程等容过程3=i E ∆J 417=∆-=E Q W 0=Q E ∆J 623-=∆-=E W 0W 1=()()J 5.1246208031.82511211=-⨯⨯⨯=-=∆=∴T T C Mm E Q V 02=∆E ()J 3.20332ln 8027331.812ln d W 2222=⨯+⨯⨯====∴⎰VV RT M m V p Q V V J 3.203321=+=∴W W W J 5.1246=∆E J 8.93273.20335.124621=+=+=∴Q Q Q 03=∆E ()J 7.16872ln 2027331.812ln 133=⨯+⨯⨯===∴VV RT M m W Q 04=W()()J 5.1246208031.82511244=-⨯⨯⨯=-=∆=∴T T C Mm E Q V J 7.168743=+=∴W W W J2.29345.12467.168743=+=+=∴Q Q Q J 5.124643=∆+∆=∆E E E。

《大学物理》 第二版 课后习题答案 第六章

《大学物理》 第二版 课后习题答案 第六章

习题解析6-1在坐标原点及0)点分别放置电量61 2.010Q C -=-⨯及62 1.010Q C -=⨯的点电荷,求1)P -点处的场强。

解 如图6.4所示,点电荷1Q 和2Q 在P 产生的场强分别为 1122122201102211,44Q r Q r E E r r r r πεπε== 而12123,,2,1r i j r j r r =-=-==,所以()()11111222011011662203111441 2.010 1.010422113.9 6.810Q r Q r E E E r r r r j j i j N C πεπεπε--=+=+⎛⎫-⨯-⨯-=+ ⎪ ⎪⎝⎭≈-+⨯∙总 6-2 长为15l cm =的直导线AB 上,设想均匀地分布着线密度为915.0010C m λ--=⨯⋅,的正电荷,如图6.5所示,求:(1)在导线的延长线上与B 端相距1 5.0d cm =处的P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处的Q 点的场强。

解 (1)如图6.5(a )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴的正方向。

在导线AB 上坐标为x处,取一线元dx ,其上电荷为 dq dx λ= 它在P 点产生的场强大小为 2200111442dq dxdE r l d x λπεπε==⎛⎫+- ⎪⎝⎭方向沿x 轴正方向。

导线AB 上所有线元在P 点产生的电场的方向相同,因此P 点的场强大小为()1212122000112112992122111114442115.0010910 6.75105102010dq dx E r d l d l d x V m λπεπεπε------⎛⎫===- ⎪-⎛⎫⎝⎭+- ⎪⎝⎭⎛⎫=⨯⨯⨯⨯-=⨯∙ ⎪⨯⨯⎝⎭⎰方向沿x 轴正方向。

(2)如图6.5(b )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴正方向,垂直于AB 的轴为y 轴,在导线AB 上坐标为x 处,取一线元dx ,其上的电荷为 dq dx λ= 它在Q 点产生的电场的场强大小为 22220021144dq dx dE r d x λπεπε==+ 方向如图6.5(b )所示。

大学物理第六章恒定磁场习题解劝答

大学物理第六章恒定磁场习题解劝答

第6章 恒定磁场1. 空间某点磁感应强度方向,一般可以用下列几种办法来判断,其中哪个是错误? ( C )(A )小磁针北(N )极在该点指向;(B )运动正电荷在该点所受最大力与其速度矢积方向; (C )电流元在该点不受力方向;(D )载流线圈稳定平衡时,磁矩在该点指向。

2. 下列关于磁感应线描述,哪个是正确? ( D )(A )条形磁铁磁感应线是从N 极到S 极; (B )条形磁铁磁感应线是从S 极到N 极; (C )磁感应线是从N 极出发终止于S 极曲线; (D )磁感应线是无头无尾闭合曲线。

3. 磁场高斯定理说明了下面哪些叙述是正确? ( A )a 穿入闭合曲面磁感应线条数必然等于穿出磁感应线条数;b 穿入闭合曲面磁感应线条数不等于穿出磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(A )ad ; (B )ac ; (C )cd ; (D )ab 。

4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 磁通量和面上各点磁感应强度B 将如何变化? ( D )(A )增大,B 也增大;(B )不变,B 也不变; (C )增大,B 不变; (D )不变,B 增大。

5. 两个载有相等电流I 半径为R 圆线圈一个处于水平位置,一个处于竖直位置,两个线圈圆心重合,则在圆心o 处磁感应强度大小为多少? ( C )(A )0; (B );(C ); (D )。

6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线同轴圆柱形闭合高斯面,则通过此闭合面磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为7、一带电粒子垂直射入磁场后,作周期为T 匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、/2B 、2C 、D 、–8 竖直向下匀强磁场中,用细线悬挂一条水平导线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Sv图6-1 Av i Bm 图6-2第六章 气体动理论6-1 一束分子垂直射向真空室的一平板,设分子束的定向速度为v ,单位体积分子数为n ,分子的质量为m ,求分子与平板碰撞产生的压强.分析 器壁单位面积所受的正压力称为气体的压强.由于压强是大量气体分子与器壁碰撞产生的平均效果,所以推导压强公式时,应计算器壁单位面积在单位时间内受到气体分子碰撞的平均冲力.解 以面积为S 的平板面为底面,取长度等于分子束定向速度v 的柱体如图6-1所示,单位时间内与平板碰撞的分子都在此柱体内.柱体内的分子数为nS v .每个分子与平板碰撞时,作用在平板上的冲力为2m v ,单位时间内平板所受到的冲力为根据压强的定义,分子与平板碰撞产生的压强为6-2 一球形容器,直径为2R ,内盛理想气体,分子数密度为n ,每个分子的质量为m ,(1)若某分子速率为v i ,与器壁法向成θ角射向器壁进行完全弹性碰撞,问该分子在连续两次碰撞间运动了多长的距离?(2)该分子每秒钟撞击容器多少次?(3)每一次给予器壁的冲量是多大?(4)由上结果导出气体的压强公式.分析 任一时刻容器中气体分子的速率各不相同,运动方向也不相同,由于压强是大量气体分子与器壁碰撞产生的平均效果,气体压强公式的推导过程为:首先任意选取某一速率和运动方向的分子,计算单位时间内它与器壁碰撞给予器壁的冲力,再对容器中所有分子统计求和.解 (1)如图6-2所示,速率为v i 的分子以θ角与器壁碰撞,因入射角与反射角都相同,连续两次碰撞间运动的距离都是同样的弦长,为(2)该分子每秒钟撞击容器次数为(3)每一次撞击给予器壁的冲量为(4)该分子每秒钟给予器壁的冲力为由于结果与该分子的运动方向无关,只与速率有关,因此可得容器中所有分子每秒钟给予器壁的冲量为其中.根据压强的定义,分子与器壁碰撞产生的压强为其中为分子的平均平动动能.6-3 容积为10 L 的容器内有1 mol CO 2气体,其方均根速率为1440km/h,求CO 2气体的压强(CO 2的摩尔质量为kg/mol ).分析在常温常压下可以将气体视为理想气体,理想气体压强公式中引入了统计平均量----方均根速率和分子数密度n,1 mol的气体中分子数为阿伏伽德罗常量N A,根据这些关系可求出压强.解容积为V的容器中有1 mol CO2气体,则分子总数为N A,摩尔质量为M,则分子数密度为,分子质量为,因此由气体压强公式得代入数字得6-4 在实验室中能够获得的最佳真空相当于大约,试问在室温(273K)下在这样的“真空”中每立方厘米内有多少个分子?分析引入玻尔兹曼常量k和分子数密度n后,理想气体状态方程可以表示为.解由理想气体状态方程得6-5 已知气体密度为1 kg/m3,压强为,(1)求气体分子的方均根速率;(2)设气体为氧,求温度.分析气体密度是单位体积中气体的质量,因此与分子数密度n和分子质量m的关系为.解压强公式可写为(1)分子的方均根速率(2)氧的摩尔质量M =kg/mol,由定义,则6-6 体积为10-3m3,压强为的气体,所有分子的平均平动动能的总和是多少?分析气体动理论的能量公式给出了微观量气体分子的平均平动动能和宏观量气体温度之间的关系.分子的平均平动动能是大量分子的统计平均值,是每个分子平均占有的平动动能量值.解由气体动理论的能量公式,分子的平均平动动能为容器中分子数,又由压强公式,可得容器中所有分子的平均平动动能的总和为6-7 一容器内贮有氧气,其压强为,温度T =,求(1)单位体积内的分子数;(2)氧气的密度;(3)氧分子的质量;(4)分子间的平均距离;(5)分子的平均平动动能;(6)若容器是边长为0.30 m的立方体,当一个分子下降的高度等于容壁的边长时,其重力势能改变多少?并将重力势能的改变与其平均平动动能相比较.分析常温和常压下,氧气可视为理想气体.从宏观的角度,可以认为气体是空间均匀分布的,因此分子间的平均距离的立方就是每个分子平均占有的体积.通过本题的计算,可以得到气体动理论中常用到的物理量的量级概念.解 (1) 由理想气体的状态方程,可得单位体积内的分子数为(2) 利用理想气体的状态方程,氧气的密度为(3) 氧分子的质量为(4) 分子平均占有的空间开方等于分子间的平均距离(5) 分子的平均平动动能(6) 一个氧分子下降的高度等于容壁的边长时,其重力势能改变为与分子平均平动动能相比较,有6-8 在什么温度时,气体分子的平均平动动能等于一个电子由静止通过1 V电位差的加速作用所得到的动能(即1eV的能量).解根据题意,气体分子的平均平动动能则6-9 1 mol氢气,在温度时,求(1)具有若干平动动能;(2)具有若干转动动能;(3)温度每升高时增加的总动能是多少?分析氢气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,根据能量按自由度均分原则可以求出平均平动动能和平均转动动能.解 (1) 1 mol氢气的平动动能为(2) 1 mol氢气的转动动能为(3) 温度每升高,1 mol氢气增加的总动能为6-10 1 mol单原子理想气体和1 mol双原子理想气体,温度升高时,其内能各增加多少?1g氧气和1g氢气温度升高时,其内能各增加多少?分析一定量理想气体的内能,对于单原子理想气体,对于双原子理想气体,对于1 mol理想气体.氧气和氢气都是双原子气体,氧气的摩尔质量.解 1 mol单原子理想气体温度升高,内能增量为1 mol双原子理想气体温度升高,内能增量为1 g氧气温度升高,内能增量为1 g氢气温度升高,内能增量为6-11 计算:(1)氧分子在时的平均平动动能和平均转动动能;(2)在此温度下,4 g氧的内能.分析氧气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,.解 (1) 氧分子在时的平均平动动能为平均转动动能为(2) 4 g氧在时的内能为6-12 有40个粒子速率分布如下表所示 (其中速率单位为m/s):速率区间100以下100~200 200~300 300~400 400~500 500~600 600~700 700~800 800~900 900以上粒子数 1 4 6 8 6 5 4 3 2 1若以各区间的中值速率标志处于该区间内的粒子速率值,试求这40个粒Nf (v )a0 v 0 2 v 0 3 v 0 v 图6-14子的平均速率、方均根速率和最概然速率,并计算出所在区间的粒子数占总粒子数的百分率.分析 为了更深入地理解麦克斯韦速率分布律以及气体动理论中引入的平均速率、方均根速率和最概然速率的统计意义,有必要通过实际例子,经过计算,体验速率分布规律和统计方法.解 这40个粒子分成了10个速率区间,若取1000 m/s 为粒子速率在900m/s 以上的速率区间的中值速率,则根据定义,其平均速率为方均根速率为最概然速率.所在区间的粒子数占总粒子数的百分率为6-13上题所给分布情况,若以200m/s为间隔作重新统计,列出分布情况表,计算出相应的、和,以及所在区间的粒子数占总粒子数的百分率,并与上题结果进行比较.分析 通过本题和上题计算结果可以看出,在某一速率区间中的分子数和所计算的三种速率不但与速率区间位置有关,还与速率区间的宽度有关.只有当所统计的分子总数足够大,划分的速率区间足够小时,才可能获得处于平衡状态的气体分子速率的一个确定的分布函数,三种速率也才有确定值.解 以200m/s 为间隔对上题粒子速率作重新统计,速率分布情况为(其中速率单位为m/s):速率区间 200以下 200~400 400~600 600~800 800以上粒子数 5 14 11 7 3这40个粒子分成了5个速率区间,若取900 m/s 为粒子速率在800 m/s 以上的速率区间的中值速率,则根据定义,其平均速率为方均根速率为最概然速率.所在区间的粒子数占总粒子数的百分率为6-14 N 个假想的气体分子,速率分布如图6-14所示.(1)用N 和v 0表示出a 的值;(2)求最概然速率;(3)以v 0为间隔等分为三个速率区间求各区间中分子数占总分子数的百分率.分析 速率分布函数表示气体分子速率在v 值附近单位速率区间内的分子数占总分子数的百分率.本题给出了一个特殊的分布情况,通过计算,理解速率分布函数和最概然速率的物理意义,以及各速率区间中分子数占总分子数的百分率的计算方法.解 (1) 由图6-14可见,分布函数与气体分子总数N 的乘积曲线下的总面积应等于气体分子总数N,即则(2) 最概然速率(3) 以v0为间隔等分为三个速率区间,分子数占总分子数的百分率分别为*6-15 在速率区间~内麦克斯韦速率分布曲线下的面积等于分布在此区间内的分子数的百分率.应用(6-17)式和麦克斯韦速率分布函数表示式(6-18)式,求在速率区间v p~1.01v p内的气体分子数占总分子数的比率.分析麦克斯韦速率分布律表明,由速率分布函数可得气体分子速率在v~速率区间内的分子数占分子总数的百分率为.解麦克斯韦速率分布函数,因,则分布函数可写为速率区间v p~1.01v p内的气体分子数占总分子数的比率为*6-16应用平均速率表示式(6-20)*式、麦克斯韦速率分布函数表示式(6-18)式以及积分公式求的值.分析这里采用的是数学中加权求某量值的平均值的方法,权重就是麦克斯韦速率分布函数.如果要计算方均根速率,可先求速率平方的平均值,只需将积分式中的v改为,即,再将积分结果开方.解麦克斯韦速率分布函数表示式(6-18)式和平均速率表示式(6-20)*式给出利用积分公式得*6-17 试由麦克斯韦速率分布律推出相应的平动动能分布律,并求出最概然能量E p,它是否就等于.分析要找出分子按平动动能的分布规律,即求出分布在平动动能区间E k~E k+d E k中的分子数占总分子数的百分率.解速率为v的分子的平动动能为E k= ,则,麦克斯韦速率分布律可改写为即分子按平动动能分布律,其中分布函数参考最概然速率的定义,令,由上式得最概然动能因,则6-18 飞机起飞前机舱中的压强计指示为,温度为.起飞后压强计指示为,温度仍为.试计算飞机此时距地面的高度.解根据玻尔兹曼分子数密度按高度分布公式和压强公式,在高度和的压强分别为和,则有得6-19 设地球大气是等温的,温度为,海平面上的气压为,已知某地的海拔高度为h = 2000 m,空气的摩尔质量,求该地的气压值.解根据玻尔兹曼分子数密度按高度分布公式和理想气体状态方程,在高度处的压强为6-20 在某一粒子加速器中,质子在的压强和273 K的温度的真空室内沿圆形轨道运动.(1)估计在此压强下每立方厘米内的气体分子数;(2)如果分子有效直径为2.0×10-8 cm.则在此条件下气体分子的平均自由程为多大?分析由理想气体状态方程可得压强和分子数密度的关系,并由此可计算平均自由程.解 (1) 由理想气体状态方程可得(2) 由定义,平均自由程为6-21设电子管内温度为300 K,如果要管内分子的平均自由程大于10 cm时,则应将它抽到多大压强?(分子有效直径约为3.0×10-8 cm).分析由平均自由程定义和理想气体状态方程可建立压强与平均自由程以及温度之间的关系.解由平均自由程定义和理想气体状态方程,得6-22 计算:(1)在标准状态下,一个氮分子在1 s内与其它分子的平均碰撞次数;(2)容积为4 L的容器,贮有标准状况下的氮气,求1 s内氮分子间的总碰撞次数.(氮分子的有效直径为3.76×10-8 cm.)解 (1) 因平均速率,标准状态下22.4 L中的分子数为,则平均碰撞次数(2) 4 L氮的分子数N=,分子间的总碰撞次数为6-23 假设氦气分子的有效直径为10-10m,压强为,温度为300 K,(1)计算氦气分子的平均自由程和飞行一个平均自由程所需要的时间τ;(2)如果有一个带基本电荷的氦离子在垂直于电场的方向上运动,电场强度为104V/m,试计算氦离子在电场中飞行τ时间内沿电场方向移动的距离s及s与的比值;(3)气体分子热运动的平均速率与氦离子在电场方向的平均速率的比值;(4)气体分子热运动的平均平动动能与氦离子在电场中飞行一个远的距离所获得的能量和它们的比值.解 (1) 由平均自由程定义和理想气体状态方程,得平均速率则(2)氦离子质量为,沿电场方向受到的电场力为,加速度,在τ时间内沿电场方向移动的距离为(3) 氦离子沿电场方向的平均速率为(4) 氦气分子平均平动动能为氦离子在电场中飞行一个远的距离所获得的能量为二者之比为*6-24 用范德瓦耳斯方程计算压强为,体积为0.050 L的1 mol氧气的温度,如果用理想气体状态方程计算,将引起怎样的相对误差?已知氧的范德瓦耳斯常数为:;.解由范德瓦耳斯方程得由理想气体状态方程得相对误差为*6-25 在时,2 mol氮气的体积为0.1 L,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气,.解范德瓦耳斯方程,得由理想气体状态方程得结果表明由理想气体状态方程计算出的压强小于由范德瓦耳斯方程的计算值.*6-26 实验测知时氧的粘滞系数1.92×10-4,试用它来求标准状态下氧分子的平均自由程和分子的有效直径.解粘滞系数其中密度.又由理想气体状态方程平均速率,联立可得分子的有效直径为*6-27 实验测知氮气时热传导系数为23.7×10-3W/(m·K),定体摩尔热容为20.9 J/(mol·K),试由此计算氮分子的有效直径.解热传导系数其中密度,平均速率,平均自由程,则。

相关文档
最新文档