最新初一数学代数式知识
初一上册数学代数式知识点
初一上册数学代数式知识点一、代数式1. 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或者字母也是代数式。
2. 用具体的数值代替代数式中的字母,按照代数式中指明的运算计算得出的结果,叫做这个代数式的值。
二、代数式的书写1. 代数式中如果有乘号,应写在字母的前面;2. 代数式中如果有乘方,应写在外面的括号里;3. 代数式中如果是加减运算,添括号时,括号前面是加号,括号里面不变号,括号前面是减号,括号里面要变号;4. 代数式中如果是乘方运算,加括号时要注意顺序。
先写底数,再写指数。
三、代数式的值1. 用数值代替代数式中的字母,按照代数式中的运算关系计算出来的结果叫做代数式的值。
2. 求代数式的值一般有三种方法:直接代入数值求值;变形后代入求值;变形后整体代入求值。
四、代数式的计算1. 代数式的加减运算主要是合并同类项。
合并同类项时把系数相加,字母和字母的指数不变。
2. 代数式的乘法运算主要是乘法分配律的应用。
3. 代数式的除法运算主要是乘除同一数的倒数。
五、整式的加减运算1. 整式的加减运算主要是去括号和合并同类项。
去括号时要注意:括号前面是负号,去掉括号和负号,括号里的每一项都要变号。
合并同类项时要注意系数相加,字母和字母的指数不变。
2. 整式的加减运算要按照运算顺序先做符号运算,再做乘除运算,最后做加减运算。
具体的代数式初步知识如下所示:1. 代数式用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式。
注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。
2. 列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写。
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号。
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3. 几个重要的代数式(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。
初一数学:代数式知识点和题型
代数式知识点和题型一、代数式的概念(非常重要)代数式:没有等号、没有不等号。
整式:首先必须是代数式,其次,分母中无字母,根号下无字母。
【字母的确定】①如果代数式中既有x, V,也有其他字母,一般只把x, y当做字母,其他的(比如a、b、c、d)当做数字②如果代数式中没有x, v,只有a、b、c、d等,这些都当做字母来看待。
③题目中明确说是关于那几个字母的代数式。
单项式:没有涉及字母的加减运算,或者合并同类项之后,没有涉及字母的加减运算。
比如:3ab、2x、2x &多项式:有涉及字母的加减运算2a 5b比如:一-——、3 4y、2x 7y单项式次数:所有字母的次数和。
单项式系数:单项式中的数字部分(包含正负号)。
多项式次数:多项式中次数最高的单项式的次数。
多项式项数:多项式中包含的单项式个数。
同类项:字母相同,同一个字母的次数也相同(合并同类项)二、题型1、列代数式(非常重要)利润问题:利润、价格、打折数字位数问题:数字x位数值(例如:1234 = 1 X 1000+2 X 100+3 X 10+4 X 1)面积体积问题:面积公式(圆、三角形、长方形、正方形、梯形),体积公式分段收费问题:2、同类项判断:已知两个单项式是同类型,计算参数值【方法:】根据同类项定义,写出等式。
(字母相同,同一个字母的次数也相同。
)例如:已知3a2m1b3和5a4b n 2是同类项,写出2m 1 4, n 2 3,计算即可(如果题目中说,两个单项式的和还是单项式,或者两个单项式可以合并成一项,本质上还是在说,这两个单项式是同类项,解题方法完全一样)几次几项式判断,方法类似。
缺项计算:先化简、缺哪一项,哪一项的系数值为零。
3、整式运算①合并同类项和加减运算。
去括号运算,括号前面是负号,去括号之后,每个数都变号。
②先化简再求值。
(非常重要)例如:先化简,再求值:(a26ab 9) 2(a2 4ab 4.5),其中|a 1| 屈一2 0【方法:】无论题目中是否明确说,先化简再求值。
初中代数知识点总结
初中代数知识点总结一、数的认识整数:包括正整数、零和负整数。
有理数:可以表示为两个整数的商的数,包括整数和分数。
实数:包括有理数和无理数(如π和根号下的非完全平方数)。
数的四则运算:加法、减法、乘法和除法。
二、代数式代数式:由数字、字母和运算符号组成的数学表达式。
代数式的值:将代数式中的字母替换为具体的数值后得到的结果。
代数式的简化:通过合并同类项、运用分配律等方法简化代数式。
三、方程与不等式方程:含有未知数的等式,通过解方程可以找到未知数的值。
一元一次方程:只含有一个未知数且未知数的指数为1的方程。
不等式:用不等号(如<、>、≤、≥)连接的式子,表示两个数之间的大小关系。
一元一次不等式:只含有一个未知数且未知数的指数为1的不等式。
四、函数函数:一种特殊的对应关系,其中每一个输入值(自变量)只对应一个输出值(因变量)。
函数的表示方法:解析法、列表法和图像法。
一次函数:形式为y = kx + b(k ≠ 0)的函数,其中x为自变量,y为因变量。
五、因式分解因式分解:将一个多项式表示为几个整式的乘积的形式。
常见因式分解方法:提取公因式法、公式法(如平方差公式、完全平方公式等)。
六、整式的乘法与除法整式的乘法:通过分配律进行整式的乘法运算。
整式的除法:通过长除法或合成除法进行整式的除法运算。
七、分式分式:两个整式的商,其中分母不为零。
分式的化简:通过约分等方法将分式化简为最简形式。
分式的四则运算:对分式进行加法、减法、乘法和除法运算。
以上是对初中代数知识点的简要总结,涵盖了数的认识、代数式、方程与不等式、函数、因式分解、整式的乘法与除法和分式等方面的内容。
在学习过程中,应注重理解基本概念,掌握基本方法,并通过大量练习巩固所学知识。
初中 数学代数知识点总结
初中数学代数知识点总结一、代数式代数式是由数字、字母和运算符号组成的表达式。
代数式中的字母代表数,称为未知数或变量,代数式的值随着变量的取值而变化。
代数式包括单项式、多项式、等式和不等式等。
1. 单项式:由一个项组成的代数式,例如3x、5y、-7等都是单项式。
2. 多项式:由多个项相加(或相减)而成的代数式,例如3x+5y、2x²+3x+7等都是多项式。
3. 等式和不等式:包含等号或不等号的代数式,例如2x+3=7、4x-5≥3等都是等式和不等式。
二、代数运算代数运算是对代数式进行加法、减法、乘法、除法、乘方等运算的过程。
了解代数运算规律,可以帮助我们解决各种数学问题。
1. 加法:将两个或多个代数式相加,例如a+b、x+y+z等。
2. 减法:将一个代数式减去另一个代数式,例如a-b、x-y等。
3. 乘法:将两个或多个代数式相乘,例如a×b、x×y×z等。
4. 除法:将一个代数式除以另一个非零的代数式,例如a÷b、x÷y等。
5. 乘方:将一个数或一个代数式自己相乘若干次,例如a²、x³等。
三、方程与不等式方程和不等式是数学中常见的问题类型,通过代数表达式的运算得到的等式或不等式称为方程或不等式。
解方程和不等式是我们学习代数知识的重要内容。
1. 一元一次方程:形式为ax+b=0的方程,其中a、b为已知数,x为未知数,a≠0。
2. 一元二次方程:形式为ax²+bx+c=0的方程,其中a、b、c为已知数,x为未知数,a≠0。
3. 一元一次不等式:形式为ax+b>0、ax+b≥0、ax+b<0、ax+b≤0的不等式,其中a、b为已知数,x为未知数,a≠0。
4. 一元二次不等式:形式为ax²+bx+c>0、ax²+bx+c≥0、ax²+bx+c<0、ax²+bx+c≤0的不等式,其中a、b、c为已知数,x为未知数,a≠0。
初一数学第三章《代数式》知识点及测试题
代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。
①单项式:由或的相乘组成的代数式称为单项式。
单独一个数或一个字母也是单项式,如,5 a。
·单项式的系数:单式项中的叫做单项式的系数。
·单项式的次数:单项式中叫做单项式的次数。
·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。
例:232a b-的系数是________,次数是_______。
②多项式:几个的和叫做多项式。
其中,每个单项式叫做多项式的,不含字母的项叫做。
·多项式的次数:多项式里的次数,叫做多项式的次数。
·多项式的幂:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:42321n n-+是一个四次三项式。
·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a-++是_______次________项式。
3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即xbabxax)(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。
判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。
在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
初一数学知识点(精选5篇)
初一数学知识点(精选5篇)第一章有理数1.整数。
(正整数、0、负整数)2.正数和负数。
3.有理数。
(整数和分数统称有理数)4.自然数。
(非负整数)5.相反数。
(只有符号不同的两个数互为相反数)6.绝对值。
(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。
(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。
(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。
(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。
(一个非负数的正的平方根叫做算数平方根)3.立方根。
(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。
(有理数和无理数)5.实数的性质。
(实数能进行减、乘、除、加、乘方运算)6.近似数。
(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。
(与有理数相对的数式叫整式)2.分式。
(整式的一部分)3.分式的值为零。
(分子为零且分母不等于零)4.分式的乘除。
(乘除法转化成乘法计算)5.分式的加减。
(异分母的分式加减转化成通分后求和)6.分式方程。
(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。
有理数可以用分数表示。
2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。
数轴上的0是正负数的分界线。
3.相反数:如果两个数的和为0,那么这两个数是一对相反数。
相反数包括正数和负数。
4.绝对值:一个数的绝对值是它离0的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数。
5.代数式:用代数式表示出数量关系和变化规律的式子。
包括等式、不等式、方程、不等式、函数等。
6.整式:整式包括单项式和多项式。
单项式是由数字和字母组成,多项式是由几个单项式组成。
7.分式:分式包括分子和分母。
分子是由数字和字母组成,分母是由分式和整式组成。
8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。
初一代数式课程讲解
初一代数式课程讲解在初一的数学学习中,代数式是一个非常重要的概念,它是进一步学习代数知识的基础。
让我们一起来深入了解一下初一代数式的相关内容。
一、什么是代数式代数式,简单来说,就是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
例如,5,a,3x + 2y,m² n²等等都是代数式。
需要注意的是,单独的一个数或者一个字母也称为代数式。
比如7 ,a 。
而像等式 3 + 5 = 8 ,不等式 2x > 5 就不是代数式。
二、代数式的分类代数式可以分为有理式和无理式。
有理式又包括整式和分式。
整式是指没有除法运算,或者虽有除法运算但除式中不含字母的有理式。
像 3x,a² 2b 都是整式。
整式又可以分为单项式和多项式。
单项式是指只有一个项的整式,其中数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数。
比如 5x 中,系数是 5 ,次数是1 。
多项式是指几个单项式的和或差,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里,次数最高项的次数,就是这个多项式的次数。
例如,多项式 2x²+ 3x 1 ,有三项,分别是 2x²,3x ,-1 ,其中 2x²的次数最高,为 2 ,所以这个多项式的次数就是 2 。
分式是指分母中含有字母的有理式。
比如,。
无理式则是指根号下含有字母的代数式。
比如。
三、代数式的书写规范在书写代数式时,有一些需要遵循的规范:1、数字与字母相乘时,数字要写在字母前面,乘号可以省略不写。
例如,5×a 可以写成 5a 。
2、字母与字母相乘时,乘号可以省略不写。
例如,a×b 可以写成ab 。
3、数字与括号相乘时,要把数字与括号内的各项都相乘。
例如,3×(x + y) = 3x + 3y 。
4、除法运算通常写成分数形式。
例如,x÷y 写成。
代数式的知识点
代数式的知识点
1. 代数式里的字母啊,那可太重要啦!就像搭积木的小块,能组合出各种不同的式子呢。
比如 2x+3,这里的 x 就是那个关键的小字母呀!
2. 代数式的系数呢,就好像是给字母穿上不同力量的铠甲。
比如说4y,这里 4 就是 y 的坚强后盾呀!
3. 合并同类项是不是很神奇呀?就像是把相同的小伙伴聚在一起。
比如3x+2x 不就可以合成 5x 嘛?
4. 要知道代数式的运算规则那是必须遵守的哦!这就好比玩游戏得遵守规则才能玩得开心嘛。
像(3+2)x 那就是先算括号里再相乘呀!
5. 代数式的化简可是个有趣的过程呢!这不就是给式子做个美容嘛。
例如 3x+2x-4x 化简后就是 x 呀。
6. 代数式有时候也会藏着小陷阱哦!可得小心别掉进去啦。
像看到
2(a+b) 可别直接就算 2a+2b 呀!
7. 代数式能帮我们解决好多实际问题呢!这不就像个小魔法师嘛。
比如说知道苹果一个 3 元,5 个苹果多少钱,不就是用 3x 嘛,这里 x 就是 5 呀!
8. 代数式的世界丰富多彩得很呢!就像一个大宝藏等你去发掘。
比如当x=2 时,代数式 2x+1 就等于 5 啦,多有意思呀!
我的观点结论就是:代数式看似简单,实则蕴含着无数的奇妙之处,好好去探索吧,你会发现很多乐趣和惊喜!。
初中数学知识点(代数)
初中数学知识点(代数)一、代数式代数式是由数、字母和运算符号组成的表达式。
代数式可以分为单项式和多项式。
1. 单项式:只包含一个字母和它的指数的代数式,如:5x²、3a³等。
2. 多项式:由若干个单项式相加或相减组成的代数式,如:3x² + 2x 1、4a³ + 5ab²等。
二、代数式的运算1. 加法:将两个或多个代数式相加,如:3x² + 2x 1 + 4x²3x + 2。
2. 减法:将两个或多个代数式相减,如:3x² + 2x 1 (4x²3x + 2)。
3. 乘法:将两个或多个代数式相乘,如:(3x² + 2x 1) ×(4x² 3x + 2)。
4. 除法:将一个代数式除以另一个代数式,如:(3x² + 2x 1) ÷ (4x² 3x + 2)。
三、方程方程是含有未知数的等式。
解方程就是求出未知数的值,使得等式成立。
初中阶段主要学习一元一次方程和一元二次方程。
1. 一元一次方程:未知数的最高次数为1的方程,如:2x + 3 = 7。
2. 一元二次方程:未知数的最高次数为2的方程,如:x² 5x +6 = 0。
四、不等式不等式是表示两个数之间大小关系的式子。
初中阶段主要学习一元一次不等式和一元二次不等式。
1. 一元一次不等式:未知数的最高次数为1的不等式,如:2x + 3 > 7。
2. 一元二次不等式:未知数的最高次数为2的不等式,如:x²5x + 6 ≥ 0。
五、函数函数是描述变量之间关系的数学概念。
初中阶段主要学习一次函数和二次函数。
1. 一次函数:函数表达式为y = kx + b(k ≠ 0)的函数,其中k是斜率,b是截距。
2. 二次函数:函数表达式为y = ax² + bx + c(a ≠ 0)的函数,其中a、b、c是常数。
七年级代数式所有知识点
七年级代数式所有知识点代数式是指由数字、字母和运算符号构成的式子,它是代数学中最基本的概念之一。
在七年级代数课程中,代数式是一个很重要的部分。
在本文中,我们将探讨七年级代数式的所有知识点。
一、代数式的定义代数式可以用字母或符号来代替某些数,其中的符号可以是加号、减号、乘号、除号以及其他一些数学符号。
代数式通常用来表示某些计算或者某些关系式。
举例来说, 3x+5 就是一个代数式。
二、代数式的种类在七年级代数中,代数式主要可分为以下几种:1. 单项式:只含有一个变量的代数式,如2x、3y、4z等等。
2. 多项式:含有多项变量或者常数项的代数式,如3x+4y、2x²+3x+1、3x²+5x+7等等。
3. 基本代数式:就是由运算符和数字组合形成的简单代数式,如 3+5=8。
4. 存在量:代表某个未知变量或者数量的代数式,如x+10=20。
5. 等式:代表两个代数式等于的关系式,如 3x+2=14。
6. 不等式:代表两个代数式不等于的关系式,如x+2≤5。
三、代数式的基本性质在七年级的代数课程中,有以下几个代数式的基本性质:1. 同类项可以相加,但不同类项不能相加。
例如,2x和3x是同类项,可以相加;但是2x和3y就不是同类项,不能相加。
2. 代数式可以进行等式的变形。
例如,将等式3x+2=14变形成3x=12。
3. 代数式的反运算。
例如,将3x+2=14的等式反过来写成3x=12,再进行反运算得出x=4。
4. 代数式的合并和分解。
例如,将 3x²+5x+2 这个代数式从高到低依次分解可以得到3x²+(2x+3x)+2。
4. 代数式的化简。
例如,化简 3x+2x+5y-4x+3 的代数式得到 5x+5y+3。
四、代数式的解法七年级代数的课程中,代数式的解法主要分为以下几种:1. 把含有未知量的代数式转化为等式,并进行等式运算。
例如,把 2x+5=15 的代数式转化为 2x=10,再进行反运算得到x=5。
代数式知识点
代数式知识点
1. 代数式里的字母呀,那可太重要啦!就像搭积木,字母就是那些小零件。
比如 3a,这里的 a 就是个神奇的小字母呀,a 可以代表任何数呢!假
如我告诉你 a 等于 5,那 3a 不就是 15 了嘛!是不是很有趣呀?
2. 单项式你可别小瞧,它就像一颗闪亮的星星独自闪耀。
比如 5x 就是个单项式呀,它简单又直接。
哎呀,你想想,如果说 5x 是一个人的话,那它可
太有个性啦,独一无二呢!
3. 系数呀,那可是代数式里的小宝贝呢!就像给代数式化妆一样。
比如说
4xy 的系数是 4 呢。
哇塞,要是没有这个系数,那这个代数式可就没那么出彩啦,对不对呀?
4. 多项式呢,就像是一群小伙伴聚在一起。
比如 2x+3y,它是由 2x 和 3y
这两个部分组成的哦。
嘿,这不就像几个好朋友在一起玩耍吗?
5. 同类项呀,它们就好像是失散多年又相聚的兄弟姐妹。
比如 3x 和 5x 就
是同类项呢。
哇哦,它们之间的关系多亲密呀!
6. 合并同类项就像是让好朋友手牵手。
像 2x+3x 不就可以合并成 5x 嘛。
哎呀呀,这样变得多简洁呀!
7. 代数式求值可刺激啦!就像解开一个神秘的礼物。
比如已知 x=2,求
3x+4 的值,那就是3×2+4=10 呀。
哇,是不是有种揭开谜底的爽快感呀?
我的观点结论就是:代数式真是充满了神奇和乐趣呀,让人越探索越觉得有意思!。
初一数学代数
初一数学代数一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a 应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
七年级代数式知识点归纳总结
第二章代数式知识点归纳一、代数式用字母表示数:在现实生活中,有大量的数量关系和运算关系,我们可以选取适当的字母代替这些数或者数量,从而使问题变得及准确又简单;用运算符号加、减、乘、除、乘方、开方等把数或表示数的字母连接而成的式子叫做代数式;单独的一个数或一个字母也是代数式;注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号;等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义;代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt;②数字与字母相乘时,数字应写在字母前面,如4a;③带分数与字母相乘时,应先把带分数化成假分数,如2×a应写作a;④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷a-4应写作;注意:分数线具有“÷”号和括号的双重作用;⑥在表示和或差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如a2-b2平方米;列代数式的步骤:①抓住表示数量关系的关键词语;②弄清运算顺序;③用运算符号把数与表示数的字母连接;代数式的值把代数式里的字母用数代入,计算后得出的结果叫做代数式的值;求代数式的值:①用数值代替代数式里的字母,简称“代入”;②按照代数式指定的运算关系计算出结果,简称“计算”;注意:①代入时,将相应的字母换成指定的数,运算符号、原来的数及运算顺序都不能改变;②代入时,恢复必要的运算符号,如省略的乘号要还原;③当字母取值为负数时,代入时要注意将该数添加括号;二、整式单项式:由数与字母的积组成的代数式叫做单项式;数字因数叫做这个单项式的系数;所有字母的指数之和叫做这个单项式的次数,如a3b的次数是4;注意:①单独的一个数或一个字母也是单项式;②单独一个非零数的次数是0;③当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1;多项式:几个单项式的和叫做多项式;多项式中,每个单项式叫做多项式的项,组成多项式的单项式个数叫做项数;组成多项式中次数最高的单项式的次数叫做多项式的次数;如a4-ab-b2是四次三项式单项式和多项式统称为整式;整式是代数式的一种类型,识别整式的一个重要依据是分母中不能含有字母升幂排列:把一个多项式的各项按其中一个字母的指数由小到大的顺序排列,叫做把这个多项式按该字母升幂排列;降幂排列:把一个多项式的各项按其中一个字母的指数由大到小的顺序排列,叫做把这个多项式按该字母降幂排列;同类项:含有字母相同,并且相同字母的指数也分别相同的项,叫做同类项;①两个相同:所含字母相同;相同字母的指数也分别相同;②两个无关:同类项与系数无关,与字母的排列顺序无关;注意:常数项都是同类项;合并同类项:把多项式中的同类项合并成一项,叫做合并同类项;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;两个多项式分别经过合并同类项后,如果它们对应项的系数都相等,那么称这两个多项式相等合并同类项的步骤:①第一步,准确的找出代数式中的同类项;②第二步,利用分配律,把同类项的系数相加用小括号,字母和字母的指数不变,没有同类项的项继续照抄下来;③第三步,写出合并后的结果;去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号;去括号法则可用如下口诀:去括号,去括号,看清符号很重要;括号前面是正号,去掉括号是原样;括号前面是负号,去掉括号全变号;添括号法则:添括号是去括号的逆运算:添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变;整式的加法和减法:去括号和合并同类项是整式加法和减法的基础整式的加减法的一般运算步骤:①如果有括号,则先去括号当有多重括号时,可先去小括号,再去中括号,最后去大括号②如果有同类项,再合并同类项如果多项式中没有同类项就不能合并,保留多项式的形式。
初一数学第5讲代数式
第5讲 代数式一、直击考点:考点一、代数式的表示:1.代数式:用运算符号把数和字母连接而成的式子叫做代数式.注意:(1)单独的一个数或一个字母 如a , 0 , 2等也是代数式;(2)代数式中不含= > < ≥ ≤ 符号;2.代数式的规范写法:(1)a ×b 写成ab 或a ·b(省略乘号)(2)1÷a 写成1a(除号用分数线表示) (3) 数字通常写在字母前面;如a ×3通常写成3a 。
(4)带分数一般写成假分数如 115a ⨯写成65a (5)对于和、差的代数式后有单位时应将代数式用括号括起来。
如(t-3)米(6)几个相同因式的积应用乘方表示。
如a ·a ·a 写成a 3问题1、填空题:1.下列式子中是代数式的有 。
(1)21132a +;(2)3>2;(3)13;(4)x=0;(5)3×4-a ;(6)3×4-5=7 2.下列式子符合代数式规范写法的是 。
(1)314a ;(2)a ·3;(3)10%x ;(4)a -b ÷c ;(5)2223a b c-;(6)m -3℃ 3.x 的5倍与y 的和的一半可表示为 。
4.a 与b 的差的3倍再与1的和可以表示为 。
5.a 与b 的3倍的差再与1的和可以表示为 。
6.下列各式哪些是代数式: .(1)3x+7 (2)a 2+9 (3)x+5=m (4)9.72 (5)x>27.下列式子中,符合代数式书写格式的有哪些? .(1)a ×b (2) 2123a (3)1(2)(2)3a b a b ++ (4)t-50C (5)abc 米 (6)a ÷5+3考点二、列代数式表示应用问题:问题2、一种商品,每件成本m 元,将成本增加%n 定出售价,后因仓库积压降价,打9折出售,售价是 元;如果还要保持成本价出售,则n = 。
7年级代数式
7年级代数式摘要:一、代数式的基本概念1.代数式的定义2.代数式的组成部分二、代数式的运算1.代数式的加减法2.代数式的乘除法3.代数式的幂运算三、代数式的化简1.合并同类项2.因式分解四、代数式的应用1.实际问题中的代数式2.几何中的代数式正文:代数式是数学中一种表达式,用于表示数之间的关系。
在七年级的数学课程中,学生们将学习代数式的基本概念和运算方法,为之后的学习打下基础。
一、代数式的基本概念代数式可以简单地理解为用运算符号连接的数或变量。
例如,3x + 2y 就是一个代数式。
其中,3x 表示3 乘以x,2y 表示2 乘以y,两者用加号连接。
在代数式中,还可以包含常数项、负号、乘方等元素。
一个代数式通常由以下几部分组成:1.变量:表示未知数的字母,如x、y、z 等;2.系数:与变量相乘的数,如3、2、-1 等;3.运算符号:连接变量的符号,如加号(+)、减号(-)、乘号(×)、除号(÷)等;4.常数项:不包含变量的项,如1、2、3 等;5.幂运算:表示变量相乘的次数,如x、y等。
二、代数式的运算代数式的运算主要包括加减法、乘除法和幂运算。
1.代数式的加减法:将同类项相加减,例如3x + 2x = 5x,3x - 2x = x;2.代数式的乘除法:将系数与变量相乘除,例如2x × y = 2xy,3x ÷ 2 = 1.5x;3.代数式的幂运算:表示变量相乘的次数,例如x表示x 乘以x,y表示y 乘以y 乘以y。
三、代数式的化简代数式的化简是将复杂的代数式简化为更简单的形式。
主要包括以下两种方法:1.合并同类项:将具有相同变量的项相加减,例如3x + 2x = 5x,3x - 2x = x;2.因式分解:将代数式分解为可约分的因式,例如a - b = (a + b)(a -b)。
四、代数式的应用代数式在实际问题中有广泛的应用,例如在物理、化学、地理等学科中,代数式可以帮助我们更好地理解问题。
初中代数式知识点
初中代数式知识点一、代数式的概念。
1. 定义。
- 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或者一个字母也是代数式。
例如:5,a,3x + 2y,(a)/(b)(b≠0)等都是代数式。
2. 代数式的书写规范。
- 数字与字母相乘时,数字要写在字母前面,乘号可以省略不写。
例如:3× a 应写成3a。
- 带分数与字母相乘时,要把带分数化成假分数。
例如:1(1)/(2)x应写成(3)/(2)x。
- 除法运算一般写成分数形式。
例如:a÷ b应写成(a)/(b)(b≠0)。
二、整式。
1. 单项式。
- 定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如:-2x,5y^2,a,-3等都是单项式。
- 系数:单项式中的数字因数叫做这个单项式的系数。
例如:在单项式-2x 中,系数是-2;在单项式5y^2中,系数是5。
- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如:在单项式-2x中,次数是1;在单项式5y^2中,次数是2。
2. 多项式。
- 定义:几个单项式的和叫做多项式。
例如:3x + 2y,x^2-2x + 1等都是多项式。
- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
例如:在多项式x^2-2x + 1中,x^2、-2x、1都是它的项,其中1是常数项。
- 次数:多项式里次数最高项的次数,叫做这个多项式的次数。
例如:在多项式x^2-2x + 1中,次数最高的项是x^2,次数为2,所以这个多项式的次数是2。
3. 整式的运算。
- 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如:3x^2y与-5x^2y是同类项。
- 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
初一数学代数式知识点
初一数学代数式知识点数与式考点一、实数的相关概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、正负数的意义一般的,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在表示这个量的前面放上“+”,把与它意义相反的量规定为负,并在表示这个量的前面放上“-”;3、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin45o等;4、数轴定义:规定了原点、正方向和单位长度的直线;三要素:原点、正方向、单位长度;5、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
6、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
7、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点二、平方根、算数平方根和立方根1、平方根(1)定义:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
(2)一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
(3)正数a的平方根记做“”。
2、算术平方根(1)定义:正数a的正的平方根叫做a的算术平方根,记作“”。
(2)正数和零的算术平方根都只有一个,零的算术平方根是零。
(0)(3);注意的双重非负性:-(<0)03、立方根(1)定义:如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
初中数学知识归纳代数式的基本概念和运算
初中数学知识归纳代数式的基本概念和运算初中数学知识归纳:代数式的基本概念和运算代数是数学的一个重要分支,它研究的是数与变量之间的关系以及它们之间的运算规律。
而代数式是代数研究中最基本的概念之一,它由常数、变量和运算符号组成。
在初中数学学习中,我们需要了解代数式的基本概念和运算规则,下面将对此进行归纳总结。
一、代数式的基本概念代数式由常数、变量和运算符号组成,它描述了数与变量之间的关系,常用的代数式有以下几种形式:1. 常数:代表具体的数值,如2、3.14等。
2. 变量:用字母表示的未知数,如x、y等。
3. 系数:代表变量的倍数,与变量相乘的数,如2x中的2就是系数。
4. 幂次:表示变量的指数,如x²表示x的平方。
5. 等号:表示两个代数式相等的关系,如x + 2 = 5。
二、代数式的运算规则1. 加法和减法:代数式的加法和减法遵循交换律和结合律,可以将同类项合并。
例如,对于代数式3x + 2y - x + 4y,通过合并同类项得到2x + 6y。
2. 乘法:代数式的乘法遵循交换律和结合律,可以将同底数幂相乘。
例如,对于代数式2x² * 3x³,可以先将底数相乘得到6x⁵。
3. 除法:代数式的除法可以转化为乘法,即a/b = a * (1/b)。
例如,对于代数式6x⁵ / 2x²,可以转化为6x⁵ * (1/2x²),再进行乘法运算得到3x³。
4. 括号:代数式中的括号用于改变运算顺序。
例如,对于代数式2(x + 3),先计算括号内的和,再与2相乘,得到2x + 6。
5. 平方根:代数式中的平方根用√表示。
例如,对于代数式√(x² + 4),表示对x² + 4进行开方。
6. 四则混合运算:代数式中的四则混合运算按照先乘除后加减的顺序进行。
例如,对于代数式2x + 3(x - 1) / 2,先进行括号内的乘除运算,再与2x进行加法运算。
代数式知识点
代数式知识点代数式知识点概述一、代数式的定义代数式是由数字、字母(代表变量或系数)、和运算符号(加、减、乘、除、乘方、开方等)按照一定的规则组合而成的数学表达式。
例如:3x+2、4a^2 - 5ab + 6b^3、7x^0 等。
二、代数式的分类1. 单项式:只包含一个项的代数式,如 5a、-3b^2。
2. 多项式:由若干个单项式通过加减运算组合而成的代数式,如 x^2 + 3x - 2。
3. 有理式:包含分数形式的代数式,分子和分母都是多项式,如(x+2)/(x-1)。
4. 无理式:包含根号的代数式,如√(x+3)。
三、代数式的运算规则1. 加法与减法:- 同类项可以相互合并,不同类项保持不变。
- 合并同类项时,系数相加或相减,字母与指数不变。
- 去括号法则:正负号影响括号内的每一项。
2. 乘法:- 单项式乘单项式:系数相乘,相同字母的指数相加,其余不变。
- 单项式乘多项式:将单项式的每一项分别与多项式的每一项相乘,然后合并同类项。
- 多项式乘多项式:使用分配律,将第一个多项式的每一项分别与第二个多项式相乘,然后合并同类项。
3. 除法:- 多项式除单项式:将多项式的每一项都除以单项式,然后将结果相加。
- 多项式除多项式:需要使用长除法或待定系数法。
4. 乘方:- 幂的乘方:底数不变,指数相乘。
- 积的乘方:每个因数分别取方,然后将结果相乘。
四、代数式的简化1. 合并同类项:将具有相同字母和指数的项合并。
2. 应用运算法则:正确使用加法、乘法、除法和乘方的规则来简化表达式。
3. 因式分解:将多项式分解为若干个单项式的乘积,以简化表达式。
五、代数式的运算技巧1. 使用分配律简化乘法运算。
2. 利用结合律和交换律重新排列运算顺序。
3. 通过观察和试错法找到最佳的因式分解方法。
4. 利用特殊值法检验多项式是否满足特定条件。
六、代数式的应用1. 解方程:通过代数式的运算找到未知数的值。
2. 优化问题:在实际问题中,通过最大化或最小化代数表达式来找到最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007222323++a a 初一数学基础知识讲义第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx 所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x=-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x=2时,635-++cx bx ax =206)14(622235-=--=-++c b a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
例4. 已知012=-+a a ,求2007223++a a 的值.分析:解法一(整体代人):由012=-+a a 得 023=-+a a a所以:20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
由012=-+a a ,得a a -=12,所以:解法三(降次、消元):12=+a a (消元、、减项)20082007120072007)(20072007222222323=+=++=+++=+++=++a a a a a a a a a a a例5.(实际应用)A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司,年薪一万元,每年加工龄工资200元;B 公司,半年薪五千元,每半年加工龄工资50元。
从收入的角度考虑,选择哪家公司有利?分析:分别列出第一年、第二年、第n 年的实际收入(元)第一年:A 公司 10000; B 公司 5000+5050=10050第二年:A 公司 10200; B 公司 5100+5150=10250第n 年:A 公司 10000+200(n-1);B 公司:[5000+100(n-1)]+[5000+100(n-1)+50]=10050+200(n-1)由上可以看出B 公司的年收入永远比A 公司多50元,如不细心考察很可能选错。
例6.三个数a 、b 、c 的积为负数,和为正数,且bcbc ac ac ab ab c c b b a a x +++++=, 则 123+++cx bx ax 的值是_______ 。
解:因为abc<0,所以a 、b 、c 中只有一个是负数,或三个都是负数又因为a+b+c>0,所以a 、b 、c 中只有一个是负数。
不妨设a<0,b>0,c>0则ab<0,ac<0,bc>0所以x=-1+1+1-1-1+1=0将x=0代入要求的代数式,得到结果为1。
同理,当b<0,c<0时,x=0。
另:观察代数式 bcbc ac ac ab ab c c b b a a +++++,交换a 、b 、c 的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a 、b 、c 再讨论。
有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质。
(1)“17”在射线 ____上,“2008”在射线___________上.(2)若n 为正整数,则射线OA 上数字的排列规律可以用含n 的代数式表示为__________________________.分析:OA 上排列的数为:1,7,13,19,…观察得出,这列数的后一项总比前一项多6,归纳得到,这列数可以表示为6n-5因为17=3×6-1,所以17在射线OE 上。
因为2008=334×6+4=335×6-2,所以2008在射线OD 上例8. 将正奇数按下表排成5列:第一列 第二列 第三列 第四列 第五列第一行 1 3 5 7第二行 15 13 11 9第三行 17 19 21 23第四行 31 29 27 25根据上面规律,2007应在A .125行,3列 B. 125行,2列 C. 251行,2列 D . 251行,5列分析:观察第二、三、四列的数的排列规律,发现第三列数规律容易寻找第三列数: 3,11,19,27, 规律为8n-5因为2007=250×8+7=251×8-1所以,2007应该出现在第一列或第五列又因为第251行的排列规律是奇数行,数是从第二列开始从小到大排列,所以2007应该在第251行第5列例9.(2006年嘉兴市)定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为k n 2(其中k 是使k n2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是__________. 分析:问题的难点和解题关键是真正理解“F ”的第二种运算,即当n 为偶数时,结果为k n 2(其中k 是使k n2 为奇数的正整数),要使所得的商为奇数,这个运算才能结束。
449奇数,经过“F ①”变为1352;1352是偶数,经过“F ②”变为169,169是奇数,经过“F ①”变为512,512是偶数,经过“F ②”变为1,1是奇数,经过“F ①”变为8,8是偶数,经过“F ②”变为1,我们发现之后的规律了,经过多次运算,它的结果将出现1、8的交替循环。
再看运算的次数是449,奇数次。
因为第四次运算后都是奇数次运算得到8,偶数次运算得到1,所以,结果是8。
三、小结用字母代数实现了我们对数认识的又一次飞跃。
希望同学们能体会用字母代替数后思维的扩展,体会一些简单的数学模型。
体会由特殊到一般,再由一般到特殊的重要方法。
26 13 44 11 第一次 F ② 第二次 F ① 第三次 F ② …(千字文全文带拼音,共250句,每句4字,总1000字)天地玄黄(tiān dì xuán huáng),宇宙洪荒(yǔ zhòu hóng huāng)。
日月盈昃(rì yuè yíng zè),辰宿列张(chén xiù liè zhāng)。
寒来暑往(hán lái shǔ wǎn g),秋收冬藏(qiū shōu dōng cáng)。
闰馀成岁(rùn yú chéng suì),律吕调阳(lǜ lǚ tiáo yáng)。
云腾致雨(yún téng zhì yǔ),露结为霜(lù jié wéi shuāng)。
金生丽水(jīn shēng lí shuǐ),玉出昆冈(yù chū kūn gāng)。
剑号巨阙(jiàn hào jù què),珠称夜光(zhū chēng yè guāng)。
果珍李柰(guǒ zhēn lǐ nài),菜重芥姜(cài zhòng jiè jiāng)。
海咸河淡(hǎi xián hé dàn),鳞潜羽翔(lín qián yǔ xiáng)。
龙师火帝(lóng shī huǒ dì),鸟官人皇(niǎo guān rén huáng)。
始制文字(shǐzhì wén zì )乃服衣裳(nǎi fú yī shāng)。
推位让国(tuī wèi ràng guó),有虞陶唐(yǒu yú táo táng)。
吊民伐罪(diào mín fá zuì),周发殷汤(zhōu fā yīn tāng)。
坐朝问道(zuò cháo wèn dào),垂拱平章(chuí gǒng pián zhāng)。
爱育黎首(ài yù lí shǒu),臣伏戎羌(chén fú róng qiāng)。
遐迩一体(xiá ěr yī tǐ),率宾归王(shuài bīn guī wáng)。
鸣凤在竹(míng fèng zài zhú),白驹食场(bái jū shí cháng)。
化被草木(huà bèi cǎo mù),赖及万方(lài jí wàn fāng)。
盖此身发(gài cǐ shēn fà),四大五常(sì dà wǔ cháng)。
恭惟鞠养(gōng wéi jū yǎng),岂敢毁伤(qǐ gǎn huǐ shāng)。
女慕贞洁(nǚ mù zhēn jié),男效才良(nán xiào cái liáng)。