高一数学三角函数复习题
高一数学 不等式、基本不等式与三角函数复习题(解析版)
![高一数学 不等式、基本不等式与三角函数复习题(解析版)](https://img.taocdn.com/s3/m/8f4e4390a58da0116c1749a9.png)
0,a,b
的等比中项为
2,则
a
+
1 b
+
b
+
1的最小值为(
a
)
A.3
B.4
C.5
D.4 2
【答案】C
【详解】
∵ a + 1 + b + 1 = (a + b) + a+b = (a + b)(1 + 1 ) = 5 (a + b) ≥ 5 ⋅ 2 ab = 5,
b
a
ab
ab 4
4
等号成立当且仅当 a = b = 2,∴原式的最小值为 5.
(1)∵
a
1
sin
x,
sin
x
,
b
cos
x,1
∴ f x 1 sin x cos x sin x sin x cos x sin x cos x 1 sin 2x
2 ∴ T 2 .
2
(2) g x (1 sin x)cos x sin x sin x cos x sin x cos x
4
8
由图可得 x1 与 x2 关于 x
3 8
对称,
x1 x2
2 3 8
3 4
故选:A
9.已知
sin
6
3 5
,则
cos
4 3
(
)
4
A.
5
【答案】B
3
B.
5
C. 4 5
【详解】
D.- 3 5
cos
4 3
cos(3 2
(
6
)]
sin(
6
新高考第5章 三角函数(典型题专练)高一数学上学期期中期末考试满分全攻略解析版
![新高考第5章 三角函数(典型题专练)高一数学上学期期中期末考试满分全攻略解析版](https://img.taocdn.com/s3/m/8e42fff577a20029bd64783e0912a21614797fba.png)
第5章 三角函数典型题专练一、单选题1.(2021·北京·清华附中高一期末)已知α为第三象限角,则πα-为( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】D【分析】采用一般与特殊的思想,因为α是第三象限角,所以令43πα=,即可判断πα-所在的象限. 【详解】因为α是第三象限角,故可令43πα=,则3ππα-=-,是第四象限角. 故选:D .2.(2021·安徽·六安市裕安区新安中学高一期中)在区间0,2π⎡⎤⎢⎥⎣⎦上,下列说法正确的是( )A .sin y x =是增函数,且cos y x =是减函数B .sin y x =是减函数,且cos y x =是增函数C .sin y x =是增函数,且cos y x =是增函数D .sin y x =是减函数,且cos y x =是减函数 【答案】A【分析】结合正余弦函数的图象和性质即可作出判定.【详解】由正余弦函数的图象可知,在区间0,2π⎡⎤⎢⎥⎣⎦上,sin y x =是增函数,且cos y x =是减函数,故选:A .3.(2021·全国·高一期末)已知锐角α,β满足sin α-cos α=16,tan α+tan βαtan β则α,β的大小关系是( ) A .α<4π<β B .β<4π<α C .4π <α<β D .4π <β<α【答案】B【分析】由两角和与差的正切公式得出α+β=3π,结合sin cos 0αα->,得出α>4π,结合选项可得答案.【详解】∵α为锐角,sin α-cos α=16,∴α>4π.又tan α+tan αtan∴tan(α+β)=tan tan 1tan tan αβαβ+=-3π,又α>4π,∴β<4π<α.故选:B4.(2021·辽宁·铁岭市清河高级中学高一期末)把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =( )A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫-⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭【答案】B【分析】解法一:从函数()y f x =的图象出发,按照已知的变换顺序,逐次变换,得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦,即得2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再利用换元思想求得()y f x =的解析表达式;解法二:从函数sin 4y x π⎛⎫=- ⎪⎝⎭出发,逆向实施各步变换,利用平移伸缩变换法则得到()y f x =的解析表达式.【详解】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin 4y x π⎛⎫=- ⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t x π⎛⎫=- ⎪⎝⎭,则,234212t t x x πππ=+-=+,所以()sin 212t f t π⎛⎫=+ ⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭; 解法二:由已知的函数sin 4y x π⎛⎫=- ⎪⎝⎭逆向变换,第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+ ⎪⎝⎭的图象,即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.5.(2021·山西·高一期末)若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2yx ,[]1,2x ∈与函数2y x ,[]2,1x ∈--即为“同族函数”.下而函数解析式中也能够被用来构造“同族函数”的是( ) A .sin y x = B .3y x = C .x x y e e -=- D .ln y x =【答案】A【分析】对于BCD ,可以考察其单调性,即可否定;对于A,利用三角函数的性质,不难确定可以构造不同的定义域,其值域是相同的.【详解】3y x =,x x y e e -=-,ln y x =分别是定义域内R,R 和(0,+∞)上的都单调递增函数,规定定义域内的不同子集为构造函数的定义域,值域也必然不同,故都不是能够用来构造“同族函数”的函数; sin y x =可构造同族函数,例如sin y x =,[]0,x π∈和sin y x =,0,2x π⎡⎤∈⎢⎥⎣⎦.故选:A6.(2021·山西·高一期末)如图是函数()()sin f x A x =+ωϕ(0A >,0>ω)的部分图象,则( )A .函数()y f x =的最小正周期为2π B .直线512x π=是函数()y f x =图象的一条对称轴 C .点,06π⎛⎫- ⎪⎝⎭是函数()y f x =图象的一个对称中心D .函数3y f x π⎛⎫=- ⎪⎝⎭为奇函数【答案】C【分析】由图象先求得,A 由相邻的最高点与零点的横坐标的差为四分之一周期,求得周期,得到角速度ω的值,由最高点的横坐标求得φ的值,然后逐项判定即得.【详解】由题意可知,根据图像得到,2A =,4312T πππ⎛⎫=-= ⎪⎝⎭,则选项A 错误;22Tπω==,又2sin 221212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,解得262k ππϕπ+=+,k ∈Z ,则23k πϕπ=+,k ∈Z ,即()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,572sin 1126f ππ⎛⎫==- ⎪⎝⎭, 所以直线512x π=不是函数()y f x =图象的一条对称轴,则选项B 错误; 2sin 006f π⎛⎫-== ⎪⎝⎭, 所以点,06π⎛⎫- ⎪⎝⎭是函数()y f x =图象的一个对称中心,选项C 正确;2sin 22sin 23333f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦不是奇函数,所以选项D 错误. 故选:C.7.(2021·安徽·东至县第二中学高一期末)已知tan 2θ=,且)sin cos sin cos tan 22ππθθθθϕϕ⎛⎫+=--<< ⎪⎝⎭,则函数()()sin 2sin 202f x x x x πϕ⎛⎫=-+≤≤ ⎪⎝⎭的值域为( )A .⎡⎢⎣⎦B .⎡⎤⎢⎥⎣⎦C .⎤⎥⎣⎦D .⎡-⎢⎣⎦【答案】B【分析】先由已知条件求出3πϕ=,再化简()f x 的解析式,即可求出值域.【详解】因为tan 2θ=,所以由)sin cos sin cos tan θθθθϕ+=-,可得tan ϕ===22ππϕ-<<,所以3πϕ=.于是()()sin 2sin 2sin 2sin 23f x x x x x πϕ⎛⎫=-+=-+ ⎪⎝⎭11sin 2sin 22sin 22sin 2223x x x x x x π⎛⎫=-==- ⎪⎝⎭,因为02x π≤≤,所以02x ≤≤π,所以()221333x f x πππ-≤-≤⇒≤,故答案为:⎡⎤⎢⎥⎣⎦.8.(2021·宁夏·银川三沙源上游学校高一期末(理))已知函数()cos22sin 1f x x x x R =+-∈,,则函数()f x 最大值为 ( ) A .0 B .12 C .1 D .无最大值【答案】B【分析】利用余弦的二倍解公式转化为关于正弦的二次函数表达式,配方后即可得解.【详解】2211()cos 22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+-=-+=--+ ⎪⎝⎭,当1sin 2x =时,函数()f x 最大值为12. 故选:B.9.(2021·广东高州·高一期末)若tan 34πα⎛⎫-= ⎪⎝⎭,则tan2α=( )A .6B .-6C .43D .43-【答案】C【分析】利用和差的正切公式和二倍角公式,即可求解.【详解】解:tan 1tan 341+tan πααα-⎛⎫-== ⎪⎝⎭,解得tan 2α,22tan 4tan 21tan 3ααα==-, 故选:C10.(2021·贵州·兴仁市凤凰中学高一期末)sin 74sin 46sin16sin 44-=( )A .12 B .12-C D .【答案】A【分析】转化sin 74cos16,sin 46cos 44==,再利用两角和的余弦公式即得解 【详解】由题意,1sin 74sin 46sin16sin 44cos16cos 44sin16sin 44cos 602-=-== 故选:A【点睛】本题考查了三角函数的诱导公式和两角和的余弦公式综合,考查了学生综合分析,数学运算能力,属于基础题11.(2021·安徽·六安市裕安区新安中学高一期中)已知sin 4210πα⎛⎫-=⎪⎝⎭sin α=( )A .1225-B .1225C .2425-D .2425【答案】D【分析】利用换元42παβ=-,利用诱导公式和二倍角公式转化运算即可.【详解】设42παβ=-,则sin 2102πβαβ==-, 2224sin cos 212sin 1210025αββ==-=-⨯=, 故选:D.12.(2021·江苏江都·高一期中)cos54cos 24sin54cos66︒︒+︒︒的值为( )A .12 B C .-12D 【答案】B【分析】先利用诱导公式转化,然后利用两角差的余弦公式化简计算.【详解】原式=cos54cos 24sin 54sin 24cos(5424)cos30︒︒+︒︒=︒-︒=︒= 故选:B.13.(2021·河北·张家口市第一中学高一期中)在ABC 中,90C ∠=︒,3AC =,4BC =,则()cos A B -的值是( ) A .2425B .725C .45D .35【答案】A【分析】由题意,可先求解sin ,cos ,sin ,cos A A B B ,代入()cos cos cos sin sin A B A B A B -=+,即得解 【详解】由题意,在ABC 中,90C ∠=︒,3b =,4a =,222255c a b c ∴=+=∴=4334sin ,cos ,sin ,cos 5555a b b a A A B B c c c c ∴======== 则()344324cos cos cos sin sin 555525A B A B A B -=+=⨯+⨯= 故选:A14.(2021·河南·新蔡县第一高级中学高一期中)已知函数1()(sin cos )cos 2f x a x x x =+-的图象的一条对称轴为6x π=,则下列结论中正确的是( )A .7,012π⎛⎫-⎪⎝⎭是()f x 图象的一个对称中心B .()f x 是最小正周期为π的奇函数C .()f x 在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增D .先将函数2sin 2y x =图象上各点的纵坐标缩短为原来的12,然后把所得函数图象再向左平移6π个单位长度,即可得到函数()f x 的图象 【答案】A【分析】化简函数()f x ,将6x π=代入得函数最值,可求得a =进而可得()sin 26f x x π⎛⎫+ ⎝=⎪⎭,通过计算712f π⎛⎫- ⎪⎝⎭,可判断A ;通过计算()0f ,可判断B ; 当33x ππ-≤≤时,52266x πππ-≤+≤,可得()f x 在,33ππ⎡⎤-⎢⎥⎣⎦上的单调性,可判断C ; 通过振幅变换和平移变换,可判断D.【详解】211()(sin cos )cos sin cos cos 22f x a x x x a x x x =+-=+-()11cos 21sin 22222a x x x ϕ+=+-=+,当6x π=时,()f x 取到最值,即21sin cos cos 2666a πππ+-=解得a =()1cos 212sin 2226x f x x x π+⎛⎫+-=+ ⎪⎝⎭. ()77sin sin 26601f ππππ⎛⎫⎛⎫-=-+=-= ⎪ ⎪⎝⎭⎝⎭,则7,012π⎛⎫- ⎪⎝⎭是()f x 图像的一个对称中心,故A 正确; ()0sin 06f π⎛⎫=≠ ⎪⎝⎭,故()f x 不是奇函数,故B 错误;当33x ππ-≤≤时,52266x πππ-≤+≤,又sin y x =在5,26ππ⎡⎤-⎢⎥⎣⎦上先增后减,则()sin 26f x x π⎛⎫+ ⎝=⎪⎭在,33ππ⎡⎤-⎢⎥⎣⎦上先增后减,故C 错误;将函数2sin 2y x =图象上各点的纵坐标缩短为原来的12,然后把所得函数图象再向左平移6π个单位长度,得12sin 2sin 2263y x x ππ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭,故D 错误. 故选:A二、多选题15.(2021·福建省福州第八中学高一期末)已知函数f (x )=sin (2x +3π),将f (x )图象上每一点的横坐标缩短到原来的12(纵坐标不变),得到函数g (x )的图象,则( ) A .当x =724π时,g (x )取最小值 B .g (x ) 在[12π,3π]上单调递减C .g (x )的图象向左平移24π个单位后对应的函数是偶函数D .直线y =12与g (x )(0<x <32π)图象的所有交点的横坐标之和为194π 【答案】ACD【分析】首先利用伸缩变换得到函数()sin 43g x x π⎛⎫=+ ⎪⎝⎭,再依次利用整体代入的方法,判断AB 是否正确;按照平移变换判断函数()g x 平移后是否是偶函数;令1sin 432x π⎛⎫+= ⎪⎝⎭,计算302x π<<内所有的实数根.【详解】由条件可知()sin 43g x x π⎛⎫=+ ⎪⎝⎭当724x π=时,3432x ππ+=,此时()1g x =-,取得最小值,所以A 正确; 当,123x ππ⎡⎤∈⎢⎥⎣⎦时,254,333x πππ⎡⎤+∈⎢⎥⎣⎦,当234,332x πππ⎡⎤+∈⎢⎥⎣⎦,即7,1224x ππ⎡⎤∈⎢⎥⎣⎦,此时函数单调递减,当354,323x πππ⎡⎤+∈⎢⎥⎣⎦,即7,243x ππ⎡⎤∈⎢⎥⎣⎦时,函数单调递增,故B 不正确;()g x 向左平移24π个单位后得到函数sin 4sin 4cos 42432y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数是偶函数,故C 正确; 1sin 432x π⎛⎫+= ⎪⎝⎭,解得:42,36x k k Z πππ+=+∈,解得:224k x ππ=-,k Z ∈或542,36x k k Z πππ+=+∈,解得:28k x ππ=+,k Z ∈, 因为302x π<<,所以112335,,242424x πππ=或59,,,888x πππ=所以交点的横坐标之和为194π,故D 正确. 故选:ACD【点睛】本题考查三角函数的性质,图象变换,方程实根的综合问题,重点考查整体代入的方法,以及伸缩和平移变换规律,属于中档题型.16.(2021·广东·金山中学高一期末)设函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期为π,且把()f x 的图像向左移6π后得到的图像关于原点对称.现有下列结论,其中正确的是( ) A .函数()f x 的图像关于直线512x π=对称 B .函数()f x 的图像关于点,012π⎛⎫ ⎪⎝⎭对称C .函数()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上单调递增 D .若325f α⎛⎫= ⎪⎝⎭,则71225f πα⎛⎫+= ⎪⎝⎭【答案】AD【分析】首先根据三角函数的性质和图象变换求函数的解析式()sin 23πf x x ⎛⎫=- ⎪⎝⎭,再根据函数的性质,利用整体代入的方法判断ABC 选项, 3sin 235f απα⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,sin 2sin 2121236fππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,利用角的变换,表示22632πππαα⎛⎫-=-+ ⎪⎝⎭,利用二倍角公式和诱导公式求函数值,判断D 选项. 【详解】由条件可知函数的最小正周期为π,所以22ππωω=⇒=,()()sin 2f x x ϕ=+,函数的图象向左平移后得到的函数是sin 26y x πϕ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦, 函数的图象关于原点对称,所以当0x =时,3k πϕπ+=,解得:,3k k Z πϕπ=-+∈,因为2πϕ<,所以3πϕ=-,所以函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭,A.当512x π=时,521232πππ⨯-=,所以函数的图象关于直线512x π=对称正确,A 正确; B.当12x π=时,21236πππ⨯-=-,此时1sin 01262f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不正确; C.当,212x ππ⎡⎤∈--⎢⎥⎣⎦时,432,,33222x πππππ⎡⎤⎡⎤-∈--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,是函数的单调递减区间,所以C 不正确;D.3sin 235f απα⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,sin 2sin 2121236f ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,297sin 2sin 2cos 212sin 12632332525πππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-=--=-⨯= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ,故D 正确.故选:AD【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证次区间是否是函数sin y x =的增或减区间. 17.(2020·广东罗湖·高一期末)已知函数()sin sin f x x x =+,下列说法正确的是( )A .()f x 是偶函数B .()f x 的最大值是2C .()f x 的最小值是1-D .()f x 的最小正周期是π【答案】AB【分析】A.根据奇偶函数的定义判断;B.根据两个函数的最值判断;C.将函数写成分段函数的形式求函数的最小值,D.代入特殊值代入验证. 【详解】A.函数的定义域是R ,并且()()sin sin sin sin f x x x x x -=-+-=+, 即()()f x f x -=,()f x ∴是偶函数,故A 正确; B.当2x π=时,sin y x =和sin y x =同时取到最大值1,所以()f x 的最大值是2,故B 正确;C.当0x >时,()sin sin f x x x =+, ()()[]2sin ,2,20,2,22x x k k f x x k k πππππππ⎧∈+⎪=⎨∈++⎪⎩,k ∈N , 所以当0x ≥时,()0f x ≥,根据函数是偶函数,可知函数()f x 的值域是[)0,+∞, 所以函数的最小值是0,故C 不正确;D.4f π⎛⎫= ⎪⎝⎭555sin sin 0444f πππ⎛⎫=+= ⎪⎝⎭,544f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以函数的周期不是π,故D 不正确. 故选:AB【点睛】思路点睛:本题考查含绝对值三角函数的性质,本题的关键是判断A 选项,难点是判断C 选项,需正确去掉绝对值,再判断函数的最值.18.(2021·安徽·池州市江南中学高一期末)已知函数()sin()f x A x ωϕ=+,0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭部分图象如图所示,下列说法不正确是( )A .()f x 的图象关于直线23x π=对称 B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2cos 2y x x =-的图象向左平移2π个单位得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m 的取值范围是(2,- 【答案】ABC【分析】根据函数()()sin f x A x =+ωϕ的部分图象求出函数解析式,然后根据正弦函数的性质一一判断. 【详解】解:由函数的图象可得2A =,由124312πππω⋅=-,求得2ω=. 再根据五点法作图可得223k πϕππ⨯+=+,又2πϕ<,求得3πϕ=, ∴函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,当23x π=时,()52sin 2sin 33f x ππ⎛⎫==-= ⎪⎝⎭A 不成立; 当512x π=-时,()2sin 22f x π=-=-,不等于零,故B 不成立;将函数2cos 22sin 26y x x x π⎛⎫=-=- ⎪⎝⎭的图象向左平移2π个单位得到函数5sin 2sin 2266y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,故C 不成立;当,02x ⎡⎤∈-⎢⎥⎣⎦π时,22,333x πππ⎡⎤+∈-⎢⎥⎣⎦,∵2sin sin 33ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭sin 12π⎛⎫-=- ⎪⎝⎭,故方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根时,则m 的取值范围是(2,-,故D 成立. 故选:ABC.【点睛】本题考查三角函数的图象与性质,解答的关键是由函数()()sin f x A x =+ωϕ的部分图象求出函数解析式,属于基础题.19.(2021·重庆实验外国语学校高一期中)在ABC 中,若2324cos02B Cc b b +-+=,则下列说法正确的是( ) A .A ∠为钝角 B .2222a b c =- C .tan 1tan 3A B =- D .3C π∠≥【答案】BC【分析】选项A ,转化21cos cos 22B C A +-=,结合题干条件,可得3cos 02cA b=>,故可判断; 选项B ,2223cos 22b c a cA bc b +-==,可得2222a b c =-,可判断; 选项C ,转化222222tan tan A a c b B b c a+-=+-,代入2222a b c =-,可判断;选项D ,222223cos 24a b c a b C ab ab +-+==,结合均值不等式和0C π<<,可判断 【详解】21cos()1cos()1cos cos 2222B C B C A Aπ++++--=== 21cos 324cos 324022B C Ac b b c b b +-∴-+=-+⨯= 3cos 02cA b∴=> 02A π∴<<∴A ∠为锐角,故选项A 不正确;又2223cos 22b c a cA bc b +-==,化简得2222a b c =-,故选项B 正确; 222222222222tan cos 2tan i co sin s n s 2a c b A B a a c b ac c A b c a B A b b B b a c+-+-=⋅=⋅=+-+- 将2222a b c =-代入得:2222222222222221(2)3a cb bc c b b c a b c b c+--+-==-+-+--故选项C 正确;222222222223()3222cos 2224b a a b a b ab c a b C ab ab ab ab -+-++-+====≥当且仅当b 时等号成立006C C ππ<<∴<≤,故选项D 不正确故选:BC【点睛】本题考查了解三角形综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题三、填空题20.(2021·北京·清华附中高一期末)已知函数()sin 1f x a x bx =++,若()12f -=,则()1f =_____________. 【答案】0【分析】利用正弦函数的奇偶性可以得到()()112f f +-=,进而得到结果.. 【详解】因为()1sin11f a b =++,()1sin11f a b -=--+,所以()()112f f +-=, 因为()12f -=则()1f =0, 故答案为:0.21.(2021·山西·高一期末)已知函数()sin ,14ln ,1x x f x x x π⎧⎛⎫≤⎪ ⎪=⎝⎭⎨⎪>⎩,则()()f f e =_______.【分析】根据分段函数的解析式,先求得()1f e =,再求()1f 即为所求.【详解】()()1ln 1,111sin 4e f e e f π⎛⎫>∴==≤∴== ⎪⎝⎭,,,∴()()()1f f e f ==.故答案为. 22.(2021·宁夏·银川三沙源上游学校高一期末(理))已知α为钝角,cos()4πα-=则sin α=________.【分析】先判定4πα-的范围,利用用角三角函数的关系求得sin 4⎛⎫- ⎪⎝⎭πα44ππαα⎛⎫=-+ ⎪⎝⎭,利用两角和的正弦公式计算求解. 【详解】α为钝角,∴3,444πππα⎛⎫-∈ ⎪⎝⎭,又∵cos 4⎛⎫-= ⎪⎝⎭πα∴sin 4⎛⎫-==⎪⎝⎭πα ∴sin sin sin cos cos sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=23.(2021·江苏江都·高一期中)已知cos 223sin 4απα=⎛⎫+ ⎪⎝⎭,则cos sin -=αα_____________.【分析】利用余弦的二倍角公式22cos2cos sin ααα=-和两角和的正弦公式转化,并利用平方差公式化简即可求得.【详解】22cos 22sin )3sin 422==-=⎛⎫+ ⎪⎝⎭αααπα, 所以cos sin αα-=,. 24.(2021·陕西省黄陵县中学高一期中(理))圆的半径变为原来的12,而弧长不变,则该弧所对的圆心角是原来的____倍. 【答案】2【分析】设改变前后的圆的半径分别为12,r r ,圆心角为,αβ,弧长相等记为l ,利用弧长公式可以求得2βα=. 【详解】设改变前后的圆的半径分别为12,r r ,圆心角为,αβ,弧长相等记为l , 由弧长公式得12lr r αβ,由已知得2112r r =,所以2βα= ∴该弧所对的圆心角是原来的2倍. 故答案为:2.25.(2021·甘肃·兰州市外国语高级中学高一期末)已知tan 3,α=则sin 23sin cos 4cos2αααα-+的值是_________ 【答案】72-【分析】利用二倍角公式先化为α的正余弦的表达式,增添分母“1”化为22sin cos αα+,然后分子分母同时除以2cos α,转化为含有正切的代数式计算.【详解】解:∵tan 3,α=∴原式=()222sin cos 3sin cos 4cos sin -+-αααααα()2222sin cos 4cos sin sin cos -+-=+αααααα2222tan 44tan 3443357tan 131102-+--+-⨯-====-++ααα, 故答案为:72-。
高一数学三角函数试题答案及解析
![高一数学三角函数试题答案及解析](https://img.taocdn.com/s3/m/71dc8725580102020740be1e650e52ea5518ce76.png)
高一数学三角函数试题答案及解析1.已知角为第二象限角,则点位于哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为角为第二象限角,所以,,即点位于第四象限,故选D.2.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A. B. C. D. A=B=C【答案】B【解析】锐角必小于 ,故选B.3.已知角的终边过点,且,则的值为A.B.C.D.【答案】C【解析】因为,所以角的终边在第二,三象限,,从而,即,解得,故选C。
4.若,,则角的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】本题考查三角函数的性质。
由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为5.已知函数相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.(1)求的解析式,并求的对称中心;(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.【答案】(1),对称中心为:,(2)或.【解析】(1)相邻两对称轴间的距离为半周期,由,可得,按三角函数的平移变换,得表达式,函数为奇函数,得值,且过点得值,求出表达式后由性质可得对称中心;(2)由得的范围,将利用换元法换元,将问题转化为一个一元二次方程根的分布问题,利用判别式得不等式解得取值范围.试题解析:(1)由条件得:,即,则,又为奇函数,令,,,,由,得对称中心为:(2),又有(1)知:,则,的函数值从0递增到1,又从1递减回0.令则由原命题得:在上仅有一个实根.令,则需或,解得:或.【考点】1. 性质;2.一元二次方程;3.换元法.6.设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增【答案】A【解析】由得,,又,则,即.当时,,递减,故选A.【考点】函数的解析式,函数的奇偶性,单调性.7.若,且,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】根据且,可得角为第三象限角,故选择C.【考点】三角函数定义.8.已知函数 .(1)求函数的单调递减区间;(2)求函数在区间上的最大值及最小值.【答案】(Ⅰ),;(Ⅱ)取得最大值,取得最小值.【解析】(Ⅰ)先根据两角和余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求单调区间:由解得,最后写出区间形式(Ⅱ)先根据自变量范围确定基本三角函数定义区间:,再根据正弦函数在此区间图像确定最值:当时,取得最小值;当时,取得最大值1.试题解析:(Ⅰ). ……………………………………3分由,,得,.即的单调递减区间为,.……………………6分(Ⅱ)由得,………………………………8分所以. …………………………………………10分所以当时,取得最小值;当时,取得最大值1. ………………………………13分【考点】三角函数性质【思路点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析
![高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析](https://img.taocdn.com/s3/m/6746bf5b31b765ce0508147c.png)
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
高一数学三角函数试题
![高一数学三角函数试题](https://img.taocdn.com/s3/m/f537738727284b73f342501d.png)
高一数学三角函数试题1.不等式sin()>0成立的x的取值范围为( )A.B.C.D.【答案】D【解析】,即,可得,故选D.【考点】解三角不等式2.已知函数(Ⅰ)若求函数的值;(Ⅱ)求函数的值域。
【答案】(1)(2)[ 1 , 2 ]【解析】解:(Ⅰ) 2分6分(Ⅱ) 8分函数的值域为[ 1 , 2 ] 12分【考点】三角函数的性质点评:主要是考查了三角函数的化简和性质的运用,属于基础题。
3.若cosθ>0且tanθ<0,则θ所在的象限为 .【答案】四【解析】若cosθ>0,则为第一或四象限角;若tanθ<0,则θ为第二或四象限角,所以θ所在的象限为四。
【考点】象限角点评:当θ为第一、二象限角时,,当θ为第三、四象限角时,;当θ为第一、四象限角时,,当θ为第二、三象限角时,;当θ为第一、三象限角时,,当θ为第二、四象限角时,。
4.如果角θ的终边经过点那么tanθ的值是()A.B.C.D.【答案】D【解析】直接根据三角函数的定义,求出tanθ的值.根据角的终边经过点,那么可知=,选D.【考点】正切函数的定义点评:本题是基础题,考查正切函数的定义,是送分题5.设函数图像的一条对称轴是直线.(1)求;(2)画出函数在区间上的图像(在答题纸上完成列表并作图).【答案】(1)(2)如图。
【解析】解:(1)的图像的对称轴,(2) 由故函数【考点】正弦函数的图像和性质点评:画三角函数的图像时,常用到五点法。
6.已知tanα=2,则3sin2α+5sinαcosα-2cos2α=.【答案】4【解析】∵tanα=2,∴3sin2α+5sinαcosα-2cos2α=【考点】本题考查了三角公式的化简点评:此类问题应首先将所给式子变形,即将其转化成所求函数式能使用的条件,或者将所求函数式经过变形后再用条件7.(本小题满分12分)已知函数(1)写出函数的最小正周期和对称轴;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)最小正周期,对称轴,;(2)。
专题07 三角函数(单选 多选)-2022-2023学年高一上学期期末数学试题分类汇编
![专题07 三角函数(单选 多选)-2022-2023学年高一上学期期末数学试题分类汇编](https://img.taocdn.com/s3/m/034f0a7ebf23482fb4daa58da0116c175f0e1eed.png)
2022-2023学年高一数学上学期期末分类汇总专题07 三角函数 (单选+多选)一、单选题1.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则512f π⎛⎫⎪⎝⎭的值为( )A .6B .3C .2D .1- 2.已知3cos 45πα⎛⎫-= ⎪⎝⎭,512sin 413πβ⎛⎫+=- ⎪⎝⎭,3,44ππα⎛⎫∈ ⎪⎝⎭,0,4πβ⎛⎫∈ ⎪⎝⎭,则()sin αβ+的值为( ) A .1665- B .5665 C .6365- D .33653.中国折扇有着深厚的文化底蕴.如图所示,在半径为20cm 的半圆O 中作出两个扇形OAB 和OCD ,用扇环形ABDC (图中阴影部分)制作折扇的扇面.记扇环形ABDC 的面积为1S ,扇形OAB 的面积为2S ,当1251S S -OCD 的半径为( )A .()1051cmB .(1035cmC .()551cmD .(35cm4.32tan 3π⎛⎫-⎪⎝⎭的值是( ) A 3B 3C .3-D .35.已知角θ为第四象限角,则点()sin ,tan P θθ位于( ) A .第一象限B .第二象限C .第三象限D .第四象限6.若α是三角形的一个内角,且1sin cos 5αα+=,则三角形的形状为( )A .钝角三角形B .锐角三角形C .直角三角形D .无法确定 7.与390-︒角的终边相同的最小正角是( )A .30-︒B .30︒C .60︒D .330︒8.“06x π<<”是“1sin 2x <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 9.若角α的终边过点(4,3)P -,则2sin cos αα+的值为( ) A .25-B .25C .25-或25D .110.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin 2y x =的图象( )A .向左平移6π个单位 B .向右平移6π个单位 C .向左平移12π个单位 D .向右平移12π个单位11.在直角坐标系中,已知圆C 的圆心在原点,半径等于1 ,点P 从初始位置()0,1开始,在圆C 上按逆时针方向,以角速度2rad /s 9π均速旋转3s 后到达P '点,则P '的坐标为( )A .1,2⎛ ⎝⎭B .21⎫-⎪⎪⎝⎭C .1,2⎛- ⎝⎭D .12⎛⎫- ⎪ ⎪⎝⎭12.已知ln3a =,23πsin 3b =,233c -=,则a ,b ,c 的大小关系是( ). A .a b c >>B .a c b >>C .c b a >>D .c a b >>13.电影《长津湖》中,炮兵雷公牺牲的一幕看哭全网,他的原型是济南英雄孔庆三.因为前沿观察所距敌方阵地较远,需要派出侦察兵利用观测仪器标定目标,再经过测量和计算指挥火炮实施射击.为了提高测量和计算的精度,军事上通常使用密位制来度量角度,将一个圆周分为6000等份,每一等份的弧所对的圆心角叫做1密位.已知我方迫击炮连在占领阵地后,测得敌人两地堡之间的距离是54米,两地堡到我方迫击炮阵地的距离均是1800米,则我炮兵战士在摧毁敌方一个地堡后,为了快速准确地摧毁敌方另一个地堡,需要立即将迫击炮转动的角度α=( ).注:(ⅰ)当扇形的圆心角小于200密位时,扇形的弦长和弧长近似相等;(ⅱ)取π等于3进行计算. A .30密位B .60密位C .90密位D .180密位14.正割()secant 及余割()cosecant 这两个概念是由伊朗数学家阿布尔⋅威发首先引入的.定义正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x ⋅+≥对任意的实数π,2k x x k ⎛⎫≠∈ ⎪⎝⎭Z 均成立,则m 的最小值为( ) A .1B .4C .8D .915.sin390°的值是( )A .12 B C . D .12-16.已知1sin 63πα⎛⎫+= ⎪⎝⎭,且,3παπ⎛⎫∈ ⎪⎝⎭,则5cos 6πα⎛⎫- ⎪⎝⎭的值为( )A .13B .13-C 22D .2217.若sin 0θ>,tan 0θ<,则θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角18.已知角α的终边上有一点P 的坐标是()3,4,则cos 2πα⎛⎫- ⎪⎝⎭的值为( )A .45-B .35C .35D .4519.要得到cos(2)3y x π=-的图像,只需将函数sin 2y x =的图像( )A .向左平移12π个单位 B .向右平移12π个单位 C .向左平移6π个单位 D .向右平移6π个单位 20.已知幂函数()y f x =的图象过点()4,2A ,1sin ,2B m ⎛⎫ ⎪⎝⎭,()sin1,C n ,则m 与n 的大小关系为( )A .m n >B .m n <C .m n =D .不等确定21.已知函数()()sin tan 2R f x x k x k =-+∈,若()13f π=-,则()3f π-=( )A .5B .3C .1D .022.若θ为第二象限角,且()1tan 2θπ-=-1cos 1cos 31sin()1sin()22θθππθθ+---+- )A .4B .-4C .14D .14-23.sin 210=( ) A .12-B .12C .3D 324.水车是一种利用水流的动力进行灌溉的工具,其工作示意图如图所示.设水车的直径为8m ,其中心O 到水面的距离为2m ,水车逆时针匀速旋转,旋转一周的时间是120s .当水车上的一个水筒A 从水中(0A 处)浮现时开始计时,经过t (单位:s )后水筒A 距离水面的高度为()f t (在水面下高度为负数),则(140)f =A .3mB .4mC .5mD .6m25.设,a b R ∈,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为( )A .1-B .C .12-D .026.一个扇形的弧长与面积的数值都是4,则该扇形圆心角(正角)的弧度数为( ) A .4B .3C .2D .127.若()tan 2πα+=,则()()2sin 4sin cos 2παπαα⎛⎫----= ⎪⎝⎭( )A .95-B .75- C .75 D .9528.已知扇形的圆心角为23π,面积为3π,则该扇形的弧长为( ) A .πB .2πC .3D .629.角θ为第一或第四象限角的充要条件是( ) A .sin tan 0θθ< B .cos tan 0θθ< C .sin 0tan θθ> D .sin cos 0>θθ二、多选题30.函数()()sin 2cos2,f x a x b x a b R =+∈,下列结论正确的有( ) A .当0a =,1b =时,()f x 为偶函数;B .当1a =,0b =时,()2f x 在区间0,4π⎛⎫⎪⎝⎭上是单调函数;C .当a =1b时,2xf ⎛⎫⎪⎝⎭在区间()2,2ππ-上恰有4个零点;D .当a =1b =时,设()f x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值为M ,最小值为m ,则1M m +.31.已知函数()()()sin ,sin cos cos ,cos sin x x x f x x x x ⎧≥⎪=⎨>⎪⎩,则下列结论正确的是( )A .()f x 的最小正周期为2πB .()f x 是偶函数C .()f x 在区间54ππ⎛⎫⎪⎝⎭,上单调递增 D .()f x 的对称轴方程为()Z 4x k k ππ=+∈32.已知函数()()sin f x x ωϕ=+(其中0,2πωϕ><),()30,88f f x f ππ⎛⎫⎛⎫-=≤ ⎪ ⎪⎝⎭⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则( ) A .()f x 是偶函数 B .()304f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3 33.已知θ为第一象限角,下述正确的是( )A .02πθ<<B .2θ为第一或第三象限角C .sin tan θθ<D .()1cos sin 2θ>34.已知函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭,下述正确的是( )A .函数12y f x π⎛⎫=- ⎪⎝⎭为偶函数 B .函数()y f x =的最小正周期为πC .函数()y f x = 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值为1D .函数()y f x =的单调递增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦35221cos 1sin x x--的值可能为( ). A .0 B .1 C .2 D .336.设函数()()()cos 0,0πf x x ωϕωϕ=+><<是R 上的奇函数,若()f x 在区间ππ,43⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值可能为( ). A .6B .4C .32D .1237.已知(0,)θπ∈,7sin cos 5θθ-=,则下列结论正确的是( ) A .(2πθ∈,)π B .3cos 5θ=- C .3tan 4θ=- D .2tan 121tan 25θθ=-+38.已知函数()sin f x x =,则下列说法正确的是( ) A .()f x 的图像关于直线2x π=对称 B .(),0π是()f x 图像的一个对称中心C .()f x 的周期为πD .()f x 在区间(,0)2π-单调递减39.设函数()sin()(0)5f x x ωωπ=+>,若()f x 在[]0,π有且仅有5个最值点,则( )A .()f x 在()0,π有且仅有3个最大值点B .()f x 在()0,π有且仅有4个零点C .ω 的取值范围是4353[,)1010 D .()f x 在(0,)20π上单调递增 40.已知()0,θπ∈,且满足12sin cos 25θθ⋅=-,sin cos θθ>,则下列说法正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .4tan 3θ=-C .4tan 3θ= D .1sin cos 5θθ+=41.已知3cos 5α=,()12cos 13αβ+=-,则cos β的值可能为( ) A .5665-B .2065-C .1665- D .156542.对于函数()sin cos sin cos 2x x x xf x ++-=,下列结论正确的是( )A .()f x 是以2π为周期的函数B .()f x 的单调递减区间为()52,2Z 24k k k ππππ⎡⎤++∈⎢⎥⎣⎦C .()f x 的最小值为-1D .()f x ≥的解集是()32,2Z 44k k k ππππ⎡⎤-++∈⎢⎥⎣⎦ 43.已知α是第三象限角,则2α可能是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角44.下列说法正确的有( )A .函数1y x -=的图象不经过第四象限B .函数tan y x =在其定义域上为增函数C .函数2x y =与2x y -=的图象关于y 轴对称D .函数2x y =与2log y x =的图象关于直线y x =对称 45.已知函数()cos cos()f x x x π=+,则下列结论正确的有( )A .()f x 是偶函数B .2π是()f x 的一个周期C .()f x 的最大值为2D .()f x 的最小值为2- 46.设函数()f x 的定义域为D ,如果对任意的1x D ∈,存在2x D ∈,使得12()()2f x f x c +=(c 为常数),则称函数()y f x =在D 上的均值为c ,下列函数中在其定义域上的均值为1的有( )A .3y x =B .tan y x =C .2sin y x =D .y =47.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列说法正确的是( )A .()f x 的最小正周期是πB .()f x 在区间0,3π⎛⎫ ⎪⎝⎭上单调递增C .将函数2sin 2y x =的图象向左平移3π个单位长度,得到函数()f x 的图象D .若方程()f x m =在区间,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则实数m 的取值范围是(2,- 48.下列结论成立的是( )A .1617sincos 78ππ> B .sin470sin115︒>︒ C .cos226sin224︒>︒ D .tan 200tan345︒>︒ 49.已知函数()tan 26πf x x ⎛⎫=- ⎪⎝⎭,则( )A .()f x 的周期为2πB .()f x 的定义域为,Z 3x x k k ππ⎧⎫≠+∈⎨⎬⎩⎭C .43f f ππ⎛⎫⎛⎫>- ⎪ ⎪⎝⎭⎝⎭D .()f x 在,32ππ⎛⎫⎪⎝⎭上单调递增50.关于函数()sin ,024,2x x f x x x π⎧≤≤=⎨->⎩,下列说法正确的是( )A .()1()32f f >B .17()()34f f > C .不等式()1f x >的解集为()2,3D .若存在实数(),,,,a b c d e a b c d e <<<<满足()()()()()f a f b f c f d f e ====,则()()()()()af a bf b cf c df d ef e ++++的取值范围为()0,7专题07 三角函数 (单选+多选)参考答案:1.C【详解】解:由图可知2A 741234T πππ=-=,即T π=,所以22πωπ==, 所以()()22f x x ϕ+,因为函数()()22f x x ϕ+的图象过点,03π⎛⎫⎪⎝⎭,所以sin 203πϕ⎛⎫⨯+= ⎪⎝⎭,又2πϕ<,所以3πϕ=,所以()223f x x π⎛⎫=+ ⎪⎝⎭,所以5722123652212f ππππ⎛⎫⨯+== ⎪⎝⎭⎛⎫= ⎪⎝⎭2.B【详解】因为3,44ππα⎛⎫∈ ⎪⎝⎭,所以,042ππα⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,又3cos 45πα⎛⎫-= ⎪⎝⎭,所以24sin 1cos 445ππαα⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭;因为0,4πβ⎛⎫∈ ⎪⎝⎭,所以,442πππβ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,又512sin sin sin 44413πππβπββ⎛⎫⎛⎫⎛⎫+=++=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以12sin 413πβ⎛⎫+= ⎪⎝⎭, 所以2cos 1si 4135n 4ππββ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,又()44ππβααβ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝=⎭+所以()sin sin 44παβπβα⎡⎤⎛⎫⎛⎫+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣=⎦+cos cos sin s 4444in ππππβαβα⎛⎫⎛⎫⎛⎫⎛⎫+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭⎝=⎝⎭123545613513565⎛⎫=⨯-⨯-= ⎪⎝⎭. 3.A【详解】解:设AOB θ∠=,半圆O 的半径为r ,扇形OCD 的半径为1r ,1251S S -=,∴221211512212r r rθθθ--=221251r r r -- ∴22123562551()r r ---,∴151r r -= 又20cm r =,110(51)cm r ∴=. 4.A【详解】3244tan tan 12tan tan tan 333333πππππππ⎛⎫⎛⎫⎛⎫-=-==+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【详解】因为θ是第四象限角,所以sin 0θ<,tan 0θ<,则点(sin ,tan )θθ位于第三象限, 6.A【详解】解:∵()21sin cos 25αα+=,∴242sin cos 25αα=-, ∵α是三角形的一个内角,则sin 0α>,∴cos 0α<, ∴α为钝角,∴这个三角形为钝角三角形. 7.D【详解】与390︒-角终边相同角的集合为{|390360}k k Z αα︒︒=-+⋅∈,,当2k =时,取得最小正角为330︒. 8.A【详解】06x π<<时,1sin 2x成立,是充分的,但0x =时,1sin 02x =<,不满足6x π<<,必要性不满足,因此是充分不必要条件. 9.B【详解】角α的终边过点(4,3)P -,则34sin ,cos 55αα==-,则22sin cos 5αα+=10.D【详解】解:sin(2)sin 2()612y x x ππ=-=-,故将函数sin 2y x =的图象向右平移12π个单位,可得sin(2)6y x π=-的图象,11.D【详解】点P ()0,1为角2πα=的终边上一点,3s 后点P 按逆时针方向旋转到达P '点,点P '落在角273296πβππ=+⨯=的终边上,71cos cos cos 66βππ==-=,711sin sin sin 662βππ==-=-;故P '的坐标为12⎛⎫- ⎪ ⎪⎝⎭12.B【详解】函数ln y x =在(0,)+∞上单调递增,而3e >,则ln3lne 1a =>=,ππsin 8sin 033b π⎛⎫=-=-=< ⎪⎝⎭,函数3x y =在R 上单调递增,而203-<,则2030331-<<=,即01c <<,所以a c b >>. 13.A【详解】有题意得:1密位=2π160001000=,因为圆心角小于200密位,扇形的弦长和弧长近似相等,所以5431800100α==,因为31301001000÷=,所以迫击炮转动的角度为30密位.【详解】由已知可得22222sin csc tan 15sin cos m x m x x x x ⋅+=+≥,可得422sin 15sin cos x m x x≥-, 因为()Z 2x k k ππ≠+∈,则(]2cos 0,1x ∈,因为()()2242222221cos sin 115sin 151cos 1716cos cos cos cos x x x x x x x x -⎛⎫-=--=-+ ⎪⎝⎭2211716cos 9cos x x ≤-⋅, 当且仅当21cos 4x =时,等号成立,故9m ≥. 15.A【详解】解:根据题意,得()()1sin 390sin 30360sin 302︒=︒+︒=︒=16.C【详解】由51sin sin ()sin()6663πππαπαα⎛⎫⎛⎫-=-+=+= ⎪ ⎪⎝⎭⎝⎭,而,3παπ⎛⎫∈ ⎪⎝⎭,∴5(,)662πππα-∈-,∴25522cos 1sin 66παπα⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭17.B【详解】由sin 0θ>,可得θ的终边在第一象限或第二象限或与y 轴正半轴重合, 由tan 0θ<,可得θ的终边在第二象限或第四象限, 因为sin 0θ>,tan 0θ<同时成立,所以θ是第二象限角. 18.D【详解】依题有22345r =+,∴4sin 5α,∴4cos sin 25παα⎛⎫-== ⎪⎝⎭.19.A 【详解】cos 2sin 2sin 2sin 2332612y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-+=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴需将函数sin 2y x =的图象向左平移12π个单位.20.B【详解】依题意,设()f x x α=,由()42f =得:42α=,解得12α=,则有()f x x =()f x 在[0,)+∞上单调递增,又sin y x =在(0,)2π上单调递增,即10sin sin12<<1sin sin12m n <,B 正确.故选:B 21.A【详解】依题意,令()sin tan g x x k x =-,则()g x 是奇函数,()()2f x g x =+,于是得()()[()2][()2]()()44333333f f g g g g ππππππ+-=++-+=-+=,所以()4()533f f ππ-=-=.22.B【详解】由()1tan 2θπ-=-得:1tan 2θ=-,而θ为第二象限角,则有sin 0θ>,=1cos 1cos 2cos 24sin sin sin tan θθθθθθθ+-=-===- 23.A【详解】试题分析:由诱导公式()1sin 210sin 18030sin 302︒︒︒︒=+=-=-,故选A .24.B【详解】由题设,水车的角速度为2/s 12060ππ=,又水车的直径8m ,中心O 到水面的距离2m ,∴03HOA π∠=,故t (单位:s )后水筒A 距离水面的高度为()24cos()360tf t ππ=-+m , ∴140(140)24cos()4m 360f ππ=-+=. 25.B【详解】由题意可得sin sin cos ()sin cos cos cos sin x x xf x x x x x x ≥⎧=⊗=⎨>⎩当sin cos x x ≥时,即sin cos 04x x x π⎛⎫-=-≥ ⎪⎝⎭则22,4k x k k Z ππππ≤-≤+∈,即522,44k x k k Z ππππ+≤≤+∈ 此时当52,4x k k Z ππ=+∈时,sin x有最小值为 当cos sin x x >时,即sin cos 04x x x π⎛⎫-=-< ⎪⎝⎭则222,4k x k k Z πππππ+<-<+∈,即5922,44k x k k Z ππππ+<<+∈此时,2cos x >;所以()f x 的最小值为226.C【详解】因为一个扇形的弧长与面积的数值都是4, 即4,4S l == 所以22S r l ==,所以圆心角为2lr= 27.B【详解】因为()tan tan 2παα+==所以()()222222cos 4sin cos 14tan 7sin 4sin cos cos 4sin cos 2cos sin 1tan 5παααααπαααααααα--⎛⎫----=-===- ⎪++⎝⎭28.B【详解】设扇形的弧长为l ,半径为r ,根据已知的扇形的圆心角23πα=,面积3S π=, 由扇形的面积公式212S r α=,得2123π23r π=⨯⨯,解得3r =, 由弧长公式2323l r παπ==⨯=, 29.C【详解】若角θ为第一象限角,则sin 0,cos 0,tan 0θθθ>>>, 若角θ为第四象限角,则sin 0,cos 0,tan 0θθθ<><, 所以若角θ为第一或第四象限角,则sin 0tan θθ>; 若sin 0tan θθ>,则sin 0,tan 0θ<θ<或sin 0,tan 0θθ>>,所以角θ为第一或第四象限角. 30.AC【详解】选项A :当0a =,1b =时, ()cos2f x x =,定义域为R ,()()cos(2)cos2f x x x f x -=-==,则()f x 为偶函数.判断正确;选项B :当1a =,0b =时,()2sin 4f x x =.()2sin 4f x x =在0,8π⎛⎫⎪⎝⎭单调递增,在,84ππ⎛⎫ ⎪⎝⎭单调递减. 选项B判断错误;选项C :当3a =1b时,3cos 2sin()26x f x x x π⎛⎫-=- ⎪⎝⎭由2sin()06x π-=,可得,Z 6x k k ππ=+∈,当0k =时,6x π=或6x π=-;当1k =时,76x π=或76x π=-即2x f ⎛⎫⎪⎝⎭在区间()2,2ππ-上恰有4个零点. 判断正确;选项D :a =1b =时,()2cos 22sin(2)6f x x x x π=+=+由04x π≤≤,得22663x πππ≤+≤,则12sin(2)26x π≤+≤ 即()f x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值2M =,最小值1m =,则3M m +=.选项D 判断错误.31.ACD【详解】显然(2)()f x f x π+=,A.正确.画出函数()f x 在π3,22π⎡⎤-⎢⎥⎣⎦的图象,如图所示:22f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,B 错. 在区间54ππ⎛⎫⎪⎝⎭,上sin cos x x >,()sin sin f x x x ==-为增函数,C 正确.由图可知()f x 的对称轴方程为()Z 4x k k ππ=+∈,D 正确.32.BCD【详解】∵08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,∴3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 由08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,Z k ∈,当,1224x ππ⎛⎫∈- ⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++⎪⎝⎭,Z k ∈, ∵()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,故241282Tπππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤, 0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,Z k ∈,()f x 不可能为偶函数,A 错误; 由题可知38x π=是函数的一条对称轴,故3(0)4f f π⎛⎫= ⎪⎝⎭成立,B 正确. 33.BCD【详解】解:因为θ为第一象限角,所以22,Z 2k k k ππθπ<<+∈,故A 错误;,Z 24k k k θπππ<<+∈,当0k =时,024θπ<<,为第一象限角,当1k =时,524θππ<<,为第三象限角, 所以2θ为第一或第三象限角,故B 正确;0sin 1,0cos 1θθ<<<<,所以sin tan sin cos θθθθ=>,故C 正确; ()1cos sin cos1cos32πθ>>=,故D 正确. 34.ACD【详解】解:因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以对于A ,2sin 22cos 212231x x y f x πππ⎡⎤⎛⎫--=- ⎪⎛⎫=-= ⎪⎝⎭⎭⎢⎥⎝⎣⎦,又()cos 2cos2x x -=,所以函数12y f x π⎛⎫=- ⎪⎝⎭为偶函数,故A 正确;对于B ,函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭的最小正周期为22ππ=,所以函数()y f x =的最小正周期为2π,故B 不正确;对于C ,当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,所以1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以[]2sin 22,13x π⎛⎫-∈- ⎪⎝⎭,所以函数()y f x = 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值为1,故C 正确;对于D ,令+22+2232k x k πππππ-≤-≤,解得51212+k x +k ππ-π≤≤π,所以函数()y f x =的单调递增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故D 正确, 35.BD【详解】令222sin cos ()|sin ||cos |1cos 1sin x xf x x x xx==+--,当x 为第一象限角时,sin 0,cos 0x x >>,则()3f x =, 当x 为第二象限角时,sin 0,cos 0x x ><,则()1f x =, 当x 为第三象限角时,sin 0,cos 0x x <<,则()3f x =-, 当x 为第四象限角时,sin 0,cos 0x x <>,则()1f x =-. 36.ACD【详解】∵函数()()()cos 0,0πf x x ωϕωϕ=+><<是R 上的奇函数, ∴()0cos =0f ϕ=,∴=2πϕ,∴()sin f x x ω=-,令(),sin z x f x z ω==-.当6ω=时,ππ3π,,,2432x z x ωπ⎡⎤⎡⎤∈∴=∈⎢⎥⎢⎥⎣⎦⎣⎦,在3π,22π⎡⎤⎢⎥⎣⎦上sin y z =单调递增,∴()f x 单调递减,符合题意,故A 正确;当4ω=时,ππ4,,,433x z x πωπ⎡⎤⎡⎤∈∴=∈⎢⎥⎢⎥⎣⎦⎣⎦,在4,3ππ⎡⎤⎢⎥⎣⎦上sin y z =单调递减,∴()f x 单调递增,不符合题意,故B 错误; 当32ω=时,ππ3π,,,4382x z x πω⎡⎤⎡⎤∈∴=∈⎢⎥⎢⎥⎣⎦⎣⎦,在3π,82π⎡⎤⎢⎥⎣⎦上sin y z =单调递增,∴()f x 单调递减,符合题意,故C 正确; 当12ω=时,πππ,,,4386x z x πω⎡⎤⎡⎤∈∴=∈⎢⎥⎢⎥⎣⎦⎣⎦,在π,86π⎡⎤⎢⎥⎣⎦上sin y z =单调递增,∴()f x 单调递减,符合题意,故D 正确; 37.AD【详解】由(0,)θπ∈,7sin cos 15θθ-=>,得sin 0θ>,cos 0θ<,则(2πθ∈,)π,故A 正确;由7sin cos 5θθ-=,两边平方得:4912sin cos 25θθ-=,则242sin cos 25θθ=-.∵(2πθ∈,)π,则3(,)444πππθ-∈,∴sin cos )4πθθθ-=-∈,又1sin cos 5θθ+==±, 当1sin cos 5θθ+=时,联立1sin cos 57sin cos 5θθθθ⎧+=⎪⎪⎨⎪-=⎪⎩,解得4sin 5θ=,3cos 5θ=-,∴sin 4tan cos 3θθθ==-,24tan 123161tan 2519θθ-==-++;当1sin cos 5θθ+=-时,联立1sin cos 57sin cos 5θθθθ⎧+=-⎪⎪⎨⎪-=⎪⎩,解得3sin 5θ=,4cos 5θ=-,∴sin 3tan cos 4θθθ==-,23tan 12491tan 25116θθ-==-++. 故B 、C 错误,D 正确. 38.ACD【详解】由()|sin()||cos |22f x x x ππ+=+=,()|sin()||cos |22f x x x ππ-=-=,即有()()22f x f x ππ+=-,所以()f x 的图象关于直线2x π=对称,故A 正确;由()()()()sin sin sin sin 2sin 0f x f x x x x x x ππππ++-=++-=+=≠, 故()f x 的图象不关于(,0)π对称,故B 错误.由()|sin()||sin ||sin |()f x x x x f x ππ+=+=-==,可得()f x 的周期为π,故C 正确; 当(,0)2x π∈-时,sin y x =,单调递增且sin 0y x =<;所以()|sin |f x x =在区间[,0]2π-单调递减,故D 正确. 39.ACD【详解】[]0,π,0x ω∈>,0x ωπω∴≤≤,555x πππωπω∴≤+≤+,令5t x πω=+,55t πππω∴≤≤+,画出sin y t =图像进行分析:对于A 选项:由图像可知:()f x 在[]0,π上有且仅有135,,x x x 这3个最大值点,故A 选项正确; 对于B 选项:当9525πππωπ≤+<,即4324105ω≤<时,()f x 在()0,π有且仅有4个零点; 当11552ππππω≤+<,即2453510ω≤<时,()f x 在()0,π有且仅有5个零点,故B 选项不正确;对于C 选项:()f x 在[]0,π有且仅有5个最值点,911252ππππω∴≤+<,43531010ω∴≤<, ω∴的取值范围是4353[,)1010,故C 选项正确;对于D 选项:π0,,020x ω⎛⎫∈> ⎪⎝⎭,π020x ωω∴<<,π55205x πππωω∴<+<+,由C 选项可知43531010ω∴≤<,83ππ93π200205200πω∴≤+<, 932002ππ<,()f x 在π0,20⎛⎫⎪⎝⎭上单调递增,故D 选项正确. 40.ABD【详解】因为()0,θπ∈,且满足12sin cos 025θθ⋅=-<,可得,2πθπ⎛⎫∈ ⎪⎝⎭,所以A 正确, 因为22sin cos 1θθ+=,所以22241sin cos 2sin cos 12525θθθθ++=-=, 222449sin cos 2sin cos 12525θθθθ+-=+=, 所以()21sin cos 25θθ+=,()249sin cos 25θθ-=, 因为sin cos θθ>,sin 0,cos 0θθ><,所以1sin cos 5θθ+=,7sin cos 5θθ-=,所以D 正确, 所以解得43sin ,cos 55θθ==-,所以sin 4tan cos 3θθθ==-,所以B 正确,C 错误,41.AC【详解】因3cos 5α=,则4sin 5α==±,又()12cos 13αβ+=-,则5sin()13αβ+=±, ()12336cos cos 13565αβα+=-⨯=-,而cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++, sin α与sin()αβ+同号,即20sin()sin 65αβα+=,则16cos 65β=-, sin α与sin()αβ+异号,即20sin()sin 65αβα+=-,则56cos 65β=-, 所以cos β的值可能为5665-或1665-. 42.AD【详解】依题意,()sin(2)cos(2)sin(2)cos(2)2()2x x x x f x f x πππππ+++++-++==,()f x 是以2π为周期的函数,A 正确;5sin ,2244()(Z)3cos ,2244x k x k f x k x k x k ππππππππ⎧+≤≤+⎪⎪=∈⎨⎪-<<+⎪⎩,函数sin y x =在5[2,2]24k k ππππ++()k ∈Z 上单调递减,函数cos y x =在[2,2]4k k πππ+()k ∈Z 上单调递减,B 不正确;函数cos y x =在3[2,2]4k k πππ-()k ∈Z 上单调递增,因此,324x k ππ=-()k ∈Z 时,min 2()f x =C 不正确;由()2f x ≥得522(Z)442sin k x k k x ππππ⎧+≤≤+∈⎪⎪⎨⎪≥⎪⎩或322(Z)442cos k x k k x ππππ⎧-<<+∈⎪⎪⎨⎪≥⎪⎩,解522(Z)442sin k x k k x ππππ⎧+≤≤+∈⎪⎪⎨⎪≥⎪⎩得322(Z)44k x k k ππππ+≤≤+∈, 解322(Z)442cos k x k k x ππππ⎧-<<+∈⎪⎪⎨⎪≥⎪⎩得22(Z)44k x k k ππππ-≤<+∈,综上得:322(Z)44k x k k ππππ-≤≤+∈,()2f x ≥3[2,2](Z)44k k k ππππ-+∈,D 正确. 43.BD【详解】因为α是第三象限角,所以3222k k πππαπ+<<+,Z k ∈,3224k k παπππ∴+<<+,Z k ∈, 当k 为偶数时,2α是第二象限角;当k 为奇数时,2α是第四象限角, 44.ACD【详解】对于A :函数1y x -= 的图像经过第一、三象限,故A 正确;对于B :函数tan y x = 的定义域为2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, , 单调递增区间为()22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭,,,故B 错误; 对于C :若()x y , 在2xy = 的图象上,则()x y -, 在2xy -= 的图象上,所以图象关于y 轴对称,故C 正确;对于D :由于2xy = 与2log y x=互为反函数,所以图象关于y x = 对称,故D 正确.45.AC【详解】A :()cos()cos()cos cos()()f x x x x x f x ππ-=-+-=+=且定义域为R ,故()f x 是偶函数,正确; B :2(2)cos(2)cos[(2)]cos cos(2)()f x x x x x f x ππππππ+=+++=++≠,故2π不是()f x 的周期,错误; C :由()cos cos()112f x x x π=+≤+=,且当12x k π=,1k Z ∈时cos 1x =,当22x k =,2k Z ∈时cos 1x π=,故1222k k π=,即120k k ==时等号成立,则当0x =有max ()2f x =.D :同C 分析,()cos cos()112f x x x π=+≥--=-,且当1(21)x k π=+,1k Z ∈时cos 1x =-,当221x k =+,2k Z ∈时cos 1x π=-,故12(21)21k k π+=+,即212121k k π+=+时等号成立,显然π为无理数,212121k k ++为有理数,不可能相等,则()f x 的最小值不为2-. 46.ABD【详解】由题意可得1c =,则12()()12f x f x +=,即12()()2f x f x +=,将问题转化为关于2x 的方程是否存在有解问题,对于A ,3y x =的定义域为R ,则对于任意1R x ∈,关于2x 的方程为33122x x +=,则33212x x =-,2x ,方程一定有解,所以A 正确,对于B ,tan y x =的定义域为,2D x x k k Z ππ⎧⎫=≠+∈⎨⎬⎩⎭,值域为R ,则对于任意1x D ∈,总存在2x D ∈,使得12tan tan 2x x +=,所以B 正确,对于C ,2sin y x =的定义域为R ,值域为[2,2]-,当12x π=-时,1()2f x =-,此时不存在2x R ∈,使12()()2f x f x +=,所以C 错误,对于D,y ={}22D x x =-≤≤,值域为[0,2],则对于任意1x D ∈,关于2x的方程为2,整理得(22242x =-,则总存在2x D ∈满足上式,所以D 正确,47.AD【详解】因为函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期是22ππ=,故A 正确; 当0,3x π⎛⎫∈ ⎪⎝⎭时,2,33x πππ⎛⎫+∈ ⎪⎝⎭,所以()f x 在区间0,3π⎛⎫⎪⎝⎭上不单调递增,故B 错误;将函数2sin 2y x =的图象向左平移3π个单位长度,得到函数22sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,故C 错误;当,02x π⎡⎤∈-⎢⎥⎣⎦时,22,333x πππ⎡⎤+∈-⎢⎥⎣⎦ 所以若方程()f x m =在区间,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则实数m的取值范围是(2,-,故D 正确 48.BD【详解】对于A ,162sinsin 77ππ=,173cos cos sin 888πππ==,230782πππ<<<, 函数sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,则23sin sin 78ππ<,A 不正确; 对于B ,sin 470sin 70=,sin115sin 65=,而0657090<<<, 函数sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,则sin 70sin 65>,B 正确;对于C ,cos 226sin 44=-,sin 224sin 44=-,则cos226sin224︒=︒,C 不正确; 对于D ,tan 200tan 200=>,tan345tan150=-<,即tan 200tan345︒>︒,D 正确. 49.ACD【详解】函数()tan(2)6f x x π=-的最小正周期为2T π=,故A 正确;由262x k k Z πππ-≠+∈,,得23k x k Z ππ≠+∈,, 所以函数()f x 的定义域为23k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,,故B 错误; ()tan(2)tan 34463f ππππ=⨯-==53tan 2tan 3366f ππππ⎛⎫⎛⎫⎛⎫-=-⨯-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()4f π>()3f π-,故C 正确;()32x ππ∈,时,52()626x πππ-∈,,所以()f x 在()32ππ,上单调递增,故D 正确.50.BCD【详解】因函数()sin ,024,2x x f x x x π⎧≤≤=⎨->⎩,则1()|sin |122f π==,(3)431f =-=,A 不正确;13()|sin |33f π==,772()|sin |44f π==,B 正确; 当02x ≤≤时,()01f x ≤≤,则不等式()1f x >化为241x x >⎧⎨->⎩,解得23x <<,()1f x >的解集为()2,3,C正确;因存在实数(),,,,a b c d e a b c d e <<<<满足()()()()()f a f b f c f d f e ====,令()f a t =, 则方程()f x t =有4个互异实根,,,,a b c d e ,即函数()y f x =的图象与直线y t =有4个公共点, 作出函数()y f x =的图象与直线y t =,如图,因当02x ≤≤时,()01f x ≤≤,则01t <<,又()|sin |f x x π=在[0,1]上的图象关于直线12x =对称, 在[1,2]上的图象关于直线32x =对称,因此有:1,3,4a b c d e t +=+==-, 则()()()()()(8)af a bf b cf c df d ef e t t ++++=-,而函数28t t -+在(0,1)上递增,则有0(8)7t t <-<, 所以()()()()()af a bf b cf c df d ef e ++++的取值范围为()0,7,D 正确.。
(完整版)高一数学三角函数测试题
![(完整版)高一数学三角函数测试题](https://img.taocdn.com/s3/m/f6406f61cec789eb172ded630b1c59eef8c79add.png)
高一数学必修4三角函数试题一、选择题(本大题10小题,每小题5分,共50分.只有一项是符合题目要求的)1.cos(60)-的值是 ( )A.12B.12- C. D. 2.下列函数是偶函数且周期为π的是 ( )A. sin y x =B. cos y x =C.tan y x =D. cos 2y x =3.已知sin 0,cos 0θθ<>,则θ的终边在 ( )A.第一象限B. 第二象限C. 第三象限D. 第四象限4.函数()sin f x x =的周期为 ( )A. πB. 2πC. 3πD. 4π 5.已知sin(),cos(),tan()654a b c πππ=-=-=-,则大小关系为 ( ) A. a b c << B. c a b << C. b a c << D. c b a << 6.已知扇形的半径为3,圆心角为120°,则扇形的弧长和面积分别为 ( )A.π、2πB. 2π、3πC. 3π、4πD. 4π、4π7.集合{sin }A y y x ==,{cos }B y y x ==,下列结论正确的是 ( )A. A B =B. A B ⊆C. [1,0)A C B =-D. [1,0]A C B =-8.下列关于正切函数tan y x =的叙述不正确的是 ( )A.定义域为{,}2x x k k Z ππ≠+∈ B. 周期为πC.在(,),22k k k Z ππππ-++∈上为增函数 D.图象不关于点(,0)2k π,k Z ∈对称 9.下列关系式成立的是 ( )A.sin(3)sin παα+= B .tan(5)tan παα-= C.3cos()sin 2παα+= D.3sin()cos 2παα-= 10. 下列不等式成立的是 ( )A. sin1cos1<B. sin 2cos2<C. sin3cos3<D. sin 4cos4<第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.函数2sin(3)6y x π=+的最大值为 . 12.已知1cos 3α=,则sin()2πα-= . 13.已知tan 1α=,(,2)αππ∈,则cos α= .14.函数()sin(3)f x x π=+的最小正周期为 .15.已知sin()y A x ωϕ=+(0,0,)2A πωϕ<><的部分图象,则y = .三、解答题:本大题共6小题,共75分,解答题应写出文字说明、证明过程或演算步骤。
高一数学三角函数试题
![高一数学三角函数试题](https://img.taocdn.com/s3/m/fd8b7a9e9b6648d7c0c74650.png)
高一数学三角函数试题1.已知且则________.【答案】【解析】,因为所以,即。
所以。
【考点】同角三角函数基本关系式。
2.在中,为坐标原点,,,,则面积的最小值为_________.【答案】【解析】,所以,所以。
则,当时,。
【考点】1向量的数量积公式;2向量的模;3同角三角函数关系式;4正弦函数的最值。
3.在△ABC中,角A,B,C的对边分别为,若,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【答案】B【解析】根据正弦定理,可得,根据正弦和角公式有,即,因为三角形中,,所,可得.【考点】正弦定理.4.已知函数的最大值为4,最小值为0,两个对称轴间的最短距离为,直线是其图象的一条对称轴,则符合条件的解析式是A.B.C.D.【答案】B【解析】根据题意,由于函数的最大值为4,最小值为0,在可知A+m=4,-A+m=0,m=2,A=2,由于两个对称轴间的最短距离为为半个周期,则可知周期为,g故w=2,直线是其图象的一条对称轴,结合代入可知,,因此可知解析式为,故选B.【考点】三角函数的性质与解析式点评:主要是考查了三角函数的图象与解析式的关系的运用,属于基础题。
5.已知函数为非零实数,且,则的值为___________________.【答案】2【解析】根据题意,由于函数为非零实数,那么可知函数的周期为2,那么可知 =f(1)=-asin-bsin+4,=f(0)= asin+bsin+4=2,故答案为2.【考点】三角函数的求值点评:主要是考查了诱导公式以及函数周期性的运用,属于基础题。
6.若,则()A.B.C.D.【答案】C【解析】根据题意,由于,故可知答案为C.【考点】二倍角公式点评:主要是考查了二倍角的正弦公式的运用,属于基础题。
7.要使sin-cos=有意义,则m的范围为【答案】【解析】根据题意,由于要使sin-cos=有意义,则只需要,故可知答案为【考点】三角函数的值域点评:本题考查三角函数的值域,不等式的解法,考查计算能力,属于中档题.8.已知函数,若,则与的大小关系是()A.>B.<C.=D.大小与a、有关【答案】B【解析】根据题意,由于函数,若,,故可知=,=,故<,故选B.【考点】三角函数的性质点评:主要是考查了三角函数的性质的意义,单调性比较大小,属于基础题。
第一章三角函数复习题高一上学期数学人教版必修
![第一章三角函数复习题高一上学期数学人教版必修](https://img.taocdn.com/s3/m/70934c1f6d85ec3a87c24028915f804d2b1687e4.png)
三角函数1.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.sin780︒的值为( )A .23-B .23 C .21- D .21 2.下列说法中正确的是( )A .第一象限角都是锐角B .三角形的内角必是第一、二象限的角C 不相等的角终边一定不相同D .},90180|{},90360|{Z k k Z k k ∈︒+︒•==∈︒±︒•=ββαα3.已知角3π的终边上有一点P (1,a ),则a 的值是 ( ) A .3- B .3± C .33 D .34.已知α是第三象限1.已知角α的终边经过点P (m ,4),且cos α=﹣,则m 等于( ) A .﹣ B . ﹣3 C . D 35.已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是( ).A.13 B .23 C .-13 D .-236.若f (sin x )=3-cos 2x ,则f (co s x )=( ).A .3-cos 2xB .3-sin 2xC .3+cos 2xD .3+sin 2x7.函数是( ) A .周期为π的奇函数 B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数8.第三 象限的角,若1tan 2α=,则cos α=( ) A. 5 B. 25 C. 5259.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线20x y -=上,则221sin2cos sin 2θθθ+-=( )A. 15B. 15-C. 25D. 25- 10.已知21tan -=α,则αααα22cos sin cos sin 2-的值是( ) A .34- B .3 C .34 D .3- 11.若函数x y 2sin =的图象向左平移4π个单位得到)(x f y =的图象,则( ) A .x x f 2cos )(= B .x x f 2sin )(=C .x x f 2cos )(-= D .x x f 2sin )(-=12..函数0)(sin(2)(>+=ωϕωx x f ,<-2π)2πϕ<的部分图象如图所示,则ϕω,的值分别是( ) A .2,3π-B .2,6π- C .4,6π- D .4,3π 13.已知函数()()2sin (0,0)f x x ωϕωϕπ=+><<的最小正正期为π,若将()f x 的图象向左平移3π个单位后得到函数()g x 的图象关于y 轴对称,则函数()f x 的图象( )A. 关于直线2x π=对称 B. 关于直线3x π=对称C. 关于点,02π⎛⎫ ⎪⎝⎭对称D. 关于点,03π⎛⎫ ⎪⎝⎭对称 14.已知函数>><+=ωϕω,0)sin()(A x A x f )2||,0πϕ<在一个周期内的图象如图所示.若方程m x f =)(在区间],0[π上有两个不同的实数解21,x x ,则21x x +的值为( )A .3πB .π32C .π34D .3π或π34 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上 ) 15、 =︒300tan _________.16.函设函数()cos f x x =,先将()y f x =纵坐标不变,横坐标变为原来的2倍,再将图象向右平移3π个单位长度后得()y g x =,则()y g x =的对称中心为________17.()tan f x x =在,34ππ⎡⎤-⎢⎥⎣⎦上的最小值为__________. 18...把51999π-表示成)(2Z k k ∈+πθ的形式,使||θ最小的θ的值是______. 19..已知32sin =α,),2(ππα∈,则-αsin(=)2π_______. 三、解答题(本大题共6小题,共60分.解答题应写出文字说明,证明过程或演算步骤) 20.已知函数f (α)=. (1)化简f (α);(2)若α是第三象限角,且cos (α﹣π)=,求f (α).21.已知函数).32sin(2)(π+=x x f(1)求)(x f 的最小正周期;(2)求)(x f 的最小值及取最小值时相应的x 值;(3)求函数)(x f 的单调递增区间.22. (本题8分)设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a , 试确定满足1()2f a =的a 的值,并对此时的a 值求y 的最大值及对应x 的集合。
高一数学三角函数试题
![高一数学三角函数试题](https://img.taocdn.com/s3/m/452766c0580216fc710afda4.png)
高一数学三角函数试题1.已知函数,则函数的图像()A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称【答案】B【解析】时,,则此函数的对称轴为;时,,则此函数的对称中心为。
分析可知B正确。
【考点】1两角和差公式;2余弦函数图像的性质。
2.振动量y=sin(ωx+φ)(ω>0)的初相和频率分别是-π和,则它的相位是________.【答案】3πx-π【解析】∵f=,∴T=,∴ω==3π,又φ=-π,∴y=sin(3πx-π),∴振动量y的相位是3πx-π.3.若函数y=sin(2x+θ)(0≤θ≤π)是R上的偶函数,则θ的值可以是()A.0B.C.D.π【答案】C【解析】∵y=sin(2x+θ)为R上的偶函数,∴θ=kπ+ (k∈Z),∵0≤θ≤π,∴k=0,θ=4.函数f(x)=3sin(3x+φ)在区间[a,b]上是增函数,且f(a)=-2,f(b)=2,则g(x)=2cos(2x+φ)在[a,b]上()A.是增函数B.是减函数C.可以取得最大值D.可以取得最小值【答案】C【解析】由f(x)在[a,b]上为增函数及f(a)=-2,f(b)=2知,g(x)在[a,b]上先增后减,可以取到最大值.5.已知函数f(x)=A cos(ωx+φ)+b(A>0,ω>0,|φ|<)在同一个周期内的图象上有一个最大值点A和一个最小值点B.(1)求f(x)的解析式;(2)经过怎样的平移和伸缩变换可以将f(x)的图象变换为g(x)=cos x的图象.【答案】(1)f(x)=4cos-1.(2)(一)将f(x)图象上各点向上平移1个单位;(二)将所得图象上各点横坐标伸长到原来的2倍,纵坐标缩短到原来的;(三)将所得图象上各点左移个单位,即可得到g(x)=cos x的图象.【解析】(1)由f(x)的最大值点A与最小值点B可知,A==4,b==-1,=-=,∴T==π,∴ω=2.∴f(x)=4cos(2x+φ)-1.将点A代入得:4cos-1=3,∴cos=1,∴+φ=2kπ(k∈Z),∴φ=2kπ-,∵|φ|<,∴φ=-,∴f(x)=4cos-1.(2)依次按下列步骤变换:(一)将f(x)图象上各点向上平移1个单位;(二)将所得图象上各点横坐标伸长到原来的2倍,纵坐标缩短到原来的;(三)将所得图象上各点左移个单位,即可得到g(x)=cos x的图象.6.下列直线中,与函数y=tan的图象不相交的是()A.x=B.y=C.x=D.y=【答案】C【解析】由2x+=kπ+得,x=+(k∈Z),令k=0得,x=.7.ω是正实数,如果函数f(x)=2sinωx在[-,]上是增函数,那么ω的取值范围是________.【答案】0<ω≤【解析】解法一:2kπ-≤ωx≤2kπ+,k=0时,-≤x≤,由题意:-≤-①,≥②,由①得ω≤,由②得ω≥2,∴0<ω≤.解法二:∵ω>0,∴据正弦函数的性质f(x)在[-,]上是增函数,则f(x)在[-,]上是增函数,又f(x)周期T=,由≥得0<ω≤.8.求下列函数的单调区间:(1)y=tan;(2)y=tan2x+1;(3)y=3tan.【答案】(1),k∈Z(2) (k∈Z).(3)(k∈Z).【解析】(1)由kπ-<x-<kπ+得kπ-<x<kπ+ (k∈Z),所以函数的单调递增区间是,k∈Z.(2)由kπ-<2x<kπ+得-<x<+ (k∈Z),所以函数的单调递增区间是 (k∈Z).(3)y=3tan=-3tan,由kπ-<-<kπ+得4kπ-<x<4kπ+,所以函数的单调递减区间是 (k∈Z).9.要得到函数y=sin x的图象,只需将函数y=cos的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】A【解析】y=sin x=cos=cos=cos,∴须将y=cos的图象向右平移个单位.[点评]一般地,正弦与余弦异名函数图象平移时,由cos x为偶函数知,将正弦函数利用sin x=cos化余弦后,结合cos x为偶函数可调整x系数的符号,再考虑平移单位数较简便.本题也可以先作变形y=cos=sin再平移,但此解法不具有一般性.10.观察函数y=sin x的图象可知y=sin x的奇偶性为________函数.【答案】奇【解析】因为根据奇偶性的定义可知sin(-x)=-sinx,因此是奇函数。
高一三角函数经典大题
![高一三角函数经典大题](https://img.taocdn.com/s3/m/494dbdb970fe910ef12d2af90242a8956becaa30.png)
高一三角函数经典大题1. 已知一个直角三角形的斜边长为10,其中一边的长度为6,求另一边的长度。
解:由勾股定理可得,两直角边的平方和等于斜边的平方。
设另一边的长度为x,则有:x^2 + 6^2 = 10^2x^2 = 10^2 - 6^2x^2 = 100 - 36x^2 = 64x = √64x = 8所以另一边的长度为8。
2. 在一个等边三角形ABC中,角A的三均分线和角B的角平分线相交于点D,求角ADC的度数。
解:由于三角形ABC是等边三角形,所以各个角的度数都是60度。
由角平分线的性质可知,角ADC的度数是角A的一半,即30度。
所以角ADC的度数是30度。
3. 已知一条船从A地出发,以每小时15公里的速度沿着河流的方向东行,8小时后到达B地,然后折返,以每小时12公里的速度沿着河流的方向西行,又经过10小时回到A地。
求河流的速度和船在静水中的速度。
解:设河流的速度为x公里/小时,船在静水中的速度为v公里/小时。
根据题意可得,船在静水中的速度减去河流的速度等于船在相对于地面的实际速度。
船在相对于地面的实际速度等于船在河流方向上的速度加上地面的速度。
由于船在静水中的速度减去地面的速度等于船在静水中的速度减去河流的速度,所以船在河流方向上的速度等于地面的速度。
根据题意可得以下等式:v - x = 15v + x = 12将上述两个等式相加可得:2v = 27v = 13.5将v代入第一个等式可得:13.5 - x = 15x = 13.5 - 15x = -1.5所以河流的速度为-1.5公里/小时,船在静水中的速度为13.5公里/小时。
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)
![人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)](https://img.taocdn.com/s3/m/61cf29510a1c59eef8c75fbfc77da26924c59644.png)
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)人教版高一数学必修一第五单元《三角函数》单元练题(含答案)一、单选题1.已知函数$f(x)=\cos 2x+3\sin 2x+1$,则下列判断错误的是()A。
$f(x)$的最小正周期为$\pi$B。
$f(x)$的值域为$[-1,3]$C。
$f(x)$的图象关于直线$x=\dfrac{\pi}{6}$对称D。
$f(x)$的图象关于点$\left(-\dfrac{\pi}{4},0\right)$对称2.已知函数$y=\sin(\omega x+\dfrac{\pi}{2})$在区间$\left[0,\dfrac{\pi}{3}\right]$上单调递增,则$\omega$的取值范围是A。
$\left[0,\dfrac{1}{2}\right]$B。
$\left[\dfrac{1}{2},1\right]$C。
$\left[\dfrac{1}{3},2\right]$D。
$\left[\dfrac{2}{3},3\right]$3.若角$\alpha$的终边过点$P(2,2)$,则$\sin\alpha=$()A。
1B。
-1C。
$\dfrac{1}{\sqrt{10}}$D。
$-\dfrac{1}{\sqrt{10}}$4.若$x$是三角形的最小内角,则函数$y=\sin x+\cos x+\sin x\cos x$的值域是()A。
$[-1,+\infty)$B。
$[1,2]$C。
$[0,2]$D。
$\left[1,\dfrac{2+\sqrt{2}}{2}\right]$5.下列说法正确的个数是()①大于等于,小于等于90的角是锐角;②钝角一定大于第一象限的角;③第二象限的角一定大于第一象限的角;④始边与终边重合的角的度数为$360^\circ$。
A。
1B。
2C。
3D。
46.角$\alpha$的终边经过点$(2,-1)$,则$2\sin\alpha+3\cos\alpha$的值为()A。
高一数学 不等式、基本不等式与三角函数复习题(学生版)
![高一数学 不等式、基本不等式与三角函数复习题(学生版)](https://img.taocdn.com/s3/m/6482c062856a561253d36f35.png)
16.若正数 x, y 满足 x 4 y 2xy 0 ,则 x y 的最小值为______.
三、解答题
17.已知函数
f
(x)
sin(x ) tan(x )
sin(x 3 ) cos(x 2
cos(x 3 )
)
2
.
(1)化简 f (x) ;
(2)若 f ( ) 1 ,求 sin cos 的值. 3
20.解关于
x
的不等式:
(a
2)x x 1
2
0
.
21.已知函数
f
x
A sin
x
x
R,
A
0,
0, 0
2
的图像如图所示.
(1)求函数 f x 的解析式;
(2)求函数 g x
f
x
12
f
x
12
的单调递增区间.
试卷第 3页,总 3页
π 8
cos
x
π 8
的单调递减区间为(
)
A.
kπ
3 4
π,
kπ
7 4
π
,
k
Z
B.
kπ
3 8
π,kπ
7 8
π
,
k
Z
C.
kπ
1 4
π,kπ
3 4
π
,
k
Z
D.
kπ
1 8
π,
kπ
3 8
π
,
k
Z
6.已知 是第二象限角,且 sin( ) 3 ,则 tan 2 的值为( ) 5
4
A.
5
B. 23 7
C. 24 7
高一数学 三角函数试题 含答案
![高一数学 三角函数试题 含答案](https://img.taocdn.com/s3/m/d99e99f0ba4cf7ec4afe04a1b0717fd5360cb2b0.png)
高一数学三角函数试题含答案高一数学必修四三角函数检测题一、选择题1.下列不等式中,正确的是()A。
tan13π < tan13πB。
sinπ。
cos(−π/4)C。
sin(π−1°) < sin1°D。
cos7π/5 < cos(−2π/5)2.函数y=sin(−2x+6π/7)的单调递减区间是()A。
[−π+2kπ,π+2kπ](k∈Z)B。
[π+2kπ,5π+2kπ](k∈Z)C。
[−π+kπ,π+kπ](k∈Z)D。
[π+kπ,5π+kπ](k∈Z)3.函数y=|tanx|的周期和对称轴分别为()A。
π。
x=kπ (k∈Z)B。
π/2.x=kπ (k∈Z)C。
π。
x=kπ+π/2 (k∈Z)D。
π/2.x=kπ+π/2 (k∈Z)4.要得到函数y=sin2x的图象,可由函数y=cos(2x−π/2)()A。
向左平移π/4个长度单位B。
向右平移π/4个长度单位C。
向左平移π/2个长度单位D。
向右平移π/2个长度单位5.三角形ABC中角C为钝角,则有()A。
sinA。
cosBB。
sinA < cosBC。
sinA = cosBD。
sinA与cosB大小不确定6.设f(x)是定义域为R,最小正周期为π的函数,若f(x)=sinx(0≤x≤π),则f(−15π/4)的值等于()A。
1B。
2C。
0D。
−27.函数y=f(x)的图象如图所示,则y=f(x)的解析式为()A。
y=sin2x−1B。
y=2cos3x−1C。
y=sin(2x−π/2)−1D。
y=1−sin(2x−π/2)8.已知函数f(x)=asin(x)−bcos(x)(a、b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4−x)是()A。
偶函数且它的图象关于点(π/2,0)对称B。
偶函数且它的图象关于点(π/4,0)对称C。
奇函数且它的图象关于点(π/4,0)对称D。
奇函数且它的图象关于点(π/2,0)对称9.函数f(x)=sinx−3cosx,x∈[−π,π]的单调递增区间是()A。
完整版)高中三角函数测试题及答案
![完整版)高中三角函数测试题及答案](https://img.taocdn.com/s3/m/c6b2063102d8ce2f0066f5335a8102d276a2613f.png)
完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。
$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。
$-\frac{\pi}{3}$C。
$\frac{\pi}{6}$D。
$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。
2B。
$\frac{1}{6164}$C。
$-\frac{1}{6164}$D。
$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。
在 $x$ 轴上B。
在直线 $y=x$ 上C。
在 $y$ 轴上D。
在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。
$-\frac{2}{3}$B。
$\frac{3}{2}$C。
$\frac{1}{2}$D。
$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。
向左平移 $\frac{\pi}{4}$ 个单位B。
向右平移 $\frac{\pi}{4}$ 个单位C。
高一数学三角函数试题
![高一数学三角函数试题](https://img.taocdn.com/s3/m/397c52831711cc7930b71661.png)
高一数学三角函数试题1.已知函数f(x)=cos (x∈R,ω>0)的最小正周期为,为了得到函数g(x)=sinωx的图象,只要将y=f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】∵f(x)最小正周期为,∴=,∴ω=4,∴f(x)=cos=cos4,g(x)=sin4x=cos=cos=cos4,故须将f(x)的图象右移+=个单位长度2.欲得到函数y=cos x的图象,须将函数y=3cos2x的图象上各点()A.横坐标伸长到原来的2倍,纵坐标伸长到原来的3倍B.横坐标缩短到原来的,纵坐标缩短到原来的C.横坐标伸长到原来的2倍,纵坐标缩短到原来的D.横坐标缩短到原来的,纵坐标伸长到原来的3倍【答案】C【解析】按照三角函数的图像的变换可知,将函数y=3cos2x的图象上各点横坐标伸长到原来的2倍,得到y=3cosx,纵坐标缩短到原来的得到y=cosx,可知结论,故选C3.方程sin2x=sin x在区间(0,2π)内解的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】函数y=sin2x与y=sin x的图象交点个数等于方程解的个数.在同一坐标系内作出两个函数y=sin2x,y=sin x在(0,2π)内的图象,如图所示.由图象不难看出,它们有三个交点.所以方程sin2x=sin x在(0,2π)内有三个解.故正确答案为C.4.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M对称,且在区间上是单调函数,求ω和φ的值.【答案】ω=或ω=2. φ=,【解析】∵f(x)=sin(ωx+φ)是R上的偶函数,∴φ=+kπ,k∈Z.又∵0≤φ≤π,∴φ=,∴f(x)=sin=cosωx.∵图象关于点对称,∴cosω=0.∴ω=+nπ,n∈Z.∴ω=+n,n∈Z.又∵f(x)在区间上是单调函数,∴≥-0,即×≥,∴ω≤2.又∵ω>0,∴ω=或ω=2.5.函数f(x)=的定义域为()A.B.C.D.【答案】A【解析】由 (k∈Z)得,∴x≠π且x≠π,∴x≠,k∈Z,∴选A.6.ω是正实数,如果函数f(x)=2sinωx在[-,]上是增函数,那么ω的取值范围是________.【答案】0<ω≤【解析】解法一:2kπ-≤ωx≤2kπ+,k=0时,-≤x≤,由题意:-≤-①,≥②,由①得ω≤,由②得ω≥2,∴0<ω≤.解法二:∵ω>0,∴据正弦函数的性质f(x)在[-,]上是增函数,则f(x)在[-,]上是增函数,又f(x)周期T=,由≥得0<ω≤.7.函数y=2sin x与函数y=x图象的交点有()A.2个B.3个C.4个D.5个【答案】B【解析】在同一坐标系中作出函数y=2sin x与y=x的图象可见有3个交点.8.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,则=________.【答案】【解析】由已知得sinα=-.∵α是第三象限角,∴cosα=-=-.∴原式===.9. (2010·全国卷Ⅰ理,2)设cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】因为sin80°===,所以tan100°=-tan80°=-=-.10.已知tan(π+α)=-,求下列各式的值.(1);(2)sin(α-7π)·cos(α+5π).【答案】(1)-.(2)-【解析】tan(π+α)=-⇒tanα=-,(1)原式=====-.(2)原式=sin(-6π+α-π)·cos(4π+π+α)=sin(α-π)·cos(π+α)=-sinα·(-cosα)=sinα·cosα===-.11.已知sinθ+cosθ=,θ∈(0,π),求值:(1)tanθ;(2)sin3θ+cos3θ.【答案】(1)tanθ=-,(2)sin3θ+cos3θ=.【解析】∵sinθ+cosθ=,θ∈(0,π),平方得:sinθcosθ=-<0,∴sinθ>0,cosθ<0,且sinθ,cosθ是方程x2-x-=0的两根.解方程得x1=,x2=-,∴sinθ=,cosθ=-.∴(1)tanθ=-,(2)sin3θ+cos3θ=.12.下列命题中为真命题的是()A.三角形的内角必是第一象限角或第二象限角B.角α的终边在x轴上时,角α的正弦线、正切线分别变成一个点C.终边在第二象限的角是钝角D.终边相同的角必然相等【答案】B【解析】三角形的内角有可能是,属非象限角;终边在第二象限的角不一定是钝角;终边相同的角不一定相等,故A、C、D都不正确.13.已知sinα>sinβ,那么下列命题成立的是()A.若α、β是第一象限角,则cosα>cosβB.若α、β是第二象限角,则tanα>tanβC.若α、β是第三象限角,则cosα>cosβD.若α、β是第四象限角,则tanα>tanβ【答案】D【解析】如图(1),α、β的终边分别为OP、OQ,sinα=MP>NQ=sinβ,此时OM<ON,∴cosα<cosβ,故A错;如图(2),OP、OQ分别为角α、β的终边,MP>NQ,∴AC<AB,即tanα<tanβ,故B错;如图(3),角α,β的终边分别为OP、OQ,MP>NQ即sinα>sinβ,∴ON>OM,即cosβ>cosα,故C错,∴选D.14.若α∈[0,2π),且cosα≥,则α的取值范围是______.【答案】[0,]∪[,2π)【解析】如图,OM为[0,2π)内的角和的余弦线,欲使cosα≥,角α的余弦≥OM,当OM伸长时,OP与OQ扫过部分为扇形POQ,∴0≤α≤或≤α<2π.15.利用单位圆写出满足sinα<,且α∈(0,π)的角α的集合是__________________________.【答案】∪【解析】作出正弦线如图.MP=NQ=,当sinα<时,角α对应的正弦线MP、NQ缩短,∴0<α<或<α<π.16.利用三角函数线比较下列各组数的大小:(1)sin与sin;(2)tan与tan.【答案】(1)sin>sin.(2)tan<tan.【解析】如图所示,角的终边与单位圆的交点为P,其反向延长线与单位圆的过点A的切线的交点为T,作PM⊥x轴,垂足为M,sin=MP,tan=AT;的终边与单位圆的交点为P′,其反向延长线与单位圆的过点A的切线交点为T′,作P′M′⊥x轴,垂足为M′,则sin=M′P′,tan=AT′,由图可见,MP>M′P′>0,AT<AT′<0,∴(1)sin>sin.(2)tan<tan.17.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是()A.2B.sin2C.D.2sin1【答案】C【解析】如图,∠AOB=2弧度,过O点作OC⊥AB于C,并延长OC交于D.∠AOD=∠BOD=1弧度,且AC=AB=1,在Rt△AOC中,AO==,即r=,从而弧AB的长为l=|α|·r=.∴选C.本题是据弧长公式l=|α|r求弧长,需先求半径.18.与600°角终边相同的角可表示为(k∈Z)()A.k·360°+220°B.k·360°+240°C.k·360°+60°D.k·360°+260°【答案】B【解析】与600°终边相同的角α=n·360°+600°=n·360°+360°+240°=(n+1)·360°+240°=k·360°+240°,n∈Z,k∈Z.∴选B.19.在(-360°,0°)内与角1250°终边相同的角是()A.170°B.190°C.-190°D.-170°.【答案】C【解析】与1250°角的终边相同的角α=1250°+k·360°,∵-360°<α<0°,∴-<k<-,∵k∈Z,∴k=-4,∴α=-190°20.-1445°是第________象限角.【答案】四【解析】∵-1445°=-5×360°+355°,∴-1445°是第四象限的角.。
高一数学三角函数测试题
![高一数学三角函数测试题](https://img.taocdn.com/s3/m/c5526949f56527d3240c844769eae009581ba2aa.png)
高一数学三角函数测试题高一数学三角函数测试题一、选择题1、下列四个函数中,以π为最小正周期,且在区间(π,2π)上为减函数的函数是() A. y=sin2x B. y=|cosx| C. y=tanx D. y=cosx2、已知角α的终边过点P(x,-1)(x≠0),且cosα= ,则sinα+tan α的值为() A. 2 B. -2 C. D.3、已知角α的终边过点P(3a,4a),且cosα=- ,则a的值为() A. - B. - C. D. -4、若角α满足,则角α与5弧度的角终边相同的角为() A. 235°B. 145°C. 155°D. 205°二、填空题5、函数y=sin2x+ 的最小正周期为________;最大值为________。
51、已知,则的值为________。
511、在的终边上取一点P(1,-1),则cosθ=________。
三、解答题8、求下列各式的值: (1) cos( - ); (2) cos +sin ; (3) tan245°+·tan60°+sin245°; (4) cos2 +sin2θ-tanθ·cosθ。
四、解答题9、求下列函数的定义域和值域: (1) y=sinx; (2) y=|cosx|; (3) y=cosx; (4) y= 。
五、解答题10、已知函数y=Asin(ωx+φ)(A>0,ω>0)的图象过点(π,0),它的一个最高点的坐标为,该点到相邻最低点的图象与x轴的交点坐标为,且。
(1) 求这个函数的解析式; (2) 当时,求函数的最大值,并写出相应的x的值。
高一数学三角函数专项测试题高一数学三角函数专项测试题一、选择题1、下列函数中,最小正周期为π,且在区间(0,π/4)上单调递增的是 A. sin(2x-π/6) B. sin(x/2-π/6) C. cos(2x-π/6) D.cos(x/2-π/6)2、已知角α的终边过点P(1,-√3),则sin(α-π/2)的值为 A. √3B. -√3C. 2D. -13、已知sinθ+cosθ=1/5,且0≤θ≤π,则sinθ-cosθ的值为 A. -7/5 B. 7/5 C. -1/5 D. 1/54、函数y=sin(2x+π/3)的图像的一条对称轴的方程为 A. x=π/12 B. x=π/6 C. x=π/3 D. x=5π/12二、填空题5、cos(?π/12)=,sin(?5π/12)=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学复习——三角函数【复习要点】1. 了解任意角的概念和弧度制;借助单位圆理解掌握三角函数的定义;理解同角三角函数的基本关系;熟练运用诱导公式。
2. 结合三角函数图象理解三角函数的性质(周期性,单调性,最大和最小值等)。
3. 结合sin()y A x ωϕ=+的图象观察参数的变化对函数图象的影响;能应用三角函数解决一些简单的实际问题。
【例题分析】1.已知2弧度的圆心角所对的弧长为72,则此圆心角所对的扇形面积是____________. 2.方程sin lg x x =的实根个数为 . 3.函数tan()6y x π=-的定义域是 .4.要得到sin(3)y x =-的图象只要把c o s 3s i n3)y x x =-的图象 ( )A. 右移 π4B. 左移 π4C. 右移 π12D. 左移 π125.已知αααααcos 3sin 2cos sin ,2tan +--=则的值是 .6.已知51cos sin ,02=+<<-x x x π.(I )求sin x -cos x 的值;(Ⅱ)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.7.化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.8.函数x x y 24cos sin +=的最小正周期是___________.9.设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。
(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间],0[π上的图像.10.函数2)62sin(3++-=πx y 的单调递减区间是 .【巩固练习】 一、选择题:1.下列不等式中正确的是( ) (A )ππ52tan 53tan> (B )tan 4tan 3> (C )tan 281tan 665>(D ))512tan()413tan(ππ->-2.若x ∈R ,则函数2()33sin cos f x x x =--的 ( ) (A )最小值为0,无最大值 (B )最小为0,最大值为6 (C )最小值为14-,无最大值 (D )最小值为14-,最大值为63.已知奇函数)(x f 在[-1,0]上为单调递增函数,且α、β为锐角三角形的内角,则( ) (A )(cos )(cos )f αf β>(B ))(sin )(sin βαf f > (C ))(cos )(sin βαf f >(D ))(cos )(sin βαf f <4.在①sin y x =;②sin y x =;③sin(2)3y x π=+;④1tan()2y x π=-这四个函数中,最小正周期为π的函数序号为( )(A )①②③ (B )①④(C )②③(D )以上都不对5.给出如下四个函数①)3sin(51)(π-=x x f ②()cos(sin )f x x = ③x x x f 2sin )(= ④xx x f sin 1)sin(tan )(+=其中奇函数的个数是( )(A )1个 (B )2个 (C )3个 (D )4个 6.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为 ( )(A ))48sin(4π+π-=x y (B ))48sin(4π-π=x y (C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y7.在△ABC 中,sin 2sin 2A B =,则△ABC 的形状为 ( )(A )等腰三角形 (B )直角三角形 (C )等腰直角三角形 (D )等腰三角形或直角三角形 8.设(0,2)θπ∈,若sin 0θ<,且cos 20θ<,则θ的取值范围是( )(A )),(23ππ (B )),(4745ππ (C ) ),(ππ223 (D ) ),(434ππ 二、填空题:9. α是第二象限角,P (x ,5)为其终边上一点,且cos x α=,则s i n α的值为 .10. 已知tan 3θ=,则sin 2cos 2θθ-的值是 . 11. 已知7sin αcos α (0απ)13+=<<,则=tan α . 12. 设函数()sin 2f x x =,若()f x t +是偶函数,则t 的最小正值是 . 13. 函数y =sin x +a cos x 的一条对称轴的方程是x =4π,则直线ax +y +1=0的倾斜角为 . 三、解答题:14.设θ ∈(0,π),sin θ+cos θ=12.(1)求sin 4θ+cos 4θ的值; (2)求cos2θ的值.15.若()sin,6n f n π=试求: (1)(1)(2)(2006)f f f +++ 的值 (2)(1)(3)(5)(7)(101)f f f f f ⋅⋅⋅⋅⋅ 的值16.已知函数 f (x ) = sin (2x +6π) + sin (2x -6π)+cos2x +a (a ∈R ) . (1)求函数的最小正周期;(2)求函数的单调递减区间; (3)若x ∈[0,2π]时,f (x )的最小值为-2,求a 的值.17.设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a . (1) 写出()f a 的表达式; (2) 试确定能使1()2f a =的a 值,并求出此时函数y 的最大值.18.如图,ABCD 是一块边长为100m 的正方形地皮,其中AST 是一半径为90m 的扇形小山,其余部分都是平地。
一开发商想在平地上建一个矩形停车场,使矩形的一个顶点在弧ST 上,相邻两边CQ 、CR 落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值。
高一数学复习——三角函数班级 姓名【复习要点】4. 了解任意角的概念和弧度制;借助单位圆理解掌握三角函数的定义;理解同角三角函数的基本关系;熟练运用诱导公式。
5. 结合三角函数图象理解三角函数的性质(周期性,单调性,最大和最小值等)6. 结合sin()y A x ωϕ=+的图象观察参数的变化对函数图象的影响;能应用三角函数解决一些简单的实际问题。
【例题分析】1.已知2弧度的圆心角所对的弧长为72,则此圆心角所对的扇形面积是___4916____. 2.方程sin lg x x =的实根个数为 3个 . 3.函数tan()6y x π=-的定义域是2|,3x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭4.要得到sin(3)y x =-的图象只sin 3)y x x =-的图象 ( D )A. 右移 π4B. 左移 π4C. 右移 π12D. 左移 π125.已知αααααcos 3sin 2cos sin ,2tan +--=则的值是 3 .6.已知51cos sin ,02=+<<-x x x π.(I )求sin x -cos x 的值;(Ⅱ)求xx xx x x cot tan 2cos 2cos 2sin 22sin 322++-的值. 解法一:(Ⅰ)由,251cos cos sin 2sin ,51cos sin 22=++=+x x x x x x 平方得 即 .2549cos sin 21)cos (sin .2524cos sin 22=-=--=x x x x x x 又,0cos sin ,0cos ,0sin ,02<-><∴<<-x x x x x π 故 .57cos sin -=-x x(Ⅱ)xx x x x x xx x x x x sin cos cos sin 1sin 2sin 2cot tan 2cos 2cos 2sin 2sin 3222++-=++-125108)512()2512()sin cos 2(cos sin -=-⨯-=--=x x x x解法二:(Ⅰ)联立方程⎪⎩⎪⎨⎧=+=+.1cos sin ,51cos sin 22x x x由①得,cos 51sin x x -=将其代入②,整理得,012cos 5cos 252=--x x ⎪⎪⎩⎪⎪⎨⎧=-=∴<<-=-=∴.54c o s ,53s i n ,02.54c o s 53c o s x x x x x π 或 故 .57cos sin -=-x x (Ⅱ)x x x x x x cot tan 2cos 2cos 2sin 2sin 322++- xxx x x xsin cos cos sin 1sin 2sin 22++-=125108)53542(54)53()sin cos 2(cos sin -=+-⨯⨯-=--=x x x x7.化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期. 解: )23sin(32)232cos()232cos()(x x k x k x f +π+-π-π++π+π= )23sin(32)23cos(2x x +π++π=x 2cos 4=所以函数f (x )的值域为[]4,4-,最小正周期πωπ==2T8.函数x x y 24cos sin +=的最小正周期是2π. 9.设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。
(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间],0[π上的图像.解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ①②.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得 .,2243222Z k k x k ∈+≤-≤-πππππ 所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为 (Ⅲ)由知)432sin(π-=x y故函数上图像是在区间],0[)(πx f y =10.函数2)62sin(3++-=πx y 的单调递减区间是 [,],63k k k Z ππππ-++∈.【巩固练习】 四、选择题:1.下列不等式中正确的是 ( BD )(A )ππ52tan 53tan> (B )tan 4tan 3> (C )tan 281tan 665>(D ))512tan()413tan(ππ->-2. 若x ∈R ,则函数2()33sin cos f x x x =--的 ( B ) (A )最小值为0,无最大值 (B )最小为0,最大值为6 (C )最小值为14-,无最大值 (D )最小值为14-,最大值为63.已知奇函数)(x f 在[-1,0]上为单调递增函数,且α、β为锐角三角形的内角,则( C )(A )(cos )(cos )f αf β> (B ))(sin )(sin βαf f > (C ))(cos )(sin βαf f >(D ))(cos )(sin βαf f <4.在①sin y x =;②sin y x =;③sin(2)3y x π=+;④1tan()2y x π=-这四个函数中,最小正周期为π的函数序号为( C )(A )①②③ (B )①④(C )②③(D )以上都不对5.给出如下四个函数①)3sin(51)(π-=x x f ②()cos(sin )f x x = ③x x x f 2sin )(= ④xx x f sin 1)sin(tan )(+=其中奇函数的个数是( A )(A )1个 (B )2个 (C )3个 (D )4个 6.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为 ( A )(A ))48sin(4π+π-=x y (B ))48sin(4π-π=x y (C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y7.在△ABC 中,sin 2sin 2A B =,则△ABC 的形状为 ( D ) (A )等腰三角形 (B )直角三角形 (C )等腰直角三角形 (D )等腰三角形或直角三角形 8.设(0,2)θπ∈,若sin 0θ<,且cos 20θ<,则θ的取值范围是( B )(A )),(23ππ (B )),(4745ππ (C ) ),(ππ223 (D ) ),(434ππ 五、填空题:9. α是第二象限角,P (x ,5)为其终边上一点,且cos 4x α=,则sin α的值为4. 10. 已知tan 3θ=,则sin 2cos 2θθ-的值是75. 11. 已知7sin αcos α (0απ)13+=<<,则=tan α125-. 12. 设函数()sin 2f x x =,若()f x t +是偶函数,则t 的最小正值是4π.13. 函数y =sin x +a cos x 的一条对称轴的方程是x =4π,则直线ax +y +1=0的倾斜角为34π.六、解答题:14.设θ ∈(0,π),sin θ+cos θ=12.(1)求sin 4θ+cos 4θ的值; (2)求cos2θ的值.(1)3223(2)-4715. 若()sin,6n f n π=试求: (1)(1)(2)(2006)f f f +++ 的值 (2)(1)(3)(5)(7)(101)f f f f f ⋅⋅⋅⋅⋅ 的值341(2) ()216.已知函数 f (x ) = sin (2x +6π) + sin (2x -6π)+cos2x +a (a ∈R ) . (1)求函数的最小正周期;(2)求函数的单调递减区间; (3)若x ∈[0,2π]时,f (x )的最小值为-2,求a 的值.(1)T =π (2)*k π+6π, k π+32π] (k ∈Z ) (3)a =-117.设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a . (3) 写出()f a 的表达式; (4) 试确定能使1()2f a =的a 值,并求出此时函数y 的最大值.(1) f (a )=21,2,121,22,214, 2.a a a a a a ≤-⎧⎪⎪----<<⎨⎪-≥⎪⎩(2) a =-1, y max =518.如图,ABCD 是一块边长为100m 的正方形地皮,其中AST 是一半径为90m 的扇形小山,其余部分都是平地。