2014中考数学分类汇编:分式方程

合集下载

浙江新中考2014届中考数学总复习课件(7)分式方程

浙江新中考2014届中考数学总复习课件(7)分式方程

3 x 8. (2013· 宁波)解方程: = - 5. 1-x x-1 解:方程两边同乘(x-1),得-3=x-5(x-1). 去括号、化简,得-3= x- 5x+5. 移项、合并同类项,得 4x=8.∴x=2.
经检验 x=2 是原分式方程的解.
考点一
分式方程及其解法
1.分式方程 分母里含有未知数的方程叫做分式方程. 2.解分式方程的基本思想 把分式方程转化为整式方程, 即分式方程― ― → 整 转化 式方程.
解析:∵乙骑自行车的平均速度为 x 千米 /时, ∴甲骑自行车的平均速度为 (x+ 2)千米 /时.∵甲从 A 地到 C 地,A,C 两地间的距离为 110 千米,∴甲从 A 110 地到 C 地用时 小时.∵乙从 B 地到 C 地, B, C x+ 2 100 两地间的距离为 100 千米, ∴乙从 B 地到 C 地用时 x 小时.根据两人同时到达 C 地,即所用时间相等,列 110 100 出方程为 = . 故选 A. x+ 2 x
1 3 7. (2013· 玉林 )方程 - = 0 的解是 ( A ) x- 1 x+ 1 1 A. x= 2 B. x= 1 C. x= D. x=- 2 2 2x 1 8. (2013· 宿迁 )方程 = 1+ 的解是 ( B ) x- 1 x- 1 A. x=- 1 B. x= 0 C. x= 1 D. x= 2
解:设每人每小时的绿化面积是 x 平方米,由题 180 180 意,得 - = 3,解得 x= 2.5.经检验 x= 2.5 6x 6+2x 是原分式方程的解,且符合题意. 答:每人每小时的绿化面积是 2.5 平方米.
能力评估检测
x 2 1. (2013· 荆州)解分式方程 - = 1 时,去 3+x 2+x 分母后可得到( C ) A. x(2+ x)- 2(3+ x)=1 B.x(2+x)- 2= 2+ x C. x(2+ x)- 2(3+ x)=(2+ x)(3+ x) D. x- 2(3+ x)=3+x

中考数学试卷解析分类汇编(第1期)专题7-分式与分式方程

中考数学试卷解析分类汇编(第1期)专题7-分式与分式方程

分式与分式方程一.选择题1.(2015•淄博第10题,4分)若关于x 的方程+=2的解为正数,则m 的取值范围是( )A . m <6B .m >6C . m <6且m ≠0D . m >6且m ≠8考点: 分式方程的解..分析: 先得出分式方程的解,再得出关于m 的不等式,解答即可. 解答: 解:原方程化为整式方程得:2﹣x ﹣m =2(x ﹣2), 解得:x =2﹣, 因为关于x 的方程+=2的解为正数,可得:,解得:m <6,因为x =2时原方程无解, 所以可得,解得:m ≠0. 故选C .点评: 此题考查分式方程,关键是根据分式方程的解法进行分析. 2、(2015•四川自贡,第3题4分)方程-=+2x 10x 1的解是( ) A .1或-1 B .-1 C .0 D .1 考点:解分式方程、分式方程的解.分析:解分式方程关键是去分母化为整式方程来解,但整式方程的解不一定是分式方程的解,要注意代入最简公分母验根(代入最简公分母后所得到值不能为0).略解:去分母:-=2x 10,解得:,==-12x 1x 1;把,==-12x 1x 1代入+=x 10后知=-x 1不是原分式方程的解,原分式方程的解=x 1.故选D .3. (2015•浙江金华,第2题3分)要使分式1x 2+有意义,则x 的取值应满足【 】A . x 2=-B . x 2≠-C . x 2>-D . x 2≠- 【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D .5. (2015•四川省内江市,第5题,3分)函数y =+中自变量x 的取值范围是( )A . x ≤2B .x ≤2且x ≠1 C . x <2且x ≠1 D . x ≠1考点: 函数自变量的取值范围..分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解. 解答: 解:根据二次根式有意义,分式有意义得:2﹣x ≥0且x ﹣1≠0, 解得:x ≤2且x ≠1. 故选:B .点评: 本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6. (2015•浙江省绍兴市,第6题,4分)化简xx x -+-1112的结果是A . 1+xB .11+x C . 1-x D . 1-x x考点:分式的加减法.. 专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x +1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(2015·南宁,第12题3分)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}xx x x Max 12,+=-的解为( ). (A )21- (B )22- (C )2121-+或 (D )121-+或 考点:解分式方程.. 专题:新定义.分析:根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可. 解答:解:当x <﹣x ,即x <0时,所求方程变形得:﹣x =,去分母得:x 2+2x +1=0,即x =﹣1;当x >﹣x ,即x >0时,所求方程变形得:x =,即x 2﹣2x =1,解得:x =1+或x =1﹣(舍去),经检验x =﹣1与x =1+都为分式方程的解.故选D .点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8. (2015山东济宁,8,3分)解分式方程时,去分母后变形正确的为( )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D . 2-(x +2)=3(x -1) 【答案】D 【解析】试题分析: 根据分式方程的特点, 原方程化为:,去分母时,两边同乘以x -1,得:.故选D考点:分式方程的去分母9. (2015•浙江衢州,第18题6分)先化简,再求值:,其中.【答案】解:原式=,当时,原式=【考点】分式的化简求值.【分析】将被除式因式分解,除法变乘法,约分化简,最后代求值即可.10.(2015•甘肃武威,第20题4分)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.11.(2015•广东佛山,第17题6分)计算:﹣.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.(2015•广东广州,第19题10分)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.考点:分式的化简求值;一元一次不等式组的整数解.分析:(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.解答:解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.点评:(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.13、(2015·湖南省常德市,第7题3分)分式方程23122xx x+=--的解为:A 、1B 、2C 、13D 、0【解答与分析】这是分式方程的解法:答案为A14.(2015·湖南省益阳市,第6题5分)下列等式成立的是( )A .+=B .=C . =D . =﹣考点: 分式的混合运算. 专题: 计算题.分析: 原式各项计算得到结果,即可做出判断. 解答: 解:A 、原式=,错误;B 、原式不能约分,错误;C 、原式==,正确;D 、原式==﹣,错误, 故选C点评: 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015·湖南省衡阳市,第4题3分)若分式的值为0,则的值为( ).A .2或-1B .0C .2D .-1二.填空题1.(2015·湖北省孝感市,第11题3分)分式方程351+=x x 的解是 ☆ .考点:解分式方程..专题:方程思想.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得x+3=5x,解得x=.检验:把x=代入x(x+3)=≠0.∴原方程的解为:x=.故答案为:x=.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2015·湖南省衡阳市,第16题3分)方程的解为.[w*ww~.^3、(2015·湖南省常德市,第10题3分)若分式211xx-+的值为0,则x=【解答与分析】这其实就分式方程的解法:211xx-+=0,解之得答案为:x=14.(2015•江苏无锡,第12题2分)化简得.考点:约分.分析:首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.解答:解:==故答案为:.点评:此题主要考查了约分问题,要熟练掌握,解答此题的关键是要明确:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.5.(2015•广东梅州,第16题5分)若=+,对任意自然数n都成立,则a= ,b﹣;计算:m=+++…+= .考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(2015•广东佛山,第12题3分)分式方程的解是3 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2015•甘肃武威,第12题3分)分式方程的解是x=2 .考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.8.(2015·南宁,第14题3分)要使分式11-x 有意义,则字母x 的取值范围是 . 点:分式有意义的条件..分析:分式有意义,分母不等于零.解答:解:依题意得 x ﹣1≠0,即x ≠1时,分式有意义.故答案是:x ≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9.(2015·贵州六盘水,第14题4分)已知0654≠==ab c ,则a c b +的值为 .考点:比例的性质..分析:根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案.解答:解:由比例的性质,得 c =a ,b =A .===.故答案为:.点评:本题考查了比例的性质,利用比例的性质得出a 表示b 、c 是解题关键,又利用了分式的性质.10. (2015·河南,第16题8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .【分析】解答本题应从运算顺序入手,先将括号里通分,能因式分解的进行因式分解,然后将除法变乘法,最后约分化简成最简分式后,将a ,b 的值代入求解.解:原式=abba b a b a -÷--)(22)(……………………………………………………(4分)=b a abb a -⋅-2 =2ab.……………………………………………………(6分)当1,1a b ==时,原式=22152)15(15=-=-+)(.…………(8分)11. (2015·黑龙江绥化,第14题 分)若代数式6265x 2-+-x x 的值等于0 ,则x =_________.考点:分式的值为零的条件..分析:根据分式的值为零的条件可以求出x 的值.解答:解:由分式的值为零的条件得x 2﹣5x +6=0,2x ﹣6≠0,由x 2﹣5x +6=0,得x =2或x =3, 由2x ﹣6≠0,得x ≠3, ∴x =2, 故答案为2.点评:本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(2015•广东省,第12题,4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x , 解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .13.(2015•广东梅州,第15题,3分)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m .考点:分式的加减法.. 专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与b 的值即可;原式利用拆项法变形,计算即可确定出m 的值. 解答:解:=+=,可得2n (a +b )+a ﹣b =1,即,解得:a =,b =﹣; m =(1﹣+﹣+…+﹣)=(1﹣)=, 故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•安徽省,第14题,5分)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论: ①若c ≠0,则 1 a + 1b =1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 (把所有正确结论的序号都选上). 考点:分式的混合运算;解一元一次方程..分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a +b =ab ≠0,∴+=1,此选项正确;②∵a =3,则3+b =3b ,b =,c =,∴b +c =+=6,此选项错误;③∵a =b =c ,则2a =a 2=a ,∴a =0,abc =0,此选项正确;④∵a 、b 、c 中只有两个数相等,不妨a =b ,则2a =a 2,a =0,或a =2,a =0不合题意,a =2,则b =2,c =4,∴a +b +c =8,此选项正确. 其中正确的是①④. 故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.15.(2015•甘肃兰州,第17题,4分)如果k fed c b a ===(0≠++f d b ),且)(3f d be c a ++=++,那么k =_____ 【 答 案 】3【考点解剖】本题考查比例的基本性质【解答过程】因为k f e d c b a ===,且0≠++f d b ,所以fd b ec a f ed c b a k ++++====,而)(3f d b e c a ++=++,即3=++++fd b ec a ,所以3=k 。

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

中考数学复习分式方程应用题(含答案)

中考数学复习分式方程应用题(含答案)

13讲分式方程应用题一、解答题(共26题;共130分)1.(2014•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?2.(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?3.(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.4.(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.5.(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.6.(2016•曲靖)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.7.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.8.(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?9.(2015•随州)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?10.(2017•长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.11.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?12.(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?13.(2017•宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.14.(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.15.(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?16.(2015•雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?17.(2015•宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?18.(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?19.(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?20.(2011•本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?21.(2015•长春)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.22.(2011•葫芦岛)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.23.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?24.(2015•郴州)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.25.(2014•朝阳)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.26.(2014•辽阳)某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.答案解析部分一、解答题1.【答案】【解答】解:该服装厂原计划每天加工x件服装,则实际每天加工1.5x件服装,根据题意,得解这个方程得x=100经检验,x=100是所列方程的根.答:该服装厂原计划每天加工100件服装.【解析】【分析】设原计划每天加工x件衣服,则实际每天加工1.5x件服装,以时间做为等量关系可列方程求解.2.【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.3.【答案】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+ ×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15【解析】【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.4.【答案】解:设乙工程队单独完成这项工程需要x天,依题意有(+ )×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天【解析】【分析】先根据已知条件由等量关系列出方程,再解分式方程即可得到所求的结论.5.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.6.【答案】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.【解析】【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.7.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1+ + ,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时【解析】【分析】根据题意结合行驶的时间的变化得出等式进而求出答案.8.【答案】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【解析】【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.9.【答案】解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:=,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.【解析】【分析】设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.10.【答案】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.【解析】【分析】由"买跳绳的数量比购买排球的数量多30个“可构建方程,用跳绳的单价x表示两个数量,然后二者相减即可.11.【答案】解:(1)设签字笔的单价为x元,笔记本的单价为y元.则可列方程组,解得.答:签字笔的单价为1.5元,笔记本的单价为3.5元.(2)设学校获奖的同学有z人.则可列方程,解得z=48.经检验,z=48符合题意.答:学校获奖的同学有48人.【解析】【分析】(1)由题意可知此题存在两个等量关系,即买1支签字笔价钱+买2个笔记本的价钱=8.5元,买2支签字笔价钱+买3个笔记本的价钱=13.5元,根据这两个等量关系,可列出方程组,再求解;(2)设学校获奖的同学有z人,根据等量关系:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同,可列出方程,再求解.12.【答案】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得= .解得x= .经检验,x= 是原方程的解,且符合题意,则科普类图书平均每本的价格为+5= 元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.13.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:= ,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间= ,B型机器人所用时间= ,由所用时间相等,建立等量关系.14.【答案】解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.【解析】【分析】设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h 列出分式方程,解分式方程即可,注意检验.15.【答案】【解答】解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.【解析】【分析】今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.16.【答案】【解答】解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.【解析】【分析】设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.17.【答案】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.【解析】【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.18.【答案】【解答】解:设乙每小时做的零件数量为x个,甲每小时做的零件数量是x+3,由题意得=解得x=21,经检验x=21是原分式方程的解,则x+3=24.答:甲每小时做24个零件,乙每小时做21个零件.【解析】【分析】由题意可知:设乙每小时做的零件数量为x个,甲每小:时做的零件数量是x+3;根据甲做90个所用的时间=乙做60个所用的时间列出方程求解.19.【答案】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+ = ,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队【解析】【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.本题主要考查的是分式方程的应用、一元一次方程的应用,根据题意列出关于x的方程是解题的关键.20.【答案】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.21.【答案】解:设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,由题意得﹣=2解得:x=10经检验x=10是原方程的解答:原计划平均每月的绿化面积为10 km2.【解析】【分析】设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,根据结果提前2个月完成任务列出方程解答即可.22.【答案】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【解析】【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.23.【答案】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元【解析】【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.24.【答案】【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.【解析】【分析】设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,根据购买了桂花树和樱花树共30棵列方程解答即可.25.【答案】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.【解析】【分析】首先设甲队单独完成这项工程需x天,则乙队单独完成这项工程需2x天,根据题意可得等量关系:甲队6天的工作量+甲、乙合作16天的工作量=1,根据等量关系,列出方程,再解即可.初三复习13讲26.【答案】解:(1)设乙工程队单独完成此项工程需要x天,由题意得:+=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.【解析】【分析】(1)根据题意结合总工作量为1,进而表示出两队每天完成的工作情况,进而得出答案;(2)首先表示出甲、乙两工程队合作的天数,进而利用两队施工费用得出不等式求出即可.- 11 -。

2014年全国中考数学试题解析分类汇编(第三期)07 分式与分式方程

2014年全国中考数学试题解析分类汇编(第三期)07 分式与分式方程

分式与分式方程一、选择题1. (2014•黑龙江龙东,第16题3分)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3考点:分式方程的解..专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.解答:解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选C点评:此题考查了分式方程的解,时刻注意分母不为0这个条件.2. (2014•黑龙江绥化,第14题3分)分式方程的解是()A.x=﹣2B.x=2C.x=1D.x=1或x=2考点:解分式方程.专题:方程思想.分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x﹣2)=﹣1≠0.∴原方程的解为:x=1.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3. (2014•莱芜,第7题3分)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.分析:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,根据用相同的时间甲走40千米,乙走50千米,列出方程.解答:解:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,由题意得,=.故选B.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.4. (2014•青岛,第6题3分)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2B.﹣=2C.﹣=2D.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.5.(2014•河北,第7题3分)化简:﹣=()A.0B.1C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6、(2014•无锡,第3题3分)分式可变形为()A.B.﹣C.D.﹣考点:分式的基本性质.分析:根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.解答:解:分式的分子分母都乘以﹣1,得﹣,故选;D.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.7、(2014•宁夏,第11题3分)甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.分析:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,根据甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程.解答:解:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,由题意得,=.故选B.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.8.(2014•重庆A,第6题4分)关于x的方程=1的解是()A.x=4B.x=3C.x=2D.x=1考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(2014年湖北荆门) (2014•湖北荆门,第10题3分)已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(2014•广西来宾,第8题3分)将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4考点:解分式方程.专题:常规题型.分析:分式方程两边乘以最简公分母x(x﹣2)即可得到结果.解答:解:去分母得:x﹣2=2x,故选A点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(2014•黔南州,第10题4分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.二、填空题1. (2014•黑龙江绥化,第5题3分)化简﹣的结果是﹣.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣=﹣=﹣.故答案为:﹣.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.2. (2014•湖南衡阳,第19题3分)分式方程=的解为x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2=x2﹣x+2x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3. (2014•山西,第12题3分)化简+的结果是.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=+==.故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.4.(2014•乐山,第11题3分)当分式有意义时,x的取值范围为x≠2.考点:分式有意义的条件..分析:分式有意义,分母x﹣2≠0,易求x的取值范围.解答:解:当分母x﹣2≠0,即x≠2时,分式有意义.故填:x≠2.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5. (2014•丽水,第11题4分)若分式有意义,则实数x的取值范围是x≠5.考点:分式有意义的条件.专题:计算题.分析:由于分式的分母不能为0,x﹣5在分母上,因此x﹣5≠0,解得x.解答:解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为x≠5.点评:本题主要考查分式有意义的条件:分式有意义,分母不能为0.6.(2014衡阳,第19题3分)分式方程12x xx x-=+的解为x=。

2014届中考数学总复习——分式、分式方程及应用

2014届中考数学总复习——分式、分式方程及应用

知识点一、分式的概念若A ,B 表示两个整式,且B 中含有 那么式子 就叫做分式 【谈重点】 ①若 ,则分式AB无意义; ②若分式AB=0,则应 且知识点二、分式的基本性质分式的分子分母都乘以(或除以)同一个 的整式,分式的值不变。

1、..a m a m = , a mb m÷÷= (m≠0) 2、分式的变号法则b a-= b= 。

3、 约分:根据 把一个分式分子和分母的 约去叫做分式的约分。

约分的关键是确定分式的分子和分母中的 , 约分的结果必须是 分式或整式。

4、通分:根据 把几个异分母的分式化为 分母分式的过程叫做分式的通分,通分的关键是确定各分母的 。

【谈重点】①最简分式是指 ;2014年中考总复习——分式、分式方程及应用②约分时确定公因式的方法:当分子、分母是单项式时,公因式应取系数的,相同字母的,当分母、分母是多项式时应先再进行约分;③通分时确定最简公分母的方法,取各分母系数的相同字母,分母中有多项式时仍然要先,通分中有整式的应将整式看成是分母为的式子;④约分通分时一定注意“都”和“同时”避免漏乘和漏除项。

知识点三、分式的运算1、分式的乘除①分式的乘法:ba.dc=②分式的除法:badc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =3、分式的乘方:应把分子分母各自乘方:即(ba)m =(1)分式的混合运算:应先算再算最后算有括号的先算括号里面的。

(2)分式求值:①先化简,再求值。

②由化简后的形式直接代数所求分式的值③式中字母表示的数隐含在方程等题设条件中知识点四、分式方程的概念1、概念:分母中含有的方程叫做分式方程2、分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程.(2)解分式方程的一般步骤:①、 ②、 ③、3、增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。

分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

专题07分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01解分式方程----------------------------------------------------------------------------------------------------------------------------1二、考点02分式方程的解-----------------------------------------------------------------------------------------------------------------------11三、考点03分式方程的应用-------------------------------------------------------------------------------------------------------------------16考点01解分式方程一、考点01解分式方程1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川泸州·中考真题)分式方程322x x-=--的解是()A .73x =-B .=1x -C .53x =D .3x =1362x -+=-,39x -=-,3x =,经检验3x =是该方程的解,故选:D .3.(2024·四川德阳·中考真题)分式方程153x x =+的解是()A .3B .2C .32D .344.(2023·辽宁大连·中考真题)解方程311x x x+=--去分母,两边同乘(1)x -后的式子为()A .133(1)x x +=-B .13(1)3x x +-=-C .133x x -+=-D .13(1)3x x+-=【答案】B【分析】本题考查了解分式方程时去分母,找到分式方程的公分母是解题的关键.根据分式方程的解法,两侧同乘(1)x -化简分式方程即可.【详解】解:分式方程的两侧同乘(1)x -得:13(1)3x x +-=-.故选:B .5.(2023·海南·中考真题)分式方程115x =-的解是()A .6x =B .6x =-C .5x =D .5x =-【答案】A【分析】先去分母将分式方程化为整式方程,解方程得到x 的值,再检验即可得到答案.【详解】解:去分母得:15x =-,解得:6x =,检验,当6x =时,510x -=≠,∴原分式方程的解是6x =,故选:A .【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,注意要检验.6.(2023·黑龙江哈尔滨·中考真题)方程231x x =+的解为()A .1x =B .=1x -C .2x =D .2x =-7.(2023·湖南·中考真题)将关于x 的分式方程21x x =-去分母可得()A .332x x -=B .312x x -=C .31x x -=D .33x x-=8.(2023·甘肃兰州·中考真题)方程213x =+的解是()A .1x =B .=1x -C .5x =D .5x =-【答案】B【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得解.【详解】解:去分母得:23x =+,解得=1x -,经检验=1x -是分式方程的解.故选:B .【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解题的关键.9.(2023·上海·中考真题)在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=10.(2024·浙江·中考真题)若11x =-,则x =【答案】3【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:21x =-,移项合并得:3x -=-,解得:3x =,经检验,3x =是分式方程的解,故答案为:311.(2024·北京·中考真题)方程11023x x+=的解为.12.(2024·四川宜宾·中考真题)分式方程301x x +-=的解为.13.(2023·江苏·中考真题)方程1121x -=+的解是.故答案为:2x =-【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解方法.14.(2023·北京·中考真题)方程31512x x=+的解为.【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.15.(2023·江苏苏州·中考真题)分式方程123x x +=的解为x =.【答案】3-【分析】方程两边同时乘以3x ,化为整式方程,解方程验根即可求解.【详解】解:方程两边同时乘以3x ,()312x x +=解得:3x =-,经检验,3x =-是原方程的解,故答案为:3-.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.16.(2023·重庆·中考真题)若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是.17.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y的值是2,则输入x的值是.18.(2022·四川成都·中考真题)分式方程144x x x-+=的解是.19.(2024·福建·中考真题)解方程:122x x +=+-.20.(2024·陕西·中考真题)解方程:2111x x +=--.【答案】3x =-【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可.21.(2024·广东广州·中考真题)解方程:x x=.2522.(2023·西藏·中考真题)解分式方程:1-=.11x x23.(2023·山西·中考真题)解方程:1122x x +=.24.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【点睛】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.25.(2022·江苏苏州·中考真题)解方程:311x x x+=.二、考点02分式方程的解26.(2024·四川遂宁·中考真题)分式方程2111m x x =---的解为正数,则m 的取值范围()A .3m >-B .3m >-且2m ≠-C .3m <D .3m <且2m ≠-27.(2024·黑龙江齐齐哈尔·中考真题)如果关于x 的分式方程01m x x -=+的解是负数,那么实数m 的取值范围是()A .1m <且0m ≠B .1m <C .1m >D .1m <且1m ≠-【答案】A【分析】本题考查了根据分式方程的解的情况求参数,解分式方程求出分式方程的解,再根据分式方程的28.(2024·黑龙江大兴安岭地·中考真题)已知关于x 的分式方程233x x -=--无解,则k 的值为()A .2k =或1k =-B .2k =-C .2k =或1k =D .1k =-29.(2023·山东淄博·中考真题)已知1x =是方程322x x -=--的解,那么实数m 的值为()A .2-B .2C .4-D .430.(2023·黑龙江·中考真题)已知关于x 的分式方程122x x +=--的解是非负数,则m 的取值范围是()A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-31.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-1332.(2024·黑龙江牡丹江·中考真题)若分式方程311x mx x x =-的解为正整数,则整数m 的值为.33.(2024·重庆·中考真题)若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是.34.(2024·四川达州·中考真题)若关于x 的方程122x x --=无解,则k 的值为.35.(2023·四川巴中·中考真题)关于x 的分式方程322x x ++=有增根,则m =.三、考点03分式方程的应用36.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A .200B .300C .400D .50037.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B 两种机器人每小时分别搬运多少干克化工原料?()A.60,30B.90,120C.60,90D.90,6038.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件.可列方程为()A.120120301.2x x-=B.120120301.2x x-=C.120120301.260x x-=D.120120301.260x x-=39.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A.240240102x x-=+B.240240102x x-=-C.240240102x x-=D.240240102x x-=40.(2023·山东青岛·中考真题)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x满足的分式方程为.41.(2023·内蒙古呼和浩特·中考真题)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h,则江水的流速为km/h.42.(2023·湖北武汉·中考真题)我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.43.(2022·江西·中考真题)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.44.(2024·云南·中考真题)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.答:D型车的平均速度为100km/h.45.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B 型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?46.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习47.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?48.(2023·山东济南·中考真题)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A 型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?49.(2023·辽宁沈阳·中考真题)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工8个这种零件.50.(2023·宁夏·中考真题)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:520175301.6x x=+,解得5x=,经检验5x=是原方程的解.乙:5201751.630x x=⨯-,解得65x=,经检验65x=是原方程的解.则甲所列方程中的x表示_______,乙所列方程中的x表示_______;(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?51.(2023·山东·中考真题)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.52.(2023·贵州·中考真题)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.53.(2023·广东·中考真题)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.54.(2023·重庆·中考真题)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?。

2013-2014中考数学复习 第九讲 分式方程(含详细参考答案)

2013-2014中考数学复习 第九讲 分式方程(含详细参考答案)

2013-2014学年度数学中考二轮复习专题卷-分式方程学校:___________姓名:___________班级:___________考号:___________一、选择题1.方程2x 40x 2-=-的解为A .2-B .2C .2±D .12- 2.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=- C .()()2x 231 x -+=- D .()()2x 23x 1-+=-3.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元 4.甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度。

为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确..的是【 】 A .110100x 2x =+ B .110100x x 2=+ C .110100x 2x =- D .110100x x 2=- 5.分式方程12x x 3=+的解是【 】A .x =﹣2B .x =1C .x =2D .x =3 6.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为A .2300230033x 1.3x += B .2300230033x x 1.3x +=+ C .2300460033x x 1.3x +=+ D .4600230033x x 1.3x+=+7.分式方程210x 2x-=-的根是【 】A .x 1=B .x 1=-C .x 2=D .x 2=-8.分式方程12x x 1=+的解为 A .x =3 B .x =2 C .x =1 D .x =﹣1 9.关于x 的分式方程7m3x 1x 1+=--有增根,则增根为【 】 A .x =1 B .x =-1 C .x =3 D .x =-3 10.分式方程53x 2x=-的解是【 】 A .x=3 B .x=﹣3 C .3x 4= D .3x 4=- 11.解分式方程x 213x 2x-=++时,去分母后可得到 A .()()x 2x 23x 1+-+= B .()x 2x 22x +-=+ C .()()()()x 2x 23x 2x 3x ++=++- D .()x 23x 3x -+=+ 12.关于x 的分式方程m1x 1=-+的解是负数,则m 的取值范围是 A .m >﹣1 B .m >﹣1且m ≠0 C .m ≥﹣1 D .m ≥﹣1且m ≠0 13.已知关于x 的方程的解为x =1,则a 等于( ) A . 0.5 B .2 C .﹣2D . ﹣0.514.方程23x 1x=-的解是 A .3 B .2 C .1 D .0 15.方程130x 2x-=-的解为 A .x =2 B .x =-2C .x =3D .x =-316.方程111-=-x x x ( ) A 、解为x=1 B 、无解C 、解为任何实数D 、解为x ≠1的任何实数17.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm .依题意,下面所列方程正确的是 A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 18.周末,几名同学包租一辆面包车前往“黄岗山”游玩,面包车的租价为180元,出发时,又增加了2名学生,结果每个同学比原来少分担3元车费,设原来参加游玩的同学为x 人,则可得方程( )A 、180x -1802x +=3 B 、1802x +-180x =3 C 、180x -1802x -=3 D 、1802x --180x =319.方程1712112-=-++x x x 的根是( ) A.x =1 B.x =-1 C.x =83D.x =220.已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为 A .内含B .内切C .相交D .外切二、填空题21.方程15x 12x 1=-+的解为 . 22.分式方程120x-=的解不 。

中考数学专题复习四--分式方程和不等式

中考数学专题复习四--分式方程和不等式

中考数学专题复习四--分式方程和不等式(组)(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。

2014年全国中考数学试题分类汇编07 分式与分式方程(含解析)

2014年全国中考数学试题分类汇编07 分式与分式方程(含解析)

分式与分式方程一、选择题1. (2014•广西贺州,第2题3分)分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≠﹣1 D.x=﹣1考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0,即可求解.解答:解:根据题意得:x﹣1≠0,解得:x≠1.故选A.点评:本题主要考查了分式有意义的条件,正确理解条件是解题的关键.2. (2014•广西贺州,第12题3分)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2B.1C.6D.10考点:分式的混合运算;完全平方公式.专题:计算题.分析:根据题意求出所求式子的最小值即可.解答:解:得到x>0,得到=x+≥2=6,则原式的最小值为6.故选C点评:此题考查了分式的混合运算,弄清题意是解本题的关键.3.(2014•温州,第4题4分)要使分式有意义,则x的取值应满足()分)若分式的值为零,则5.(2014•孝感,第6题3分)分式方程的解为()===】,--x2x37. (2014•湘潭,第4题,3分)分式方程的解为()•=B.=a3()()==3•=3,故本选项错误;=÷=•,故本选项正确;9.(2014•德州,第11题3分)分式方程﹣1=的解是()分)方程=32. (2014•福建泉州,第10题4分)计算:+=1.=13.(2014·云南昆明,第13题3分)要使分式1有意义,则x的取值范围是.分)方程=的根6. (2014•益阳,第10题,4分)分式方程=的解为x=﹣9.,则代数式+的值等于,原式化为=,约分即可.===1+÷分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形约分即可得到结果.解:原式=•=•=x﹣1.故答案为:x﹣1点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.三.解答题1. (2014•广东,第18题6分)先化简,再求值:(+)•(x2﹣1),其中x=.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.2. (2014•广东,第21题7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点:分式方程的应用.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.3. (2014•珠海,第13题6分)化简:(a2+3a)÷.÷×÷,其中+1•=+1爸走1600米的时间+10分钟.解答:解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.点评:本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.6. (2014•广西玉林市、防城港市,第20题6分)先化简,再求值:﹣,其中x=﹣1.﹣==,﹣=.+)2+)=÷=•,当a﹣2=0,即a=2时,原式=3.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8.(2014•新疆,第17题8分)解分式方程:+=1.分)化简求值:()=.=•=时,原式考点:分式方程的应用.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.11.(2014•舟山,第18题6分)解方程:=1.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.13.(2014•毕节地区,第22题8分)先化简,再求值:(﹣)÷,其中a2+a﹣2=0.÷•=,===﹣.14.(2014•武汉,第17题6分)解方程:=.•=.故答案为:=,17.(2014•邵阳,第20题8分)先化简,再求值:(﹣)•(x﹣1),其中x=2.,.(﹣÷≤3019.(2014·云南昆明,第17题5分)先化简,再求值:)11(22⋅+a ,其中3=a .+÷,其中=[]•=•=,=.21. (2014•益阳,第16题,8分)先化简,再求值:(+2)(x ﹣2)+(x ﹣1)2,其中x =.时,原式22. (2014•株洲,第18题,4分)先化简,再求值:•﹣3(x﹣1),其中x=2.•﹣题)先化简,再求值:﹣,其中=﹣=﹣﹣.),其中x﹣1=0.•﹣=•﹣﹣=25. (2014•扬州,第19题,8分)(1)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°;(2)化简:﹣÷.﹣•=﹣=﹣27. (2014•扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;a,b===1②根据题意得:,﹣;<,≤,2≤<﹣=,28. (2014•株洲,第18题,4分)先化简,再求值:•﹣3(x﹣1),其中x=2.•﹣(+2.时,原式)解方程:﹣=031.(2014•滨州,第20题7分)计算:•.••=再求值:÷﹣÷﹣•﹣﹣,=2×﹣1=﹣===.33.(2014•菏泽,第16题6分)(2)已知x2﹣4x+1=0,求﹣的值.,求代数式+﹣(∴+﹣(=﹣(﹣35.(2014•济宁,第19题8分)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?+36﹣(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?分析:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解;(2)根据利润=售价﹣进价,可求出结果.解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.点评:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.。

2014中考数学分类汇编:分式方程

2014中考数学分类汇编:分式方程

中考全国100份试卷分类汇编分式方程1、(2013年黄石)分式方程3121x x =-的解为 A.1x = B. 2x = C. 4x = D. 3x =答案:D解析:去分母,得:3(x -1)=2x ,即3x -3=2x ,解得:x =3,经检验x =3是原方程的根。

2、(2013•温州)若分式的值为0,则x 的值是( )3、(2013•莱芜)方程=0的解为( )4、(2013•滨州)把方程变形为x=2,其依据是( )解:把方程5、(2013•益阳)分式方程的解是( )6、(2013山西,6,2分)解分式方程22311x x x++=--时,去分母后变形为( ) A .2+(x+2)=3(x-1)B .2-x+2=3(x-1)C .2-(x+2)=3(1- x )D . 2-(x+2)=3(x-1)【答案】D【解析】原方程化为:22311x x x +-=--,去分母时,两边同乘以x -1,得:2-(x +2)=3(x -1),选D 。

7、(2013•白银)分式方程的解是( )8、(2013年河北)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10 C .120x -10=100xD .120x +10=100x 答案:A解析:甲队每天修路x m ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120x =100x -10,选A 。

9、(2013•毕节地区)分式方程的解是( )C10、(2013•玉林)方程的解是( ) x=11、(德阳市2013年)已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围是____ 答案:m >-6且m ≠-4解析:去分母,得:2x +m =3x -6,解得:x =m +6,因为解为正数,所以,m +6>0,即m >-6,又x ≠2,所以,m ≠-4,因此,m 的取值范围为:m >-6且m ≠-412、(2013年潍坊市)方程012=++x x x 的根是_________________. 答案:x =0考点:分式方程与一元二次方程的解法.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13、(2013四川宜宾)分式方程的解为 x =1 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:2x+1=3x,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14、(2013•绍兴)分式方程=3的解是x=3.15、(2013年临沂)分式方程21311xx x+=--的解是.答案:2x=解析:去分母,得:2x-1=3x-3,解得:x=2,经检验x=2是原方程的解。

初三中考数学复习-分式与分式方程

初三中考数学复习-分式与分式方程

典例 3
把分式
x

x y
y x y

2 x2 y2
的分母化为 x2-y2 后,各分式的分子之和是
A.x2+y2+2 C.x2+2xy−y2+2
B.x2+y2-x+y+2 D.x2−2xy+y2+2
3.下列分式中,是最简分式的是
xy A. x2
x y C. x2 y2
B. 2 2x 2y
D. 2x x2
典例 5 某工厂生产一种零件,计划在 20 天内完成,若每天多生产 4 个,则 15 天完成且还多生产 10 个.设 原计划每天生产 x 个,根据题意可列分式方程为
7
A.
20x 10 x4
15
C. 20x 10 15 x
B.
20x 10 x4
15
D. 20x 10 15 x
典例 6 元旦假期即将来临,某旅游景点超市用 700 元购进甲、乙两种商品 260 个,其中甲种商品比乙种商
品少用 100 元,已知甲种商品单价比乙种商品单价高 20%,那么乙种商品单价是
A. 2 元
B. 2.5 元
C. 3 元
D. 5 元
5.某单位向一所希望小学赠送 1080 本课外书,现用 A,B 两种不同的包装箱进行包装,单独使用 B 型包
装箱比单独使用 A 型包装箱可少用 6 个;已知每个 B 型包装箱比每个 A 型包装箱可多装 15 本课外书.若
②异分母的分式相加减法则:先通分,变为同分母的分 式,然后再加减.
用式子表示为: a c ad bc ad bc . b d bd bd bd
(2)分式的乘法
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.

2014届中考复习课件 §2.2 分式方程

2014届中考复习课件 §2.2 分式方程

8、(2013•呼和浩特)某工厂现在平均每天比原 计划多生产50台机器, 现在生产600台机器所 需时间比原计划生产450台机器所需时间相同, 200 现在平均每天生产_____台机器. 9、(2012•连云港)今年6月1日起, 国家实施了 中央财政补贴条例支持高效节能电器的推广 使用, 某款定速空调在条例实施后, 每购买一 台, 客户可获财政补贴200元, 若同样用11万 元所购买的此款空调台数, 条例实施后比实 施前多10%, 则条例实施前此款空调的售价 2200 为 元.
解分式方程的思路是:
分式 方程 去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. 2、解这个整式方程. 3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去. 4、写出原方程的根.
7、(2012•铁岭)某城市进行道路改造,若甲、 乙两工程队合作施工20天可完成;若甲、乙两 工程队合作施工5天后, 乙工程队再单独施工45 天可完成. 求乙工程队单独完成此工程需要多 少天?设乙工程队单独完成此工程需要x天, 可 列方程为_______________. 5 45知识点回顾:
1.分式方程: 分母中 含 有未知数的方程叫做分式 方程。
指出下列方程中的分式方程:
2 3 (1) x 1 x 3
x x 1 ( 4) 1 3 2 1 ( 5) x 2 x 4 1 ( 6) 0 2 2 1 4x x 2x
x2 ( 2) 4x 3
2 ( 3) 30 x 1
15 15 解分式方程 1 : 解方程: 0.5 的一般步骤? x 1.5 x 解: 方程两边同乘以1.5x,得

(新课标)2014届中考数学查漏补缺第一轮基础复习 第8讲 分式方程及其应用课件 华东师大版

(新课标)2014届中考数学查漏补缺第一轮基础复习 第8讲 分式方程及其应用课件 华东师大版

第8讲┃ 回归教材
解:(1)设这两年我国公民出境旅游总人数的年平均增 长率为x,根据题意,得: 5000(1+x)2=7200, 解得:x1=0.2,x2=-2.2(不合题意,舍去). 即年平均增长率为20%. (2)7200×(1+20%)=8640. 答:(1)这两年我国公民出境旅游总人数的年平均增长 率为20%;(2)2012年我国公民出境旅游总人数约8640万人 次.
第8讲┃ 归类示例
解分式方程常见的误区: (1)忘记验根; (2)去分母时漏乘整式的项; (3)去分母时,没有注意符号的变化.
第8讲┃ 归类示例 ► 类型之三 分式方程的应用
命题角度: 1.利用分式方程解决生活实际问题; 2.注意分式方程要对方程和实际意义双检验.
第8讲┃ 归类示例
[2012· 厦门 ] 工厂加工某种零件,经测试,单独加 工完成这种零件,甲车床需用 x 小时,乙车床需用 (x2- 1)小 时,丙车床需用 (2x- 2)小时. (1)单独加工完成这种零件,若甲车床所用的时间是丙车 2 床的 ,求乙车床单独加工完成这种零件所需的时间; 3 (2)加工这种零件,乙车床的工作效率与丙车床的工作效 率能否相同?请说明理由.
归类示例
► 类型之一 分式方程的概念
命题角度: 1.分式方程的概念; 2.分式方程的增根.
1-kx 1 [2012· 攀枝花 ] 若分式方程 2 + = 无 x-2 2-x
1或2 解,则 k=________.
第8讲┃ 归类示例
1- kx 1 [解析 ] ∵分式方程 2+ = 有增根, x- 2 2- x 去分母得 2(x- 2)+ 1- kx=- 1, 整理得 (2- k)x= 2, 2 当 2- k≠ 0 时, x= . 2- k 当 2- k= 0 时,此方程无解,即 k= 2 时,原方程无解. 1- kx 1 ∵分式方程 2+ = 有增根, x- 2 2 - x ∴ x- 2= 0, 2- x= 0, 解得 x= 2, 2 即 = 2,解得 k= 1. 2- k

2014年全国中考数学真题分类解析汇编(8套)

2014年全国中考数学真题分类解析汇编(8套)

2014年全国中考数学真题分类解析汇编(8套)&#160;2014年全国中考数学真题分类解析汇编(8套)2014年全国中考数学真题分类解析汇编(二次根式)点击查看2014年全国中考数学真题分类解析汇编(分式与分式方程)点击查看2014年全国中考数学真题分类解析汇编(不等式(组)点击查看2014年全国中考数学真题汇编(二元一次方程(组)及其应用)点击查看2014年全国中考数学真题分类汇编(一元一次方程及其应用)点击查看2014年全国中考数学真题分类解析汇编(整式与因式分解)点击查看2014年全国中考数学真题分类解析汇编(实数)点击查看2014年全国中考数学真题分类解析汇编(有理数)点击查看。

【2014中考复习方案】(江西专版)中考数学复习权威课件:6分式方程

【2014中考复习方案】(江西专版)中考数学复习权威课件:6分式方程
解分式方程的一般步骤是:①方程两边都乘各个分母的
考点1
最简公分母 ,把分式方程转化为整式方程;②解这个整式方 ________________
程;③检验:把求得的未知数的取值代入最简公分母,看是否等于 0,使最简公分母为0的根是原方程的增根,增根必须舍去.
赣考解读 考点聚焦 赣考探究
第6讲┃分式方程
赣考解读
考点聚焦
赣考探究
第6讲┃分式方程
解 析
(1)首先把总工作量看作单位“1”,设出甲车、乙车单独运完此堆
垃圾所需的趟数,表示出甲车、乙车的工作效率,再表示出甲车、乙车12趟 完成的工作量,根据等量关系“甲车的工作量+乙车的工作量=总工作量”列 出方程. (2)根据“甲车12趟所需费用+乙车12趟所需费用=4800”求出甲车、乙 车每趟所需费用,再计算单独租用一种车所需车间原计划在x天内生产120个零件,由于采用了新技术,每天
120 120 - x =3 . 多生产零件3个,因此提前2天完成任务,则列方程为______________ x- 2
赣考解读
考点聚焦
赣考探究
第6讲┃分式方程
2.某校为了进一步开展“阳光体育”活动,购买了一批乒 乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20 元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多 出的部分能购买25副乒乓球拍.若每副乒乓球拍的价格为x 元,购买的两种球拍数一样,求x.
赣考解读
考点聚焦
赣考探究
第6讲┃分式方程
探究三 分式方程的应用
例3 [2013·娄底] 为了创建全国卫生城市,某社区要清理 一个卫生死角内的堆垃圾,租用甲、乙两车运送,两车各运12趟 可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃 圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200 元. (1)求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?

安徽省2014年中考数学专题复习课件 第7课时 分式方程

安徽省2014年中考数学专题复习课件 第7课时 分式方程

2)=0 的未知数取值, 因此该分式方程的增根可能是 1 或-2, 故选 D.
3 x1=-1,x2=3. 3.方程 x-2= 的解是______________ x
皖考解读 考点聚焦 皖考探究 当堂检测
第7课时┃ 分式方程
4.[2012· 临沂] 某工厂加工某种产品,机器每小时加工 产品的数量比手工每小时加工产品的数量的 2 倍多 9 件.若 加工 1800 件这样的产品, 机器加工所用的时间是手工加工所 3 用时间的 倍.求手工每小时加工产品的数量. 7 设手工每小时加工产品 x 件,则机器每小时加 解 工产品(2x+9)件. 1800 3 1800 根据题意,得 × = . x 7 2x+9 解这个方程,得 x=27. 经检验,x=27 是原分式方程的解. 答:手工每小时加工产品 27 件.
皖考解读
考点聚焦
皖考探究
当堂检测
第7课时┃ 分式方程
考点3 分式方程的应用
列分式方程解应用题的一般步骤 审清题意,分清题中的已知量、未知量. 设未知数,设其中某个未知量为x,并注意单位. 根据题意寻找等量关系列方程. 解方程. 既要检验方程的解是否适合方程,又要检验是否符 合实际问题. 写出答案(包括单位).
皖考解读 考点聚焦 皖考探究 当堂检测
第7课时┃ 分式方程
解 析
(1)相等关系:甲工程队铺设 350 米所用的天数
=乙工程队铺设 250 米所用的天数. (2)不等关系:完成该项工程的工期不超过 10 天.
皖考解读
考点聚焦
皖考探究
当堂检测
第7课时┃ 分式方程
(1)设甲工程队每天能铺设 x 米,则乙工程队每天能铺设 350 250 (x-20)米.根据题意得: = .解得 x=70. x x-20 检验:x=70 是原分式方程的解. 答:甲、乙工程队每天分别能铺设 70 米和 50 米. (2)设分配给甲工程队 y 米,则分配给乙工程队(1000-y)米.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国100份试卷分类汇编分式方程1、(2013年黄石)分式方程3121x x =-的解为 A.1x = B. 2x = C. 4x = D. 3x =答案:D解析:去分母,得:3(x -1)=2x ,即3x -3=2x ,解得:x =3,经检验x =3是原方程的根。

2、(2013•温州)若分式的值为0,则x 的值是( )A . x =3B . x =0C . x =﹣3D . x =﹣4考点: 分式的值为零的条件.分析: 根据分式值为零的条件可得x ﹣3=0,且x+4≠0,再解即可.解答: 解:由题意得:x ﹣3=0,且x+4≠0,解得:x=3,故选:A .点评: 此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3、(2013•莱芜)方程=0的解为( ) A . ﹣2 B . 2 C . ±2 D .考点: 解分式方程.专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解答: 解:去分母得:x 2﹣4=0,解得:x=2或x=﹣2,经检验x=2是增根,分式方程的解为x=﹣2.故选A 点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4、(2013•滨州)把方程变形为x=2,其依据是( )A . 等式的性质1B . 等式的性质2C . 分式的基本性质D . 不等式的性质1考点: 等式的性质.分析: 根据等式的基本性质,对原式进行分析即可.解答: 解:把方程变形为x=2,其依据是等式的性质2;故选:B .点评: 本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.5、(2013•益阳)分式方程的解是( ) A . x =3 B . x =﹣3C . x =D . x=考点: 解分式方程.专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解答: 解:去分母得:5x=3x ﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B .点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6、(2013山西,6,2分)解分式方程22311x x x 时,去分母后变形为( )A .2+(x+2)=3(x-1)B .2-x+2=3(x-1)C .2-(x+2)=3(1- x )D . 2-(x+2)=3(x-1)【答案】D【解析】原方程化为:22311x x x +-=--,去分母时,两边同乘以x -1,得:2-(x +2)=3(x -1),选D 。

7、(2013•白银)分式方程的解是( ) A . x =﹣2 B . x =1 C . x =2 D .x =3考点: 解分式方程.分析: 公分母为x (x+3),去括号,转化为整式方程求解,结果要检验.解答: 解:去分母,得x+3=2x ,解得x=3,当x=3时,x (x+3)≠0,所以,原方程的解为x=3,故选D .点评: 本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,(2)解分式方程一定注意要验根.8、(2013年河北)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x+10C .120x -10=100x D .120x+10=100x 答案:A解析:甲队每天修路x m ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120x =100x -10,选A 。

9、(2013•毕节地区)分式方程的解是( ) A . x =﹣3 B . C . x =3 D . 无解考点: 解分式方程.专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解答: 解:去分母得:3x ﹣3=2x ,解得:x=3,经检验x=3是分式方程的解.故选C .点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10、(2013•玉林)方程的解是( ) A . x =2 B . x =1 C . x= D . x =﹣2考点: 解分式方程.专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解答: 解:去分母得:x+1﹣3(x ﹣1)=0,去括号得:x+1﹣3x+3=0,解得:x=2,经检验x=2是分式方程的解.故选A .点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11、(德阳市2013年)已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围是____ 答案:m >-6且m ≠-4解析:去分母,得:2x +m =3x -6,解得:x =m +6,因为解为正数,所以,m +6>0,即m >-6, 又x ≠2,所以,m ≠-4,因此,m 的取值范围为:m >-6且m ≠-412、(2013年潍坊市)方程012=++x x x 的根是_________________. 答案:x =0考点:分式方程与一元二次方程的解法.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13、(2013四川宜宾)分式方程的解为 x =1 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:2x +1=3x ,解得:x =1,经检验x =1是分式方程的解.故答案为:x =1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14、(2013•绍兴)分式方程=3的解是 x=3 .考点: 解分式方程.专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解答: 解:去分母得:2x=3x ﹣3,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15、(2013年临沂)分式方程21311x x x+=--的解是 .x答案:2解析:去分母,得:2x-1=3x-3,解得:x=2,经检验x=2是原方程的解。

16、(2013•淮安)方程的解集是x=﹣2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2+x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17、(2013•苏州)方程=的解为x=2.考点:解分式方程.专题:计算题.分析:方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.解答:解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18、(2013•广安)解方程:﹣1=,则方程的解是x=﹣.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣x+2=﹣3,解得:x=﹣,经检验是分式方程的解.故答案为:x=﹣点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19、(2013•常德)分式方程=的解为x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x=x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20、(2013•白银)若代数式的值为零,则x=3.考点:分式的值为零的条件;解分式方程.专题:计算题.分析:由题意得=0,解分式方程即可得出答案.解答:解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.点评:此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.21、(2013•绥化)若关于x的方程=+1无解,则a的值是2.考点:分式方程的解.分析:把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.解答:解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,把x=2代入方程得:2a=4+2﹣2,解得:a=2.故答案是:2.点评:首先根据题意写出a的新方程,然后解出a的值.22、(2013•牡丹江)若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2.考点:分式方程的解.专题:计算题.分析:将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.解答:解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.点评:此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.23、(2013•泰州)解方程:.考点:解分式方程.分析:观察可得最简公分母是2(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:﹣=,方程两边同时乘以x(x﹣2)得:2(x+1)(x﹣2)﹣x(x+2)=x2﹣2,化简得:﹣4x=2,解得:x=﹣12,把x=﹣12代入x(x﹣2)≠0,故方程的解是:x=﹣12.点评:本题考查了分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.24、(2013•宁夏)解方程:.考点: 解分式方程.分析: 观察可得最简公分母是(x ﹣2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答: 解:方程两边同乘以(x ﹣2)(x+3),得6(x+3)=x (x ﹣2)﹣(x ﹣2)(x+3),6x+18=x 2﹣2x ﹣x 2﹣x+6,化简得,9x=﹣12x=,解得x=. 经检验,x=是原方程的解. 点评: 本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定要验根.25、(2013•资阳)解方程:.考点: 解分式方程.专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解答: 解:去分母得:x+2(x ﹣2)=x+2,去括号得:x+2x ﹣4=x+2,解得:x=3,经检验x=3是分式方程的解.点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.26、解方程:=﹣5.考点: 解分式方程.专题: 计算题.分析: 观察可得最简公分母是(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答: 解:方程的两边同乘(x ﹣1),得﹣3=x ﹣5(x ﹣1),解得x=2(5分)检验,将x=2代入(x ﹣1)=1≠0,∴x=2是原方程的解.(6分)点评: 本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.27、(2013年武汉)解方程:xx 332=-. 解析:方程两边同乘以()3-x x ,得()332-=x x解得9=x .经检验, 9=x 是原方程的解.28、(2013年南京)解方程错误! =1- 错误!。

相关文档
最新文档