第三章 自由基聚合(PDF)

合集下载

第三章自由基聚合

第三章自由基聚合
低,位阻效应大,一般不能自聚合。但有时能与其他单 体共聚,如马来酸酐能与苯乙烯共聚。
HC CH
Cl
O O O
C H
C H
Cl
(3) 三取代、四取代,一般不能聚合,但也有例外:取 代基为小体积的氟代乙烯 。
F F C H C H F F C H C F F F H2C C F F C C F
F
(1) 1, 1 双取代烯类单体CH2=CXY ,通常,比单取代更 易聚合,若两个取代基均体积较大(如1,1-2苯基乙烯), 则只能形成二聚体。
(2) 具有共轭效应的烯类单体 ∏电子云流动性大,易诱导极化,可随进攻试剂 性质的不同而取不同的电子云流向,可进行多种机 理的聚合反应(自由基、阴离子和阳离子聚合)。 如苯乙烯、甲基苯乙烯、丁二烯及异戊二烯等等 。 + + R H2C CH R H2C CH
+

单烯CH2=CHX中取代基电负性不同和聚合倾向的关系图
(二) 位阻效应
位阻效应是由取代基的体积、数量、位置等 所引起的。在动力学上它对聚合能力有显著的影 响,但它不涉及对活性种的选择。
(1) 1, 1 双取代烯类单体CH2=CXY ,通常,比单取代更
易聚合,但两个取代基均体积较大(如1,1-2苯基乙烯),
则只能形成二聚体。
H2C
C
(2) 1,2 双取代的烯类化合物,因结构对称,极化程度
第三章 自由基聚合
1. 单体聚合的选择性 2. 四种基元反应及自由基聚合的特征 3. 引发反应、引发剂种类及其使用条件 4. 聚合速率方程的推导、公式、使用 5. 聚合速率以及分子量的影响因素 6. 分子量的公式及其使用条件 7. 阻聚剂和烯丙基的自阻聚作用

高分子化学第三章 自由基聚合

高分子化学第三章 自由基聚合

• 链转移反应前后,自由基的数目未变。
35
1. 向单体转移
· ~~CH2-CH + CH2=CH Cl Cl
· ~~CH=CH + CH3-CH Cl Cl
• 注意CH2=CHCl单体
36
2. 向溶剂或链转移剂转移
X ~~CH2CH · + YS X ~~CH2CHY + S ·
• 溶剂:
• 链转移剂:有较强的链转移能力的化合
1 2
[I ]
1
2
[M ] (3—35式)
注意本方程的适用范围
73
二、温度对聚合速率的影响
• 阿累尼乌斯公式:K=Ae–Ea/RT
其中:K=kp(kd/kt)½ 则:Ea=Ep+Ed/2–Et/2
74
一般情况下: Ep≈29kJ•mol–1, Ed≈126kJ•mol–1 Et≈17kJ•mol–1
10
一、 聚合的可能性
• 主要取决于双键上取代基的空间 效应
11
1.烯类单体: CXY=CMN
(1)一取代( CH2=CHX)
可均聚合
12
(2)二取代
(CH2=CXY、CHX=CHY) (a)1,1——二取代:一般不考虑空 间位阻效应,可均聚合。
注意:CH2=C(Ar)2只能形成二聚体
13
(b)1,2——二取代
54
2.半衰期
[I] ln = Kd t [I0]
• 60℃
ln2 t½ = K d
(3—17)
t½ >6h,低活性引发剂 1h< t½ <6h,中活性引发剂 t½ <1h,高活性引发剂
55
3. 引发效率

高分子化学第三章自由基聚合

高分子化学第三章自由基聚合
解:
①由条件a得单体浓度[M]=0.877×103/104=8.53mol·L-1 ,条 件b得引发剂浓度 [I]=0.109%×0.887×103/242=4.0×10-
3mol·L-1
②60 ℃苯乙烯为100%双基偶合终止,当聚合度=2460,则动
力学 链长为R1p230. Rp
Ri 2f kd[I]
• 阻聚常数见课本P98表3-26 • 阻聚效果:
DPPH > FeCl3 > 苯醌> 硝基苯Fra bibliotek计算题
1、甲基丙烯酸甲酯进行聚合,试由⊿H和⊿S来计算77℃、 127℃、177℃、227℃ 时的平衡单体浓度,从热力学上 判断聚合能否正常进行。
解:ln[M]e=⊿H/RT-⊿S/R,且⊿H=-56500 ⊿S=-117.2 当T=350K时,ln[M]e=⊿H/RT-⊿S/R=-5.32
20、链转移反应对支链的形成有何影响?聚乙烯的长支链 和短支链,以及聚氯乙烯的支链是如何形成的?
答:自由基向大分子转移,在大分子链上形成活性点, 引发单体增长,形成支链,聚乙烯的长支链是分子间 转移的结果,而短支链则是分子内转移的结果。
M x+C H 2 C H X
M x H +C H 2 C
M M n C H 2 C
-3760<0,可以进行; 而当T=500K时,⊿G=⊿H-T⊿S=-
56500+117.2×500=2100>0,不能进行。
8、以过氧化二苯甲酰作引发剂,苯乙烯聚合时各基元反应的活化 能较为从E50d=℃12增5k至J·m60o℃l-1以,及E从p=8302.℃6k增J·m至o9l-01 ,℃聚Et=合10速kJ率·m和ol聚-1 ,合试度比的 变化。光引发的情况又如何?

高分子化学 3-自由基聚合

高分子化学 3-自由基聚合

1第三章自由基聚合Free Radical Polymerization3.1 加聚和连锁聚合概述3.2 烯类单体对聚合机理的选择性3.3 聚合热力学和聚合-解聚平衡3.4 自由基聚合机理3.5 引发剂3.6 其它引发反应3.7 聚合速率3.8 动力学链长和聚合度3.9 链转移反应和聚合度3.10 聚合度分布3.11 阻聚和缓聚3.12 自由基寿命和链增长、链终止速率常数的测定3.13 可控/活性自由基聚合33.1加聚和连锁聚合反应概述连锁聚合反应:通过单体和反应活性中心之间的反应来进行的聚合反应。

这些活性中心通常并不能由单体直接产生,而需要在聚合体系中加入某种化合物,该化合物在一定条件下生成聚合反应活性中心,再通过反应活性中心与单体加成生成新的反应活性中心,如此反复生成聚合物链。

引发剂(Initiator ):在反应体系中加入的能产生聚合反应活性中心的化合物。

引发剂(或其一部分)在反应后成为所得聚合物分子的组成部分。

引发剂与催化剂?4根据引发活性种与链增长活性中心的不同,连锁聚合反应可分为自由基聚合(Free Radical)、阳离子聚合(Cationic)、阴离子聚合(Anionic)和配位聚合(Coordination Polymerization)等。

引发剂分解成活性中心时,共价键有两种裂解形式:均裂和异裂。

均裂的结果产生两个自由基;异裂的结果形成阴离子和阳离子。

R R 2R ABA+B5I R R +MR M RM +M RM 2RM 2+MRM 3RM n-1+MRM n RM n 死聚合物链引发链增长链终止(初级活性种)(单体活性种)(活性链)聚合过程中有时还会发生链转移反应,但不是必须经过的基元反应。

自由基连锁聚合的各基元反应-链引发、链增长和链终止:6连锁聚合反应的基本特征:a. 聚合过程一般由多个基元反应组成;b. 各基元反应机理不同,反应速率和活化能差别较大;c. 单体只能与活性中心反应生成新的活性中心,单体之间不能反应;d. 反应体系始终是由单体、聚合产物和微量引发剂及含活性中心的增长链所组成;e. 聚合产物的分子量一般不随单体转化率而变。

第三章自由基共聚合

第三章自由基共聚合

无规共聚物名称中,放在前面的单体为主单体,后为第二单体 如:氯乙烯-co-醋酸乙烯酯共聚物 嵌段共聚物名称中的前后单体代表聚合的次序 接枝共聚物名称中,前面的单体为主链,后面的单体为支链 如:聚丙烯-g-丙烯酸
三 、研究共聚反应的意义 ⒈ 对聚合物进行改性
通过共聚,可以改善聚合物的许多性能,如机械性能、 弹性塑性、柔顺性、玻璃化温度、塑化温度、熔点、 溶解性能、染色性能和表面性能等等。性能改变的程 度与第二、第三单体的种类、数量以及单体单元的排 布方式有关。
M1代表丁二烯单体单元,M2代表苯乙烯单体单元。
(2)大分子主链上含M1单体单元(或也含M2单体单元),支链上含M2,M3两种单 单元。如ABS树脂
M1M1M1 M1M1M1M1 M2M2M3 M1M1M1M1M1 M3M3M2M2
M1代表丁二烯(B)单体单元,M2代表丙烯腈(A)单体单元, M3代表苯乙烯 (S)单体单元。
共聚物的命名:
聚- 两单体名称以短线相连,前面加“聚”字 如聚丁二烯-苯乙烯 -共聚物 两单体名称以短线相连,后面加“共聚物” 如乙烯-丙烯 共聚物、氯乙烯-醋酸乙烯共聚物

在两单体间插入符号表明共聚物的类型 co alt b g copolymer 无规 alternating 交替(alternate交替的, 轮流的) block 嵌段(block [blCk] 木块, 石块, 块, 街区) graft 接枝(graft 嫁接, (接技用的)嫩枝)
主单体 乙烯 乙烯 异丁烯 丁二烯 丁二烯 苯乙烯 氯乙烯 MMA 丙烯腈
第二单体 丙烯 苯乙烯 丙烯腈 丙烯腈
改进的性能和主要用途 破坏结晶,增加柔性和弹性。其为乙丙橡胶。 增加强度。其为通用橡胶。 增加耐油性。其为丁-苯橡胶。 提高抗冲性能。其为增韧塑料。

自由基聚合(第三章)

自由基聚合(第三章)
C O O C O O 2 C O O 2 + 2 CO2
46
(4)无机过氧化类引发剂 过硫酸盐,如过硫酸钾(K2S2O8)和过硫 酸铵[(NH4)2S2O8]。水溶性引发剂,主要用于 乳液聚合和水溶液聚合。 分解温度:60~80℃,解离能109~140kJ/mol
O KO S O O O O S O OK 2 KO O S O O O 2 O S O O + 2K
发反应速率最小,是控制聚合过程的关键。
慢引发、快增长、易转移,速终止
39
(2)只有链增长反应使聚合度增加。从单体 转化为大分子的时间极短,瞬间完成。体系中 不存在聚合度递增的中间状态。聚合度与聚合 时间基本无关。
自由基聚合中分子 量与时间的关系
40
(3)单体浓度随聚合时间逐步降低,聚合物 浓度逐步提高。延长聚合时间是为了提高单体 转化率。 (4)少量阻聚剂(0.01~0.1%)足以使自由 基聚合终止。
RMn*
聚合过程中有时还会发生链转移反应, 但不是必须经过的基元反应。
3
引发剂分解成活性中心时,共价键有两种
裂解形式:均裂和异裂。
均裂的结果产生两个自由基;异裂的结果形
成阴离子和阳离子。
R A R B 2R A + B
自由基、阴离子和阳离子均有可能作为连 锁聚合的活性中心,因此有自由基聚合、阴
离子聚合和阳离子聚合之分。
CH2 CH + X CH X CH2 CH2 CH X CH X
32
CH2
歧化终止:链自由基夺取另一自由基的氢原
子或其他原子而相互终止的反应。生成的高分
子一端为引发剂碎片,另一端为饱和或不饱和
结构,两者各半,聚合度与链自由基中的单元

第3章 自由基聚合

第3章 自由基聚合
C O O C O O 2 C O O 2 + 2 CO2
3. 无机过氧类引发剂
过硫酸钾(K2S2O8)和过硫酸铵[(NH4)2S2O8]。
O KO S O O O O S O OK 2 KO O S O O O 2 O S O + 2K O
水溶性引发剂,主要用于乳液聚合和水溶液 聚合。分解温度:60~80℃,解离能109~ 140kJ/mol。
S2O82
例如: 过氧化氢:220kJ/mol; 过氧化氢+亚铁盐:40kJ/mol 过硫酸钾:140kJ/mol; 过硫酸钾+亚铁盐:50kJ/mol 异丙苯过氧化氢:125kJ/mol; 异丙苯过氧化氢+亚铁盐:50kJ/mol
2+
HO + Fe
HO
+ Fe3+
S2O82 + SO32 S2O82 + S2O32
( 1)首先根据聚合方法选择引发剂类型。
(2)根据聚合温度选择活化能或半衰期适当 的引发剂,使自由基形成速率和聚合速率适中。
( 3)根据产品要求 ( 4)其他
自由基聚合研究的两项重要指标是:聚 合速率和分子量,而引发剂浓度和聚合温度 是影响聚合速率和分子量的两大因素。
引发剂浓度,单体重量的1/1000-5/1000。
[I ] ln kd t [I ]o
( 2-2-a)
[I ] kd t e [I ]o
( 2-2-b)
[I]0—引发剂的起始浓度,单位为mol/L。 [I] —时间为t时的引发剂浓度,单位为mol/L。
(2)半衰期
半衰期— 指引发剂分解至起始浓度一半所 需的时间,以t1/2表示,单位通常为h。
(二)引发剂分解动力学

第三章 自由基聚合新引发体系

第三章 自由基聚合新引发体系

水溶性:氧化剂:过氧化氢、过硫酸盐、氢过氧化物等;等)和有机还原二甲基苯)。

67二(2-抗生素:利福平(Rifampin)抗肿瘤:噻替哌10羟乙酯)药奋乃静(PERP )11BPO +奋乃静-MMA (反应动力学:氧化还原体系)12BPO +奋乃静-MMA 、HEMA 药物包埋而后释放。

(MP)2PT1518引发机理:氢键H +转移19过硫酸盐+脂肪胺体系过硫酸铵+脂肪胺体系-引发丙烯酰胺(AAM )的水溶液聚合。

过硫酸铵-脂肪二胺中,二胺的引发活性顺序:20)的21活性最高。

与还原剂如醇、醛、2324甲苯基氨基甲酸丁酯z Ce(Ⅳ) 离子+1,3-二羰基化合物体系2630处在两个羰基有碳中心自由基和离子氧化还原体系-引发机理二羰基化合物34 353738Poly(MAMT-co-VAc)聚甲基丙烯酰丙酮(PMAA)接枝AAM的聚合4243聚(对甲基丙烯酰胺基)苯甲酰丙酮(PMPAPB )接枝AAM 的聚合自由基聚合年由日本学者大津隆行是将引发、转移、46自由基聚合TDCA );铜试剂(N ,N-二乙基二硫代氨基甲酸钠) 的乙醇溶液自由基聚合1 引发单体聚合,2 参加终止反应48转化率49自由基聚合大分子光引发转移终止剂制备嵌段共聚物:自由基聚合光化学:研究由紫外-可见光引起的分子激发,激发态的性质年,大量的研究结果发现,不是所180nm 270~350nm π-π*n -π*对于多原子分子和在适当压力下的氮原子气体,其激发态有多种失去1.电子状态之间的非辐射转变,放出热能;从激发态最低振动能级返回基态各振动能级所发射的光。

比吸收光谱波长长,比吸收光谱更圆滑,比吸收光谱受溶在分子间的能量传递过程中,受激分子通过碰撞或较原距离的传递将能量转移给另一个分子,本身回到基态。

接受能量的分子上升为激发感光高分子是指吸收了光能后在分子内或分子间产生化学物理变化的:光交联型、光聚合型、光氧化还原型、光二吸收波长(nm)具有感光基团的高分子:感光基团直接连接在高分子链上,在光作用下激发成活性基团,从而进一步形成交联结构的聚合物。

高分子化学第三章_自由基聚合

高分子化学第三章_自由基聚合

(1)取代基吸电子能力较弱,如偏氯乙烯中的氯,两个氯 吸电子 作用的叠加,使单体更易聚合。 ( 2 )取代基吸电子能力强,如偏二腈乙烯,两个腈基强吸 电子作 用使双键上电荷密度降低太多,从而使双键失去了与 自由基加成的能力,只能阴离子聚合,而难自由基聚合。 (3)两个取代基都是给电子性,如异丁烯中的两个甲基, 给电子作用的叠加,使异丁烯不能发生自由基聚合,而易 于阳离子 聚合。 ( 4 )两个取代基中,一个是弱给电子性,另一个是强吸 电子性,如甲基丙烯酸酯类,这类单体易发生自由基聚合 反应。
组成
连 锁 聚 合
具有活性中 心,聚合过 程由链引发 ,链增长, 链终止等三 个基元反应 组成。自由 基聚合反应 是连锁聚合 反应的一种
聚合过程中也可能存在另一个基元反应 —链转移反应(chain transfer reaction);链转移反应对聚合物的分子量、结构和聚 合速率产生影响。
7
连锁聚合反应过程
分解 I 引发剂 R* + H2C CH X 或离解
(以乙烯基单体聚合为例)
引发活性种(中心) R* 链增长活性中心 R CH2 CH* X
R CH2 CH* + H2C CH X X
CH2 CH* X 增长链
增长链
终止反应
聚合物链
连锁聚合反应的基本特征
a. 连锁聚合反应是合成碳链聚合物的聚合反应; b. 由多个机理不同基元反应组成,反应速率和活化能差别 大; c. 单体只能与活性中心反应生成新的活性中心,单体之间 不能反应; d. 反应体系始终是由单体、聚合产物和微量引发剂及含活 性中心的 增长链所组成; e. 聚合产物的相对分子质量一般不随单体转化率而变。
CH B X
3.1.3 连锁聚合的单体

第三章自由基聚合

第三章自由基聚合
nM 初态 M n 终态
进行聚合的判据吉布斯自由能ΔG: 如果ΔG<0,单体才有聚合的可能; 如果ΔG>0,则聚合物将发生解聚; 若ΔG=0,则单体聚合与聚合物解聚处于可逆平衡状态。
第三章 自由基聚合
ΔG=ΔH – TΔS 根据焓变和熵变的符合变化,有四种组合: ΔH<0和ΔS<0,这是最普通的组合。 因为一般聚合是放热或减焓反应,故ΔH<0;另一方面,单 体聚合成大分子聚合物后,无序性减小,是减熵过程,故 ΔS<0。因此,只有焓变大于TΔS的时候,ΔG<0,聚合才能 发生。 在某一临界温度下,ΔG=0,则ΔH =TΔS,聚合和解聚处 于平衡状态,这一临界温度称为聚合上限温度Tc,可以简 单计算如下:
无取代基,结构对称,无诱导效应和共轭效应,较难 聚合,只能高温高压的苛刻条件下进行自由基聚合, 或者在特殊催化剂下进行配位聚合。
带供电基团的乙烯类单体:
如带有烷氧基、烷基、苯基、乙烯基等单体。
供电子基团使碳碳双键的电子云密度增加,有利于阳 离子的进攻,进行阳离子聚合。
δ
CH2
CH2 H C O R
> RCHCOR > > C6H5CH2
RCHCN >
> (C6H5)2CH
前两个过于活泼,引起爆聚;最后五种则是稳定的自由基; 三苯甲基自由基非常稳定,无引发能力,为阻聚剂。
第三章 自由基聚合
自由基聚合机理 自由基聚合机理是由单体分子转变成大分子的微观历程, 由链引发、链增长、链终止、链转移等基元反应组成。
CH2=CHCH2CH3 CH2=C(CH3)2 CH2=CHCH=CH2 CH2=C(CH3)CH=CH2 CH2=CClCH=CH2 CH2=CHC6H5 ⊕ + ⊕ ⊕ + + + ⊕ ⊕ + ⊕

第三章自由基共聚合

第三章自由基共聚合
~ABABABABABABABABABABABAB~ 命名与无规共聚物类似,但在后缀“共聚物”前加“交 替”,如:苯乙烯-马来酸酐交替共聚物。
3.1 概 述
(3)嵌段共聚物(block copolymer) 两单体单元在分子链上成段排列。
~AAAAAAAAAAAAABBBBBBBBBBBBB~ 若含一段A链与一段B链, 如 ~AAAAAAABBBBBBBBBB~,称AB型二嵌段共聚物;如果是由一段 A链接一段B链再接一段A链,如 ~AAAAAA-BBB~BBBAAAAAAA~,则称ABA型三嵌段共聚物;若由多段A链 和多段B链组成,则称(AB)n型多嵌段共聚物。
1.0 F1 0.5
F1-f1曲线特 征:其F1-f1曲 线为一对角线。
0
0
0.5
1.0
f1
r1 =r2 = 1,恒比共聚的F1-f1曲线
3.3 共聚曲线及共聚物组成控制
(ii) r1r2 = 1,但r1≠r2 在这种情形下,共聚合微分方程:
d[M1] d[M2]
=
[M1](r1[M1]+[M2]) [M2](r2[M2]+[M1])
~AAABAABAABBABABAAB~
3.1 概 述
这类共聚物命名时,常以单体名称间加“-”或“/”加后 缀共聚物,如: 乙烯-丙烯共聚物,丁二烯-苯乙烯共聚物。 (2)交替共聚物(alternating copolymer)
两单体单元在分子链上有规律地交替排列,A单体单元 相邻的肯定是B单体单元。
则,
F1 =
r1 f1 + f2 r1 f1+ 2 f2
F1 0.5
1.0/0.0
0.5/0.0
0.01/0.01

第三章 自由基聚合

第三章 自由基聚合

C-Z 单键不对称,异裂后具有类似于离子的特性, 可由阴离子或阳离子引发剂来引发聚合,不能进行自
由基聚合。
乙烯基单体对聚合机理的选择
乙烯基单体取代基 Y的电子效
应决定了单体接受活性种的进攻的 方式和聚合机理的选择。
(1)电子效应 诱导效应(Induction Effect):取代基的供、吸电子性 共轭效应(Resonance Effect):由于轨道相互交盖而 引起共轭体系中各键上的电子云密度发生平均化
第三章 自由基聚合
Free-raBiblioteka ical Polymerization
3.1 加聚和连锁聚合概述
自由基聚合(Free–radical Polymerization) 连锁聚合 按活性中心 阳离子聚合(Cationic Polymerization) 阴离子聚合(Anionic Polymerization)
Rp(增长总速率) >> Rt(终止总速率)
链转移(Chain Transfer):
从单体(Monomer)
链自由基
夺取原子
从溶剂(Solvent) 从引发剂(Initiator)
从大分子(Macromolecule)
失去原子的分子成为新自由基,继续新链增长(链 转移),链转移反应不仅将影响聚合物的分子量,也常 常形成支链。
3.4 自由基聚合机理
1)自由基聚合的基元反应(Elementary Reaction) 链引发、链增长、链终止、链转移等基元反应 链引发(Chain Initiation): 形成单体自由基的基元反应,由两步组成: 初级自由基(Primary Radical) R • 的形成
单体自由基(Monomer Radical) M • 的形成

第3章2015-自由基聚合反应-01详解

第3章2015-自由基聚合反应-01详解

第 三 节 聚合热力学和聚合-解聚平衡
热力学: 聚合倾向或聚合-解聚平衡; 动力学: 单体/引发剂/温度和聚合速率等。 PE/α-methystyrene 3.1 聚合热力学的基本概念
nM Initial state n Final state M
G= H-T S
1) ΔH<0和ΔS<0: 在某一临界温度, ΔG=0, →聚合上线温度Tc。 Tc=ΔH/ΔS 2) ΔH>0和ΔS>0: 聚合下线温度Tf: Tf=ΔH/ΔS 八元环硫/硒→线性聚硫/聚硒。 3) ΔH<0和ΔS>0: ΔG<0 4) ΔH>0和ΔS<0: ΔG>0 下一页 返回
第三章 自由基聚合
第 一 节 加聚和连锁聚合概述 第 二 节 链(锁)式聚合反应的单体 第 三 节 聚合热力学和聚合-解聚平衡 第 四 节 自由基聚合机理 第 五 节 引发剂和其它引发作用 第 六 节 自由基聚合反应动力学—聚合速率 第 七 节 动力学链长和聚合度 第 八 节 链转移反应和聚合度 第 九 节 分子量/聚合度分布 第 十 节 阻聚和缓聚 第十一节 自由基寿命及动力学参数的测定 第十二节 可控/“活性”自由基聚合
O
-NO2、 -CN、-C
阴离子聚合 自由基聚合 阳离子聚合
OCH3、 -CH=CH2、C6H5、-CH3、-OR
吸电子能力增强
供电子能力增强
► 能进行自由基链式聚合的单体多数是具有双键的烯类单体。 但并非具有双键的化合物都能聚合—聚合能力。 上一页 下一页
2.2 取代基-Y的空间位阻效应 → 体积/数量/位置对聚合能力有影响 ► 单取代乙烯类: 与乙烯比, 即使体积较大, 也易聚合。 如N-乙烯基咔唑/N-乙烯基吡咯烷酮 ► 1,1-二取代烯类单体CH2=Cxy: 一般按取代基的性质进行相应机 理的聚合。* 但CH2=C(Φ)2, 只能形成二聚体。 ► 1,2-二取代烯类单体xCH=CHy: 结构对称, 极化程度低, 加上位 阻效应, 一般不能均聚或形成二聚体。如CH3CH=CHCH3、 ClCH=CHCl、CH3CH=CHCOOCH3 。*但可共聚, 如马来酸酐 难均聚, 但可与St/VAc共聚。 ► 三取代/四取代烯类单体: 一般不能聚合。 ► 氟代乙烯类: 无论氟代数量和位置如何, 均易聚合。 →Table 3-2 上一页 返回
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不过,带代一个推电子甲基的丙烯却不能进行阳离子 聚合,只能进行配位聚合。
3)具有共轭效应的单体,三种聚合都能进行。 乙烯分子高度对称,聚合活性很低。由于取代基使烯 烃分子对称性改变,从而导致其聚合活性的提高。 取代基与聚合反应类型简列:
_
NO2 ;
_
CN;
_
_ CH=CH ; _ C H ; _ CH ; _ OR COOR; 2 6 5 3 自由基聚合 阳离子聚合
CH3 CH2 C COOCH3 CH3 CH2 C CH3 CH3 CH2 C
-△H=56 .5
51.5
35 KJ/mol
2)、共轭效应使聚合热降低
CH2 CH CH2 CH CN CH2 CH CH CH2
-△H=69.9
72.4
72.8 KJ/mol
3)、强电负性取代基使聚合热升高
CH2 CH Cl
.
CH3 CH3 H3C C N N C CH3 CN CN
CH3 2 H3C C CN
+ N2
偶氮二异丁腈(AIBN)
v 发生单电子转移的氧化还原反应:
HO
OH + Fe
2+
HO + OH + Fe3+
-
2)自由基的活性
a. 不稳定原因 b. 影响活性的因素:共轭效应,吸电子诱导效应,位阻效应 c. 活性顺序 d.适合自由基聚合的活性范围(与单体的活性有关)
双键断裂能 例如:乙烯 ⊿ Ef=ε m+ε p=607 - 2×347.7 = - 88.4 kJ.mol -1 (实测值? H=-95 kJ.mol -1)
化学键键能
化学键 键能 (kJ/mol) 138.9 160.7 259.4 291.6 化学键 键能 (kJ/mol) 328.4 347.7 351.5 390.8 化学键 键能 (kJ/mol) 413.4 436.0 462.8 607
内能变化
△ E = △ Ef+ △ ER+ △ Es+ △ E’ = ( Efp - Efm) + ( ERp - ERm) + ( Esp - Esm)+ △ E’ Ef------由键能所贡献的内能 ER-----由共振效应所贡献的内能 Es------由空间张力或位阻效应所贡献的内能 △ E’ ----其它因素引起的内能变化 △ E = 双键键能 + 取代基结构对内能的影响
2.2 聚合熵对单体聚合能力的影响 △G = △H - T△S 2.3 单体的极性与聚合能力
n CH = CH + n CH = CH OC CO O _ ~ [ CH = CH CH = CH ]n~ OC O CO
它们自身都不能均聚,但相互可形成电荷转移络合物 而共聚。
2.4 聚合极限温度 △G = △H– T△S = 0时, 即Tc = △H /△S,定义为聚合反应的极限温度或 临界上限温度。
阴离子聚合

•取代基的诱导效应

带给电子基团的烯类单体易进行阳离子聚合(举例) 带吸电子基团的烯类单体易进行阴离子聚合与自由基(举例) 带弱吸电子基团的烯类单体进行自由基聚合(举例) 特例:VC、VAc • 取代基的共轭效应:流动性大,易诱导极化,可进行多种机理的 聚合反应 • 带不同基团的单体进行几种聚合时的排序 扩展:一取代的单体为什么比乙烯活性高?
分解 I 引发剂 R + H2C CH X 或离解 2R
. 初级自由基
单体自由基 R CH2 CH X
.
.
2)链增长反应(chain propagation) . + H C CH
R CH2 CH X
2
C H2
X
CH X
.
3)链终止反应 (chain termination) 增长链
终止反应
增 长链
Na
.
Cl .
分子
. NO2
. NO
O.
.O
(2)自由基的结构 结构:SP2杂化,自由基占据P轨道;SP3杂化,自由 基占据一个SP3轨道。
.
C
.
C
平面形
三角锥形
(3)自由基的反应 a. 自由基的偶合和歧化反应 b. 加成反应 c. 氧化-还氧反应
CH 3CH 2CH 2. CH 3CH 2CH 2. CH 3CH 2CH 2. CH 3(CH 2) 4CH 3 CH 3CH 2CH 3 + CH 3CH CH 2
CH2 CH Cl
CH2 CH OCOCH3
CF2
CF2
前两种单体不能进行阴离子聚合,是因为阴离子聚合 的引发剂是广义碱,在此条件下氯乙烯 要脱HCl,醋酸乙 烯酯要发水解。 四氟乙烯由于F的电负性很大,并且分子的对称性 好,不易发生异裂,而基本上只能发生均裂,故不能进行 离子型聚合。
CH 2 CH NO2
由Gibbs方程:
△G = △H - T△S
△G 的符号取决于△H 、 △S的正负及大小。 (1) △H 、 △S的正负 a、聚合反应一般是放热反应,所以△H<0
b、单体转变成聚合物,体系的混乱程度减小,所以△S <0 (2) △H 、 △S的绝对值 a、 △H =- 88.4 KJ/mol b、 △S -105 ~ -125 J/mol• K
当温度在25~100℃内能保证: △H - T△S < 0 从热力学角度分析,聚合多能自动进行。
3、聚合热的测定: (1)实验测定 (2)由键能作理论计算: 由热力学方程 聚合热 ( △ H = △ E + P •△ V ) △E = △H - P△V 当定容变化时△V=0 因此△H= △E 焓的变化等于内能的变化
偶合反应 歧化反应
H 2C
CH X
2+
.
CH 3CH 2CH 2 OH CH 2 CH X Fe
3+
加成反应 氧化还原反应
.
OH
Fe
+
3)自由基的产生方式 产生:能提供能量使化学键产生均裂的方法 热解、氧化-还原反应、光解、电解、高能粒子轰击 v 弱共价键的均裂:
O O Ph C O O C Ph 过氧化苯甲酰(BPO) O Ph C O Ph + CO2 O 2 Ph C O
O-O N-N C-S C-N
C-Cl C-C C-O N-H
C-H H-H O-H C=C
聚合热与单体结构的关系
活化态能级
Ep EM
单体能级
-△H
EP
聚合物能级
反应坐标
图 3-1 聚合反应内能变化示意图 可见聚合反应放出的热量(聚合热)来源于单体转变 成聚合物过程中的内能降低。
4、聚合热的大小与单体结构及单体聚合能力的关系: 1)、取代基的位阻效应使聚合热降低 单取代烯烃的位阻效应对聚合热影响不大,双取代烯烃 的聚合热降低很多;
连锁聚合反应与逐步聚合反应
v 连锁聚合反应是围绕着特殊的“ 活性中心” 进行的。其数 目相对于单体数目而言是很少的。按照 “ 活性中心” 的不同 又分为自由基型阴离子、阳离子和配位聚合反应。
v 逐步聚合反应中每一个官能团都是具有相同反应活性 的“ 反应中心” 。
第一节
连锁聚合单体
连锁聚合单体
连锁聚合的单体:烯烃、炔烃、羰基化合物
聚合能力(广义):烯烃能否进行连锁聚合(热力学、动力学) 烯烃 单体的结构与 连锁聚合类型的关系
取代基的共轭效应 电负性 位阻效应

自由基聚合 阳离子聚合 阴离子聚合
解决的问题:烯烃能否聚合 烯烃的聚合能力及对聚合反应类型的选择
1.1 取代基的空间效应影响单体的聚合能力 取代基数目、位置、大小决定烯烃能否进行聚合 1)一取代烯烃原则上都能够进行聚合
聚合物链
1)链引发反应
包括引发剂分解和单体自由基生成两步反应:


取代基的空间效应影响单体的聚合能力 •单取代能聚合 •双取代一般可以聚合,但基团太大时难以聚合 •三、四取代一般不可以聚合,氟取代除外
1. 2 取代基的电负性和共轭性决定烯烃的聚合反应类型 连锁聚合种类与活性中心 根据引发活性种与链增长活性中心的不同,连锁 聚合反应可分为自由基聚合、阳离子聚合、阴离子聚 合和配位聚合等
CH 2
C CN
CN
以上两种单体由于取代基的吸电性过于强烈,它们在 活性中心孤电子的作用下,双键π电子难于发生均裂而只 能在负离子的作用下发生异裂,所以不能进行自由基聚合 而只能进行阴离子聚合。
第二节 连锁聚合反应热力学
2.1 聚合热 1、聚合热的意义: (1)是判断单体能否聚合和聚合能力大小的粗略指标; (2)是聚合反应工程上热和温度控制的重要参数。 2、怎样判断聚合反应方向: 由△G 的符号判断: △G<0时 单体能自动聚合成聚合物 △G>0时 聚合物将解聚成单体 △G=0时 单体、聚合物将处于可逆平衡
-△H=95.8
CH2 CH NO2
90.8
CF2 CF2
154.8 KJ/mol
4)、氢键和溶剂化作用使聚合热降低
溶剂化:是带电荷的离子与周围的溶剂分子间发生的 强烈相互作用。 其影响比,以上三种效应小。 有氢键的单体: 丙烯酸、甲基丙烯酸、丙烯酰胺(苯溶液) -△H=66.9 42.3 60.2 KJ/mol
这些单体的聚合热小是因为以上四种因素的共同结果。
综合分析
CH3 H2C C
(1) (3) (2)
超轭共作用 位阻效应 共轭作用
H, kJ/mol
35.5


取代基结构对内能及反应热的影响
共轭效应增强, 单体 E增加,聚合反应热 |-△H| 减小 位阻效应增强,聚合物 E增加,聚合反应热 |-△H| 减小 强电负性取代基的存在使 |-△H| 增强 增强氢键与溶剂化作用,|-△H| 减小 综合分析
相关文档
最新文档