最后一课中考数学易错题

合集下载

重庆市一中中考数学期末几何综合压轴题易错汇编

重庆市一中中考数学期末几何综合压轴题易错汇编

重庆市一中中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在ABC ∆中,6AC = ,3BC =.30ACB ∠=︒,试判断ABC ∆是否是“等高底”三角形,请说明理由.(2)问题探究:如图2, ABC ∆是“等高底”三角形,BC 是“等底”,作ABC ∆关于BC 所在直线的对称图形得到A BC '∆,连结AA '交直线BC 于点D .若点B 是AA C '∆的重心,求AC BC的值. (3)应用拓展:如图3,已知12l l //,1l 与2l 之间的距离为2.“等高底”ABC ∆的“等底” BC 在直线1l 上,点A 在直线2l 上,有一边的长是BC 的2倍.将ABC ∆绕点C 按顺时针方向旋转45︒得到A B C ''∆,A C '所在直线交2l 于点D .求CD 的值.解析:(1)证明见解析;(2)13AC BC =(3)CD 21032 【解析】 分析:(1)过点A 作AD ⊥直线CB 于点D ,可以得到AD =BC =3,即可得到结论;(2)根据 ΔABC 是“等高底”三角形,BC 是“等底”,得到AD =BC , 再由 ΔA ′BC 与ΔABC 关于直线BC 对称, 得到 ∠ADC =90°,由重心的性质,得到BC =2BD .设BD =x ,则AD =BC =2x , CD =3x ,由勾股定理得AC 13,即可得到结论;(3)分两种情况讨论即可:①当AB 2BC 时,再分两种情况讨论;②当AC 2时,再分两种情况讨论即可.详解:(1)是.理由如下:如图1,过点A 作AD ⊥直线CB 于点D ,∴ΔADC 为直角三角形,∠ADC =90°.∵ ∠ACB =30°,AC =6,∴ AD =12AC =3,∴ AD =BC =3,即ΔABC 是“等高底”三角形.(2)如图2, ∵ ΔABC 是“等高底”三角形,BC 是“等底”,∴AD =BC ,∵ ΔA ′BC 与ΔABC 关于直线BC 对称, ∴ ∠ADC =90°.∵点B 是ΔAA ′C 的重心, ∴ BC =2BD .设BD =x ,则AD =BC =2x ,∴CD =3x ,∴由勾股定理得AC =13x , ∴131322AC x BC x ==.(3)①当AB =2BC 时,Ⅰ.如图3,作AE ⊥l 1于点E , DF ⊥AC 于点F .∵“等高底” ΔABC 的“等底”为BC ,l 1//l 2,l 1与l 2之间的距离为2, AB =2BC ,∴BC =AE =2,AB =22,∴BE =2,即EC =4,∴AC = 25.∵ ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ' B ' C ,∴∠CDF =45°.设DF =CF =x .∵l 1//l 2,∴∠ACE =∠DAF ,∴12DF AE AF CE ==,即AF =2x . ∴AC =3x =25,可得x =253,∴CD =2x =2103.Ⅱ.如图4,此时ΔABC 是等腰直角三角形,∵ ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ' B ' C ,∴ ΔACD 是等腰直角三角形,∴ CD 2AC =22②当AC=2BC时,Ⅰ.如图5,此时△ABC是等腰直角三角形.∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C,∴A′C⊥l1,∴CD=AB=BC=2.Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,∴AC=2BC=2AE,∴∠ACE=45°,∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C时,点A′在直线l1上,∴A′C∥l2,即直线A′ C与l2无交点.综上所述:CD 2103222.点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.2.问题呈现:如图1,在边长为1的正方形网格中,分别连接格点A,B和C,D,AB和CD相交于点P,求tan∠BPD的值.方法归纳:利用网格将线段CD平移到线段BE,连接AE,得到格点△ABE,且AE⊥BE,则∠BPD就变换成Rt△ABE中的∠ABE.问题解决:(1)图1中tan∠BPD的值为________;(2)如图2,在边长为1的正方形网格中,分别连接格点A,B和C,D,AB与CD交于点P,求cos ∠BPD的值;思维拓展:(3)如图3,AB⊥CD,垂足为B,且AB=4BC,BD=2BC,点E在AB上,且AE=BC,连接AD交CE的延长线于点P,利用网格求sin∠CPD.解析:(1)2;(2)22;(3)22 【分析】 (1)由题意可得BE ∥DC ,则∠ABE =∠DPB ,那么∠BPD 就变换到Rt △ABE 中,由锐角三角函数的定义可得出答案;(2)过点A 作AE //CD ,连接BE ,那么∠BPD 就变换到等腰Rt △ABE 中,由锐角三角函数的定义可得出答案;(3)以BC 为边长构造网格,然后把PC 平移到AN ,则∠CPD 就变换成Rt △ADN 中的∠NAD ,再由锐角三角函数的定义可得出答案.【详解】(1) 由勾股定理可得:22222222112AE BE =+==+=,, ∵CD//BE ,∴tan ∠BPD =tan ∠ABE =2222AE BE ==; (2)过点A 作AE //CD ,连接BE ,由图可知E 点在格点上,且∠AEB =90°,由勾股定理可得:22221251310AE AB =+==+=,,∴cos ∠BPD =cos ∠BAE =5510522102101010AE AB ⨯====⨯(3)如图3构造网格,过点A 作AN //PC ,连接DN ,由图可知N 点在格点上,且∠AND =90°,由勾股定理可得:22221310,2425,DN AD +==+=∴sin ∠CPD =sin ∠NAD =1010552225255DN AD ⨯=⨯【点睛】本题考查三角形综合题、平行线的性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题,属于中考压轴题.3.(问题原型)如图,在矩形ABCD中,对角线AC、BD交于点O,以AC为直径作O.求证:点B、D在O上.请完成上面问题的证明,写出完整的证明过程.(发现结论)矩形的四个顶点都在以该矩形对角线的交点为圆心,对角线的长为直径的圆上.(结论应用)如图,已知线段2AB=,以线段AB为对角线构造矩形ACBD.求矩形ACBD面积的最大值.(拓展延伸)如图,在正方形ABCD中,2AB=,点E、F分别为边AB、CD的中点,以线段EF为对角线构造矩形EGFH,矩形EGFH的边与正方形ABCD的对角线AC交于M、N两点,当MN的长最大时,矩形EGFH的面积为_____________________解析:问题原型:见解析;结论应用:见解析;发现结论:2;拓展延伸:2【分析】问题原型:运用矩形对角线互相平分且相等,即可求证四点共圆;结论应用:根据结论矩形面积最大时为正方形,利用对角线的长求得正方形的面积; 拓展延伸:由上一问的结论,可知四边形EGFH 为正方形, 证明四边形AEOH 是正方形,继而求得面积【详解】解:【问题原型】∵AC 为O 直径,∴OA 为O 半径.令OA r =.∵四边形ABCE 为矩形,∴AC BD =,12OA OC AC ==,.12OB OD BD == ∴OB OD OA r ===.∴点B 、D 在O 上.【结论应用】连续CD 交AB 于点O ,过点D 作DE AB ⊥于点E .∴DE OD ≤.由【发现结论】可知,点D 在以AB 为直径的圆上,即112OD OA AB ===, ∴当1DE OD ==即AB CD ⊥时,矩形ACBD 的面积最大.2AB CD ==∴矩形ACBD 的面积最大值为22112222AB =⨯=. 【拓展延伸】如图,连接GH ,设AC 与EF 的交点为O四边形ABCD 是正方形2AB ∴=,90BAD ADC ∠=∠=︒,//AE DF点E 、F 分别为边AB 、CD 的中点1AE EB CF FD ∴====,2EF =∴四边形AEFD 是矩形//EF AD ∴EF AB ⊥,由【结论应用】可知,2EF =时,矩形EGFH 的面积最大为2122EF = 此时四边形EGFH 为正方形,此时MN 最大,EF GH ∴⊥,112EO OF OH OG EF ===== ∴四边形AEOH 是正方形∴112AE AH AB === ∴2222112EH AE AH =+=+=∴正方形EGFH 的面积为:22(2)2EH ==【点睛】本题考查了矩形的性质,正方形的性质与判定,灵活运用矩形,正方形的性质和判定是解题的关键.4.[初步尝试](1)如图①,在三角形纸片ABC 中,∠ACB =90°,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ;[思考说理](2)如图②,在三角形纸片ABC 中,AC =BC =6,AB =10,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,求AM BM的值; [拓展延伸](3)如图③,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B ′处,折痕为CM .①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB ′上的一个动点,将△APM 沿PM 折叠得到△A ′PM ,点A 的对应点为点A ′,A ′M 与CP 交于点F ,求PF MF 的取值范围. 解析:(1)AM =BM ;(2)169;(3)①AC =152;②310≤PF FM ≤34. 【分析】 (1)利用平行线分线段成比例定理解决问题即可.(2)利用相似三角形的性质求出BM ,AM 即可.(3)①证明△BCM ∽△BAC ,推出BC BM CM AB BC AC == 由此即可解决问题.②证明△PFA ′∽△MFC ,推出'PF PA FM CM =,因为CM =5,推出'5PF PA FM =即可解决问题. 【详解】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN ,∴MN 垂直平分线段BC ,∴CN =BN ,∵∠MNB =∠ACB =90°,∴MN ∥AC ,∵CN =BN ,∴AM =BM .故答案为:AM =BM .(2)如图②中,∵CA =CB =6,∴∠A =∠B ,由题意MN 垂直平分线段BC ,∴BM =CM ,∴∠B =∠MCB ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC , ∴BC BM BA BC =, ∴6106BM =, ∴BM =185, ∴AM =AB ﹣BM =10﹣183255=, ∴321651895AM BM ==; (3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM ,∵∠ACB =2∠A ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴BC BM CM AB BC AC==∴696BM =, ∴BM =4,∴AM =CM =5,∴659AC=, ∴AC =152. ②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PFA ′=∠MFC ,PA =PA ′, ∴△PFA ′∽△MFC ,∴PF PA FM CM'=, ∵CM =5, ∴5PF PA FM '=, ∵点P 在线段OB 上运动,OA =OC =154,AB ′=152﹣6=32, ∴32≤PA ′≤154, ∴310≤PF FM ≤34. 【点睛】本题属于几何变换综合题,考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.5.在ABC 中,点D ,E 分别是AB AC ,边上的点,//DE BC .基础理解:(1)如图1,若43AD BD ==,,求AE AC 的值; 证明与拓展:(2)如图2,将ADE 绕点A 逆时针旋转a 度,得到11AD E △,连接11,BD CE ; ①求证:11BD AD CE AE=; ②如图3,若90,6,BAC AB AC AD ADE ∠=︒<=,在旋转的过程中,点1D 恰好落在DE 上时,连接1113,4BD EE CE =,则11E D E 的面积为________. 解析:(1)47;(2)①见详解;②13.44 【分析】(1)利用平行线分线段定理,直接求解即可;、(2)①先推出11AD AB AE AC=,从而得11ABD ACE ∽,进而即可得到结论;②先推出AE =AE 1 =8,DE =D 1E 1=10,过点A 作AM ⊥DE 于点M ,则DM = 3.6,D 1E =2.8,再证明∠D 1EE 1=90°,进而即可求解.【详解】解:(1)∵//DE BC ,43AD BD ==,, ∴AE AC =44437AD AB ==+; (2)①∵将ADE 绕点A 逆时针旋转a 度,得到11AD E △,∴1AD =AD ,1AE =AE ,∠BAD 1=∠CAE 1,∵//DE BC , ∴AD AE AB AC =,即AD AB AE AC=, ∴11AD AB AE AC=, ∴11ABD ACE ∽, ∴1111BD AD AD CE AE AE==;②由①可知11ABD ACE ∽, ∴111134BD AD CE AE ==, ∵将ADE 绕点A 逆时针旋转,得到11AD E △,点1D 恰好落在DE 上,∴AD 1=AD =6,∠D 1AE 1=∠DAE =90°,∴AE =AE 1=43AD 1=8,DE =D 1E 1=226810+=, 过点A 作AM ⊥DE 于点M ,则DM =D 1M =AD ×cos ∠ADE = AD ×AD DE =6×610=3.6,∴D 1E =10-3.6 ×2=2.8,∵∠D 1AE 1=∠DAE =90°,∴∠DAD 1=∠EAE 1,又∵AD 1=AD ,AE =AE 1,∴∠ADE =11118018022DAD EAE AEE ︒-∠︒-∠==∠, ∴∠AED +1AEE ∠=∠AED +∠ADE =90°,即:∠D 1EE 1=90°,∴22110 2.89.6EE -,∴11E D E 的面积=12D 1E ∙EE 1=12×2.8×9.6=13.44. 故答案是:13.44.【点睛】本题主要考查相似三角形的判定和性质,解直角三角形,勾股定理,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定和性质,是解题的关键.6.(了解概念)在凸四边形中,若一边与它的两条邻边组成的两个内角相等,则称该四边形为邻等四边形,这条边叫做这个四边形的邻等边.(理解运用)(1)在邻等四边形ABCD 中,40A ∠=︒,60B ∠=︒,若CD 是这个邻等四边形的邻等边,则C ∠的度数为__________;(2)如图,凸四边形ABCD 中,P 为AB 边的中点,ADP PDC ∽,判断四边形ABCD 是否为邻等四边形,并证明你的结论;(拓展提升)(3)在平面直角坐标系中,AB 为邻等四边形ABCD 的邻等边,且AB 边与x 轴重合,已知(2,0)A -,(,3)C m ,(2,4)D ,若在边AB 上使DPC BAD ∠=∠的点P 有且仅有1个,则m 的值是__________.解析:(1)130°;(2)四边形ABCD 是邻等四边形,理由见解析;(3)﹣6【分析】(1)根据邻等四边形的定义即可求解;(2)由△ADP ∽△PDC ,可得AP AD PC PD =,∠DAP =∠DPC ,∠APD =∠PCD ,由P 为AB 的中点,可得AP =BP ,则PB AD PC PD=,可证△BPC ∽△ADP ,由相似三角形的性质得出∠A =∠B 即可;(3)①若点B 在点A 右侧,如图,由AB 为邻等边,则有∠DAB =∠ABC =∠DPC ,可证△ADP ∽△BPC ,可得AP BC =AD BP ,设点P (n ,0),由等腰直角三角形可求∠BAD =45°,可求B 、C 横坐标之差为3,B (m +3,0),将AP ,BP ,AD ,BC ,代入得:4232n 2+(m +1)n +2m ﹣18=0,由题意可知n 只有一个解,可求得m =﹣6;②若点B 在点A 左侧,可求得∠BAD =135°,可证△ADP ∽△BPC ,可得AP BC =AD BP ,可求得B 、C 横坐标之差为34232=m =﹣5﹣6. 【详解】解:(1)∵CD 为邻等边,∴∠C =∠D ,又∵40A ∠=︒,60B ∠=︒,∴∠C =∠D =(360°﹣∠A ﹣∠B )÷2=130°,∴∠C =130°.故答案为:130°;(2)四边形ABCD 是邻等四边形,理由如下:∵△ADP ∽△PDC , ∴AP AD PC PD=,∠DAP =∠DPC ,∠APD =∠PCD ,∠ADP =∠PDC , 又∵P 为AB 的中点,∴AP =BP ,∴PB ADPC PD=,∴PB PCAD PD=,∵∠APD+∠BPC=180°﹣∠DPC,∠PCD+∠PDC=180°﹣∠DPC,且∠APD=∠PCD,∴∠BPC=∠PDC,∵∠ADP=∠PDC,∴∠ADP=∠BPC,∴△BPC∽△ADP,∴∠B=∠A,∴四边形ABCD为邻等四边形;(3)若点B在点A右侧,如图,∵AB为邻等边,则有∠DAB=∠ABC=∠DPC,又∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴APBC =ADBP,设点P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,过点C作CE⊥x轴于点E,则∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵点C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD=22(22)4++=42,BC=2233+=32,代入APBC=ADBP得:242332nm n+=+-,整理可得:﹣n2+(m+1)n+2m﹣18=0,由题意可知n只有一个解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣5±46,又∵点C在点D右侧,∴m=﹣5+46;②若点B在点A左侧,如图,此时,∵A(﹣2,0),D(2,4),∴∠OAD=45°,∴∠BAD=∠ABC=∠DPC=135°,∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴ADP=∠BPC,∴△ADP∽△BPC,∴APBC =ADBP,由①得:B(m+3,0),C(m,3),P(n,0),AP=﹣2﹣n,BP=n﹣m﹣3,AD=42BC=32∴4232=,解得:m=﹣6又∵点C在点D左侧,∴m=﹣5﹣6;综上所述:m=﹣6.【点睛】本题是相似综合题,考查新定义图形,仔细阅读题目,抓住定义中的性质,会验证新定义图形,相似三角形的判定与性质,一元二次方程根的判别式,利用相似三角形的性质构造关于n 的一元二次方程是解题关键.7.(问题情境)如图1,点E 是平行四边形ABCD 的边AD 上一点,连接BE 、CE .求证:BCE 1S 2=S 平行四边形ABCD .(说明:S 表示面积) 请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD 的边AD 为直径作⊙O ,⊙O 与BC 边相切于点H ,与BD 相交于点M .若AD =6,BD =y ,AM =x ,试求y 与x 之间的函数关系式.(探究应用2)如图3,在图1的基础上,点F 在CD 上,连接AF 、BF ,AF 与CE 相交于点G ,若AF =CE ,求证:BG 平分∠AGC .(迁移拓展)如图4,平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,E 是AB 的中点,F 在BC 上,且BF :FC =2:1,过D 分别作DG ⊥AF 于G ,DH ⊥CE 于H ,请直接写出DG :DH 的值.解析:【问题情境】见解析;【探究应用1】18y x =;【探究应用2】见解析;【迁移拓1927【分析】(1)作EF ⊥BC 于F ,则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF ,即可得出结论; (2)连接OH ,由切线的性质得出OH ⊥BC ,OH =12AD =3,求出平行四边形ABCD 的面积=AD×OH =18,由圆周角定理得出AM ⊥BD ,得出△ABD 的面积=12BD×AM =12平行四边形的面积=9,即可得出结果;(3)作BM ⊥AF 于M ,BN ⊥CE 于N ,同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积,得出12AF×BM =12CE×BN ,证出BM =BN ,即可得出BG 平分∠AGC .(4)作AP ⊥BC 于P ,EQ ⊥BC 于Q ,由平行四边形的性质得出∠ABP =60°,得出∠BAP =30°,设AB =4x ,则BC =3x ,由直角三角形的性质得出BP =12AB =2x ,BQ =12BE ,AP =3=3,由已知得出BE =2x ,BF =2x ,得出BQ =x ,EQ 3,PF =4x ,QF =3x ,QC =4x ,由勾股定理求出AF 22AP PF +=7,CE 22EQ QC +19,连接DF 、DE ,由三角形的面积关系得出AF×DG =CE×DH ,即可得出结果.【详解】(1)证明:作EF ⊥BC 于F ,如图1所示:则S △BCE =12BC×EF ,S 平行四边形ABCD =BC×EF , ∴12BCE ABCD S S =.(2)解:连接OH ,如图2所示:∵⊙O 与BC 边相切于点H , ∴OH ⊥BC ,OH =12AD =3,∴平行四边形ABCD 的面积=AD×OH =6×3=18,∵AD 是⊙O 的直径,∴∠AMD =90°,∴AM ⊥BD ,∴△ABD 的面积=12BD×AM =12平行四边形的面积=9,即12xy =9, ∴y 与x 之间的函数关系式y =18x ; (3)证明:作BM ⊥AF 于M ,BN ⊥CE 于N ,如图3所示:同图1得:△ABF 的面积=△BCE 的面积=12平行四边形ABCD 的面积,∴12AF×BM =12CE×BN , ∵AF =CE ,∴BM =BN ,∴BG 平分∠AGC .(4)解:作AP ⊥BC 于P ,EQ ⊥BC 于Q ,如图4所示:∵平行四边形ABCD 中,AB :BC =4:3,∠ABC =120°,∴∠ABP =60°,∴∠BAP =30°,设AB =4x ,则BC =3x ,∴BP =12AB =2x ,BQ =12BE ,AP =,∵E 是AB 的中点,F 在BC 上,且BF :FC =2:1,∴BE =2x ,BF =2x ,∴BQ =x , ∴EQ ,PF =4x ,QF =3x ,QC =4x ,由勾股定理得:AF =,CE ,连接DF 、DE ,则△CDE 的面积=△ADF 的面积=12平行四边形ABCD 的面积,∴AF×DG =CE×DH ,∴DG :DH =CE :AF =19x :27x 19:27=.【点睛】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.8.(感知)如图1,在平面直角坐标系中,点C 的坐标为(0,0.5),点A 的坐标为(1,0),将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,过点B 作BM y ⊥轴,垂足为点M ,易知AOC CMB ∆∆≌,得到点B 的坐标为(0.5,1.5).(探究)如图2,在平面直角坐标系中,点A 的坐标为(1,0),点C 的坐标为(0,)(0)m m >,将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB .(1)求点B 的坐标.(用含m 的代数式表示)(2)求出BC 所在直线的函数表达式.(拓展)如图3,在平面直角坐标系中,点A 的坐标为(1,0),点C 在y 轴上,将线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,连结BO 、BA ,则BO BA +的最小值为_______.解析:【探究】(1)点B 坐标为(,1)m m +;(2)1y x m m=+5【分析】探究:(1)证明△AOC ≌△CMB (AAS ),即可求解;(2)根据点B 的坐标为(m ,m+1),点C 坐标()0,m ,即可求解;拓展:BO+BA=2222(1)(1)(1)m m m m +++-++,BO+BA 的值,相当于求点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,即可求解.【详解】解:探究:(1)过点B 作BM y ⊥轴,垂足为点M .BMC 90∠∴=︒,MCB B 90∠∠∴+=︒.线段CA 绕着点C 按逆时针方向旋转90︒至线段CB ,BCA 90CB CA ∠∴=︒=,.MCB ACO 90∠∠∴+=︒.B ACO ∠∠∴=.ACO 90∠=︒,ΔAOC ΔCMB ∴≌,MC OA,MB OC ∴==.点C 坐标()0,m ,点A 坐标()1,0,∴点B 坐标为()m,m 1+(2)∵点B 的坐标为(m ,m+1),点C 为(0,m ),设直线BC 为:y=kx+b ,1b m km b m =⎧⎨+=+⎩,解得:1k m b m⎧=⎪⎨⎪=⎩, ∴1y x m m=+; 则BC 所在的直线为:1y x m m =+; 拓展:如图作BH ⊥OH 于H .设点C 的坐标为(0,m ),由(1)知:OC=HB=m ,OA=HC=1,则点B (m ,1+m ),则:BO+BA=2222(1)(1)(1)m m m m +++-++,BO+BA 的值,相当于求点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,相当于在直线y=x 上寻找一点P (m ,m ),使得点P 到M (0,-1),到N (1,-1)的距离和最小,作M 关于直线y=x 的对称点M′(-1,0),易知PM+PN=PM′+PN≥NM′,22(11)(01)5--++ 故:BO+BA 55【点睛】本题为一次函数综合题,主要考查的是三角形全等的思维拓展,其中拓展,将BO+BA 的值转化点P (m ,m )到点M (1,-1)和点N (0,-1)的最小值,是本题的新颖点 9.问题背景 如图1,点E 在BC 上,AB ⊥BC ,AE ⊥ED ,DC ⊥DC ,求证:=AE BE DE DC .尝试应用 如图2,在▱ABCD 中,点F 在DC 边上,将△ADF 沿AF 折叠得到△AEF ,且点E 恰好为BC 边的中点,求FC FD 的值. 拓展创新 如图3,在菱形ABCD 中,点E ,F 分别在BC ,DC 边上,∠AFE =∠D ,AE ⊥FE ,FC =2.EC =6.请直接写出cos ∠AFE 的值.解析:(1)见解析;(2)12FC FD =;(3)cos ∠AFE =25. 【分析】(1) 根据相似三角形的判定定理证△ABE ∽△ECD 即可;(2) 在AB 边取点G ,使GE =BE ,则∠B =∠BGE ,证△AGE ∽△ECF ,列比例式即可;(3) 作FM =FD ,FN ⊥AD ,同(2)构造△AMF ∽△FCE ,证△AEF ∽△FHD ,求出AM 长即可.【详解】解:(1)∵ AB ⊥BC ,AE ⊥ED ,DC ⊥DC∴∠B =∠C =90° ,∠BAE +∠AEB =90°,∠CED +∠AEB =90°,∴∠BAE =∠CED ,∴△ABE ∽△ECD∴AE BE DE DC =. (2)在AB 边取点G ,使GE =BE ,则∠B =∠BGE又∵∠B +∠C =180° ,∠BGE +∠AGE =180°∴∠AGE =∠C∵∠B =∠D =∠AEF又∵∠B +∠BAE =∠AEF +∠FEC∴∠BAE =∠FEC ,∴△AGE ∽△ECF∴FC EF EG AE =,即FC EG EF AE =∵EF =FD , ∴FC EG FD AE = ∵GE =BE ,AE =BC =2BE , ∴12FC BE FD BC == (3)cos ∠AFE =25如图:作FM =FD ,FN ⊥AD ,由(2)同理可证△AMF ∽△FCE ,∴3FM EC AM FC== 设AM =x ,FM =FD =3x ,则AD =CD =32x +,MD =22x +,ND =1x +∵∠AEF =∠FND =90°,∠AFE =∠D ,∴△AEF ∽△FND ,∴EF AF ND FD =,即EF ND AF FD =, ∵FC EF AM AF =, FC ND AM FD∴= ∴213x x x +=, 解得,5x =,经检验,是原方程的解;∴ cos ∠AFE =25EF FC AF AM ==. 【点睛】本题考查了相似三角形的判定与性质和解直角三角形,解题关键是依据已知条件构造相似三角形,列比例式解决问题.10.(探究函数y=x+的图象与性质) (1)函数y=x+的自变量x 的取值范围是 ;(2)下列四个函数图象中函数y=x+的图象大致是 ;(3)对于函数y=x+,求当x>0时,y的取值范围.请将下列的求解过程补充完整.解:∵x>0∴y=x+=()2+()2=(﹣)2+∵(﹣)2≥0∴y≥.[拓展运用](4)若函数y=,则y的取值范围.解析:(1)x≠0;(2)C(3)4;4;(4)y≥13【解析】试题分析:根据反比例函数的性质,一次函数的性质;二次函数的性质解答即可.试题解析:(1)函数y=x+的自变量x的取值范围是x≠0;(2)函数y=x+的图象大致是C;(3)解:∵x>0∴y=x+=()2+()2=(﹣)2+4∵(﹣)2≥0∴y≥4.(4)y==x+﹣5═()2+()2﹣5=(+)2+13∵(﹣)2≥0,∴y≥13.考点:1.反比例函数的性质;一次函数的性质;二次函数的性质.11.(1)阅读理解:我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决:勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE 的中心O ,作FG HP ⊥,将它分成4份.所分成的四部分和以BC 为边的正方形恰好能拼成以AB 为边的正方形.若12,5AC BC ==,求EF 的值;(3)拓展探究:如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N 的边长为定值n ,小正方形,,,A B C D 的边长分别为a b c d ,,,.已知123α∠=∠=∠=,当角9(0)0αα︒<<︒变化时,探究b 与c 的关系式,并写出该关系式及解答过程(b 与c 的关系式用含n 的式子表示).解析:(1)见详解;(2)EF =172或72;(3)c +b =n ,理由见详解 【分析】(1)根据大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和,即可得到结论;(2)设EF =a ,FD =b ,由图形的特征可知:a +b =12,a -b =±5,进而即可求解;(3)设正方形E 的边长为e ,正方形F 的边长为f ,由相似三角形的性质可知:22e cn f bn ==,,结合勾股定理,可得222e f n +=,进而即可求解.【详解】(1)证明:∵在图①中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.∴c 2=12ab ×4+(b −a )2,化简得:a 2+b 2=c 2;(2)由题意得:正方形ACDE 被分成4个全等的四边形,设EF =a ,FD =b ,∴a +b =12,∵正方形ABIJ 是由正方形ACDE 被分成的4个全等的四边形和正方形CBLM 拼成, ∴E F EF ''=,KF FD '=,5E K BC '==,当EF >DF 时,∵E F KF E K ''''-=, ∴a -b =5,∴125a b a b +=⎧⎨-=⎩,解得:a =172, ∴EF =172; 同理,当EF <DF 时,EF =72故EF =172或72(3)设正方形E 的边长为e ,正方形F 的边长为f ,∵123α∠=∠=∠=,∴图中①与②与③,三个直角三角形相似,∴c e b f e n f n==,,即:22e cn f bn ==,, ∵图形③是直角三角形,∴222e f n +=,∴2cn bn n+=,即:c+b=n,【点睛】本题主要考查勾股定理及其证明过程,相似三角形的判定和性质,找准图形中线段长和面积的数量关系,是解题的关键.12.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG 交AD于点H.若AG=6,GH=22,则BC=.解析:(1)①四边形CEGF是正方形;22)线段AG与BE之间的数量关系为2;(3)5【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG 2CE =、GE //AB ,利用平行线分线段成比例定理可得; (2)连接CG ,只需证ACG ∽BCE 即可得;(3)证AHG ∽CHA 得AG GH AH AC AH CH==,设BC CD AD a ===,知AC 2a =,由AGGH AC AH =得2AH a 3=、1DH a 3=、10CH a 3=,由AGAHAC CH =可得a 的值.【详解】(1)①∵四边形ABCD 是正方形,∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°,∴EG=EC ,∴四边形CEGF 是正方形;②由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴2CGCE =,GE ∥AB ,∴2AG CGBE CE ==,故答案为2;(2)连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CECG 2CBCA 2,∴CG CE =2CACB =∴△ACG ∽△BCE ,∴2AG CA BE CB ==, ∴线段AG 与BE 之间的数量关系为AG=2BE ; (3)∵∠CEF=45°,点B 、E 、F 三点共线,∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG GH AH AC AH CH==, 设BC=CD=AD=a ,则AC=2a ,则由AG GH AC AH =得6222AHa =, ∴AH=23a , 则DH=AD ﹣AH=13a ,CH=22CD DH +=103a , ∴由AG AH AC CH =得2632103a a a =, 解得:a=35,即BC=35,故答案为35.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.13.如图1,在Rt △ABC 中,∠B=90°,BC=2AB=8,点D ,E 分别是边BC ,AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现① 当0α︒=时,AE BD = ;② 当时,AE BD = (2)拓展探究试判断:当0°≤α<360°时,AE DB 的大小有无变化?请仅就图2的情况给出证明. (3)问题解决当△EDC 旋转至A 、D 、E 三点共线时,直接写出线段BD 的长.解析:(1)①52,②52.(2)无变化;理由参见解析.(3)45,1255. 【分析】 (1)①当α=0°时,在Rt △ABC 中,由勾股定理,求出AC 的值是多少;然后根据点D 、E 分别是边BC 、AC 的中点,分别求出AE 、BD 的大小,即可求出AE BD 的值是多少. ②α=180°时,可得AB ∥DE ,然后根据AC BC AE BD =,求出AE BD的值是多少即可. (2)首先判断出∠ECA=∠DCB ,再根据52EC AC DC BC ==,判断出△ECA ∽△DCB ,即可求出AE BD 的值是多少,进而判断出AE BD的大小没有变化即可. (3)根据题意,分两种情况:①点A ,D ,E 所在的直线和BC 平行时;②点A ,D ,E 所在的直线和BC 相交时;然后分类讨论,求出线段BD 的长各是多少即可.【详解】(1)①当α=0°时,∵Rt △ABC 中,∠B=90°,∴AC=2222(82)845AB BC +=÷+=,∵点D 、E 分别是边BC 、AC 的中点,∴45252AE ==,BD=8÷2=4, ∴25542AE BD ==. ②如图1,,当α=180°时,可得AB ∥DE ,∵AC BC AE BD =, ∴455AE AC BD BC =(2)如图2,,当0°≤α<360°时,AE BD 的大小没有变化, ∵∠ECD=∠ACB , ∴∠ECA=∠DCB ,又∵52EC AC DC BC ==, ∴△ECA ∽△DCB , ∴52AE EC BD DC ==. (3)①如图3,,∵AC=45,CD=4,CD ⊥AD ,∴AD=2222(45)480168AC CD -=-=-=∵AD=BC ,AB=DC ,∠B=90°,∴四边形ABCD 是矩形,∴BD=AC=45.②如图4,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,,∵AC=45CD=4,CD ⊥AD ,∴2222(45)480168AC CD ---,∵点D 、E 分别是边BC 、AC 的中点,∴DE=111(82)4222AB =⨯÷=⨯=2,∴AE=AD-DE=8-2=6,由(2),可得 52AE BD =, ∴BD=6125552=.综上所述,BD 的长为45或1255. 14.(1)问题发现如图1,△ACB 和△DCE 均为等腰直角三角形,∠ACB=90°,B,C,D 在一条直线上.填空:线段AD,BE 之间的关系为 .(2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE 的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B 是线段PA 外一点,PB=5,连接AB,将AB 绕点A 逆时针旋转90°得到线段AC,随着点B 的位置的变化,直接写出PC 的范围.解析:(1) AD=BE ,AD ⊥BE .(2) AD=BE ,AD ⊥BE .(3) 5-32≤PC≤5+32.【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.15.(问题)如图1,在Rt ABC 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点AB 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.解析:【探究发现】(1)见解析;【数学思考】(2)见解析;【拓展引申】(3)22AM =BQ 有最大值为2.【分析】根据等腰三角形的性质及平行的定义即可解得根据证明()CDP GDB ASA ≌即可推出DP DB =过点M 作MH MN ⊥交AC 于点H ,连接,CM HQ ,可证明()AMH BNQ ASA ≌,再推出ACM BMQ ∽即可得AC AM BM BQ =42AM BQAM =-,则22AM = 【详解】证明:【探究发现】(1)∵90,ACB AC BC ∠=︒=∴45CAB CBA ∠=∠=︒∵CD AB∴45CBA DCB ∠=∠=︒,且BD CD ⊥∴45DCB DBC ∠=∠=︒∴DB DC =即DB DP =【数学思考】(2)∵,45DG CD DCB ⊥∠=︒∴45DCG DGC ∠=∠=︒∴,135DC DG DCP DGB =∠=∠=︒,∵90BDP CDG ∠=∠=︒∴CDP BDG ∠=∠,且,135DC DG DCP DGB =∠=∠=︒,∴()CDP GDB ASA ≌∴BD DP =【拓展引申】(3)如图4,过点M 作MH MN ⊥交AC 于点H ,连接,CM HQ ,∵MH MN ⊥,∴90AMH NMB ∠+∠=︒∵,90CD AB CDB ∠=︒∥∴90DBM ∠=︒∴90NMB MNB ∠+∠=︒∴HMA MNB ∠=∠,且,45AM BN CAB CBN =∠=∠=︒∴()AMH BNQ ASA ≌∴AH BQ =∵90,4ACB AC BC ∠=︒==, ∴42,AB AC AH BC BQ =-=-∴CH CQ =∴45CHQ CQH CAB ∠=∠=︒=∠∴HQ AB ∥∴HQM QMB ∠=∠∵90ACB HMQ ∠=∠=︒∴点H ,点M ,点Q ,点C 四点共圆,∴HCM HQM ∠=∠∴HCM QMB ∠=∠,且45A CBA ∠=∠=︒∴ACM BMQ ∽ ∴AC AM BM BQ = ∴442AM BQ AM=- ∴2(22)24AM BQ --=+ ∴22AM =时,BQ 有最大值为2.【点睛】本题考查等腰三角形,解题关键在于熟练掌握等腰三角形的性质.16.(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.①求证:DQ AE =;②推断:GF AE的值为 ; (2)类比探究:如图(2),在矩形ABCD 中,BC k AB =(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE CP 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当23k =时,若3tan 4CGP ∠=,210GF =,求CP 的长.解析:(1)①证明见解析;②解:结论:1GF AE=.理由见解析;(2)结论:FG k AE =.理由见解析;(3)955PC =. 【解析】。

初三数学复习中的错题总结与整理

初三数学复习中的错题总结与整理

初三数学复习中的错题总结与整理数学是初中最重要的学科之一,也是让很多学生头疼的科目。

在初三的数学学习中,我们经常会遇到一些困难题和易错题,这些题目对我们的数学能力有很大的考验。

为了提高我们的数学能力,我们需要对这些错题进行总结与整理,找出问题所在,从而提高自己的解题水平。

一、直线与曲线1. 错题1:已知曲线的一条切线的斜率为5,求该曲线在该切点的切线方程。

解析:该题考查了直线与曲线的相关知识。

曲线的切线斜率等于曲线的导数,所以我们需要求出曲线的导数然后再求斜率。

然后,我们带入切点的坐标,利用点斜式即可求出切线方程。

2. 错题2:给定直线的一个点坐标为(2,3),过该点作直线与曲线y=x^2的交点,求直线的方程。

解析:该题是直线与曲线的交点问题,我们可以先求出曲线与直线的交点坐标,然后利用两点式即可求出直线的方程。

二、二次函数1. 错题1:已知二次函数图像的顶点为(-1,3),过点(-2,1)的直线与该二次函数的图像交于另外一个点,请求出该点的坐标。

解析:该题是关于二次函数的顶点和交点问题。

我们可以通过已知的顶点坐标和直线过点的坐标,利用二次函数的特点,写出函数的表达式,然后求解出交点的坐标。

2. 错题2:已知二次函数的图像经过点(1,4)和点(2,k),求该二次函数的表达式。

解析:该题是关于二次函数的函数表达式问题。

我们可以利用已知的过点坐标,写出函数的表达式然后求解未知常数。

同时,根据过点的特性,我们可以列方程求解。

三、三角函数1. 错题1:已知sinθ=-1/2,求θ的终边位于哪个象限。

解析:该题考查了三角函数的象限问题。

根据三角函数的定义,我们可以求出sinθ的值,并根据正负值判断θ位于哪个象限。

2. 错题2:已知tanθ=√3,求θ所在的象限。

解析:该题也是关于三角函数的象限问题。

我们可以根据tanθ的值求出θ的候选解,然后根据题目要求来确定θ所在的象限。

四、概率1. 错题1:一个骰子抛掷一次,求抛出的点数是奇数或大于4的概率。

九年级数学易错题整理及解析

九年级数学易错题整理及解析

九年级数学易错题整理及解析九年级是中学阶段的关键时期,数学学科的学习尤为重要。

在这个阶段,同学们容易在一些特定题型上犯错。

本文将针对九年级数学中的易错题进行整理和解析,帮助同学们巩固知识点,提高解题能力。

一、易错题整理1.分式运算- 忽视分母为零的情况- 混淆乘除法则2.一元二次方程- 解题过程中符号错误- 忽视判别式的符号3.函数图像- 弄错函数图像的开口方向- 误判函数的增减性4.统计与概率- 概率计算不准确- 众数、平均数、中位数混淆5.解直角三角形- 错误使用三角函数- 忽视角度与边长的关系二、解析及注意事项1.分式运算- 解题前检查分母是否为零,避免无效计算。

- 掌握乘除法则,注意运算符号。

2.一元二次方程- 解题过程中注意符号的正确性,避免低级错误。

- 判别式大于零时,方程有两个实数根;等于零时,有一个实数根;小于零时,无实数根。

3.函数图像- 根据函数解析式,判断图像的开口方向和增减性。

- 注意掌握二次函数、一次函数、反比例函数的图像特点。

4.统计与概率- 概率问题要注意事件的总数和满足条件的事件数。

- 区分众数、平均数、中位数,注意定义和计算方法。

5.解直角三角形- 掌握正弦、余弦、正切函数的定义和性质。

- 注意直角三角形中角度与边长的关系,避免错误使用三角函数。

总结:九年级数学易错题主要集中在分式运算、一元二次方程、函数图像、统计与概率以及解直角三角形等方面。

同学们在解题过程中要细心、认真,注意检查,避免低级错误。

人教版九年级数学易错题收集整理+常见数学易错题精选

人教版九年级数学易错题收集整理+常见数学易错题精选

人教版九年级数学易错题收集整理+常见数学易错题精选人教版九年级数学易错题成长系列1、二次函数2y ax bx c =++图像如图所示,则下列结论正确的是( )A.20,0,0,40a b c b ac <<>-> B.20,0,0,40a b c b ac ><>-< C.20,0,0,40a b c b ac <><-> D.20,0,0,40a b c b ac <>>-> 如图,二次函数2y ax bx c =++的图像过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是( )A. 当0x =时,y 的值大于1B. 当3x =时,y 的值小于0C. 当1x =时,y 的值大于1D. y 的最大值小于02、二次函数2y ax bx =+的图像如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A. -3B. 3C. -5D. 94、设二次函数2y x bx c =++,当1x ≤时,总有0y ≥,当13x ≤≤时,总有0y ≤,那么c 的取值范围是 。

5、已知抛物线212y x bx =+经过点A (4,0)。

设点C (1,-3),请在抛物线的对称轴上确定一点D ,使得|AD-CD|的值最大,则D 的坐标为 。

6、已知:关于x 的方程2(13a)210ax x a --+-=(1)当a 取何值时,二次函数2(13a)21y ax x a =--+-的对称轴是x=-2? (2)求证:a 取任何实数时,方程2(13a)210ax x a --+-=总有根。

7、如图,抛物线254y ax x a =-+与x 轴相交于A 、B ,且过点C (5, 4)。

(1)求a 的值和该抛物线的顶点P 的坐标(2)请你设计一种平移方法,使平移之后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式。

九年级数学高频错题集(后附参考答案)

九年级数学高频错题集(后附参考答案)

九年级数学高频错题集1.【题文】如图,点在双曲线上,点在双曲线上,轴,分别过点、向轴作垂线,垂足分别为、,若矩形的面积是,则的值为A. B. C. D.2.【题文】如图,直角三角形位于第一象限,,,直角顶点在直线上,其中点的横坐标为,且两条直角边、分别平行于轴、轴,若双曲线与有交点,则的取值范围是A. B. C. D.3.【题文】是方程的根,则式子的值为A. B. C. D.4.【题文】若,,则方程必有一个根是A. B. C. D.不能确定5.【题文】如图,反比例函数的图象与一次函数的图象交于、两点.已知,,的面积为.A. B. C. D.6.【题文】关于的反比例函数为常数,当时,随的增大而减小,则的取值范围为A. B. C. D.7.【题文】如图,在同一直角坐标系中,一次函数的图象和反比例函数的图象的一个交点为.若点在轴上,且为等腰三角形,则点的坐标为.A.,B.,,,C.,,,,,.D.8.【题文】反比例函数的图象经过点,则此反比例函数的关系式是______.9.【题文】下列各组中的四条线段是成比例线段的是A.、、、B.、、、C.、、、D.、、、10.【题文】在比例尺为:的地图上,量得无锡三阳广场到江阴文明广场的距离为,则两地的实际距离为______.A. B. C. D.11.【题文】已知函数,与成反比例,与成正比例,且当时,;当时,.求关于的函数解析式;当时,求的值.12.【题文】已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流与电阻之间的函数关系如图,如果以此蓄电池为电源的用电器限制电流不超过,那么此用电器的可变电阻为A.不小于B.不大于C.不小于D.不大于13.【题文】如图,在平行四边形中,对角线与相交于点,在的延长线上取一点,连接交于点,已知,,,则的长等于A. B. C. D.14.【题文】反比例函数经过点,则的值是A. B. C. D.15.【题文】如图,双曲线与直线交于点,,且点的坐标为,点的纵坐标为,则关于的方程的解为A.,B.,C.,D.,16.【题文】下列函数是反比例函数的是A. B. C. D.17.【题文】如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点若,则的值为______.A. B. C. D.18.【题文】如图,以为圆心,半径为的圆与反比例函数的图象交于、两点,则的长度为A. B. C. D.19.【题文】如图,点在的边上,与交于点,,,,绕顶点按逆时针方向旋转与重合,连接,则线段的长度为A. B. C. D.20.【题文】已知二次函数的图象经过点,和,则这二次函数的表达式为A. B. C. D.1.【参考答案】【试题解析】解:过点作轴于点,点在双曲线上,矩形的面积为:,矩形的面积为:,矩形的面积为:,则的值为:.故选D.首先得出矩形的面积为:,利用矩形的面积是,则矩形的面积为:,再利用求出即可.此题主要考查了反比例函数关系的几何意义,得出矩形的面积是解题关键.2.【参考答案】【试题解析】【分析】本题主要考查了反比例函数,用待定系数法求一次函数的解析式,根的判别式等知识点,解此题的关键是理解题意进而求出的值.题目较好,难度适当.把点的坐标代入即可求出的最小值;当反比例函数和直线相交时,求出的值,得出的最大值.【解答】解:在中,令,则,则的坐标是,把代入得:;的坐标是,的坐标是,设直线的解析式是,则,解得:,则函数的解析式是:,根据题意,得:,即,,解得:.则的范围是:.故选B.3.【参考答案】【试题解析】【分析】本题考查代数式求值、一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.根据一元二次方程的解的定义得到,即,把代数式化为的形式,然后整体代入进行计算,即可求解.【解答】解:是方程的根,,即,.故选D.4.【参考答案】【试题解析】【分析】本题考查学生理解一元二次方程解的定义,是一道基础题.本题的突破点是令方程中的未知数.把方程中的取值为时,刚好得到,而已知,根据方程解的定义得到是方程的一个解.【解答】解:由,则令,方程,代入方程得:,所以是方程的解.故选:.5.【参考答案】【试题解析】解:把代入得:,解得,故反比例函数的解析式为:,把代入得,则,把,代入得:,解得,故一次函数的解析式为;所以的面积;故答案选C.此小题可以采用待定系数法直接将点的坐标代入求得两函数的解析式;求三角形的面积或割或补,此题采用割比法较为容易.6.【参考答案】【试题解析】【分析】反比例函数图象在大于时,可能在第一象限或第四象限,再根据时随的增大而减小,判断出此反比例函数图象不可能在第四象限,故得到此函数图象在第一、三象限,进而确定出反比例函数解析式的系数大于,列出关于的不等式,求出不等式的解集即可得到的取值范围.此题考查了反比例函数的图象与性质,反比例函数,当时,图象在第一、三象限,且在每一个象限随的增大而减小;当时,函数图象在第二、四象限,且在每一个象限随的增大而增大,熟练掌握反比例函数的性质是解本题的关键.【解答】反比例函数为常数,当时随的增大而减小,,解得:,则的取值范围为.故选A.7.【参考答案】【试题解析】【解析】解:一次函数的图象经过点,,,点的坐标为,,又反比例函数的图象经过点,,反比例函数的解析式为;根据点在轴上的不同位置,符合条件的点有个,分别是:,,,,,.故选C.【分析】首先把代入一次函数的解析式,即可求得的值,即的坐标,然后把的坐标代入反比例函数的解析式,即可求得函数的解析式,根据不同边作为底和腰,一共可分三种情况进行讨论:时两个点,,时一个点,时一个点,求得的坐标.本题是反比例函数与一次函数的交点问题,等腰三角形知识,要注意在不确定等腰三角形的腰和底的情况下要考虑到所有的情况,不要漏解.8.【参考答案】【试题解析】解:设反比例函数的解析式为.函数经过点,,得.反比例函数解析式为.故答案为:.将点代入函数解析式,即可求得的值.此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.9.【参考答案】【试题解析】本题考查了比例线段:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系根据比例线段的定义,分别计算各选项中最小的数与最大的数的积是否等于另外两个数的积可判断四条线段成比例.解:、,所以选项错误;B、,所以选项错误;C、,所以选项错误;D、,所以选项正确.故选D.10.【参考答案】【试题解析】解:.故答案为.图上距离除以比例尺,算出实际距离,进而把厘米换算成千米即可.考查有关比例线段的计算;注意厘米换算成千米应缩小倍.11.【参考答案】解:设,,则,将和代入,得解得关于的函数解析式为;将代入,得.【试题解析】本题考查了用待定系数法求函数的解析式:设出含有待定系数的反比例函数解析式为常数,;把已知条件自变量与函数的对应值代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.根据正比例函数和反比例函数的定义,设,,可得,将和代入,可得计算可得关于的函数解析式;直接将代入关系式,计算出对应的函数值即可.12.【参考答案】【试题解析】【分析】本题主要考查了反比例函数的图象的应用.【解答】解:由物理知识可知:,其中过点,故,当时,由即不小于.故选A.13.【参考答案】【试题解析】【分析】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题过作交于,根据平行四边形的性质得到,,,根据三角形的中位线的性质得到,,通过∽,根据相似三角形的性质得到,代入数据即可得到结论.【解答】,解:过作交于,在▱中,,,,,,,∽,,,.故选B.14.【参考答案】【试题解析】解:反比例函数经过点,,解得,.故选C.直接把代入反比例函数,求出的值,再代入代数式进行计算即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.【参考答案】【试题解析】【分析】本题主要考查的是反比例函数与一次函数交点问题,关键掌握好利用图象求方程的解时,就是看两函数图象的交点横坐标首先把点代入中,求出反比例函数解析式,再利用反比例函数解析式求出点坐标,求关于的方程的解就是看一次函数与反比例函数图象交点横坐标就是的值.【解答】解:在反比例函数图象上,,反比例函数解析式为:,也在反比例函数图象上,点的纵坐标为.,,关于的方程的解为:,.故选A.16.【参考答案】【试题解析】解:、是正比例函数,故A错误;B、是反比例函数,故B正确;C、是二次函数,故C错误;D、是一次函数,故D错误.故选B.根据反比例函数的定义,可得答案.本题考查了反比例函数的定义,重点是注意分母中有变量.17.【参考答案】【试题解析】解:设点坐标为,和都是等腰直角三角形,,,,,,,即,,,,.故答案为:.设点坐标为,根据等腰直角三角形的性质得,,,,则变形为,利用平方差公式得到,所以,则有,根据反比例函数图象上点的坐标特征易得.本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值,即.18.【参考答案】【试题解析】解:作轴,设的坐标是:,其中,根据题意得:,解得:,则,,则,同理,与轴正半轴的夹角是,因而,则的长度是:.故选D.作轴,设的坐标是:,在直角中,利用勾股定理以及满足反比例函数的解析式,即可得到关于,的方程组求得的坐标,从而求得的度数,进而得到的度数,利用弧长的计算公式即可求解.本题是反比例函数与三角函数、弧长的计算的综合题,正确求得圆周角的度数是关键.19.【参考答案】【试题解析】【解答】解:中,,,,,,,是等边三角形,,,,是旋转而成,,,,是等边三角形,.故选A.【分析】先根据直角三角形的性质求出、的长,再根据图形旋转的性质得出,,再由即可得出,故可得出,进而判断出是等边三角形,故可得出结论.本题考查的是图形旋转的性质及等边三角形的判定定理,熟知旋转前后的图形全等是解答此题的关键.20.【参考答案】【试题解析】【分析】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识.利用待定系数法即可求出抛物线的解析式.【解答】解:设所求函数的解析式为,把,,分别代入,得:,解得.故所求的函数的解析式为.故选D.。

中考数学复习最后一周查漏补缺(易错题辨析)

中考数学复习最后一周查漏补缺(易错题辨析)

中考数学复习最后一周查漏补缺(易错题辨析)20XX年中考数学复最后一周,我们需要查漏补缺,特别是易错题和辨析题。

以下是一些例题和解答。

一、数与式1.求4的平方根。

正确答案是C。

±2.2.求的倒数的相反数。

正确答案是A。

-2.3.下列根式中,最简二次根式是8a。

4.下列计算中,正确的是3+2=5.5.化简把-化简后的结果是A。

a/(a^2+b^2)。

6.若a+|a|=0,则(a-2)^2+a^2的值为2-2a。

7.已知2x-1+1-2x=0,则x^2-2x+1的值为1.8.计算:a^6÷a^2=a^4,(-2)^3=-8,(-2)^2=4.二、方程与不等式1.解不等式组{x>-2,x>a},得到a的取值范围为a>-2.2.若关于x的方程x^2+(t-2)x+5-t=0的两个根都大于2,则t的取值范围是t6.3.函数y=(2m^2-5m-3)x/(m^2-3m-1)的图像是双曲线,则m=2或m=-1.4.已知方程组{x=x1或x2,y=y1或y2,x2-y+a+2=0},其中x1、x2、y1、y2是两个不等的正数,则a的取值范围是a>-2x1+2y1-2.5.若关于x的方程2-x/(x-1)=2有解,则a的取值范围是a≠1.6.已知一元二次方程(m-1)x^2-4mx+4m-2=0有实数根,则m的取值范围是m≥1且m≠1.7.已知一元二次方程2x^2-2x+3m-1=0有两个实数根x1,x2,且满足不等式x1x2<1,求实数m的范围。

当x1x2<1时,根据韦达定理,x1+x2=1,所以2x1x2<1,即x1+x2-4x1x2/2<1,代入原方程得到3m-1<1,即m<2/3.当m<2/3时,方程有两个实数根,且满足x1x2<1.8.若关于x的方程2+x^2=3x有两个实数根,则x的取值范围是0<x<3.2.解为负数,求k的取值范围。

中考数学重难点易错题汇总含答案解析

中考数学重难点易错题汇总含答案解析

精品基础教育教学资料,仅供参考,需要可下载使用!最新初三九年级中考数学易错题集锦汇总学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分 一、选择题1.如图,能判定 AB ∥CD 的条件是( )A .∠1=∠2B .∠1+∠2= 180°C .∠3=∠4D .∠3+∠1=180°2.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 3.用科学记数方法表示0000907.0,得( )A .41007.9-⨯B .51007.9-⨯C .6107.90-⨯D .7107.90-⨯ 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =-C .5232a a a =+D .1)1(--=--a a5.方程x 3=22-x 的解的情况是( ) A .2=x B .6=xC .6-=xD .无解 6.已知235x x ++的值为 3,则代数式2391x x +-的值为( )A .-9B .-7C .0D .37.下列事件中,届于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个教比 5大D .打开数学书就翻到第10页8.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .10.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为()A.1.5万元 B.5万元 C.10万元 D.3.47万元12.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定13.下列图形中,由已知图形通过平移变换得到的是()14.在同一平面内垂直于同一条直线的两条直线必然()A.互相平行B.互相垂直C.互相重合D.关系不能确定15.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC 的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定16.下列命题不正确的是()A.在同一三角形中,等边对等角B.在同一三角形中,等角对等边C.在等腰三角形中与顶角相邻的外角等于底角的2倍D.等腰三角形是等边三角形17.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定18.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D . 顶角的平分线、底边上的高及底边上的中线三线互相重合19.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A . 15°B .30°C . 50°D . 65°20.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )21.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图22.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本23.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时 24.若分式3242x x +-有意义,则字母x 的取值范围是( ) A .12x = B .23x =- C .12x ≠ 23x ≠-25.把图中的角表示成下列形式:①∠AP0;②∠P;③∠0PC;④∠0;⑤∠CP0;⑥∠AOP.其中正确的有()A.6个B.5个C.4个D.3个26.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个27.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.3028.现有两个有理数 a、b,它们的绝对值相等,则这两个有理数()A.相等 B.相等或互为相反数 C.都是零 D.互为相反数29.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为()A.0.3 元B.l6.2 元C.16.8 元D.18 元30.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是()A.11 天B.10 天C.9 天D.8 天31.小红妈妈的 2 万元存款到期了,按规定她可以得到 2 的利息,但同时必须向国家缴 纳 20% 的利息所得税,则小红妈妈缴税的金额是( )A .80 元B .60 元C .40 元D .20 元32.求0.0529的正确按键顺序为( )A .B .C .D .33.下列方程中,是一元一次方程的为( )A .x+y=1B .2210x x -+=C .21x =D .x=034.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( )A . 1个B . 2个C .3个D .4个35.一个五次多项式,它的任何一项的次数( )A .都小于5B .都等于5C .都不大于5D .都不小于536.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是( ) A .5 B .5- C .2 D .137.下列说法中正确的是 ( )A .直线大于射线B .连结两点的线段叫做两点的距离C .若AB=BC ,则B 是线段AC 的中点D .两点之间线段最短38. 在△ABC 中,∠A =30°,∠B =50°,则∠C 的外角=( )A .60°B .80°C .100°D .120°39.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个40.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对41.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线42.12-的绝对值是( ) A .2- B .12- C .2 D .1243.下列说法中正确的是( )A .从三角形一个顶点向它对边所在直线画垂线,此垂线就是三角形的高B .三角形的角平分线是一条射线C.直角三角形只有一条高D.钝角三角形的三条高所在的直线的交点在此三角形的外部44.如图所示,是轴对称图形的个数有()A.4个B.3个C.2个D.1个45.将如图所示的图形按照顺时针方向旋转90°后所得的图形是()46.如图,已知 6.75r=,则图中阴影部分的面积为(结果保留π)()R=, 3.25A.35π⋅B.12.25πC.27πD.35π47.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个48.下列各式中不是不等式的为()A.25x=D.610x+≤C.58-<B.92y+> 49.关于单项式322-的系数、次数,下列说法中,正确的是()2x y zA.系数为-2,次数为 8B.系数为-8,次数为 5C.系数为-23,次数为 4D .系数为-2,次数为 750.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 5451.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A .1个B .2个C .3个D .4个52.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( )A .AB=A ′B ′ B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度53.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对54.在△ABC 中,AB=AC ,∠A=36°.以点A 为位似中心,把△ABC 放大2倍后得△A ′B ′C ′,则∠B 等于( )A .36°B .54°C .72°D .144°55.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是( )A .ΔPAB ∽ΔPCA B .ΔPAB ∽ΔPDAC .ΔABC ∽ΔDBAD .ΔABC ∽ΔDCA56.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( )A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠57.若正比例函数2y x =-与反比例函数k y x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x=- 58.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A .6cmB .10cmC .32cmD .52cm59.等腰三角形的腰长为32,底边长为6,那么底角等于( )A . 30°B . 45°C . 60°D .120°60.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面61.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定62.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m,那么飞机到目标B 的距离AB为()A.2400m B.1200m C.4003 m D.12003 m 63.已知二次函数22(21)1y x a x a=+++-的最小值为 0,则a的值为()A.34B.34-C.54D.54-64.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是()A.0 B.124C.78D.1865.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于()A.310B.70lC.37D.1766.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.2567.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是()A.0.75 B. 0.5 C. 0.25 D. 0.12568.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是()A.14B.13C.16D.2569.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

九年级数学易错题

九年级数学易错题

九年级数学易错题一、一元二次方程部分1. 若关于公式的一元二次方程公式的常数项为公式,求公式的值。

解析:对于一元二次方程公式,在方程公式中,常数项公式。

因为常数项为公式,所以公式。

对公式进行因式分解得公式。

解得公式或公式。

又因为方程是一元二次方程,二次项系数公式,即公式。

所以公式。

2. 解方程公式。

解析:对于一元二次方程公式(这里公式,公式,公式),我们可以使用求根公式公式。

首先计算判别式公式。

然后将公式,公式,公式代入求根公式得:公式。

二、二次函数部分1. 已知二次函数公式的图象经过公式、公式,公式三点,求这个二次函数的表达式。

解析:因为二次函数公式的图象经过公式、公式,公式三点。

把公式代入公式得公式。

把公式代入公式得公式。

把公式代入公式得公式。

将公式代入公式和公式,得到方程组公式。

由公式可得公式。

将公式代入公式得:公式,公式,公式,解得公式。

把公式代入公式得公式。

所以二次函数的表达式为公式。

2. 二次函数公式的图象向左平移公式个单位,再向上平移公式个单位,得到二次函数公式的图象,求公式、公式的值。

解析:先将公式进行逆变换。

把公式向下平移公式个单位得到公式。

再将公式向右平移公式个单位,根据“左加右减”原则,得到公式。

展开公式。

所以公式,公式。

三、旋转部分1. 在平面直角坐标系中,将点公式绕原点公式逆时针旋转公式后得到点公式,求公式的坐标。

解析:设公式绕原点公式逆时针旋转公式后的点公式。

根据旋转的性质,旋转前后的点到原点的距离不变,且旋转公式后坐标的变换规律为公式变为公式。

所以公式。

2. 如图,在公式中,公式,公式,公式,将公式绕点公式逆时针旋转公式得到公式,求公式的长。

解析:因为公式,公式,公式,根据勾股定理可得公式。

由于公式绕点公式逆时针旋转公式得到公式,则公式,公式,公式。

过公式作公式交公式延长线于公式。

因为公式,公式,所以公式。

在公式和公式中,公式,公式,公式,所以公式。

则公式,公式。

公式。

中考数学中考数学压轴题 易错题试题

中考数学中考数学压轴题 易错题试题

一、中考数学压轴题1.在平面直角坐标系中,直线4(0)3y x b b =-+>交x 轴于点A ,交y 轴于点B ,10AB =.(1)如图1,求b 的值;(2)如图2,经过点B 的直线(4)(40)y n x b n =++-<<与直线y nx =交于点C ,与x 轴交于点R ,//CD OA ,交AB 于点D ,设线段CD 长为d ,求d 与n 的函数关系式; (3)如图3,在(2)的条件下,点F 在第四象限,CF 交OA 于点E ,45AEF ∠=︒,点P 在第一象限,PH OA ⊥,点N 在x 轴上,点M 在PH 上,MN 交PE 于点G ,PH EN =,过点E 作EQ CF ⊥,交PH 于点Q , 32==EQ EF PM ,∠=∠OBR HNM ,BC CR =,点G 的坐标为1927,55⎛⎫ ⎪⎝⎭,连接FN ,求EFN 的面积.2.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .(1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.3.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ;(2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ;(3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由.5.如图,在平面直角坐标系中,Rt ABC ∆的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分BAC ∠交边BC 于点E ,经过点A D E 、、的圆的圆心F 恰好在y 轴上,⊙F 与y 里面相交于另一点G .(1)求证:BC 是⊙F 的切线 ;(2)若点A D 、的坐标分别为(0,1),(2,0)A D -,求⊙F 的半径及线段AC 的长; (3)试探究线段AG AD CD 、、三者之间满足的等量关系,并证明你的结论.6.综合与实践4A 纸是我们学习工作最常用的纸张之一, 其长宽之比是2:1,我们定义:长宽之比是2:1的矩形纸片称为“标准纸”.操作判断:()1如图1所示,矩形纸片2()ABCD AD AB =是一张“标准纸”,将纸片折叠一次,使点B 与D 重合,再展开,折痕EF 交AD 边于点,E 交BC 边于点F ,若1,AB =求CF 的长,()2如图2,在()1的基础上,连接,BD 折痕EF 交BD 于点O ,连接,BE 判断四边形BFDE 的形状,并说明理由.探究发现:()3如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点A 与点C 重合,再展开,痕MN 交AD 边于点M ,BC 交边于点,N 交BD 也是点O .然后将四边形ENFM 剪下,探究纸片ENFM 是否为“标准纸”,说明理由.7.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 8.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.9.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 3CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.10.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.11.平面直角坐标系中,点A 、B 分别在x 轴正半轴、y 轴正半轴上,AO =BO ,△ABO 的面积为8.(1)求点A 的坐标;(2)点C 、D 分别在x 轴负半轴、y 轴正半轴上(D 在B 点上方),AB ⊥CD 于E ,设点D 纵坐标为t ,△BCE 的面积为S ,求S 与t 的函数关系;(3)在(2)的条件下,点F 为BE 中点,连接OF 交BC 于G ,当∠FOB +∠DAE =45°时,求点E 坐标.12.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且2n -2n -,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.13.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O 上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.14.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.15.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.(1)求证:DE =BO ;(2)如图2,当点D 恰好落在BC 上时.①求点E 的坐标;②在x 轴上是否存在点P ,使△PEC 为等腰三角形?若存在,写出点P 的坐标;若不存在,说明理由;③如图3,点M 是线段BC 上的动点(点B ,点C 除外),过点M 作MG ⊥BE 于点G ,MH ⊥CE 于点H ,当点M 运动时,MH +MG 的值是否发生变化?若不会变化,直接写出MH +MG 的值;若会变化,简要说明理由.16.如图,在平面直角坐标系中,Rt ABC △的斜边在AB 在x 轴上,点C 在y 轴上90ACB ∠=︒,OC 、OB 的长分别是一元二次方程2680x x -+=的两个根,且OC OB <.(1)求点A 的坐标;(2)D 是线段AB 上的一个动点(点D 不与点A ,B 重合),过点D 的直线l 与y 轴平行,直线l 交边AC 或边BC 于点P ,设点D 的横坐标为t ,线段DP 的长为d ,求d 关于t 的函数解析式;(3)在(2)的条件下,当12d =时,请你直接写出点P 的坐标.17.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 322m m -62=AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.(1)求m 的值;(2)若45,APF ∠=︒求证:AHF HFA ∠=∠;(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)18.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,25AB =.(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.19.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.20.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(12,﹣98)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣12m2关于点P(m,0)的相关函数的最大值为6,求m的值.21.如图,在⊙O中,直径AB=10,tanA=3.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?22.如图,在▱ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.23.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P 、M 、N 、Q ,(1)如图①所示.当∠CNG =42°,求∠HMC 的度数.(写出证明过程)(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C ,交 AB 于点 P ,直尺另一侧与三角形交于 N 、Q 两点。

中考数学易错题分类汇总与解析

中考数学易错题分类汇总与解析

中考数学易错题分类汇总与解析中考数学是中学阶段非常重要的一门科目,也是考生普遍认为比较难以掌握的科目之一。

因此,在备考中,我们不仅要重点关注考纲中的重点知识和考点,还需要特别注意一些易错题型,以提高解题的准确性和效率。

本文将对中考数学中一些常见易错题进行分类汇总,并给出解析和解题技巧,帮助考生更好地备考和应对考试。

一、整数类易错题整数类易错题是中考数学中常见的一类题型。

这类题目涉及正整数、负整数、0以及整数加减等知识点。

常见易错题涉及整数相加减、乘除、取反、约分等操作。

解析和解题技巧:1. 整数相加减:在计算整数相加减时,要注意正负数的运算规则,例如:同号为正,异号为负;绝对值大的数决定运算结果的符号等。

掌握好整数的加减法运算规则,可以避免在计算过程中出现错误。

2. 整数乘法:整数的乘法是中考数学中常见的一种易错题型。

解决这类题目,我们可以通过运用乘法结合律、乘法交换律和乘法分配律等法则,将复杂的题目转化为简单的计算过程,从而减少错误的出现。

3. 整数除法:整数的除法也是考生易错的一个重点。

在计算整数除法时,要注意被除数与除数的正负性对商的结果的影响。

当被除数与除数同号时,商为正数;当被除数与除数异号时,商为负数。

此外,掌握整数除法的基本性质和规律也是避免错误的关键。

二、几何类易错题几何类易错题在中考数学中也比较常见。

这类题目主要包括图形的面积和周长计算、几何变换、平面几何相关定理等。

解析和解题技巧:1. 面积和周长计算:在计算图形的面积和周长时,要注意图形的边长、底边、高、直径等参数的选择和运用。

掌握好各类图形面积和周长的计算公式,可以有效避免在计算过程中出现错误。

2. 几何变换:在几何变换中,平移、旋转、翻转和对称等是中考数学中常见的易错题型。

解决这类题目,要理解几何变换的基本概念和性质,掌握各类变换的基本规律和方法,从而准确进行变换操作,避免出错。

3. 平面几何相关定理:平面几何相关定理在中考数学中占比较大的比例。

(完整)初三数学易错题集锦及答案

(完整)初三数学易错题集锦及答案

初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。

中考数学错题整理(压轴题部分)

中考数学错题整理(压轴题部分)

18. 若t 为实数,关于x 的方程2420x x t -+-=的两个非负实数根为a 、b ,则代数式22(1)(1)a b --的最小值是 .中雅培粹学校九年级上学期第七周周考数学试卷8.如图,四边形ABCD 内接于⊙O ,AB AD =,3BC =.劣弧BC 沿弦BC 翻折,刚好经过圆心O .当对角线BD 最大时,则弦AB 的长是( ) A .6B .23C .32D .22中雅培粹学校九年级第十二周数学周考试卷25.定义:在平面直角坐标系xOy 中,若点P 到原点O 的距离PO 满足PO ≤5,则称点P 为坐标系中的“安全点”.(1)若点M (x ,4)为平面直角坐标系中的“安全点”,则x 的取值范围为 .(2)若动点A ,B 为反比例函数x ky =(k >0,x >0)图象上的两个“安全点”,连接AO ,BO ,AB ,若△OAB 的最大面积为27,求反比例函数xky =的解析式.中雅培粹学校九年级第十六周数学周考试卷8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数xmy =1的图象经过点A ,反比例函数xny =2的图象经过点B ,则下列关于n m ,的关系正确的是( )A .n m 3-=B .n m 3-=C .n m 33-=D .n m 33=12.已知二次函数12-+=bx x y 与一次函数x y 2-=的交点关于原点对称,当1+≤≤t x t 时,二次函数12-+=bx x y 的最小值是2,则t 的值是( )A.1B.1或3C.-2D.3或-225.定义:若一次函数y ax b =+与反比例函数cy x=-存在两个不同的公共点,则称函数2y ax bx c =++为一次函数y ax b =+与反比例函数cy x=-的“生成函数”.(1)判断一次函数5y x =-+与反比例函数6y x=-是否存在“生成函数”,若存在,请写出“生成函数”,若不存在,请说明理由.(2)若一次函数(0)y x b b =->与反比例函数2y x=交于1(A x ,1)y 、2(B x ,212)()y x x <两点,连接AB 、AO 、(BO O 为坐标原点),若AOB ∆的面积为2b ,求y x b =-与2y x=的“生成函数”.26.(6分)如图,已知抛物线214y x bx c =++与x 轴交于点A 、B 两点、与y 轴负半轴交于点C ,其中A 在B 的左侧,且点A 的坐标为(2,0)-.(1)用含有c 的式子分别表示b 的值和点B 的横坐标.(2)如图1,连接BC ,过点A 作直线//AE BC 交抛物线214y x bx c =++于点E ,点(2,0)D 是x 轴上一点,若当C 、D 、E 在同一直线上时,求抛物线的解析式.19.在平面直角坐标系中,将二次函数)0(2>=a ax y 的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5. (1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求55PE PA +的最小值.中雅培粹学校九年级数学第十周周考卷8.如图,抛物线4412-=x y 与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )A.3B.241C.27D.412.如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊙l 于B 连接P A .设P A =x ,PB =y ,则()y x -21的最大值是( ) .A .1 B .2 C .3 D .4中雅2020年上学期九年级数学第二周周考15. 已知一次函数y 1=ax ﹣3a ,二次函数y 2=x 2﹣(a 2﹣2)x ﹣3.若x >0时,021≥y y 恒成立,则a = .20.如图,抛物线y =ax 2+bx (a <0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t =2时,AD =4. (1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE,若S△ACE=,S△BDE=,则AC=()A.B.1C.D.215.如图,在⊙O中,弦AB=4,点C是上的动点(不为A,B),且∠ACB=120°,则CA+CB的最大值为.20.(9分)如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,点P在以C(﹣2,0)为圆心,1为半径的圆上,Q是AP的中点(1)若AO=,求k的值;(2)若OQ长的最大值为,求k的值;(3)若过点C的二次函数y=ax2+bx+c同时满足以下两个条件:①a+b+c=0;②当a ≤x≤a+1时,函数y的最大值为4a,求二次项系数a的值.20.函数上的定点是指,一个含参数的函数无论参数取何值,函数的图象都过某一个点,这个点称为定点.例如,在函数y=kx中,当x=0时,无论参数k取何值,函数值y=0,所以这个函数过定点(0,0).(1)分别求函数y=kx+2k和y=kx2﹣kx+2019的定点;(2)若过原点的两条直线OA、OB分别与二次函数y=x2交于点A(m,m2)和点B(n,n2)(mn<0)且OA⊥OB,试求直线AB上的定点;(3)若直线CD:y=kx+2k+5与抛物线y=x2交于C、D两点,试在抛物线y=x2上找一定点E,使∠CED=90°,求点E的坐标,并求出点E到直线CD的最大距离.中雅2020年上学期九年级数学第五周周考16.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①阴影部分的面积为(k1+k2);②若B点坐标为(0,6),A点坐标为(2,2),则k2=﹣8;③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(填写正确结论的序号).20.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”. (1)如图1,在四边形ABCD 中,∠ABC =80°,∠ADC =140°,对角线BD 平分∠ABC .求证:BD 是四边形ABCD 的“相似对角线”; (2)如图2,点A 在双曲线)0(<=k xky 上且横坐标为1,点B (5,0),若∠OAB =90°,问y 轴的正半轴上是否存在点C ,使得四边形OABC 是以OB 为“相似对角线”的四边形 . 若存在,求出点C 的坐标;若不存在,说明理由;(3)如图3,已知AC 是四边形ABCD 的“相似对角线”,已知 A(1,1),AC⊙x 轴,∠BAC =∠CAD =30°,AD 交x 轴于E .连接BD ,△ABD 的面积为3,记AC =t .过A 、C 作抛物线)0(2>++=a c bx ax y ,点Q 在抛物线上,使得tan ∠EOQ =t1,若符合条件的Q 点个数为3个,求a 的值.图1 图2中雅培粹学校九年级上学期第八周周考数学试卷16.如图,在平面直角坐标系中,已知(3,4)C ,以点C 为圆心的圆与y 轴相切.点A 、B 在x 轴上,且OA OB =.点P 为C 上的动点,90APB ∠=︒,则AB 长度的最大值为 .中雅培粹学校九年级上学期第四周周考数学试卷8.如图所示,在⊙DEF 中,EF =10,DF =6,DE =8,以EF 的中点O 为圆心,作半圆与DE 相切,点A 、B 分别是半圆和边DF 上的动点,连接AB ,则AB 的最大值与最小值的和是( )A .6B .213+1C .332D .914.以坐标原点O 为圆心,作半径为3的圆,若直线y =x ﹣b 与⊙O 相交,则b 的取值范围是 .2019下学期初三第三次教学质量检测联考试卷数学科目12.如图,在平行四边形ABCD 中,AE⊙BC 于点E ,连接DE ,点F 是DE 上一点,使得⊙AFE=⊙ABC.若⊙ADE=⊙CDE ,BEEC=2,给出下列结论:⊙AF=DF; ⊙⊙AFD⊙⊙DCE ; ⊙23=CD DF ; ⊙AEF ABCD S S △平行四边形3=;其中正确的结论为( ). A. ⊙⊙⊙⊙ B.②④ C.①②③ D.①③④18.如图,正方形BEDF 和正方形MNHG 都是等腰∆Rt ABC 的内接正方形,则=BEDFMNHGS S 正方形正方形 .24.(9分)若一个三角形一条边的平方等于另外两条边的乘积,则我们把这个三角形叫做黄金三角形.(1)判断下列三个命题是否正确(直接在横线上填写“真”或“假”). ⊙等边三角形一定是黄金三角形;( 命题) ⊙等腰直角三角形一定是黄金三角形;( 命题) ⊙若⊙ABC 是黄金三角形且AB=1,BC=2,则AC=2.( 命题)(2) 如图,点A 是以BC 为直径的圆O 上的一个动点,过点C 作圆O 的切线交BC 的平行线AD 于点D ,若BD 平分⊙ABC ,求证:⊙ABC 是黄金三角形; (3) 在(2)的条件下,求ACBD的值.25. (10分)已知抛物线c bx ax y ++=2(a ≠0).(1)若该抛物线与x 轴交于两点,其中一个点的坐标为(2,0),对称轴为直线1-=x ,求该抛物线与x 轴的另一个交点的坐标;(2) 在(1)的条件下,M (m ,n )为抛物线上的一点,若M 关于原点的对称点M 1也在该抛物线上,求m 的值;(3)当a =1时,若抛物线上的点P(p ,q )满足-1≤p ≤1时,1≤q ≤5+b ,求b ,c 的值.雅礼教育集团2019年下学期期中联考试卷初三年级 数学科目11.如图,正方形ABCD 的边长为2cm ,点P ,点Q 同时从点A 出发,速度均2cm/s ,点P 沿A D C --向点C 运动,点Q 沿A B C --向点C 运动,则△APQ 的面积()2cmS 与运动时间()s t 之间函数关系的大致图象是( )A B .C . D .BD AB=2ABCD 12.如图,点P 为正方形对角线上一动点,,则AP+BP+CP 的最小值为( ).25A.26B.4C.32D26.(10分)如图,在平面直角坐标系xOy 中,一次函数m x +=45y (m 为常数)的图象与x 轴交于点A (﹣3,0),与y 轴交于点C .以直线x =1为对称轴的抛物线y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于M 1(x 1,y 1),M 2(x 2,y 2)两点,试探究是否为定值,并写出探究过程.中雅培粹学校2020年上学期入学考试卷初三年级 数学科目12.如图,P 为反比例函数y =xk (k >0)在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y =﹣x ﹣4的图象于点A 、B .若∠AOB =135°,则k 的值是( ) A .2 B .4 C .6 D .818.如图,正方形ABCD 的边长为8,E 为BC 上一点,且BE =2,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .25.(本小题10分)在△ABC 中,∠ABC =90°,BCAB=n ,M 是BC 上一点,连接AM . (1)如图1,若n =1,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM =BN . (2)过点B 作BP ⊥AM ,P 为垂足,连接CP 并延长交AB 于点Q . ①如图2,若n =1,求证:BQBMPQ CP . ②如图3,若M 是BC 的中点,直接写出tan ∠BPQ 的值.(用含n 的式子表示)26.(本小题10分)如图,已知二次函数y =ax 2+bx ﹣4(a >0)的图象与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C . (1)求C 点坐标,并判断b 的正负性; (2)设这个二次函数的图象的对称轴与直线AC 相交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC . ①若△BCE 的面积为8,求二次函数的解析式; ②若△BCD 为锐角三角形,求出OA 的取值范围.初三下学期第一阶段检测数学测试卷12.在平面直角坐标系中,已知m n ≠,函数2()y x m n x mn =+++的图象与x 轴有a 个交点,函数2()1y mnx m n x =+++的图象与x 轴有b 个交点,则a 与b 的数量关系是( ) A .a b =B .1a b =-C .a b =或1a b =+D .a b =或1a b =-18.如图,正方形ABCD 中,25AB =,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .线段OF 长的最小值为 .O AB C D E F26.(本题10分)如图,二次函数)012522<-+=m m m mx mx y 为参数,且(的图象与x 轴交于点A 、B ,与y 轴交于点C ,点A 的坐标为(4,0)-.(1)求直线AC 的解析式(用含m 的式子表示).(2)若61-=m ,连接BC ,判断CAB ∠和CBA ∠的数量关系,并说明理由.(3)在(2)的条件下,设点M 为AC 上方的抛物线上一动点(与点A ,C 不重合),以M 为圆心的圆与直线AC 相切,求⊙M 面积的取值范围.基础100分测试(一)12.如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若4AB =,5BE =,则DE 的长为( )A.3B.4C.154D.16518.如图,正ABC ∆的边长为4,过点B 的直线l AB ⊥,且ABC ∆与A B C ∆'''关于直线l 对称,D 为线段BC '上一动点,则AD CD +的最小值是__________.基础100分测试(二)18.如图,在平面直角坐标系xOy中,点A(0,6),点B(4,3),P是x轴上的一个动点.作OQ⊥AP,垂足为Q,则点Q到直线AB的距离的最大值为.2020年长沙市初中学业水平考试模拟试卷数学(一)12.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为A.95B.125C.185D.22518.如图,菱形ABCD的边长为4,E,F分别是AB,AD边上的动点,BE=AF,∠BAD=120°,则下列结论:①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则13GFGE.其中正确结论的序号有_______.2020年长沙市初中学业水平考试模拟试卷数学(二)12.如图,抛物线y=-2x2+8x-6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是A.128m-<<B.734m-<<-C.-3<m<-2 D.1538m-<<-18.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC,BD于点E,F,CE=2,连接CF,以下结论:①△ABF≌△CBF:②点E到AB的距离是23;③33 tan7DCF∠=;④△ABF的面积为1235.其中一定成立的是_______.(写出所有正确结论的序号)26.如图,在平面直角坐标系中,⊙A的半径为5,点A的坐标为(3,0),⊙A与x轴相交于点B,C,交y轴正半轴于点D.(1)求点B,D的坐标;(2)过点B作⊙A的切线,与过点A,C的抛物线交于点P.抛物线交y轴正半轴于点Q.若P的纵坐标为t,四边形PQAC的面积为y.①求y与t的函数关系式;②若△PBO与△DOA相似,求m2-12tm+y取最小值时m的值.2020年长沙市初中学业水平考试模拟试卷数学(三)18.如图,在平面直角坐标系中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B ,C 在反比例函数2(0)y x x=>的图象上,则△OAB 的面积等于_________.12.如图,在正方形ABCD 中,以BC 为边向正方形内部作等边△BCE .连接AE ,DE ,连接BD 交CE 于点F ,有下列结论:①∠AED =150°;②△DEF ∽△BAE ;③tan DFECD FB∠=;④:(31):2BEC BFC S S =+△△.其中正确结论的个数为A .4个B .3个C .2个D .1个26.如图,直线y =-x +4与x 轴交于点A ,与y 轴交于点B .抛物线212y x bx c =-++经过A ,B 两点,与x 轴的另外一个交点为C .(1)填空:b =_________,c =_________,点C 的坐标为_________;(2)如图1,若点P 是第一象限抛物线上一动点,连接OP 交直线AB 于点Q ,设点P 的横坐标为m,设PQ y OQ =,求y 与m 的函数关系式,并求出PQOQ 的最大值; (3)如图2,若点P 是抛物线上一动点,当∠PBA +∠CBO =45°时,求点P 的坐标.2020年长沙市初中学业水平考试模拟试卷数学(四)12.如图,在平面直角坐标系中,已知A (-3,-2),B (0,-2),C (-3,0),M 是线段AB 上的一个动点,连接CM ,过点M 作MN ⊥MC 交y 轴于点N ,若点M ,N 在直线y =kx +b 上,则b 的最大值是A .78-B .34- C .-1 D .018.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(-2,-9a ),下列结论:①abc <0;②5a -b +c <0;③方程ax 2+bx +c =0的两根分别为x 1=-5,x 2=1;④若方程|ax 2+bx +c |=1有四个根,则这四个根的和为-4.其中正确的结论有_________.25.已知关于x 的方程kx 2+(2k +1)x +2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =kx 2+(2k +1)x +2的图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围;(3)将(2)中的抛物线向右平移m (3≤m ≤6)个单位,与x 轴的两个交点分别为A (x 1,0),B (x 2,0),若21111M x x =+,求M 的取值范围. 26.如图,已知抛物线y =mx 2-8mx -9m 与x 轴交于A ,B 两点,且与y 轴交于点C (0,-3),过A ,B ,C 三点作⊙O ′,连接AC ,BC .(1)求⊙O ′的圆心O ′的坐标;(2)点E 是AC 延长线上的一点,∠BCE 的平分线CD 交⊙O ′于点D ,求点D 的坐标,并直接写出直线BC 和直线BD 的解析式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ,若存在,请求出点P 的坐标,若不存在,请说明理由.2020年长沙市初中学业水平考试模拟试卷数学(五)12.已知点A (-3,y 1),B (2,y 2)均在抛物线y =ax 2+bx +c 上,点P (m ,n )是该抛物线的顶点,若y 1>y 2≥n ,则m 的取值范围是A .-3<m <2B .3122m -<<- C .12m >- D .m >2第十四周数学周考试卷24.如图,直线y =kx+b (k 、b 为常数)分别与x 轴、y 轴交于点A (﹣4,0)、B(0,3),抛物线y =﹣x 2+2x+1与y 轴交于点C . (1)求直线y =kx+b 的函数解析式;(2)若点P (x ,y )是抛物线y =﹣x 2+2x+1上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标;基础100分测试(六)12.如果,△ABC 中,45BAC ∠=︒,30ACB ∠=︒,将△ABC 绕点A 顺时针旋转得到△11AB C ,当点1C 、1B 、C 三点共线时,旋转角为α,连接1BB ,交AC 于点D 。

中考数学中考数学压轴题 易错题专项训练学能测试试题

中考数学中考数学压轴题 易错题专项训练学能测试试题

一、中考数学压轴题1.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)2.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.3.已知抛物线217222y x mx m 的顶点为点C .(1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC 的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.10AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.6.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.7.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.8.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.9.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.10.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 上以每秒3的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由. 11.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D恰好在矩形ABOC的对角线BC上时,求CE的长;②若折叠后点D落在矩形ABOC内(不包括边界),求线段CE长度的取值范围.(2)若折叠后,△ABD是等腰三角形,请直接写出此时点D的坐标.13.平面直角坐标系中,点A、B分别在x轴正半轴、y轴正半轴上,AO=BO,△ABO的面积为8.(1)求点A的坐标;(2)点C、D分别在x轴负半轴、y轴正半轴上(D在B点上方),AB⊥CD于E,设点D 纵坐标为t,△BCE的面积为S,求S与t的函数关系;(3)在(2)的条件下,点F为BE中点,连接OF交BC于G,当∠FOB+∠DAE=45°时,求点E坐标.14.已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.15.如图,一张半径为3cm的圆形纸片,点O为圆心,将该圆形纸片沿直线l折叠,直线l交O于A B、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .16.已知四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P ,G 不与正方形顶点重合,且在CD 的同侧),PD =PG ,DF ⊥PG 于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连结EF .(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时.①求证:DF =PG ;②若AB =3,PC =1,求四边形PEFD 的面积;(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.17.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.18.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.19.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.20.我们知道,在等腰直角三角形中,底边与一边腰长比为2:1.如图1,90A ∠=︒,AB AC =,则2BC AB=.知识应用:(1)如图2,ADE ∆和ABC ∆均为等腰直角三角形,90DAE BAC ∠=∠=︒,D ,E ,C 三点共线,若2AD =,2BD =,求CD 的长. 知识外延:(2)如图3,正方形ABCD 中,BE 和BC 关于BG 对称,C 点的对应点为E 点,AE 交BG 的延长线于F 点,连接CF .①求证:GF EC =;②若2AE =,2CE =,求BF 的长.21.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.22.如图,四边形AOBC 是正方形,点C 的坐标是(82,0).(1)正方形AOBC 的边长为 ,点A 的坐标是 ;(2)将正方形AOBC 绕点O 顺时针旋转45︒,点A ,B ,C 旋转后的对应点为A ',B ',C ',求点A '的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当OPQ △为等腰三角形时,求出t 的值(直接写出结果即可).23.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF =( )A .180°B .270°C .360°D .540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB ∥EF ,请直接写出∠BAD ,∠ADE ,∠DEF 之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD ,ED 分别平分∠BAC ,∠CEF 时,∠ACE 与∠ADE 之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB ∥EF ,当∠ACD=90°时,∠BAC 、∠CDE 和∠DEF 之间又有怎样的数量关系?请你直接写出结果,不需要证明.24.综合与探究:如图1,抛物线24832999y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),顶点为D ,P 为对称轴右侧抛物线的一个动点,直线AD 与y 轴于点C ,过点P 作//PF AD ,交x 轴于点F .(1)求直线AD 的函数表达式及点C 的坐标;(2)如图2,当//PC x 轴时,将AOC ∆以每秒1个单位长度的速度沿x 轴的正方向平移,当点C 与点P 重合时停止平移.设平移t 秒时,在平移过程中AOC ∆与四边形AFPC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (3)如图3,过点P 作x 轴的平行线,交直线AD 于点E ,直线DF 与PE 交于点M ,设点P 的横坐标为m .①当3DM MF =时,求m 的值;②试探究点P 在运动过程中,是否存在值m ,使四边形AFPE 是菱形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图,在ABC ∆与AED ∆中,,BA BC EA ED == ,且,ABCAED ∆∆所以称ABC ∆与AED ∆为“关联等腰三角形”,设它们的顶角为α,连接,EB DC ,则称DCEB会为“关联比". 下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题: [特例感知]()1当ABC ∆与AED ∆为“关联等腰三角形”,且90α︒=时,①在图1中,若点E 落在AB 上,则“关联比”DCEB=②在图2中,探究ABE ∆与ACD ∆的关系,并求出“关联比”DCEB的值.[类比探究]()2如图3,①当ABC ∆与AED ∆为“关联等腰三角形”,且120a ︒=时,“关联比”DCEB= ②猜想:当ABC ∆与AED ∆为“关联等腰三角形”,且n α=︒时,“关联比”DCEB= (直接写出结果,用含n 的式子表示) [迁移运用]()3如图4, ABC ∆与AED ∆为“关联等腰三角形”.若90,4,ABC AED AC ︒∠=∠==点P 为AC 边上一点,且1PA =,点E 为PB 上一动点,求点E 自点B 运动至点P 时,点D 所经过的路径长.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.A解析:(1)5AD x =,6DF x =+;(2)△ADF 为等腰三角形,x 的取值可以是4817,4831,12; (3)4或43【解析】 【分析】(1)由已知条件可得:CD=4x ,根据勾股定理得:AD=5x ,由AB=6且C 在B 点右侧,可以依次表示BC 、CF 、DF 的长;(2)分两种情况:①当C 在B 点的右侧时,AF=DF ,②当C 在线段AB 上时,又分两种情况:i )当CF <CD 时,如图3,ii )当CF >CD 时,如图4,由AF=DF ,作等腰三角形的高线FN ,由等腰三角形三线合一得:AN=ND=2.5x ,利用同角的三角函数列比例式可求得x 的值;(3)由翻折性质得到DG='GD ,'DGF FGD ∠=∠,从而证出'ADG AGD △≌△,从而推出∠FAC=∠DAG ,即AF 平分∠DAC ,过F 作FN ⊥AD 于N ,分两种情况:当C 在AB 的延长线上时,当C 在AB 边上时,根据35sin CDA ∠=可列出关于x 的比例式,即可求解. 【详解】 ⑴∵CD=43AC ,AC=3x , ∴CD=4x, ∵CD⊥AM, ∴∠ACD=90°, 由勾股定理得:AD=5x , ∵AB=6,C 在B 点右侧, ∴BC=AC-AB=3x-6, ∵BC=FC=3x-6,∴DF=CD -FC=4x-(3x-6)=x+6; (2)分两种情况: ①当C 在B 点的右侧时, ∴AC >AB , ∴F 必在线段CD 上, ∵∠ACD=90°,∴∠AFD 是钝角,若△ADF 为等腰三角形,只可能AF=DF ,过F 作FN⊥AD 于N ,如图,∴AN=ND=2.5x,∴DN DC cos ADCDF AD ∠==,即2.5465x xx x +=,解得,4817x=;②当C在线段AB上时,同理可知若△ADF为等腰三角形,只可能AF=DF, i)当CF<CD时,过F作FN⊥AD于N,如图,x的取值可以是4817,4831,12;∵AB=6,AC=3x,∴BC=CF=6-3x,∴DF=4x-(6-3x)=7x-6,∵DN DC cos ADCDF AD ∠==,∴2.54 765x xx x-=,解得4831x=;ii)当CF>CD时,如图4,BC=CF=6-3x ,∴FD=AD=6-3x-4x=6-7x , 则6-7x=5x ,x=12, 综上所述,x 的取值可以是4817,4831,12; (3)∵△DFG 沿FG 翻折得到'FDG △∴DG='GD ,'DGF FGD ∠=∠ 又∵AG=AG, ∴'ADG AGD △≌△ ∴∠FAC=∠DAG, 即AF 平分∠DAC,如图, 当C 在AB 的延长线上时,过F 作FN⊥AD 于N , FN=FC=3x-6,DF=x+6,36365x x -+=, 解得:x=4;当C 在AB 边上时,如图,∵FN=FC=6-3x , DF=7x-6,∴633765x sin CDA x -∠=-=, 解得43x =; 综上所述,x 的值是4或43. 【点睛】本题是四边形的综合题,考查了平行四边形、菱形的性质和判定、等腰三角形的性质和判定、同角的三角函数以及动点问题,采用分类讨论的思想,并参考数形结合解决问题.2.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC1SMK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,QN OQ ===QN sin QHN QH m 6∠===+,进行分析计算即可求解. 【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴, QHN OCA ∠∠∴=, 1tan QHN2∠∴=,则sin QHN ∠= 将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--. 【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.3.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或417k 或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形.【解析】 【分析】 (1)从2172022x mxm的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴32b xa来求m 的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点C 的坐标;(3)根据平行四边形的性质得到:215|1(3)|422MN k k kCD . 需要分类讨论:①当四边形CDMN 是平行四边形,2151(3)422MN k k k,通过解该方程可以求得k 的值;②当四边形CDNM 是平行四边形,2153(1)422NM k kk ,通过解该方程可以求得k 的值. 【详解】解:(1)2217()4(2)(2)322m m m ,∵不论m 为何实数,总有2(2)0m -≥,2(2)30m ,∴无论m 为何实数,关于x 的一元二次方程2172022x mxm总有两个不相等的实数根,∴无论m 为何实数,抛物线217222y x mxm与x 轴总有两个不同的交点. (2)抛物线的对称轴为直线3x =,3122m ,即3m =,此时,抛物线的解析式为221513(3)2222y x xx ,∴顶点C 坐标为(3,2)-;(3)//,CD MN C D M N 、、、为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线的下方),如图所示,由已知215(3,2),(,1),(3)22D M k k N k k k,, (3,2)C ,4CD ∴=,2151(3)422MNk k kCD,①当四边形CDMN 是平行四边形,2151(3)422MNk k k,整理得,28150k k -+=,解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形,2153(1)422NMk kk ,整理得2810k k , 解得,12417417k k ,,综上,5k =或417k或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】 【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MFAF DF NF MF NF DF =⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NFAF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH =∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭解得:2516r =∵,E O 分别为,BA BM 中点∴BAM BEO OBE ∠=∠=∠ 又∵CMN BAM ∠=∠ ∴CMN OBE ∠=∠ ∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r === ∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠ ∴AMB CNM ∠=∠ 又∵AMB MAD ∠=∠ ∴MAD CNM ∠=∠ 又∵AFM NFD ∠=∠ ∴AFM NFD ∆~∆∴AF MFAF DF NF MF NF DF =⇒=① 又∵//MD AN∴AFN DFM ∆~∆∴AF NFAF MF NF DF DF MF =⇒=② 由①⨯②得;22AF NF AF NF =⇒= ∴NF DF = ∴5MN AD == 故MN 的长为5; (3)作如图:∵圆O 与圆'O 外切且均与圆N 内切 设圆N 半径为R ,圆O 半径为r ∴'=NO R r NO -= ∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO ∴90NMC ∠=︒ ∵90BAM CMN ∠=∠=︒ ∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM =O 的半径长为258【点睛】本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)32910AB BC =;(3)①12561535AD CD =. 【解析】【分析】(1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论;(2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出ABBC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AFAE EC=,然后求出CD 和AD 的长度,即可得到答案. 【详解】解:(1)ABC 是“准黄金”三角形. 理由:如图,过点A 作AD BC ⊥于点D , ∵12AC =,30ACB ∠=︒,∴162AD AC ==. ∴:6:103:5AD BC ==.∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称, ∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”, ∴:3:5AE BC =.不防设3AE k =,5BC k =, ∵点C 为ABD △的重心, ∴:2:1BC CE =. ∴52k CE =,152k BE =. ∴2215329(3)2k AB k ⎛⎫=+= ⎪⎝⎭.∴329329:5210AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=, ∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF , ∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =,∴(23)35AC x == 解得:65315DF x == ∴2125615CD DF ==②如图,过点A 作AE BC ⊥于点E ,则3AE =. ∵ABC 是“准黄金”三角形,BC 是“金底”, ∴:3:5AE BC =. ∴5BC =. ∵10AB BC =,∴10AB.∴221BE AB AE=-=.∴6CE BE BC=+=,2236935AC CE AE=+=+=.分别过点B',D作B G BC'⊥,DF AC⊥,垂足分别为点G,F,∴90B GC DFC'∠=∠=︒,3B G'=,5C BB C'==,则CG4=.∵GCB FCDα'∠=∠=,∴AEC DFA∽△△.∴::::3:4:5DF FC CD B G GC CB''==.∴设3DF k=,4FC k=,5CD k=.∵12l l//,∴ACE CAD∠=∠,且90AEC AFD∠=∠=︒.∴AEC DFA∽△△.∴DF AFAE EC=.∴335436k k=,解得3510k=.∴3552CD k==,2222959595102AF DFAD⎛⎫⎛⎫+=+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭=.∴93525355ADCD===.【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.6.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析 【解析】 【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻. 【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =, ∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出, ∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大, ∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟, 第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟; (4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分, 故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标.7.D解析:(1)D 点坐标为()2,3,矩形MONC 的最小值为645;(2)交点坐标为(),(3),(1),(). 【解析】 【分析】(1)当△DEB 的面积最大时,直线DN 与抛物线相切,可求出直线DN 的解析式和点D 的坐标,当矩形面积最小时,MG 最小,求出MG 的最小值即可.(2)分两种情况讨论,以DB 为边和以DB 为对角线,分别求出此时ON 的解析式,联立求出交点坐标即可. 【详解】解:(1)如图1所示,过点D 作y 轴的平行线交MB 于点H ,过点O 作OQ 垂直MB 于点Q ,令y=0,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=0,y=2,∴E(0,2),设直线BE的解析式为y=kx+b,则2, 40,bk b=⎧⎨+=⎩解得122kb⎧=-⎪⎨⎪=⎩,∴直线BE的解析式为y=﹣12x+2,∵DN∥BE,∴设直线DN的解析式为y=﹣12x+b1,S△DEB=DH12⨯•(x B﹣x E),∴当△DEB面积最大时,即是DH最大的时候,∴﹣12x+b1=﹣12x2+32x+2,△=b2﹣4ac=0,即16﹣4(2b1﹣4)=0,解得b1=4,点D(2,3),S矩=2S△MOG+S平形四边形,∴矩形面积最小时就是MG最小,设QG=m,MQ=n,∴MG=m+n,∵m+n≥mn∵△QOG∽△MQO,∴OQ2=m•n,∵△OEQ ∽△EOB ,∴OQ ∴m •n =165,∴m +n .∴MG =5, ∴S 矩=2S △MOG +S 平形四边形=645. (2)分两种情况讨论,情况一:当GN ∥DB 时, 直线DB 的解析式为:y =﹣32x +6, 则直线NG 的解析式为y =﹣32x , ∴﹣32x =﹣12x 2+32x +2,解得x 1=x 2=3∴交点坐标为(),(3), 情况二:DB 为对角线时,此时NG 必过DB 的中点(3,32), 设直线ON 的解析式为y =k 1x , 则k 1=12, ∴直线OD 的解析式为y =12x , 12=﹣12x 2+32x +2,解得x 1=1x 2=∴交点坐标为(1),(),综上所述:交点坐标为(),(3),(1﹣12),(12).【点睛】此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.8.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45° 【解析】 【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解; (2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解; ②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF ∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO 一定要小于90°,注意解得取舍. 【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。

初三数学易错题集锦及答案课件.doc

初三数学易错题集锦及答案课件.doc

初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数2 、有理数a、b 在数轴上的位置如图所示,则化简|a-b|-|a+b| 的结果是( A )A、2a B 、2b C 、2a-2b D 、2a+bO ab3 、轮船顺流航行时m千米/ 小时,逆流航行时(m-6) 千米/ 小时,则水流速度( B )A、2 千米/ 小时 B 、3 千米/ 小时 C 、6 千米/ 小时 D 、不能确定4 、方程2x+3y=20 的正整数解有( B )A、1 个 B 、3 个 C 、4 个 D 、无数个5 、下列说法错误的是( C )A、两点确定一条直线 B 、线段是直线的一部分C、一条直线是一个平角 D 、把线段向两边延长即是直线6、函数y=(m2-1)x2-1)x2-(3m-1)x+2 的图象与x 轴的交点情况是( C )A、当m≠3 时,有一个交点 B 、m 1 时,有两个交C、当m 1 时,有一个交点 D 、不论m为何值,均无交点7、如果两圆的半径分别为R 和r (R>r),圆心距为d,且(d-r) 2 = R2,则两圆的位置关系是( B ),则两圆的位置关系是( B )A、内切 B 、外切 C 、内切或外切 D 、不能确定8 、在数轴上表示有理数a、b、c 的小点分别是A、B、C 且b<a<c,则下列图形正确的是( D )A B C C B A C A B B A CA B C D9 、有理数中,绝对值最小的数是( C )A、-1 B 、1 C 、0 D、不存在10 、 1 的倒数的相反数是( A )2A 、-2B 、2C 、- 12 D 、1211 、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12 、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C )A 、互为相反数B 、互为倒数C 、互为相反数且不为0 D、有一个为013 、长方形的周长为x,宽为2,则这个长方形的面积为( C )A 、2xB 、2(x-2)C 、x-4D 、2·(x-2)/214 、“比x 的相反数大 3 的数”可表示为( C )A 、-x-3B 、-(x+3)C 、3-xD 、x+315 、如果0<a<1,那么下列说法正确的是( B )2 A、a2比a 大B、a 比a 小2 C、a2与a 相等D、a 与a 的大小不能确定16 、数轴上, A 点表示-1 ,现在 A 开始移动,先向左移动 3 个单位,再向右移动9 个单位,又向左移动 5 个单位,这时, A 点表示的数是( B )A 、-1B 、0C 、1D 、 8第 1 页17 、线段AB=4cm,延长A B到C,使BC=AB再延长B A到D,使AD=AB,则线段CD的长为( A )A、12cm B 、10cm C 、8cm D 、4cm18 、1 2 的相反数是( B )A 、1 2B 、 2 1C 、 1 2D 、 2 119 、方程x(x-1)(x-2)=x 的根是( D )A 、x1=1, x 2=2B 、x1=0, x 2 =1, x 3=2C、x1= 3 , x52 2 =3 5D 、x1 =0,x2 =23 5 , x33=3 5211 120 、解方程x ) 4 0时,若设y2x3 ( ) 5 ( x2 xxx,则原方程可化为( B )A、3y2+5y-4=0 B 、3y2+5y-10=0 C 、3y2+5y-2=0 D 、3y2+5y+2=0 21 、方程x2+1=2|x| 有( B )A 、两个相等的实数根;B、两个不相等的实数根;C、三个不相等的实数根;D、没有实数根22 、一次函数y=2(x-4) 在y轴上的截距为( C )A 、-4B 、4C 、-8D 、8x a23 、解关于x 的不等式,正确的结论是( C )x aA、无解 B 、解为全体实数 C 、当a>0时无解 D 、当a<0时无解24 、反比例函数y 2x,当x≤3时,y 的取值范围是( C )A、y≤23 B 、y≥ 2 C 、y≥32或y<0 D 、0<y≤32325 、0.4 的算术平方根是( C )A 、0.2B 、±0.2C 、10D 、±5 10 526 、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )O O O OA B C D227、若一数组x1, x2, x3, , , x n 的平均数为x,方差为s,则另一数组k x1, kx2, kx3, , , kx n的平均数与方差分别是( A )A、k x , k 2s2B、x , s 2C、k x , ks 2D、k22x , ksx 128 、若关于x 的方程 2x a有解,则a的取值范围是( B )A 、a≠1B 、a≠-1C 、a≠2D 、a≠±129 、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形第 2 页30、已知abcd,下列各式中不成立的是( C )A 、acbdacbdB 、cdab33cdC 、abcd32abD 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于( D )0 B、450 C、550 D 、600A 、3032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A、三角形的外心B、三角形的重心 C 、三角形的内心 D 、三角形的垂心33、下列三角形中是直角三角形的个数有( B )①三边长分别为 3 :1:2 的三角形②三边长之比为1:2:3 的三角形③三个内角的度数之比为3:4:5 的三角形④一边上的中线等于该边一半的三角形A、1 个 B 、2 个 C 、3 个 D 、4 个34 、如图,设A B=1,S△OAB= 3 cm2,则弧AB长为( A )4O2cm C、A cm B、、cm D、cm 336 235 、平行四边形的一边长为5cm,则它的两条对角线长可以是( D )B AA 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36 、如图,△ABC与△BDE都是正三角形,且AB<BD,若△ABC不动,EC 将△BDE绕B点旋转,则在旋转过程中,AE与CD的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A )A B DA 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形38 、在圆O中,弧AB=2CD,那么弦AB和弦CD的关系是( C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB与CD不可能相等A39 、在等边三角形ABC外有一点D,满足AD=AC,则∠BDC的度数为( D )D0 A 、30B、60C、150D、30或150E40 、△ABC的三边a、b、c满足a≤b≤c,△ABC的周长为18,则( C )BA、a≤ 6 B 、b<6 C 、c>6 D 、a、b、c 中有一个等于 6C41 、如图,在△ABC中,∠ACB=Rt∠,AC=1,BC=2,则下列说法正确的是( C )0 B、斜边上的中线长为1A、∠B=30C2 D 、该三角形外接圆的半径为1C、斜边上的高线长为55EBA42 、如图,把直角三角形纸片沿过顶点B的直线B E(BE交CA于E)折叠,0 直角顶点C落在斜边A B上,如果折叠后得到等腰三角形EBA,那么下列结论中(1)∠A=30 (2)点C 与AB的中点重合(3)点E 到AB的距离等于CE的长,正确的个数是( D )A、0 B 、1 C 、2 D 、343 、不等式 2 x 2 3 x 6 的解是( C )A 、x> 2B 、x>- 2C 、x< 2D 、x<- 244 、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m的取值范围是( B )A 、m≤ 1B 、m≥1且m≠1C 、m≥ 1D 、-1<m≤ 13第 3 页45 、函数y=kx+b(b>0) 和y=kx(k ≠0) ,在同一坐标系中的图象可能是( B )A B C D46 、在一次函数y=2x-1 的图象上,到两坐标轴距离相等的点有( B )A、1 个 B 、2 个 C 、3 个 D 、无数个47 、若点(-2 ,y1)、(-1 ,y2)、(1,y3)在反比例函数y1x的图像上,则下列结论中正确的是( D )A、y1>y2>y3B、y1<y2<y3C、y2>y1>y3D、y3>y1>y248 、下列根式是最简二次根式的是( B )A 、8aB 、 a 2 b 2C 、0 .1xD 、 a 549 、下列计算哪个是正确的( D )12 D 、22 212A 、 3 2 5B 、2 5 2 5C 、 a b a b22 2150 、把 a 1a (a 不限定为正数)化简,结果为( B )A 、 aB 、 aC 、- aD 、- a51 、若a+|a|=0 ,则( a 2)2 a 2 等于( A )A 、2-2aB 、2a-2C 、-2D 、2252 、已知 2 x 1 1 2 x 0 ,则x 2 1 的值( C )xA 、1B 、±1C 、2 1 D、- 21253 、设a、b 是方程x2-12x+9=0 的两个根,则a b 等于( C )A 、18B 、 6C 、3 2D 、± 3 254、下列命题中,正确的个数是( B )①等边三角形都相似②直角三角形都相似③等腰三角形都相似④锐角三角形都相似⑤等腰三角形都全等⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似⑧全等三角形相似A、2 个 B 、3 个 C 、4 个 D 、5 个二、填空题1 、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最后一课 中考数学易错题
代数部分
1. 给出以下变形:
① 222
(1)222;a x ax ax a +-=++- ② 313131();a b a b
÷+=
+ ③ 331()()(3)(3)224x y x y -+=--; ④ 若22
(2)9a b +=,则23a b +=;
⑤ 若2,2xy y x ==则; 其中错误的是_________(填序号)。

2、以251+-和251--的一元二次方程是____
3、解方程11
12-=+-x m x x 的过程中若会产生增根,则m=____ 4. 方程22(56)(56)0a a a a ---+=的整数根共有____________个。

5. 已知整数m 满足2(7)1m m +-=,那么m =_________________。

6. 已知实数x 满足等式2112x x x
=-++,那么实数x 的取值范围为_________。

7. 已知分式方程2
1212-+=--++x x a x x x x 的解比5-大且比3小, 那么字母系数a 的取值范围为______________。

8. 0=在实数范围内成立, 那么x 的值为_________。

9. 是同类二次根式, 那么x 的值为_______。

10. 已知1y 和x
1成反比例,2y 和2x 成正比例,且21y y y +=, 当1=x 时11 ,3-=-==y x y 时当, 那么当=x _______时0=y 。

11. 已知函数12(1)35(13)k y x k x
k x +=--++≤≤的图象是一条线段,那么y 的最大可
能值为_______。

12. 若抛物线22y x x m =++与坐标轴共有两个交点,则字母系数m =_______。

13. 将三枚质地均匀的硬币向上抛掷,落地后只有一枚正面向上的概率为________。

14. 已知正数,,a b c 是△ABC 三边的长,且关于x 的方程
22222()2()0a b x a ab x b c ----+=有两个相等的实数根,那么△ABC 的形状是______。

15.已知一组数据x 1,x 2,x 3,x 4的平均数是2,方差是1,则另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别是____
16. 某人骑摩托车从A 地去距离A 地100千米的B 地参加一个紧急会议,此人于早晨9:00出发,行进半小时后发现,若按原来的速度继续行进,将会迟到30分钟,于是他把车速提高到原来的1.5倍,结果恰好准时到达,求原来的车速。

在本题中,设原来的车速为x 千米/小时,那么依题意列方程得:_________________。

17. 某铁路桥长1800米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用80秒,整列火车完全在桥上的时间为60 秒,求火车的长度。

几何部分:
1. cos 231°-2sin59°+1=__________
2.比较大小∶ sin α____tan α (α为锐角)
3.tanA=2, A
A A A c os si n c os si n -+=______
4.若α为锐角,sin α>cos30°,则α的取值范围( )
A,0<α<30° B,30°<α<60° C,α>60° D,60°<α<90°
5.在Rt ⊿ABC 中,∠ACB=90°,CD 为斜边上的高,BD =3,AD =16/3则sinA =_
6、使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格,如图所示的四种情况中合格的是 ( )
7.已知点P 到⊙0最大距离为a,最小距离为b(a>b)则此圆的半径为( )
2,b
a A + 2
ab D, 2b -a 2b a C, 2b -a B ,或+
8.如图,三个半径为r 的等圆两两外切,且与△A B C 的三边分别相切,则△A B C 的边长为( )
(A )2r (B ) (C )3r (D )
9、现有半径为R 的两圆外切,能与这两圆都相切且半径为2R 的圆共有( )
(A)5个 (B)4个 (C)3个 (D)2个
10.若b c c a a b k a b c
+++===,则k =________.
11.PA、PB是⊙O的切线,A、B是切点,78
∠=︒,点C是上异于A、B的任意一
APB
点,那么ACB
∠= ________.
12.若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________.13.若一个三角形的三边都是方程212320
-+=的解,则此三角形的周长是_________.
x x
14.已知线段AB=7cm,在直线AB上画线段BC=3cm,则线段AC=_____.
15. 在ABC
∠=︒,作既是轴对称又是中心对称的四边形ADEF,使D、E、F分
A
△中,90
别在AB、BC、CA上,这样的四边形能作出多少个?
16. 两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.
17.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4)
18.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.(30︒或150︒)
19.在直角三角型ABC中,∠C=60°,以AB为直径的半圆交斜边BC于D,则△ACD与△ABD 的面积之比为 ( )
A.1:2
B.1:3
C.2:3
D.3:4
20.在直角三角型ABC中,∠C=60°,以AB为直径的半圆交斜边BC于D,则△ACD与△ABD 的面积之比为 ( )
A.1:2
B.1:3
C.2:3
D.3:4。

相关文档
最新文档