网格絮凝池
絮凝反应池网格设计计算书
絮凝反应池网格设计计算书一、设计原则要求(1)网格絮凝池流速一般按照由大到小进行设计。
(2)反应时间10~30min,平均G 值20~70s ,GT 值10~105 ,以保证絮凝过程的充分和完善。
(3)为使絮粒不致被破坏或产生沉淀,絮凝池内流速必须加以控制,控制值随絮凝池形式而异。
(4)絮凝池内的速度梯度G由进口至出口逐渐减小,G值变化范围100~15110。
s-以内,且GT 2×4二、本絮凝池设计水量为100000t/d,厂区自用水量为7%,分2座,每座絮凝池=100000(1+0.07)/2=535000t/d=2229t/h=0.619m³/s。
单组分2组。
则Q总流量为0.619/2=0.3095m³/s=0.31 m³/s。
三、竖井隔墙过孔流速的计算如下表(以施工图标注尺寸为据)四、内部水头损失计算1-10格为前段,其竖孔之间孔洞流速为0.32-0.25m/s,过网流速为0.3038m/s,(0.3113)。
网格孔眼尺寸采用45 mm×45 mm或80 mm×80 mm两种规格进行计算比较,开孔比均约为39.4%,(38.45%);该段水头损失约为0.3056 m,(0.31277);G值约为92.724 s,(93.81).11-20格为中段,其竖孔之间孔洞流速为0.2-0.15m/s,过网孔流速为0.21233m/s。
网格孔眼尺寸采用105 mm×105 mm,开孔比均约为52.14%;该段水头损失约为0.084646 m;G值约为48.01 s.21-30格为后段,其竖孔之间孔洞流速为0.14-0.11m/s,不需设置网格。
该段水头损失约为0.026454 m;G值约为25.86 s.整个絮凝反应池的水头损失合计约为0.4167 m,(0.42387);平均G值约为61.04s,(61.57);GT=67922,(68504.2);符合设计条件要求。
网格絮凝斜管沉淀池计算案例
0.013
.
0.10
.
.
i=
槽内起点水深:h1=ℎ
0.040m2
.
0.152
51.41
0.00048
.
0.00048
5.3
0.10
超负荷 30%时出水槽内流量 Q=0.01215×1.3=0.01579m3/s,集水总槽内流速
取 0.3m/s,槽宽 b=0.2m。
.
槽内终点水深:h4=
池子总高度为:0.3+1.5+1.5+0.6+0.87=4.8m。
(3)参数复核
1)雷诺数:
水力半径 R=d/4=30/4=7.5mm
运动粘度=0.01cm2/s(t=20℃)
Re=0.75*0.2/=0.75*0.2/0.01=15
2)沉淀时间:
T=l/ =1000/2.373=421s=7.02min
絮凝池的反应过程共分为三段,第一段放置密型网格,过栅流速设置为
0.25m/s,第二段放置疏型网格,过栅流速设置为 0.22m/s,第三段放置栅条。第
一段过孔流速为 0.3~0.2m/s,第二段过孔流速为 0.2~0.15m/s,第三段过孔流速为
0.15~0.1m/s。
以下为絮凝过程中不同段的竖井隔墙上孔洞尺寸及过孔流速,共 15 个竖井,
(4)排水渠计算
集水槽坡降为 0.15,水面坡降为 0.035m。
排水渠底的标高在集水槽的基础上降低 0.2m,宽度设置为 0.4m。
七、排泥方式及计算
沉淀池日排泥量为 472.23m3/d,则每小时为 19.68m3/h。设置每小时排泥一
次。设置排泥管的管径为 DN200mm,管道横截面为 0.0314 m2,穿孔管长度为
网格絮凝池计算书
③网格总水头损失为∑h总0.18m (13)过水洞水头损失第一档单格过水洞水头损失h1=0.0096m 第一档内通过孔洞的总水头损失为∑h1=0.1147第二档单格过水洞水头损失h2=0.0044m 第二档内通过孔洞的总水头损失为∑h2=0.0530第三档第一种孔洞单格过水洞水头损失h3=0.0015m 第三档第二种孔洞单格过水洞水头损失h4=0.0015m 第三档第三种孔洞单格过水洞水头损失h5=0.0015m 第三档第四种孔洞单格过水洞水头损失h6=0.0015m 第五档内通过孔洞的总水头损失为∑h5=0.0122过水洞总数头损失为∑h总0.18m (14)GT 值校核絮凝池总水头损失为h0.36m G 值计算式为50.89s -1GT=69166.56满足要求设计采用的排泥管管径为DN150mm(15)污泥斗尺寸:每个网格配一个泥斗,泥斗上部尺寸1100×1100mm×mm泥斗深h1.00m (16)絮凝池尺寸8.9×6.3m×m二、斜管沉淀池计算1、已知条件设计用水量Q=437.50m 3/h=0.12m 3/s液面上升流速v= 2.00mm/s 颗粒沉降速度u 0=0.40mm/s 采用蜂窝六边形塑料斜管,板厚b=0.40mm 管的内切圆直径d=32.00mm 斜管倾角60.00°沉淀池有效系数φ=0.952、设计计算(1)清水区净水面积A`=Q/v60.76m 2 (2)斜管部分面积A=A/φ63.96m 2沉淀池中间设置一道宽350mm 的隔墙,底端与斜管底端水平,顶端与集水槽底端相平,尺寸为8900x350x1790mm×mm×mm 斜管部分平面尺寸:宽度B`=7.20m ,长度L`=8.90m则斜管面积为A=64.08m 2 (3)进水方式由边长一侧流入,该边长度与絮凝池宽度相同L=8.90m(4)管内流速v2.31m 考虑到水量波动,设计采用v 0= 2.50mm/s (5)管长l①有效管长l 476.57mm ②过渡段长度l `=250.00mm ③斜管总长L =l+l`726.57mm ④取斜管总长L`=1000.00mm (6)池长调整B=9.40m 斜管支承系统采用钢筋混凝土柱、小梁及角钢架设 (7)管内沉淀时间t=400.00s= 6.67min①超高h1=0.80m ②清水区高度h2= 1.00m ③斜管区高度h3=0.87m ④配水区高度(按泥槽顶计算)h4= 1.78m ⑤排泥桁车排泥,排泥高度h 5=0.75m ⑥有效池深H`=h2+h3+h4= 3.65m ⑦滤池总高H=h1+H`+h5=5.20m (8)进口配水采用穿孔墙配水,进口流速为v=0.07m/s 墙长L=7.20m 进口孔眼总面积s= 1.74m 2设置进口边长0.15m的方形喇叭孔眼,孔眼个数n=77.16个,约为78个出口流速为v`=0.05m/s=θdu u v o θθcos sin 33.100-=。
网格絮凝—平流沉淀池与清水池叠合工艺设计总结
网格絮凝—平流沉淀池与清水池叠合工艺设计总结近年来,网格絮凝技术在国内外受到广泛关注,并得到了长足发展。
网格絮凝技术是一种运用固定网格、旋流器等复杂结构,采用水流磨损的方式对污水中的污染物进行处理,从而达到污染物的减量控制和标准排放的理念。
网格絮凝技术具有较强的污染物去除能力,尤其是对低浓度悬浮性污染物能够达到良好的去除效果,所以它在污水处理和资源化利用方面具有一定的重要意义。
结合实际应用,本文介绍了采用网格絮凝技术的平流沉淀池和清水池叠合工艺的设计总结,具体包括了技术原理、组成及结构示意图、叠合工艺分析和设备参数,以及运行调试记录等。
以此可以从多个方面对网格絮凝技术进行简要总结,帮助有需要的人更好地理解并使用网格絮凝技术。
一、技术原理网格絮凝技术是一种高效、经济、优良的污水处理技术,主要是通过在污水处理池中安装一定网格和旋流器,使污水形成自然旋流,污染物在动态流动中沉积,从而达到有效的去除。
网格絮凝技术和其他污水处理技术相比,除了有比较高的污染物去除效率外,同时还具有可操作性强、投资少、安装快、维护简便、运行工况稳定等特点,常用于处理悬浮性污染物,也可用于处理有机物、氮磷钝化物及某些分子量较大的有机物。
二、组成及结构示意图网格絮凝池的组成主要包括水入口、水出口、定位螺旋槽、螺旋回流段、螺旋槽室、旋流器系统、网格室等部分。
其结构示意图如图1所示,定位螺旋槽及旋流器系统是网格絮凝技术的两个主要组成部分,它们分别起到了在网格絮凝技术中的动静力效应及获得自然旋流的作用,从而促进污染物的沉积。
三、叠合工艺分析采用叠合工艺来实现网格絮凝技术,其工艺分析如下:(1)水入口和污水处理池:首先,将污水通过水入口进入污水处理池,利用水流的动力,将污染物均匀地分散在池水中,从而减少其污染物的沉积;(2)定位螺旋槽:定位螺旋槽是整个叠合工艺中最重要的部分,它通过定位螺旋槽的螺旋段,将污水按照一定的旋流路径进行运动;(3)旋流器系统:旋流器系统起到了获得自然旋流的作用,从而促进污染物的沉积和去除;(4)网格室:网格室起到了阻挡悬浮物的作用,从而达到有效的污染物去除。
毕业论文网格絮凝池
3.242栅条絮凝池设计计算 1 •设计参数:絮凝池分两池,每池的处理水量为0.3125m 3/s 。
絮凝时间取12min,絮凝池分 三段:前段放密栅条,过栅流速^栅=0.25m/s,竖井平均流速也井0.12m /s ;中段 放疏栅条,过栅流速为⑷栅=0.0.22m/s,竖井平均流速V 2井0.12m/s ;末段不放栅 条,竖井平均流速 V 3井0.12m/s 。
前段竖井的过孔流速 0.30-0.20m/s ,中段 0.2-0.15m/s 末段 0.14-0.1m/so 2 •设计计算: (1) 池体尺寸: ① 絮凝池的容积W 为:W=Qt=0.3125 X12 >60=225m 3 ② 絮凝池的平面面积A:为与沉淀池配合,絮凝池有效水深取3.2米,则絮凝池平面尺寸AW 22570.3m 2③絮凝池单个竖井的平面面积f 为:为与沉淀池的宽度相配合,取竖井的长 L=1.6米,宽b=1.6米.单个竖井的实际平面为Q 1,61,62,56m2,竖井个数n为:nf 卷27.5个'为便于布置,取28个。
(2) 竖井内栅条的布置:选用栅条材料为工程塑料,断面为矩形,厚度为50mm,宽度为50mm ①前段放置密栅条后(栅条缝隙为 50mm):竖井过水面积为:4水—031251.25m 2V 1 栅 0.25竖井中栅条面积为:A 栅2.56-1.25 1.31m 2,需栅条数:单栅过水断面面积:1.6 0.05 0.08m 20.31250.122.6m 2所需栅条数:M i △栅13116.375根,取M i 17根a i 栅0.08两边靠池壁各放置栅条1根,中间排列放置15根,过水缝隙数为16个平均过水缝宽:S1= —5046.88mm16实际过栅流速:斗栅031250.26m/s 16 1.6 0.04688②中段设置疏栅条后(栅条缝隙为 80mm):竖井过水面积为:A2水—031251.42m2 V2 栅0.22竖井中栅条面积为:A2栅2.56-1.42 1.14m2单栅过水断面积:a2栅1.6 0.05 0.08m2所需栅条数:M2色栅11414.25根,取M2=14根a?栅0.08两边靠池壁放置栅条各一根,中间排列放置12根,过水缝隙为13个。
网格絮凝池在净水厂改造中的应用
网格絮凝池在净水厂改造中的应用随着城市化建设的不断发展,水资源日益紧缺,保障水质安全已经成为各地领导和企业必须重视的问题。
这也促使净水厂在不断探索、研究新的处理技术,以提高废水和污水的处理能力。
网格絮凝池作为一种高效、经济的污水处理技术逐渐在净水厂中得到应用。
本文将对网格絮凝池在净水厂改造中的应用进行分析和研究。
一、网格絮凝池的原理与特点网格絮凝池属于物理污水处理技术,通过物理化学作用去除水中浮游颗粒、胶体物质和悬浮物质。
其主要原理是:将水流通过网状构造中的微小孔隙,利用自身流动力学的特性,将大分子的胶体物质和悬浮物聚集成较大的团簇,使之变为微米级别的颗粒后沉淀。
其主要特点是:(1)高效处理水质:网格絮凝池处理效率高,能够有效去除水中浮游颗粒、胶体物质和悬浮物质,从而提高废水和污水的水质。
(2)占地面积小:网格絮凝池占地面积相对较小,可以方便地放置在净水厂的有限场地内,从而节省了土地资源。
(3)操作简便:网格絮凝池操作简单,不需要很多专业技术人员控制,维护周期较短。
(4)可靠性高:网格絮凝池具有稳定的处理效果和较高的可靠性,能够长时间运行不失效。
二、网格絮凝池在净水厂改造中的应用净水厂改造是提高污水处理效率和水质的重要方式之一,而网格絮凝池的特点决定了它在净水厂改造中发挥了重要作用。
主要体现在以下几个方面:1. 大幅提高水质网格絮凝池通过去除水中浮游颗粒、胶体物质和悬浮物质的方式,可以极大地提高水质。
首先,水处理后的深度可以达到一定的标准,比如说可以达到国际标准WHO的要求。
其次,它对水质的稳定性和一致性也有很好的保障,同时影响污水处理的因素较小,能够长时间稳定地运行。
2. 减少土地资源的浪费大多数净水厂占地面积较大,而网格絮凝池由于占地面积较小,可以在净水厂的有限空间内布置,因此可以节省很多土地资源。
这对于土地资源较为紧缺的地区来讲,意义更加重大。
3. 提高污水处理效率由于废水处理量的增多,传统的处理方式已经不能满足需求了。
网格絮凝池设计计算
网格絮凝池设计计算一、 已知条件设计规模:处理水量为60000t/d二、 已知水质条件常年平均浊度:60NTU 常年平均水温:16C三、 网格絮凝池的设计计算由已知水质条件,常年平均浊度为 60度,常年平均水温为16C ,符合网格 絮凝池的使用条件:原水水温为:4.0〜34.0C 原水浊度为:25〜2500度以此,此水质可以使用网格絮凝池对原水絮凝。
3.1设计处理水量Q :Q =Q i (1)式中:Q :设计处理流量(m3d )Q i :设计规模(m3d )I 水厂的自用水系数,一般取:5%〜10%,设计中取对于一般的 水厂取5%,本设计采用5%。
则设计处理水量Q 为:•3 3 3Q =Q i (1) =60000 (1 0.05) = 63000m /d=2625m /h =0.729m /s3.2单池设计处理水量Q 2 :Q 2:单池设计流量(m3d )式中: Q :设计处理流量(m3d )Q 2NN :絮凝池的数量,本设计取N=2则单池设计处理流量Q 2为:63000 333Q 231500m 3/d =1312.5m 3/h =0.365m 3/s23.3絮凝池的有效容积V :60式中: Q2 :单池设计处理流量(m^h )T :絮凝时间(min ),按《室外给水设计规范》(GB50013-2006)要 求,絮凝时间一般宜为12〜20min ,用于处理低温低浊水时,絮凝时间可 适当延长。
本设计中采用16mi n3.4絮凝池的面积A :式中: V :单池的有效容积(m3H':有效水深(m ),絮凝池与平流沉淀池配套时,池高可采用3.0〜3.4m ;絮凝池与斜管沉淀池配套时,可采用4.2m 左右。
本设计考虑使用斜管 沉淀池,因此采用4.2m 。
则:A = — 350 = 83.33m 2H' 4.2 3.5絮凝池的池高H :H=H +h+ h式中:H':絮凝池的有效水深(m )h :絮凝池的超咼(m ),—般取0.3m h '泥斗的高度,取0.6m则: H=H +h + h' = 4.2+0.3+0.6= 5.3m 3.5絮凝池的分格面积f :式中:f :絮凝池的分格面积(m2则:601312.5 1660= 350m 3A =—H'Q■. o :竖井流速(m/s ),按《室外给水设计规范》(GB50013-2006)要求,絮凝池每格的竖井流速为:前段和中段为: 0.12〜0.14m/s ;末端为:0.1〜 0.14m/s 。
网格絮凝池设计计算(水厂)
设计计算一、已知条件水厂的设计规模为220003m /d ,自用水系数为10%,絮凝池分为两组,则每组的设计规模为:33322000 1.1/212100m /d 504.167m /h 0.140m /s ⨯===絮凝时间:15min T =絮凝池分为三段,前段放密网格,过网流速1=0.25m/s v 网,竖井平均流速1=0.13m/s v 井,絮凝时间14min t =;中段放疏网格,过网流速2=0.22m/s v 网,竖井平均流速2=0.13m/s v 井,絮凝时间24min t =;末端不放网格,竖井平均流速3=0.12m/s v 井,絮凝时间35min t =。
二、设计计算1、每组絮凝池设计流量:33322000 1.1/212100m /d 504.167m /h 0.140m /s Q =⨯===2、 絮凝池容积W :30.01401360109.2m W Q T =⨯=⨯⨯=3、 絮凝池平面面积A :絮凝池的有效水深=4.1m H 有效,则2/=26.634m A W H =有效一阶段絮凝池单个竖井的平面面积2/0.140/0.13 1.077m f Q v ===井,取竖井平面为正方形,则一阶段单个竖井边长为 1.04m L ==,取 1.1m L =则单个竖井的实际面积为2' 1.21m f =。
二阶段絮凝池单个竖井的平面面积2/0.140/0.13 1.077m f Q v ===井,取竖井的平面为正方形,则二阶段单个竖井边长 1.04m L ==,取 1.1m L =则单个竖井的实际面积为2' 1.21m f =。
三阶段絮凝池单个竖井的平面面积2/0.140/0.12 1.167m f Q v ===井,取竖井的平面为正方形,则二阶段单个竖井边长21.04m=1.08m L =,取1.1m L =则单个竖井的实际面积为2' 1.21m f =。
4、竖井的个数:一阶段竖井个数11/'0.140604/(1.21 4.1) 6.9n A f ==⨯⨯⨯=,取为7个 二阶段竖井个数22/'0.140604/(1.21 4.1) 6.9n A f ==⨯⨯⨯=,取为7个 三阶段竖井个数33/'0.140605/(1.21 4.1)8.7n A f ==⨯⨯⨯=,取为8个 校核:一阶段絮凝池实际絮凝时间1 1.217 4.1/(0.14060) 4.13min T =⨯⨯⨯= 二阶段絮凝池实际絮凝时间2 1.217 4.1/(0.14060) 4.13min T =⨯⨯⨯= 三阶段絮凝池实际絮凝时间1 1.218 4.1/(0.14060) 4.72min T =⨯⨯⨯= 总絮凝时间:12312.98min T T T ++=5、竖井网格的布置选用塑料斗状网格,断面为倒V 型。
网格絮凝沉淀池的作用
网格絮凝沉淀池的作用二沉池的作用是泥水分离,使混合液澄消、污泥浓缩并将分离的污泥回流到生物处理段。
其效果的好坏,直接影响出水的水质和回流污泥的浓度。
因为沉淀和浓缩效果不好,出水中就会增加活性污泥悬浮物,从而增加出水的bod 质量浓度;同时,回流污泥浓度也会降低,从而降低曝气池中混合液浓度,影响净化效果。
结构与特点:进水装置:步入二次沉淀池的活性污泥混合液在性质上也存有其特点,即为活性污泥混合液的浓度低( - mg/l),存有高温高压性能,因此,属成层结晶。
它结晶时,泥水之间存有准确的界面,高温高压体结为整体共同下陷,初期泥水界面的沉速紧固维持不变,仅与起始浓度有关。
步入二次沉淀池的混合候浓度低于二次沉淀池内回应液的浓度,二次沉淀池内难产生二次流现象,损坏混合液的相对密度小,在池下部流动。
沉淀区:步入二次沉淀池的混合液就是泥、水、气三相混合体,损坏中心管及中的流速不应当少于0. i -0. 3 m/s ,以利气、水拆分,提升回应区的拆分效果。
沉淀池的回应区的流速还要大些(0. m/s左右),这是因为其泥、水拆分的任务更关键的缘故。
出水装置:二次沉淀池活性污泥的另一特点就是寿命长,极易被水偷走,并难产生二次流现象,并使实际的过水断面远远大于设计的过水断面。
因此,设计二次沉淀池时,最小容许的水平流速必须比初次沉淀池的小一半z池子的水溢流掩埋常设在池另一端的一定距离的范围内;辐流二次沉淀池也可以用周边损坏周边水的方式提升混合液在池内流动的距离和结晶效果。
污泥区:由于二次沉淀池活性污泥寿命长,易腐变质,因此.使用静水压力排泥的二次沉淀池,其静水压头可以降到0.9 m ,污泥斗底坡与水平夹角应当不大于50° ,以利污泥及时滑下来和畅通排泥。
使用刮吸混机排泥的沉淀池,靠池中水位与集泥槽内水位高将污泥虹吸至集泥坏内.然后汇聚于排泥井中,排泥井内的污泥泵将泥吸出。
网格絮凝池设计
一、已知条件水厂设计规模8000m 3/d ,自用水系数10%,絮凝池设一组,则设计规模为3338000 1.18800/366.67/0.102/Q m d m h m s =⨯===絮凝池分为三段:前段放密网格,过流网速1=0.25/m s υ网,竖井平均流速1=0.13/m s υ井,絮凝时间14min t =;中段放疏网格,过流网速2=0.22/m s υ网,竖井平均流速2=0.13/m s υ井,絮凝时间24min t =;末端不放网格,竖井平均流速3=0.12/m s υ井,絮凝时间35min t =。
二、设计计算 1. 絮凝池容积W30.102136079.56W Q T m =⨯=⨯⨯=2. 絮凝池平面面积A絮凝池的有效水深 4.1H m =有效,则279.56==19.404.1W A m H =有效 前段:20.1020.7810.13Q f m υ===,竖井边长0.88L f m ==,取0.9L m =,则单个竖井实际面积为20.90.90.81f m '=⨯=;中段:20.1020.7810.13Q f m υ===,竖井边长0.88L f m ==,取0.9L m =,则单个竖井实际面积为20.90.90.81f m '=⨯=;末段:20.1020.8510.12Q f m υ===,竖井边长0.92L f m ==取0.9L m =,则单个竖井实际面积为20.90.90.81f m '=⨯=。
3. 竖井的个数n前段:11/0.102604/4.1/0.817.4n A f '==⨯⨯=, 取为8个。
中段:22/0.102604/4.1/0.817.4n A f '==⨯⨯=, 取为8个。
末段:33/0.102605/4.1/0.819.2n A f '==⨯⨯=, 取为9个。
校核:前段絮凝池实际絮凝时间10.818 4.1/0.102/60 4.3min t =⨯⨯=中段絮凝池实际絮凝时间20.818 4.1/0.102/60 4.3min t =⨯⨯= 末段絮凝池实际絮凝时间30.819 4.1/0.102/60 4.9min t =⨯⨯= 总絮凝时间12313.5min t t t t =++= 4. 竖井内网格的布置选用塑料斗状网格,断面为倒V 型。
网格絮凝池设计计算
网格絮凝池设计计算一、已知条件设计规模:处理水量为60000t/d二、已知水质条件常年平均浊度:60NTU 常年平均水温:16℃三、网格絮凝池的设计计算由已知水质条件,常年平均浊度为60度,常年平均水温为16℃,符合网格絮凝池的使用条件:原水水温为:4.0~34.0℃ 原水浊度为:25~2500度以此,此水质可以使用网格絮凝池对原水絮凝。
3.1 设计处理水量Q :)1(1ξ+⨯=Q Q 式中:Q :设 计处理流量(m ³/d) 1Q :设计规模(m ³/d)ζ:水厂的自用水系数,一般取:5%~10%,设计中取对于一般的水厂取5%,本设计采用5%。
则设计处理水量Q 为:s m h m d m Q Q /729.0/2625/63000)05.01(60000)1(3331===+⨯=ξ+⨯=3.2 单池设计处理水量2Q : NQ Q =2 式中: Q :设计处理流量(m ³/d) 2Q :单池设计流量(m ³/d)N :絮凝池的数量,本设计取N=2则单池设计处理流量2Q 为:s m h m d m Q /365.0/5.1312/315002630003332====3.3 絮凝池的有效容积V :602TQ V =式中: 2Q :单池设计处理流量(m ³/h)T :絮凝时间(min),按《室外给水设计规》(GB50013-2006)要求,絮凝时间一般宜为12~20min ,用于处理低温低浊水时,絮凝时间可适当延长。
本设计中采用16min 则: 3235060165.131260m T Q V =⨯==3.4 絮凝池的面积A :'H VA =式中: V :单池的有效容积(m ³)H ’:有效水深(m ),絮凝池与平流沉淀池配套时,池高可采用3.0~3.4m ;絮凝池与斜管沉淀池配套时,可采用4.2m 左右。
本设计考虑使用斜管沉淀池,因此采用4.2m 。
球03--网格絮凝池
3.2.4.2栅条絮凝池设计计算 1.设计参数:絮凝池分两池,每池的处理水量为0.31253/m s 。
絮凝时间取12min,絮凝池分三段: 前段放密栅条,过栅流速1v 栅=0.25m/s, 竖井平均流速s V /m 12.01=井;中段放疏栅条,过栅流速为1v 栅=0.0.22m/s ,竖井平均流速s V /m 12.02=井;末段不放栅条,竖井平均流速s V /m 12.03=井。
前段竖井的过孔流速0.30-0.20m/s,中段0.2-0.15m/s,末段0.14-0.1m/s 。
2.设计计算: (1)池体尺寸: ①絮凝池的容积W 为:W=Qt=0.3125×12×60=225m 3 ②絮凝池的平面面积A:为与沉淀池配合,絮凝池有效水深取3.2米,则絮凝池平面尺寸23.702.3225m H W A ===③絮凝池单个竖井的平面面积f 为:2m 6.212.03125.0===井v Q f 为与沉淀池的宽度相配合,取竖井的长L=1.6米,宽b=1.6米.单个竖井的实际平面为2m 56.26.16.1f =⨯=实,竖井个数n 为:个5.2756.23.70n ===f A ,为便于布置,取28个。
(2)竖井内栅条的布置:选用栅条材料为工程塑料,断面为矩形,厚度为50mm,宽度为50mm 。
① 前段放置密栅条后(栅条缝隙为50mm ): 竖井过水面积为: 211m 25.125.03125.0v ===栅水Q A竖井中栅条面积为:21m 31.125.1-56.2==栅A ,需栅条数: 单栅过水断面面积:21m 08.005.06.1=⨯=栅a 所需栅条数:375.1608.031.1111===栅栅a A M 根,取根171=M 两边靠池壁各放置栅条1根,中间排列放置15根,过水缝隙数为16个。
平均过水缝宽:S 1=mm 88.46165017-1600=⨯实际过栅流速:s v /m 26.004688.06.1163125.0'1=⨯⨯=栅 ②中段设置疏栅条后(栅条缝隙为80mm ): 竖井过水面积为:222m 42.122.03125.0===栅水v Q A 竖井中栅条面积为: 22m 14.142.1-56.2==栅A 单栅过水断面积:22m 08.005.06.1=⨯=栅a 所需栅条数:根栅栅25.1408.014.1222===a A M ,取M 2=14根 两边靠池壁放置栅条各一根,中间排列放置12根,过水缝隙为13个。
网格絮凝池设计计算
网格絮凝池设计计算一、已知条件设计规模:处理水量为60000t/d二、已知水质条件常年平均浊度:60NTU 常年平均水温:16℃三、网格絮凝池的设计计算由已知水质条件,常年平均浊度为60度,常年平均水温为16℃,符合网格絮凝池的使用条件:原水水温为:4.0~34.0℃ 原水浊度为:25~2500度以此,此水质可以使用网格絮凝池对原水絮凝。
3.1 设计处理水量Q :)1(1ξ+⨯=Q Q 式中:Q :设 计处理流量(m³/d) 1Q :设计规模(m³/d)ζ:水厂的自用水系数,一般取:5%~10%,设计中取对于一般的水厂取5%,本设计采用5%。
则设计处理水量Q 为:s m h m d m Q Q /729.0/2625/63000)05.01(60000)1(3331===+⨯=ξ+⨯=3.2 单池设计处理水量2Q : NQQ =2 式中: Q :设计处理流量(m³/d) 2Q :单池设计流量(m³/d)N :絮凝池的数量,本设计取N=2则单池设计处理流量2Q 为:s m h m d m Q /365.0/5.1312/315002630003332====3.3 絮凝池的有效容积V :602TQ V =式中: 2Q :单池设计处理流量(m³/h)T :絮凝时间(min),按《室外给水设计规范》(GB50013-2006)要求,絮凝时间一般宜为12~20min ,用于处理低温低浊水时,絮凝时间可适当延长。
本设计中采用16min 则: 3235060165.131260m T Q V =⨯== 3.4 絮凝池的面积A :'H VA =式中: V :单池的有效容积(m³)H’:有效水深(m ),絮凝池与平流沉淀池配套时,池高可采用3.0~3.4m ;絮凝池与斜管沉淀池配套时,可采用4.2m 左右。
本设计考虑使用斜管沉淀池,因此采用4.2m 。
网格絮凝沉淀池的作用
网格絮凝沉淀池的作用
网格絮凝沉淀池是一种用于净化环境的重要设备,它的作用是将污水当中的悬浮物、沉淀
物和浊流中的有机物等污染物减少到一定的浓度水平,从而使水质得到改善。
这种设备使
用自然絮凝原理,使用网格将悬浮物、沉淀物和有机物从模悬浮污染物中捕获,并将其从
水中分离出来。
进一步,使用网格可以把悬浮物和沉淀物收集在池内,沉淀在池底形成沉
淀物,从而达到净化水质的目的。
网格絮凝沉淀池可以有效地减少污水中的可溶性有机物和杂质,还可以有效地减少氨氮,
重金属元素和其他有毒有害物质,使水得到清洁改善。
另外,网格絮凝沉淀池的运作非常环保,几乎不需要能源和化学药品的援助,节约能源,同时又不会污染环境。
网格絮凝沉淀池也可以作为绿色能源的一种技术来提高整个水处理系统的可持续性。
它利
用了高效净化技术,将降解后的有机物从污水中分离出来,减少了污染排放,减少了能源
的消耗。
此外,网格絮凝沉淀池还可以提高污水处理系统的效率和效果,从而最大限度地
减少污染。
总之,网格絮凝沉淀池可以有效地减少污水中的悬浮物,沉淀物和有机物,使水质得以改善。
同时,它可以有效地减少污染排放,节约能源,提高污水处理系统的可持续性和效率。
网格絮凝池及设计计算(互联网+)
网格(栅条)絮凝池网格絮凝池的二平面布置和穿孔旋流絮凝池相类似,由多格竖井串联而成。
絮凝池分成许多面积相等的方格,进水水流顺序从一格留到下一格,上下对焦交错流动,直到出口。
一、使用条件1.原水水温为4.0~34.0℃、浊度为25~2500度。
2.单池处理的水量以1~2.5万m³/d较合适,以免因单格面积过大而影响效果。
水厂产水量大时,可采用2组或多组池并联运行。
采用网格或栅条的絮凝池效果相接近,但栅条加工比较方便,用料也省。
3.适用于新建也可用于旧池改造。
二、设计要求1.絮凝时间一般为10~15min;2.絮凝池分隔大小按竖向流速确定;3.絮凝池分格数按絮凝时间计算,多数分成8~18格:可大致按分格数均分成3段,其中前段各格为3~5mim,段端3~5min,末段4~5min;4.网格或栅条数前段较多,中断较少,末段可不放,但前段总数宜在16层以上,中断在8层以上上下两层间距为60~70cm;5.每格的竖向流速,前段和中段0.12~0.14m/s,末段0.1~0.14m/s;6.网格或栅条的外框尺寸等于每格池的净尺寸。
前段栅条缝隙为50mm,或网格孔眼为80×80mm,中段分别为80mm和100×100mm;7.各格之间的过水孔洞应上下交错布置,孔洞计算流速,前段0.3~0.2m/s,,中段0.2~0.15m/s,末段0.1~0.14m/s,各过水孔面积从前段向末段逐步增大。
所有过水孔须经常处于淹没状态,因此上部孔洞标高应该考虑沉淀池水位变化时会不会露出水面;8.网孔或过栅流速,前段0.25~0.30m/s,中段0.22~0.25m/s;9.一般排泥可用长度小雨5m、直径150mm~200mm的穿孔排泥管或单斗底排泥,采用快开排泥阀;10.网格或栅条材料不可用木料、扁钢、钢筋混凝土预制件等。
木板条厚度20~25mm,钢筋混凝土预制件厚度30~70mm。
三、计算网格絮凝池计算公式如下表网格絮凝池计算公式表项目公式1.池体积2.池面积3.池高4.分格子面积5.分格数6.竖井之间孔洞尺寸7.总水头损失)m3(60QTV=)m('2HVA=)m(3.0'+=HH)m3(vQf=fA=n)m(222vQA=)m(hhh21∑+∑=)(22111mgvhξ=)(22222mgvhξ=Q—流量(m³/h)T—絮凝时间(mim)'H—有效水深,与平流沉淀池配套时,池高可采用3.0~3.4m,与斜管沉淀池配套时可采用4.2m左右v—竖井流速(m/s)2v—各段孔洞流速(m/s)1h—每层网格水头损失(m)2h—每个孔洞水头损失(m)1v—各段过网流速(m/s)1ξ—网格阻力系数,前段取1.0,中段取0.92ξ—孔洞阻力系数【例】网格絮凝池计算。
网格絮凝池设计计算
网格絮凝池设计计算一、已知条件设计规模:处理水量为60000t/d二、已知水质条件常年平均浊度:60NTU 常年平均水温:16℃三、网格絮凝池的设计计算由已知水质条件,常年平均浊度为60度,常年平均水温为16℃,符合网格絮凝池的使用条件:原水水温为:4.0~34.0℃ 原水浊度为:25~2500度以此,此水质可以使用网格絮凝池对原水絮凝。
3.1 设计处理水量Q :)1(1ξ+⨯=Q Q 式中:Q :设 计处理流量(m ³/d) 1Q :设计规模(m ³/d)ζ:水厂的自用水系数,一般取:5%~10%,设计中取对于一般的水厂取5%,本设计采用5%。
则设计处理水量Q 为:s m h m d m Q Q /729.0/2625/63000)05.01(60000)1(3331===+⨯=ξ+⨯=3.2 单池设计处理水量2Q :NQ Q =2 式中: Q :设计处理流量(m ³/d) 2Q :单池设计流量(m ³/d)N :絮凝池的数量,本设计取N=2则单池设计处理流量2Q 为:s m h m d m Q /365.0/5.1312/315002630003332====3.3 絮凝池的有效容积V :602TQ V =式中: 2Q :单池设计处理流量(m ³/h)T :絮凝时间(min),按《室外给水设计规范》(GB50013-2006)要求,絮凝时间一般宜为12~20min ,用于处理低温低浊水时,絮凝时间可适当延长。
本设计中采用16min 则: 3235060165.131260m T Q V =⨯== 3.4 絮凝池的面积A :'H VA =式中: V :单池的有效容积(m ³)H ’:有效水深(m ),絮凝池与平流沉淀池配套时,池高可采用3.0~3.4m ;絮凝池与斜管沉淀池配套时,可采用4.2m 左右。
本设计考虑使用斜管沉淀池,因此采用4.2m 。
网格絮凝池计算例题
3.2絮凝3.2.1设计要点:(1)网格絮凝池流速一般按照由大到小进行设计。
(2)反应时间10~30min,平均G 值20~70s -1,GT 值104~105,以保证絮凝过程的充分和完善。
(3)为使絮粒不致被破坏或产生沉淀,絮凝池内流速必须加以控制,控制值随絮凝池形式而异。
(4)絮凝时间6~15min ,絮凝池内的速度梯度G 由进口至出口逐渐减小,G 值变化范围100~151s -以内,且GT ≥2×410。
3.2.2设计参数絮凝池设计(近期)2组,每池设计流量为:Q =3600×24 1.0510×5.34×m 3/d =0.425m 3/s 。
絮凝时间t =10min ,设计平均水深h =3.6m 。
3.2.3设计计算絮凝池的有效容积V :V =Qt =0.425×10×60=255m 3絮凝池的有效面积:A 1=V/h =255/3.6=70.8m 2水流经过每个的竖井流速v 1取0.12m/s ,由此得单格面积:f =Q/v 1=0.425/0.12=3.54m 2设计单格为正方形,边长采用1.90m ,因此实际每格面积为3.61m 2,由此得到分格数为n =70.8/3.61=20格。
实际絮凝时间为:t =0.425203.61.901.90×××=611.6s ≈10min絮凝池得平均水深为3.6m ,取超高为0.3m ,得到池得总高度为:H =3.6+0.3=3.9m ,从絮凝池到沉淀池的过渡段净宽1.5米。
取絮凝池的格墙宽为200mm ,即0.2m ,单组絮凝池:长:1.9×5+0.2×6=10.7m宽:1.9×4+0.2×5=8.6m进水管管径的确定:Q=0.425m 3/s ,取流速为v=1.0m/s,管径D=v Q π4=.114.3425.04××=0.735m ,采用DN800铸铁管。
反应絮凝池及斜管沉淀池计算
反应絮凝池及斜管沉淀池计算1、栅条絮凝池设计计算1.1、栅条絮凝池设计通过前面的论述确定采用栅条絮凝池。
栅条絮凝池是应用紊流理论的絮凝池,网格絮凝池的平面布置由多格竖井串联而成。
絮凝池分成许多面积相等的方格,进水水流顺序从一格流向下一格,上下接错流动,直至出口,在全池三分之二的分格内,水平放置栅条,通过栅条的孔隙时,水流收缩,过孔后水流扩大,形成良好的絮凝条件。
1.1.1网格絮凝池设计要求:(1)絮凝时间一般为10-15min。
(2)絮凝池分格大小,按竖向流速确定。
(3)絮凝池分格数按絮凝时间计算,多数分成8-18格,可大致按分格数均匀成3段,其中前段3-5min,中段3-5min,未段4-5min。
(4)栅条数前段较多,中段较少,未段可不放。
但前段总数宜在16层以上,中段在8层以上,上下两层间距为60-70㎝。
(5)每格的竖向流速,前段和中段0.12-0.14m/s,未段0.22-0.25m/s。
(6)栅条的外框尺寸加安装间隙等于每格池的净尺寸。
前段栅条缝隙为50㎜,中段为80㎜。
(7)各格之间的过水孔洞应上下交错布置,孔洞计算流速:前段0.3-0.2 m/s,中段0.2-0.15 m/s,末段0.14-0.1 m/s,各过水孔面积从前段向末段逐步增大。
所有过水孔须经常处于淹没状态。
(8)栅孔流速,前段0.25-0.3 m/s ,中段0.22-0.25 m/s 。
(9)一般排泥可用长度小于5m ,直径150-200mm 的穿孔排泥管或单斗底排泥,采用快开排泥阀。
1.1.2网格絮凝池计算公式 (1)池体积60QTV =( m 3) (3.1) 式中:V ——池体积( m 3); Q ——流量(m 3/h );T ——絮凝时间(min) (2)池面积1H VA =(㎡) (3.2) 式中:A ——池面积(㎡);1H ——有效水深(m) (3)池高()m H H 3.01+=(3.3)(4)分格面积v Qf =(3.4)式中:f ——分格面积;0v ——竖井流速(m/s )(5)分格数fAn =(3.5) 式中:n ——分格格数; (6)竖井之间孔洞尺寸22v QA =(㎡) (3.6) 式中:2A ——竖井之间孔洞尺寸(㎡);2v ——各段过网格水头损失(m/s )(7)总水头损失∑∑+=21h h h (m ) (3.7)gv h 22111ε= (m ) (3.8)gv h 22222ε=(m ) (3.9)式中:h ——总水头损失(m ); 1h ——每层网格水头损失(m )2h ——每个孔洞水头损失(m ) 1v ——各段过网流速(m/s ) 2v ——各段孔洞流速(m/s )1ε——网格阻力系数,前段取1.0,中段取0.92ε——孔洞阻力系数,可取3.01.1.3网格絮凝池设计计算因为设计流量0.182m³/s,流量比较小,只需采用一个反应池,设絮凝时间10min,得絮凝池的有效容积为:V =0.182×10×60=109.2 m³设平均水深为3.0m ,得池的面积为:34.360.32.109m A ==竖井流速取为0.12 m/s ,得单格面积:25.112.0182.0m f ==设每格为方形,边长采用1.23m ,因此每格面积1.5㎡,由此得分格数为:3.245.14.36==n 为配合沉淀尺寸采用25格 实际絮凝时间为:min4.10623182.0250.323.123.1==⨯⨯⨯=s t 池的平均有效水深为3.0m ,取超过0.45m ,泥斗深度0.65m ,得池的总高度为:m H 10.465.045.00.3=++=过水洞流速按进口0.3 m/s 递减到出口0.1 m/s 计算,得各过水孔洞的尺寸见表:表1.1 过水孔洞的尺寸图1.1 网格絮凝池布置图絮凝池布置中,图中已表示从进口到出口各格的水流方向,“上”、“下”表示隔墙上的开孔位置,上孔上缘在最高水位以下,下孔下缘与排泥槽口齐平。