数据结构15--最小生成树
数据结构(Java版)图2(最小生成树)

最小生成树举例
A
50 60 52 65 50
C
45 42 30 50
A
C
45
B
40
D
G
B
40 50
D
42 30
G
E
70
F
E
F
(a) 无向带权连通图G
(b) 无向带权图G 的最小生成树T
从最小生成树的定义可知,构造n个顶点的无向带权连 通图的最小生成树,必须满足如下三个条件: ① 必须包含n个顶点。 ② 有且仅有n-1条边。 ③ 没有回路。
)
将ej边加入到tree中;
}
实践项目
设计一个程序实现Prim和Kruskal算法.
表5-1 lowcost[ ]数组数据变化情况 表5-2 closest[ ]数组数据变化情况
扫描次数
closest[0]
closest[1]
closest[2]
closest[3]
closest[4]
closest[5]
求最小生成树算法
普里姆算法(Prim) (从点着手)
适合于求边稠密的最小生成树 适合于求边稀疏的最小生成树
克鲁斯卡尔算法(Kruskal)(从边着手)
普里姆算法(Prim)思想
1.
2.
3.
4.
令集合U={u0}(即从顶点u0开始构造最小生 成树),集合T={}。 从所有顶点u∈U和顶点v∈V-U的边权中选择最 小权值的边(u,v),将顶点v加入到集合U中,边 (u,v)加入到集合T中。 如此重复下去,直到U=V时则最小生成树构造完 毕。 此时集合U就是最小生成树的顶点集合,集合T 就是最小生成树的边集。
生成树类型

生成树类型
生成树是计算机科学中的一种基本数据结构,用于解决与图相关的许多问题。
生成树可以分为以下几类:
1. 最小生成树:在一个加权无向连通图中找到一棵包含所有顶点的树,并且总权值最小。
2. 最大生成树:在一个加权无向连通图中找到一棵包含所有顶点的树,并且总权值最大。
3. 最近公共祖先树:在一棵树中找到两个节点的最近公共祖先,并建立一棵包含这两个节点以及它们的所有祖先节点的子树。
4. Huffman编码树:用于数据压缩,建立一棵二叉树,由该树的叶子节点表示待压缩的数据,通过该树的路径表示压缩后的数据。
5. B-树:用于数据库和文件系统中,能够存储大量数据且支持高效的查找、插入、删除等操作的平衡树。
生成树是计算机科学中非常重要的一种数据结构,具有广泛的应用。
数据结构最小生成树克鲁斯卡尔算法代码

数据结构最小生成树克鲁斯卡尔算法代码以下是克鲁斯卡尔算法的实现代码:```python# 定义边的类class Edge:def __init__(self, src, dest, weight):self.src = srcself.dest = destself.weight = weight# 定义图的类class Graph:def __init__(self, vertices):self.V = verticesself.edges = []def add_edge(self, src, dest, weight):edge = Edge(src, dest, weight)self.edges.append(edge)# 查找顶点的根节点def find(self, parent, i):if parent[i] == i:return ireturn self.find(parent, parent[i])# 合并两个集合def union(self, parent, rank, x, y):xroot = self.find(parent, x)yroot = self.find(parent, y)if rank[xroot] < rank[yroot]:parent[xroot] = yrootelif rank[xroot] > rank[yroot]:parent[yroot] = xrootelse:parent[yroot] = xrootrank[xroot] += 1# 使用克鲁斯卡尔算法计算最小生成树def kruskal(self):result = []i = 0e = 0 # 已选择的边的数量# 按权重对边进行排序self.edges = sorted(self.edges, key=lambda x:x.weight)parent = []rank = []# 初始化每个顶点的父节点和秩for node in range(self.V):parent.append(node)rank.append(0)while e < self.V - 1:# 选择权重最小的边edge = self.edges[i]i += 1x = self.find(parent, edge.src)y = self.find(parent, edge.dest) # 判断是否形成环路if x != y:e += 1result.append(edge)self.union(parent, rank, x, y) return result# 测试代码g = Graph(4)g.add_edge(0, 1, 10)g.add_edge(0, 2, 6)g.add_edge(0, 3, 5)g.add_edge(1, 3, 15)g.add_edge(2, 3, 4)result = g.kruskal()for edge in result:print(f"{edge.src} -- {edge.dest} == {edge.weight}")```这段代码实现了克鲁斯卡尔算法,其中`Graph`类表示图,`Edge`类表示边。
最小生成树的算法

最小生成树的算法王洁引言:求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。
下面将介绍几种最小生成树的算法。
一,用“破圈法”求全部最小生成树的算法1 理论根据1.1 约化原则给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ⊆ E ,使生成树所有边权最小,此生成树称为最小生成树.(1) 基本回路将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。
基本回路是由 T 中的树枝和一条连枝构成的回路.(2) 基本割集设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。
基本割集是集合中的元素只有一条是树枝,其他的为连枝.(3) 等长变换设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ∉ H,当且仅当'e ∈()cf e ,也就是说e ∈()S e ,则'T =T ⊕{e, 'e }也是一棵生成树。
当()e ω='()e ω时,这棵生成树叫做等长变换。
克鲁斯卡尔算法求最小生成树的最短路径

克鲁斯卡尔算法求最小生成树的最短路径克鲁斯卡尔算法的核心思想是从图的边集中选取边来构建最小生成树,首先将图中的所有边按照权重进行排序。
然后依次取最小权重的边,如果这条边的加入不会形成环路,则将它加入最小生成树的边集中。
重复这个过程,直到最小生成树中的边数等于顶点数减一,或者所有的边都已经考虑过。
假设有一个包含n个顶点的带权无向图G=(V,E),其中,V表示顶点的集合,E表示边的集合。
假设我们要求解G的最小生成树。
1.初始化边集E'为空集,集合S={v},v是图中任意一个顶点。
2.对所有的边进行排序,按照边的权重从小到大排列。
3.从排序后的边集中依次选取边e,如果边e的两个顶点都不在集合S中,则将边e加入集合S,并加入边集E'中。
4.重复步骤3,直到E'中的边数等于n-1在克鲁斯卡尔算法中,需要使用并查集来判断选定的边e是否会形成环路。
并查集是一种数据结构,用于维护元素的等价关系。
它有两个主要操作,即查找和合并。
使用并查集的步骤如下:1.初始化并查集,使得每个元素都是一个单独的集合。
2.对每一条边e=(u,v),如果u和v在同一个集合中,则说明加入这条边会形成环路;否则,将这两个集合合并。
3.重复步骤2,直到所有的边都考虑过。
接下来,我们通过一个具体的例子来说明克鲁斯卡尔算法的具体过程。
假设有以下的带权无向图G=(V,E),其中,V={A,B,C,D,E,F,G},E为边的集合,每条边的权重如下:AE:5AB:7AG:8BF:7BC:9CD:5CG:9DE:15DF:6EG:11EF:8FG:9按照权重对边进行排序:CD:5AE:5DF:6AB:7BF:7EF:8AG:8CG:9BC:9FG:9DE:15EG:11从最小的边开始选取,首先选取CD:5,加入到最小生成树的边集中。
最小生成树的边集:{"CD:5"}接下来选取AE:5,加入到最小生成树的边集中。
数据结构(图)习题与答案

一、单选题1、设有5个结点的无向图,该图至少应有_________条边才能确保是一个连通图。
A.7B.8C.6D.5正确答案:A2、设图G=(V,VR),其中: V={A,B,C,D,G},VR={(A,C),(A,D),( B,C),(B,D) ,(G,C),(B,G)},则对应的图形为_________。
A.B.C.D.正确答案:C3、设某有向图中有n个顶点,则该有向图对应的邻接表中有_________个表头结点。
A.n-1B.n+2C.nD.n+1正确答案:C4、在一个无向图中所有顶点的度数之和等于所有边数的_________倍。
A.1B.2C.3D.1/2正确答案:B5、一个无向连通图的生成树是该连通图的_____。
A.极小连通子图B.强连通子图C.连通子图D.极大连通子图正确答案:A6、设某无向图中有n个顶点,则该无向图邻接矩阵的大小是_________。
A.n(n+1)/2B.(n-1)2C. n2D. (n+1)2正确答案:C7、设有n个顶点e条边的无向图,采用邻接矩阵作为物理结构,则删除与某顶点Vi 关联的所有边算法的时间复杂度为_________。
A.O(n2)B.O(n+e)C.O(n*e)正确答案:D8、设有n个顶点e条弧的有向图,采用邻接表作为物理结构,则求某顶点Vi度的算法的时间复杂度为_________。
A.O(n)B.O(n*e)C.O(n+e)D.O(n2)正确答案:C9、设无向图G=(V,E)和G'=(V',E'),如果G'是G的生成树,则下列说法中错误的是_____。
A.G'是G的连通分量B.G'是G的一个无环子图C.G'是G的极小连通子图且V=V'D.G'是G的子图正确答案:A10、设G是一个非连通的无向图,共有10条边,则该图至少有_____个顶点。
A.7B.6C.5D.8正确答案:B11、 n个顶点的有向图为强连通图时,至少含有________。
《数据结构》课程设计 普里姆算法 最小生成树

[i].stop_vex,lge[i].weight); /*输出N-1条最小边的信息*/
for(i=0;i<12;i++)
{
line(vex[lge[i].start_vex][0],vex[lge[i].start_vex][1],vex[lge
lge[min]=lge[i];
lge[i]=edge;
vx=lge[i].stop_vex;
for(j=i+1; j<pgraph->n-1; j++)
{
vy=lge[j].stop_vex;
weight=pgraph->arcs[vx][vy];
if(weight<lge[j].weight)
{
{550,250},{520,330},{430,400},{350,450},{270,400},{200,330}};
/*初始化个顶点的坐标*/
int info[12][12];
char *text;
void initalGraph(int vec[][2]) /*画出顶点函数*/
{
int gd=DETECT,gm;
[i].stop_vex][0],vex[lge[i].stop_vex][1]);
}
/*根据生成的最小边数组连线*/
printf("---It is done!---");
getch();
exit(1);
}
此程序再TURBOC2.0环境中编译通过运行.TURBOC2.0下载的地址
最小生成树

17
D
应用举例——最小生成树
Prim算法 34 A 46 19 F B 12 26 25 E 38 cost'={(A, B)34, (C, D)17, (F, E)26}
17
U={A, F, C, D}
V-U={B, E}
cost={(A, B)34, (F, E)26}
25
C
17
D
应用举例——最小生成树
{B, C, D, E, F} (A F)19
{B, C, D, E} {B, D, E} {B, E} {B} {}
(F C)25
(C D)17
(F E)26
adjvex lowcost
adjvex lowcost
4 12
{A, F, C, D, E}
{A,F,C,D,E,B}
(E B)12
21
应用举例——最小生成树
Prim算法——伪代码
1. 将顶点0加入集合U中; 2. 初始化辅助数组shortEdge,分别为lowcost和adjvex赋值; 3. 重复执行下列操作n-1次 3.1 在shortEdge中选取最短边,取其对应的下标k; 3.2 输出边(k, shortEdge[k].adjvex)和对应的权值; 3.3 将顶点k加入集合U中; 3.4 调整数组shortEdge;
U
V-U
输出
adjvex lowcost adjvex lowcost adjvex lowcost adjvex lowcost
0 34 0 34 0 34 0 34
0 46 5 25
0 ∞ 5 25 2 17
0 ∞ 5 26 5 26 5 26
0 19
数据结构(山东联盟-青岛大学)知到章节答案智慧树2023年

数据结构(山东联盟-青岛大学)知到章节测试答案智慧树2023年最新第一章测试1.在Data_Structure=(D,R)中,D是()的有限集合。
参考答案:数据元素2.计算机所处理的数据一般具有某种关系,这是指()。
参考答案:数据元素与数据元素之间存在的某种关系3.算法的时间复杂度与()有关。
参考答案:问题规模4.以下关于数据结构的说法正确的是()。
参考答案:数据结构的逻辑结构独立于其存储结构5.某算法的时间复杂度是O(n2),表明该算法()。
参考答案:执行时间与n^2成正比6.从逻辑上可将数据结构分为()。
参考答案:线性结构和非线性结构7.数据的逻辑结构是指各数据元素之间的逻辑关系,是用户按使用需要建立的。
参考答案:对8.数据的物理结构是指数据结构在计算机内的实际存储形式。
参考答案:对9.每种数据结构都具备三种基本运算:插入、删除和查找。
参考答案:错10.算法的时间效率和空间效率往往相互冲突,有时很难两全其美。
参考答案:对第二章测试1.线性表是一个()。
参考答案:数据元素的有限序列,元素不可以是线性表2.以下关于线性表的说法中正确的是()。
参考答案:除第一个元素和最后一个元素外,其他每个元素有且仅有一个直接前趋元素和一个直接后继元素3.以下关于线性表的说法中正确的是()。
参考答案:每个元素最多有一个直接前趋和一个直接后继4.如果线性表中的表元素既没有直接前趋,也没有直接后继,则该线性表中应有()个表元素。
参考答案:15.在线性表中的每一个表元素都是数据对象,它们是不可再分的()。
参考答案:数据元素6.顺序表是线性表的()表示。
参考答案:顺序存储7.以下关于顺序表的说法中正确的是()。
参考答案:顺序表和一维数组一样,都可以按下标随机(或直接)访问,顺序表还可以从某一指定元素开始,向前或向后逐个元素顺序访问8.顺序表的优点是()。
参考答案:存储密度(存储利用率)高9.以下关于单链表的叙述中错误的是()。
数据结构之最小生成树Prim算法

数据结构之最⼩⽣成树Prim算法普⾥姆算法介绍 普⾥姆(Prim)算法,是⽤来求加权连通图的最⼩⽣成树算法 基本思想:对于图G⽽⾔,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U⽤于存放G的最⼩⽣成树中的顶点,T存放G的最⼩⽣成树中的边。
从所有uЄU,vЄ(V-U) (V-U表⽰出去U的所有顶点)的边中选取权值最⼩的边(u, v),将顶点v加⼊集合U中,将边(u, v)加⼊集合T中,如此不断重复,直到U=V为⽌,最⼩⽣成树构造完毕,这时集合T中包含了最⼩⽣成树中的所有边。
代码实现1. 思想逻辑 (1)以⽆向图的某个顶点(A)出发,计算所有点到该点的权重值,若⽆连接取最⼤权重值#define INF (~(0x1<<31)) (2)找到与该顶点最⼩权重值的顶点(B),再以B为顶点计算所有点到改点的权重值,依次更新之前的权重值,注意权重值为0或⼩于当前权重值的不更新,因为1是⼀当找到最⼩权重值的顶点时,将权重值设为了0,2是会出现⽆连接的情况。
(3)将上述过程⼀次循环,并得到最⼩⽣成树。
2. Prim算法// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < m_nVexNum; i++){weights[i] = GetWeight(nStart, i);}for (i = 0; i < m_nVexNum; i ++){if (nStart == i){continue;}int min = INF;int nMinWeightIndex = 0;for (int k = 0; k < m_nVexNum; k ++){if (weights[k]!= 0 && weights[k] < min){min = weights[k];nMinWeightIndex = k;}}// 找到下⼀个最⼩权重值索引cPrims[nIndex++] = m_mVexs[nMinWeightIndex].data;// 以找到的顶点更新其他点到该点的权重值weights[nMinWeightIndex]=0;int nNewWeight = 0;for (int ii = 0; ii < m_nVexNum; ii++){nNewWeight = GetWeight(nMinWeightIndex, ii);// 该位置需要特别注意if (0 != weights[ii] && weights[ii] > nNewWeight){weights[ii] = nNewWeight;}}for (i = 1; i < nIndex; i ++){int min = INF;int nVexsIndex = GetVIndex(cPrims[i]);for (int kk = 0; kk < i; kk ++){int nNextVexsIndex = GetVIndex(cPrims[kk]);int nWeight = GetWeight(nVexsIndex, nNextVexsIndex);if (nWeight < min){min = nWeight;}}nSum += min;}// 打印最⼩⽣成树cout << "PRIM(" << m_mVexs[nStart].data <<")=" << nSum << ": ";for (i = 0; i < nIndex; i++)cout << cPrims[i] << "";cout << endl;}3. 全部实现#include "stdio.h"#include <iostream>using namespace std;#define MAX 100#define INF (~(0x1<<31)) // 最⼤值(即0X7FFFFFFF)class EData{public:EData(char start, char end, int weight) : nStart(start), nEnd(end), nWeight(weight){} char nStart;char nEnd;int nWeight;};// 边struct ENode{int nVindex; // 该边所指的顶点的位置int nWeight; // 边的权重ENode *pNext; // 指向下⼀个边的指针};struct VNode{char data; // 顶点信息ENode *pFirstEdge; // 指向第⼀条依附该顶点的边};// ⽆向邻接表class listUDG{public:listUDG(){};listUDG(char *vexs, int vlen, EData **pEData, int elen){m_nVexNum = vlen;m_nEdgNum = elen;// 初始化"邻接表"的顶点for (int i = 0; i < vlen; i ++){m_mVexs[i].data = vexs[i];m_mVexs[i].pFirstEdge = NULL;}char c1,c2;int p1,p2;ENode *node1, *node2;// 初始化"邻接表"的边for (int j = 0; j < elen; j ++){// 读取边的起始顶点和结束顶点p1 = GetVIndex(c1);p2 = GetVIndex(c2);node1 = new ENode();node1->nVindex = p2;node1->nWeight = pEData[j]->nWeight;if (m_mVexs[p1].pFirstEdge == NULL){m_mVexs[p1].pFirstEdge = node1;}else{LinkLast(m_mVexs[p1].pFirstEdge, node1);}node2 = new ENode();node2->nVindex = p1;node2->nWeight = pEData[j]->nWeight;if (m_mVexs[p2].pFirstEdge == NULL){m_mVexs[p2].pFirstEdge = node2;}else{LinkLast(m_mVexs[p2].pFirstEdge, node2);}}}~listUDG(){ENode *pENode = NULL;ENode *pTemp = NULL;for (int i = 0; i < m_nVexNum; i ++){pENode = m_mVexs[i].pFirstEdge;if (pENode != NULL){pTemp = pENode;pENode = pENode->pNext;delete pTemp;}delete pENode;}}void PrintUDG(){ENode *pTempNode = NULL;cout << "邻接⽆向表:" << endl;for (int i = 0; i < m_nVexNum; i ++){cout << "顶点:" << GetVIndex(m_mVexs[i].data)<< "-" << m_mVexs[i].data<< "->"; pTempNode = m_mVexs[i].pFirstEdge;while (pTempNode){cout <<pTempNode->nVindex << "->";pTempNode = pTempNode->pNext;}cout << endl;}}// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
最小生成树定理

摘要:最小生成树(Minimum Spanning Tree,MST)是图论中的一个基本概念,它在网络设计、数据结构、算法设计等领域有着广泛的应用。
本文将详细介绍最小生成树定理的定义、性质、算法以及在实际应用中的重要性。
一、引言在图论中,一个图由顶点和边组成。
如果这个图是一个连通图,那么它的任意两个顶点之间都存在一条路径。
最小生成树定理研究的是如何从一个连通无向图中选择一些边,使得这些边构成一个连通子图,并且所有边的权值之和最小。
二、定义1. 图:由顶点集合V和边集合E组成,记为G=(V,E),其中V表示顶点集,E表示边集。
2. 连通图:对于图G中的任意两个顶点u、v,若存在一条路径连接u和v,则称图G是连通的。
3. 无向图:对于图G中的任意两个顶点u、v,若边(u,v)和边(v,u)同时存在,则称边(u,v)为无向边。
4. 权值:对于图G中的任意一条边(u,v),可以赋予一个非负实数w(u,v)作为权值。
5. 最小生成树:对于图G的一个连通子图T,如果满足以下两个条件,则称T为G 的最小生成树:(1)T是连通的;(2)T中的边权值之和最小。
三、性质1. 存在性:对于任意一个连通无向图,都存在一个最小生成树。
2. 唯一性:对于任意一个连通无向图,其最小生成树是唯一的。
3. 极小性:对于任意一个连通无向图,它的最小生成树中的边权值之和最小。
4. 极大性:对于任意一个连通无向图,它的最小生成树中的边权值之和最大。
四、算法1. 克鲁斯卡尔算法(Kruskal's Algorithm)(1)将图G中的所有边按照权值从小到大排序;(2)初始化一个空的最小生成树T;(3)遍历排序后的边,对于每条边(u,v):①检查边(u,v)是否与T中的任意一条边形成环;②若不形成环,则将边(u,v)加入T;(4)当T中的边数等于顶点数减1时,算法结束。
2. 普里姆算法(Prim's Algorithm)(1)从图G中选择一个顶点作为起始顶点v0;(2)初始化一个空的最小生成树T,并将v0加入T;(3)对于图G中的其他顶点v,初始化一个距离数组dist,其中dist[v]表示顶点v到T的距离,初始时dist[v]=∞(v≠v0);(4)遍历T中的顶点,对于每个顶点v,更新其相邻顶点的距离;(5)从距离数组中选择距离最小的顶点u,将其加入T;(6)重复步骤(4)和(5),直到T中的边数等于顶点数减1。
数据结构第7章-答案

一、单选题C01、在一个图中,所有顶点的度数之和等于图的边数的倍。
A)1/2 B)1 C)2 D)4B02、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。
A)1/2 B)1 C)2 D)4B03、有8个结点的无向图最多有条边。
A)14 B)28 C)56 D)112C04、有8个结点的无向连通图最少有条边。
A)5 B)6 C)7 D)8C05、有8个结点的有向完全图有条边。
A)14 B)28 C)56 D)112B06、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。
A)栈 B)队列 C)树 D)图A07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。
A)栈 B)队列 C)树 D)图A08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。
A)O(n) B)O(e) C)O(n+e) D)O(n2)C09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。
A)0 2 4 3 1 5 6 B)0 1 3 6 5 4 2 C)0 1 3 4 2 5 6 D)0 3 6 1 5 4 2B10、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。
A)0 2 4 3 6 5 1 B)0 1 2 3 4 6 5 C)0 4 2 3 1 5 6 D)0 1 3 4 2 5 6D11、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。
A)0 1 3 2 B)0 2 3 1 C)0 3 2 1 D)0 1 2 3A12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。
A)0 3 2 1 B)0 1 2 3 C)0 1 3 2 D)0 3 1 2A13、图的深度优先遍历类似于二叉树的。
A)先序遍历 B)中序遍历 C)后序遍历 D)层次遍历D14、图的广度优先遍历类似于二叉树的。
数据结构:第7章 图3-最小生成树

• 按照生成树的定义,n 个顶点的连通网络的生成树有 n
个顶点、n-1 条边。
即有权图
目标:
在网络的多个生成树中,寻找一个各边权值之和最小的
生成树。
构造最小生成树的准则 ❖ 必须只使用该网络中的边来构造最小生成树;
❖ 必须使用且仅使用n-1条边来联结网络中的n个顶点;
❖ 不能使用产生回路的边。
典型用途:
(b) u={1} w={2,3,4,5,6}
0 6 1 5
6
0
5
3
1 5 0 7 5 4
5
7
0
2
3 5 0 6
4 2 6 0
i
1234
closest[i] 1 1 1 1
lowcost[i] 0 6 1 5
56 11 ∞∞
closest用于存放顶点序号 lowest存放权值
15 4 6
1 25
3
54
5
6
(c ) u={1,3} w={2,4,5,6}
1
1
4
25
6
32
54
5
6
(d) u={1,3,6} w={2,4,5}
i
1234 5 6
closest[i] 1 3 1 1 3 3
lowcost[i] 0 5 0 5 5 4
i
1234 5 6
closest[i] 1 3 1 6 3 3
生
v3 v1
成
树 v4 v2
v1
0^ 1^ 0^ 1^
2.生成森林
若一个图是非连通图或非强连通图,但有若 干个连通分量或若干个强连通分量,则通过 深度优先搜索遍历或广度优先搜索遍历,不 可以得到生成树,但可以得到生成森林,且 若非连通图有 n 个顶点,m 个连通分量或强 连通分量,则可以遍历得到m棵生成树,合 起来为生成森林,森林中包含n-m条树边。
智慧树知到《数据结构》章节测试答案

第1章单元测试1、算法的时间复杂度取决于___。
答案:A和B2、数据在计算机内存中的表示是指()答案:数据的存储结构3、算法指的是()答案:求解特定问题的指令有限序列4、在数据结构中,与所使用的计算机无关的数据结构是()答案:逻辑7、某线性表采用顺序存储结构,每个元素占4个存储单元,首地址为100,则第12个元素的存储地址为( )。
答案:1448、算法能正确地实现预定功能的特性称为算法的()。
答案:正确性第2章单元测试1、链表不具备的特点是()。
答案:可随机访问任意一个结点3、线性表的顺序存储表示优于链式存储表示。
答案:错4、顺序存储结构的缺点是不便于修改,插入和删除需要移动很多结点。
答案:对5、在设头、尾指针的单链表中,与长度n有关的操作是( )。
答案:删除最后一个结点6、设指针q指向单链表中结点A,指针p指向单链表中结点A的后继结点B,指针s指向被插入的结点X,则在结点A和结点B间插入结点X的操作序列为( )。
答案:q->next=s; s->next=p;7、对于只在表的首、尾两端进行插入操作的线性表,宜采用的存储结构为( )。
答案:用尾指针表示的循环单链表8、在一个单链表中,若p所指节点不是最后节点,在p之后插入s所指节点,则执行( )。
答案:s->link=p->link;p->link=s;9、在双向链表存储结构中,删除p所指的结点时须修改指针____。
答案:p->next->prior=p->prior; p->prior->next=p->next;10、若事先不知道线性表的长度,则处理线性表时较好的存储结构是( )。
答案:单链表11、向一个有127个元素的顺序表中插入一个新元素并保存,原来顺序不变,平均要移动( )个元素。
答案:63.512、某线性表采用顺序存储结构,每个元素占4个存储单元,首地址为100,则第12个元素的存储地址为( )。
最小生成树实验报告

最小生成树实验报告最小生成树(Minimum Spanning Tree,MST)是图论中的一个重要概念,用于在一个连通带权无向图中找到一个子图,使得这个子图是一个树(即无环连通图),并且所有边的权值之和最小。
最小生成树在诸多领域有着广泛的应用,如网络设计、电力传输等。
在本次实验中,我们实现了最小生成树算法,并将其运用到多个实际问题上。
下面将依次介绍算法原理、实现过程、实验结果以及对实验的进一步改进。
1.算法原理Kruskal算法的基本思想是,首先将所有边按照权值从小到大排序,然后从最小的边开始,逐一加入生成树,直到生成树包含了所有的顶点。
在加入一条边时,需要判断这条边将两个顶点连通起来是否会形成环,如果不会则加入生成树。
Prim算法的基本思想是,从一个顶点开始,逐步加入生成树的顶点,每次加入一个顶点时,选择一个离生成树最近的点,并将这个点加入生成树。
通过不断的选择顶点和加入边,最终得到最小生成树。
2.实现过程首先,我们实现了图的数据结构和边的数据结构。
在图的数据结构中,我们定义了图的顶点数和边数,并用邻接矩阵来表示图的连接情况。
边的数据结构包含了两个顶点和边的权值。
其次,我们实现了两种算法。
对于Kruskal算法,我们首先将所有边按照权值从小到大进行排序。
然后,逐个加入边,判断是否形成环。
如果不会形成环,则将该边加入生成树。
最后,我们使用并查集数据结构来判断两个顶点是否连通。
对于Prim算法,我们首先选择一个起点作为生成树的初始顶点,并将其加入生成树。
然后,每次选择一个离生成树最近的顶点,并将其加入生成树,同时更新其他顶点到生成树的距离。
最后,所有顶点都被加入生成树后,得到最小生成树。
3.实验结果我们在实验中选择了不同大小的图进行测试。
经过对比,我们发现Kruskal算法和Prim算法得到的最小生成树结果是一致的,但是Kruskal 算法的时间复杂度要稍高于Prim算法。
具体的结果如下:对于一个边数为10的图,我们得到了如下最小生成树:1-2-4-5-3总权重为12对于一个边数为20的图,我们得到了如下最小生成树:2-1-4-5-3总权重为16对于一个边数为30的图2-1-4-5-6-7-3总权重为22从实验结果来看,无论是规模较小的图还是规模较大的图,我们都能够得到最小生成树,并且所得到的结果是正确的。
数据结构最小生成树头歌c语言

数据结构最小生成树头歌c语言一、前言数据结构中的最小生成树是一种非常重要的算法,它在网络设计、图像处理和社交网络分析等领域有着广泛的应用。
在C语言中,我们可以通过不同的数据结构来实现最小生成树算法,本文将重点介绍如何使用头歌C语言来实现最小生成树算法。
二、数据结构介绍1. 什么是最小生成树在一个连通的无向图中,如果我们要找到一个生成树,并且这个生成树的所有边的权值之和最小,那么这个生成树就是最小生成树。
最小生成树算法有Prim算法和Kruskal算法两种经典的实现方式。
2. 最小生成树的应用最小生成树广泛应用于各种场景中。
比如在计算机网络中,我们可以通过最小生成树算法来构建网络拓扑结构;在社交网络分析中,我们可以基于用户间的关系构建最小生成树,从而发现社区结构;在传感器网络中,最小生成树算法可以用于构建相互连接的传感器网络。
三、 Kruskal算法实现Kruskal算法是一种贪心算法,它的基本思想是:首先将图中的边按照权值的大小进行排序,然后依次加入权值最小的边,并且保证加入的边不会构成回路,直到生成树的边数等于节点数减一为止。
在C语言中,我们可以通过以下步骤来实现Kruskal算法:1. 定义一个结构体来表示边的信息,包括起点、终点和边的权值。
2. 根据边的权值对边进行排序。
3. 使用并查集来判断是否构成回路,如果不构成回路则加入最小生成树中。
4. 重复步骤3直到生成树的边数等于节点数减一。
实际的C语言代码如下所示:```c#include <stdio.h>#include <stdbool.h>#define MAX_EDGE 100#define MAX_VERT 100typedef struct{int from, to;int weight;} Edge;Edge edges[MAX_EDGE];int parent[MAX_VERT];void make_set(int v){parent[v] = v;}int find_set(int v){if (v == parent[v])return v;return parent[v] = find_set(parent[v]); }void union_sets(int a, int b){a = find_set(a);b = find_set(b);if (a != b)parent[b] = a;}int m本人n(){int n, m; // n为节点数,m为边数scanf("dd", n, m);for (int i = 0; i < m; i++)scanf("ddd", edges[i].from, edges[i].to, edges[i].weight);for (int i = 1; i <= n; i++)make_set(i);// 对边按照权值进行排序for (int i = 0; i < m; i++){for (int j = 0; j < m - 1 - i; j++){if (edges[j].weight > edges[j + 1].weight){Edge tmp = edges[j];edges[j] = edges[j + 1];edges[j + 1] = tmp;}}}int cost = 0;for (int i = 0; i < m; i++){if (find_set(edges[i].from) != find_set(edges[i].to)) {printf("d d d\n", edges[i].from, edges[i].to, edges[i].weight);cost += edges[i].weight;union_sets(edges[i].from, edges[i].to);}}printf("Minimum cost = d\n", cost);return 0;}```四、 Prim算法实现Prim算法是另一种最小生成树算法,在C语言中同样可以通过数据结构来实现。
数据结构和算法学习笔记八:带权连通图的最小生成树

数据结构和算法学习笔记⼋:带权连通图的最⼩⽣成树⼀.简介: 对于⼀个n个顶点的连通图,其最⼩⽣成树是指将所有顶点连接起来的权值之和的最⼩树,树中包含n个顶点和n-1条边.最⼩⽣成树常见的⽣成算法有普⾥姆算法和克鲁斯卡尔算法,它们分别基于顶点的⾓度和边的⾓度⽣成最⼩⽣成树. 声明:对于本⽂中实现图结构的各种类,详见:⼆.两种算法简介 1.普⾥姆算法:普⾥姆算法基于顶点实现,基本思路是将所有已经纳⼊到最⼩⽣成树中的顶点存储起来,然后遍历当前的最⼩⽣成树的端点,找出权值最⼩且不会闭环的边并延伸最⼩⽣成树,然后将新的顶点纳⼊到最⼩⽣成树中(和其他已经纳⼊到树中的顶点⼀起存储起来) 2.克鲁斯卡尔算法:克鲁斯卡尔算法基于边实现,⾸先将所有边按照权值由⼩到⼤排序,然后再从⼩到达依次遍历所有边,⼀⼀判断当前边加⼊最⼩⽣成树中后是否会形成环路,在不形成环路的情况下将此边加⼊最⼩⽣成树,并将顶点存储起来.顶点的存储结构类似于倒置的树,根节点在最下⽅.在最⼩⽣成树的⽣成过程中可能会同时存在多颗顶点树,但是最终所有顶点树会汇聚成⼀颗.三.代码实现(c#)/************************************* 创建⼈:movin* 创建时间:2021/7/4 19:55:02* 版权所有:个⼈***********************************/using System;using System.Collections.Generic;using System.Text;namespace GraphCore{///<summary>///最⼩⽣成树算法///</summary>public class MinimumCostSpanningTreeUtil{///<summary>///计算最⼩⽣成树-普⾥姆算法///要求参数必须是⼀个连通图,此处没有校验参数graph是否是连通图的过程,可⾃⾏添加///</summary>///<param name="graph"></param>///<param name="findAEdgeCallBack">找到⼀条边后的回调函数,参数为边的两个关联点下标和权值</param>public static void MiniSpanTree_Prim(AdjacencyMatrixGraph graph,Action<int,int,int> findAEdgeCallBack = null){//数组lowcast,数组的长度和顶点的个数⼀致,数组中每个下标的值和顶点⼀⼀对应//lowcast的作⽤有两个,以lowcast[1] = 5为例,意思是当前已经找过的顶点中到1顶点的最短路径权值为5//所以作⽤⼀是某下标对应值不为0时代表当前已经⽣成的部分最⼩⽣成树到某下标对应顶点的权值最⼩的边的权值//作⽤⼆是某下标对应值为0时代表此下标对应顶点已经在最⼩⽣成树中,不再参与继续⽣成最⼩⽣成树int[] lowcast = new int[graph.Count];//数组adjvex,这个数组作⽤是对应记录lowcast中最⼩权值边的另⼀个依附顶点下标(⼀个依附顶点下标就是lowcast下标)int[] adjvex = new int[graph.Count];lowcast[0] = 0;//从0号顶点开始⽣成最⼩⽣成树,⾸先将0号顶点对应位置置为0//adjvex[0] = 0;//这句代码加不加都ok,0号位已经加⼊最⼩⽣成树,这个值也就⽤不上了//初始化lowcast数组的其他下标值for(int i = 1;i < lowcast.Length; i++){//当前最⼩⽣成树中只有0号顶点,所以以0号顶点到i号顶点的边的权值就是当前的最⼩边权值lowcast[i] = graph.adjacencyMatrix[0, i];//这些边的另⼀个依附顶点当然是0号顶点adjvex[i] = 0;}//开始计算最⼩⽣成树,结果存储到result中int min = int.MaxValue;//⽤来存储找到的最⼩权值边的权值的临时变量int tempIndex = 0;//⽤来存储即将加⼊最⼩⽣成树的边的顶点(也就是即将加⼊最⼩⽣成树的顶点)的临时变量,另⼀个顶点存储在adjvex数组中//循环length-1次,每次将⼀个顶点和⼀条边加⼊最⼩⽣成树中for(int i = 1;i < graph.Count; i++){//循环在当前的lowcast中找到⾮0的最⼩值(到没有找过的顶点中的最⼩边)min = int.MaxValue;tempIndex = 0;for(int j = 1;j < lowcast.Length; j++){if(lowcast[j] != 0 && lowcast[j] < min){min = lowcast[j];tempIndex = j;}}//找到边后调⽤回调函数if(findAEdgeCallBack != null){findAEdgeCallBack(tempIndex, adjvex[tempIndex], lowcast[tempIndex]);}//更新lowcast数组lowcast[tempIndex] = 0;//每次延申了最⼩⽣成树后需要将lowcast中的值更新,⽅便下次继续延申最⼩⽣成树//刚才将下标为tempIndex的顶点和⼀条边加⼊了最⼩⽣成树,接下来只需要更新这个顶点相关的边即可for(int j = 1;j < lowcast.Length;j++){//判断顶点tempIndex和顶点j之间的边//j顶点不在最⼩⽣成树中且这条边的权值⽐lowcast中记录的最⼩权值要⼩时//更新到顶点j的最⼩权值边的权值,并且记录到顶点j的最⼩权值边的另⼀个顶点为tempIndexif(lowcast[j] != 0 && lowcast[j] > graph.adjacencyMatrix[tempIndex, j]){lowcast[j] = graph.adjacencyMatrix[tempIndex, j];adjvex[j] = tempIndex;}}}}///<summary>///计算最⼩⽣成树-克鲁斯卡尔算法///要求参数必须是连通图///</summary>///<param name="graph"></param>///<param name="findAEdgeCallBack">找到⼀条边后的回调函数,参数为边的两个关联点下标和权值</param>public static void MinSpanTree_Kruskal(EdgesetArrayGraph graph, Action<int, int, int> findAEdgeCallBack = null){//将边集数组排序SortEdgeNode(graph.edgeNodes);//声明⼀个数组,数组下标对应顶点下标//数组中值为-1时代表对应顶点还没有加⼊最⼩⽣成树//当某个顶点被加⼊最⼩⽣成树后,将数组中对应的下标的值修改,修改后的值指向下⼀个加⼊最⼩⽣成树的顶点下标//如vertices[5] = 7代表5号顶点和7号顶点都在最⼩⽣成树中,其中5号顶点的下⼀个顶点是7号顶点//在构建最⼩⽣成树的过程中会通过这个数组检验当前边添加进数组是否会构成环//分析后⾯的代码可以知道,最终数组中length-1个值会被修改,刚好对应添加到最⼩⽣成树中的length-1条边int[] vertices = new int[graph.edgeNodes.Length];//数组初始值都为-1for (int i = 0; i < vertices.Length; i++){vertices[i] = -1;}//下⾯构建最⼩⽣成树//循环遍历所有边,⼀⼀校验是否可以加⼊最⼩⽣成树for (int i = 0; i < graph.edgeNodes.Length; i++){EdgesetArrayEdgeNode node = graph.edgeNodes[i];int startIndex = GetNextVertex(vertices, node.headIndex);int endIndex = GetNextVertex(vertices, node.tailIndex);//检验是否成环,不成环则这条边可以加⼊最⼩⽣成树if (startIndex != endIndex){vertices[startIndex] = endIndex;if(findAEdgeCallBack != null){findAEdgeCallBack(node.headIndex, node.tailIndex, node.weight);}}}}///<summary>///在vertices中,顶点之间的先后次序最终的存储⽅式类似于⼀颗倒过来的树,根顶点在最下⽅,存储时会⼀直向下找,直到找到根顶点,存储时会将下⼀个存储到最⼩⽣成树中的顶点挂到根顶点下⽅成为新///查找时看此顶点是否有后继顶点,如果有那么继续查找后继顶点的后继顶点...以此类推,直到某个顶点对应下标值为-1,即没有后继顶点,返回这个顶点下标///如果两个顶点之间会构成环路,那么它们所在的顶点的后继中⼀定会有相同的顶点,最终查找下去得到的值为顶点相同///</summary>///<param name="vertices"></param>///<param name="index"></param>///<returns></returns>private static int GetNextVertex(int[] vertices,int index){while(vertices[index] != -1){index = vertices[index];}return index;}///<summary>///将给定边集数组按照从⼩到达排序///采⽤选择排序///</summary>///<param name="graph"></param>private static void SortEdgeNode(EdgesetArrayEdgeNode[] edgeNodes){for (int i = 0; i < edgeNodes.Length; i++){int minIndex = i;for (int j = i + 1; j < edgeNodes.Length; j++){if(edgeNodes[minIndex].weight > edgeNodes[j].weight){minIndex = j;}}if(minIndex != i){EdgesetArrayEdgeNode temp = edgeNodes[i];edgeNodes[i] = edgeNodes[minIndex];edgeNodes[minIndex] = temp;}}}}}。
《数据结构》第二版严蔚敏课后习题作业参考答案(1-7章)

第1章4.答案:(1)顺序存储结构顺序存储结构是借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系,通常借助程序设计语言的数组类型来描述。
(2)链式存储结构顺序存储结构要求所有的元素依次存放在一片连续的存储空间中,而链式存储结构,无需占用一整块存储空间。
但为了表示结点之间的关系,需要给每个结点附加指针字段,用于存放后继元素的存储地址。
所以链式存储结构通常借助于程序设计语言的指针类型来描述。
5. 选择题(1)~(6):CCBDDA\6.(1)O(1) (2)O(m*n) (3)O(n2)(4)O(log3n) (5)O(n2) (6)O(n)(第2章1.选择题(1)~(5):BABAD (6)~(10): BCABD (11)~(15):CDDAC\2.算法设计题(1)将两个递增的有序链表合并为一个递增的有序链表。
要求结果链表仍使用原来两个链表的存储空间, 不另外占用其它的存储空间。
表中不允许有重复的数据。
[题目分析]合并后的新表使用头指针Lc指向,pa和pb分别是链表La和Lb的工作指针,初始化为相应链表的第一个结点,从第一个结点开始进行比较,当两个链表La和Lb均为到达表尾结点时,依次摘取其中较小者重新链接在Lc表的最后。
如果两个表中的元素相等,只摘取La表中的元素,删除Lb表中的元素,这样确保合并后表中无重复的元素。
当一个表到达表尾结点,为空时,将非空表的剩余元素直接链接在Lc表的最后。
void MergeList(LinkList &La,LinkList &Lb,LinkList &Lc){法设计题(1)将编号为0和1的两个栈存放于一个数组空间V[m]中,栈底分别处于数组的两端。
当第0号栈的栈顶指针top[0]等于-1时该栈为空,当第1号栈的栈顶指针top[1]等于m时该栈为空。
两个栈均从两端向中间增长。
试编写双栈初始化,判断栈空、栈满、进栈和出栈等算法的函数。
数据结构(三十三)最小生成树(Prim、Kruskal)

数据结构(三⼗三)最⼩⽣成树(Prim、Kruskal) ⼀、最⼩⽣成树的定义 ⼀个连通图的⽣成树是⼀个极⼩的连通⼦图,它含有图中全部的顶点,但只有⾜以构成⼀棵树的n-1条边。
在⼀个⽹的所有⽣成树中,权值总和最⼩的⽣成树称为最⼩代价⽣成树(Minimum Cost Spanning Tree),简称为最⼩⽣成树。
构造最⼩⽣成树的准则有以下3条:只能使⽤该图中的边构造最⼩⽣成树当且仅当使⽤n-1条边来连接图中的n个顶点不能使⽤产⽣回路的边 对⽐两个算法,Kruskal算法主要是针对边来展开,边数少时效率会⾮常⾼,所以对于稀疏图有很⼤的优势;⽽Prim算法对于稠密图,即边数⾮常多的情况会更好⼀些。
⼆、普⾥姆(Prim)算法 1.Prim算法描述 假设N={V,{E}}是连通⽹,TE是N上最⼩⽣成树中边的集合。
算法从U={u0,u0属于V},TE={}开始。
重复执⾏下⾯的操作:在所有u属于U,v 属于V-U的边(u,v)中找⼀条代价最⼩的边(u0,v0)并加⼊集合TE,同时v0加⼊U,直到U=V为⽌。
此时TE中必有n-1条边,则T=(V,{TE})为N的最⼩⽣成树。
2.Prim算法的C语⾔代码实现/* Prim算法⽣成最⼩⽣成树 */void MiniSpanTree_Prim(MGraph G){int min, i, j, k;int adjvex[MAXVEX]; /* 保存相关顶点下标 */int lowcost[MAXVEX]; /* 保存相关顶点间边的权值 */lowcost[0] = 0;/* 初始化第⼀个权值为0,即v0加⼊⽣成树 *//* lowcost的值为0,在这⾥就是此下标的顶点已经加⼊⽣成树 */adjvex[0] = 0; /* 初始化第⼀个顶点下标为0 */for(i = 1; i < G.numVertexes; i++) /* 循环除下标为0外的全部顶点 */{lowcost[i] = G.arc[0][i]; /* 将v0顶点与之有边的权值存⼊数组 */adjvex[i] = 0; /* 初始化都为v0的下标 */}for(i = 1; i < G.numVertexes; i++){min = INFINITY; /* 初始化最⼩权值为∞, *//* 通常设置为不可能的⼤数字如32767、65535等 */j = 1;k = 0;while(j < G.numVertexes) /* 循环全部顶点 */{if(lowcost[j]!=0 && lowcost[j] < min)/* 如果权值不为0且权值⼩于min */{min = lowcost[j]; /* 则让当前权值成为最⼩值 */k = j; /* 将当前最⼩值的下标存⼊k */}j++;}printf("(%d, %d)\n", adjvex[k], k);/* 打印当前顶点边中权值最⼩的边 */lowcost[k] = 0;/* 将当前顶点的权值设置为0,表⽰此顶点已经完成任务 */for(j = 1; j < G.numVertexes; j++) /* 循环所有顶点 */{if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j]){/* 如果下标为k顶点各边权值⼩于此前这些顶点未被加⼊⽣成树权值 */lowcost[j] = G.arc[k][j];/* 将较⼩的权值存⼊lowcost相应位置 */adjvex[j] = k; /* 将下标为k的顶点存⼊adjvex */}}}}Prim算法 3.Prim算法的Java语⾔代码实现package bigjun.iplab.adjacencyMatrix;/*** 最⼩⽣成树之Prim算法*/public class MiniSpanTree_Prim {int lowCost; // 顶点对应的权值public CloseEdge(Object adjVex, int lowCost) {this.adjVex = adjVex;this.lowCost = lowCost;}}private static int getMinMum(CloseEdge[] closeEdges) {int min = Integer.MAX_VALUE; // 初始化最⼩权值为正⽆穷int v = -1; // 顶点数组下标for (int i = 0; i < closeEdges.length; i++) { // 遍历权值数组,找到最⼩的权值以及对应的顶点数组的下标if (closeEdges[i].lowCost != 0 && closeEdges[i].lowCost < min) {min = closeEdges[i].lowCost;v = i;}}return v;}// Prim算法构造图G的以u为起始点的最⼩⽣成树public static void Prim(AdjacencyMatrixGraphINF G, Object u) throws Exception{// 初始化⼀个⼆维最⼩⽣成树数组minSpanTree,由于最⼩⽣成树的边是n-1,所以数组第⼀个参数是G.getVexNum() - 1,第⼆个参数表⽰边的起点和终点符号,所以是2 Object[][] minSpanTree = new Object[G.getVexNum() - 1][2];int count = 0; // 最⼩⽣成树得到的边的序号// 初始化保存相关顶点和相关顶点间边的权值的数组对象CloseEdge[] closeEdges = new CloseEdge[G.getVexNum()];int k = G.locateVex(u);for (int j = 0; j < G.getVexNum(); j++) {if (j!=k) {closeEdges[j] = new CloseEdge(u, G.getArcs()[k][j]);// 将顶点u到其他各个顶点权值写⼊数组中}}closeEdges[k] = new CloseEdge(u, 0); // 加⼊u到⾃⾝的权值0for (int i = 1; i < G.getVexNum(); i++) { // 注意,这⾥从1开始,k = getMinMum(closeEdges); // 获取u到数组下标为k的顶点的权值最短minSpanTree[count][0] = closeEdges[k].adjVex; // 最⼩⽣成树第⼀个值为uminSpanTree[count][1] = G.getVexs()[k]; // 最⼩⽣成树第⼆个值为k对应的顶点count++;closeEdges[k].lowCost = 0; // 下标为k的顶点不参与最⼩权值的查找了for (int j = 0; j < G.getVexNum(); j++) {if (G.getArcs()[k][j] < closeEdges[j].lowCost) {closeEdges[j] = new CloseEdge(G.getVex(k), G.getArcs()[k][j]);}}}System.out.print("通过Prim算法得到的最⼩⽣成树序列为: {");for (Object[] Tree : minSpanTree) {System.out.print("(" + Tree[0].toString() + "-" + Tree[1].toString() + ")");}System.out.println("}");}} 4.举例说明Prim算法实现过程 以下图为例: 测试类:// ⼿动创建⼀个⽤于测试最⼩⽣成树算法的⽆向⽹public static AdjacencyMatrixGraphINF createUDNByYourHand_ForMiniSpanTree() {Object vexs_UDN[] = {"V0", "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8"};int arcsNum_UDN = 15;int[][] arcs_UDN = new int[vexs_UDN.length][vexs_UDN.length];for (int i = 0; i < vexs_UDN.length; i++) // 构造⽆向图邻接矩阵for (int j = 0; j < vexs_UDN.length; j++)if (i==j) {arcs_UDN[i][j]=0;} else {arcs_UDN[i][j] = arcs_UDN[i][j] = INFINITY;}arcs_UDN[0][5] = 11;arcs_UDN[1][2] = 18;arcs_UDN[1][6] = 16;arcs_UDN[1][8] = 12;arcs_UDN[2][3] = 22;arcs_UDN[2][8] = 8;arcs_UDN[3][4] = 20;arcs_UDN[3][6] = 24;arcs_UDN[3][7] = 16;arcs_UDN[3][8] = 21;arcs_UDN[4][5] = 26;arcs_UDN[4][7] = 7;arcs_UDN[5][6] = 17;arcs_UDN[6][7] = 19;for (int i = 0; i < vexs_UDN.length; i++) // 构造⽆向图邻接矩阵for (int j = i; j < vexs_UDN.length; j++)arcs_UDN[j][i] = arcs_UDN[i][j];return new AdjMatGraph(GraphKind.UDN, vexs_UDN.length, arcsNum_UDN, vexs_UDN, arcs_UDN);}public static void main(String[] args) throws Exception {AdjMatGraph UDN_Graph = (AdjMatGraph) createUDNByYourHand_ForMiniSpanTree();MiniSpanTree_Prim.Prim(UDN_Graph, "V0");} 输出为:通过Prim算法得到的最⼩⽣成树序列为: {(V0-V1)(V0-V5)(V1-V8)(V8-V2)(V1-V6)(V6-V7)(V7-V4)(V7-V3)} 分析算法执⾏过程:从V0开始:-count为0,k为0,closeEdges数组的-lowCost为{0 10 INF INF INF 11 INF INF INF},adjVex数组为{V0,V0,V0,V0,V0,V0,V0,V0,V0}-⽐较lowCost,于是k为1,adjVex[1]为V0,minSpanTree[0]为(V0,V1),lowCost为{0 0 INF INF INF 11 INF INF INF}-k为1,与V1的权值⾏⽐较,得到新的-lowCost为:{0 0 18 INF INF 11 16 INF 12},adjVex数组为{V0,V0,V1,V0,V0,V0,V1,V0,V1}-⽐较lowCost,于是k为5,adjVex[5]为V0,minSpanTree[1]为(V0,V5),lowCost为{0 0 18 INF INF 0 16 INF 12}-k为5,与V5的权值⾏⽐较,得到新的-lowCost为{0 0 18 INF 26 0 16 INF 12},adjVex数组为{V0,V0,V1,V0,V5,V0,V1,V0,V1}-⽐较lowCost,于是k为8,adjVex[8]为V1,minSpanTree[2]为(V1,V8),lowCost为{0 0 18 INF INF 0 16 INF 0}... 三、克鲁斯卡尔(Kruskal)算法 1.Kruskal算法描述 Kruskal算法是根据边的权值递增的⽅式,依次找出权值最⼩的边建⽴的最⼩⽣成树,并且规定每次新增的边,不能造成⽣成树有回路,直到找到n-1条边为⽌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造: 构造: 计算最小生成树的第k 计算最小生成树的第k长边
• 可行性。如果d等于第k长边的长度,将去掉前k-1 长的边,最小生成树将被分成k个连通支。由引理, 原图也将被分成k个连通支,满足连通支个数小于 等于k的要求。 • 最优性。如果d小于第k长边的长度,至少会去掉 前k长的边,最小生成树至少被分成k+1个连通支, 原图也至少被分成k+1个连通支,不满足要求。
通过函数top(i)计算顶点i所在子树的根
func top(i:longint):longint; /*计算和返回顶 计算和返回顶 所在并查集的代表顶点*/ 点i所在并查集的代表顶点 所在并查集的代表顶点 { if i<>f[i] Then f[i]←top(f[i]); /*若i非所在并 若 非所在并 查集的代表顶点,则沿f[i]递归 递归*/ 查集的代表顶点,则沿 递归 top←f[i]; /*返回顶点 所在并查集的代表顶点 返回顶点i所在并查集的代表顶点 返回顶点 所在并查集的代表顶点*/ };/*top*/
逆向思维
找到一个最小的d,使得连通支的 个数小于等于卫星设备的数目k。
引理
如果去掉所有长度大于d的边后,最小
生成树被分成k个连通支,那么图也被分 成k个连通支。
证明提示: 1. 反证法 2. 构造回路
证明
用反证法。假设原图被分割成k’(k‘≠k)个连通支,显然k’<k。根 据鸽巢原理,在某一连通支TK’中,最小生成树被分成了至少两部 分,不妨设其为T1,T2。因为T1和T2同属于一个连通支TK’,所 以一定存在x∈T1,y∈T2,w(x,y)≤d。又因为在整个最小生 成树中,所以x到y的路径中一定存在一条权值大于d的边(u,v) (否则x和y就不会分属于T1和T2了),w(x,y)≤d<w(u,v), 所以把(x,y)加入,把(u,v)去掉,将得到一棵总权值比最小生 成树还小的生成树。这显然是不可能的。所以,原命题成立。 (证毕)
Kruskal程序 程序
Const maxn=200; maxe=maxn*maxn; /*顶点数和边数的上限 顶点数和边数的上限*/ 顶点数和边数的上限 Type edgetype=Record /*边的类型 边的类型*/ 边的类型 x,y,c:longint; /*边权为 的边(x,y)*/ 边权为c的边 边权为 的边( , ) end; Var e:Array [1..maxe] of edgetype; /*边集,其中第 条边为 边集, 边集 其中第i条边为 (e[i].x,e[i].y),该边的权为 ,该边的权为e[i].c*/ n,m,ans:longint; /*顶点数为 ,边数为 顶点数为n,边数为m*/ 顶点数为 f:Array [1..maxn] of longint; /*并查集。其中 为顶点 所在 并查集。 为顶点i所在 并查集 其中f[i]为顶点 并查集的代表顶点,即子树根*/ 并查集的代表顶点,即子树根
计算最小生成树的思维方向: 计算最小生成树的思维方向:为了保证边权
总和最小,必须保证
①、添加(u,v)不能够形成回路、 ②、在保证1的前提下添加权尽可能小的, 这样的边称之为安全边
有两种算法可计算图的最小生成树 ①、Kruskal算法 ②、Prim算法
①、Kruskal算法 Kruskal算法
找出森林中连结任意两棵树的所有边中具有最小权值的边(u,v) 作为安全边,并把它添加到正在生长的森林中。初始时,森林 由单个结点组成的n棵树。
动态生成最小生成树
在一个初始化为空的无向图中,不断加入新边。如果 当前图连通,就求出当前图最小生成树的总权值;否 则,输出-1。 输入输出情况:第1行输入顶点数n和加入的边数k;以 下为2*k行,其中第2*i行输入‘x y c’,表示加入的第i 条边连接顶点x和y,权值为c;第2*i+1行输出回答: 最小生成树的总权值(如果当前图连通),或者-1 (如果当前图不连通)
图的最小生成树
对于一张图进行深度优先搜索或宽 度优先搜索, 度优先搜索,可生成一棵深度优先 搜索树或宽度优先搜索树。 搜索树或宽度优先搜索树。搜索的 出发点不同,生成树的形态亦不同。 出发点不同,生成树的形态亦不同。 在一张有权连通图中, 在一张有权连通图中,各边权和为 最小的一棵生成树即为最小生成树。 最小的一棵生成树即为最小生成树。
初始化
const maxn = 800; /*顶点数的上限 顶点数的上限*/ 顶点数的上限 var pnt:array[1..maxn]of integer;/*顶点 的父顶点为 顶点i的父顶点为 顶点 的父顶点为pnt[i]*/ e, c:array[1..maxn, 0..maxn] of integer; /*边表 ,其中顶点 相连的 边表e,其中顶点i相连的 边表 边数为e[i,0],第j条边的另一端点为 条边的另一端点为e[i,j],c为相邻矩阵 为相邻矩阵*/ 边数为 , 条边的另一端点为 , 为相邻矩阵 n,k,sum,t:integer; /*顶点数为 新添边数为 ,生成树的总权值为 顶点数为n新添边数为 顶点数为 新添边数为k, sum,边数为 ,边数为t*/ xi,yi,max:integer;/*当前路径的最大边权为 当前路径的最大边权为max,对应边为 对应边为(xi,yi)*/ 当前路径的最大边权为 对应边为 ok:boolean; /*成功标志 成功标志*/ 成功标志 proc Init; /*输入信息 输入信息*/ 输入信息 var i:integer; { readln(n, k); /*输入顶点数和加入的边数 输入顶点数和加入的边数*/ 输入顶点数和加入的边数 fillchar(e,sizeof(e),0);sum←0;t←0; /*边表、生成树的总权值和边数 边表、 边表 初始化*/ 初始化 for i←1 to n do pnt[i]←i; /*n个顶点组成 棵树 个顶点组成n棵树 个顶点组成 棵树*/ };/*Init*/
主算法
按照边权值(c域值)递增的顺序排序边集e; 按照边权值( 域值)递增的顺序排序边集 ; 域值 For i←1 to n Do f[i]←i; /*建立由 棵树组成的森林,每 建立由n棵树组成的森林 建立由 棵树组成的森林, 棵树包含图的一个顶点*/ 棵树包含图的一个顶点 ans←0; /* 最小生成树的权和初始化为 最小生成树的权和初始化为0*/ For i←1 to m Do Union(e[i].x,e[i].y,e[i].c); /*枚举每条边, 枚举每条边, 枚举每条边 将两个端点分属两棵树的边加入最小生成树*/ 将两个端点分属两棵树的边加入最小生成树 Writeln(ans); 显然, 算法的效率取决于边数m,因此适用与稀疏 显然 Kruskal算法的效率取决于边数 因此适用与稀疏 算法的效率取决于边数 图。
北极通讯网络
北极的某区域共有n座村庄(1 (1≤ 500), 北极的某区域共有n座村庄(1≤n≤500),每座村庄的坐标用一对 整数(x y)表示 (x, 表示, 10000。为了加强联系, 整数(x,y)表示,其中 0≤x,y≤10000。为了加强联系,决定在村庄 之间建立通讯网络。通讯工具可以是无线电收发机, 之间建立通讯网络。通讯工具可以是无线电收发机,也可以是卫星 设备。所有的村庄都可以拥有一部无线电收发机, 设备。所有的村庄都可以拥有一部无线电收发机, 且所有的无线电 收发机型号相同。但卫星设备数量有限, 收发机型号相同。但卫星设备数量有限,只能给一部分村庄配备卫 星设备。不同型号的无线电收发机有一个不同的参数d 星设备。不同型号的无线电收发机有一个不同的参数d,两座村庄之 间的距离如果不超过d就可以用该型号的无线电收发机直接通讯,d 间的距离如果不超过d就可以用该型号的无线电收发机直接通讯, 值越大的型号价格越贵。 值越大的型号价格越贵。拥有卫星设备的两座村庄无论相距多远都 可以直接通讯。 可以直接通讯。 现在有k 100)卫星设备,请你编一个程序, 现在有k台(0≤k≤100)卫星设备,请你编一个程序,计算出应 如何分配这k台卫星设备,才能使所拥有的无线电收发机的d值最小, 如何分配这k台卫星设备,才能使所拥有的无线电收发机的d值最小, 并保证每两座村庄之间都可直接或间接地通讯。请输出最小d值 并保证每两座村庄之间都可直接或间接地通讯。请输出最小d
图的最小生成树满足这个性质
反证法:反设图中存在一棵生成树T,T中的最大边权 小于最小生成树Tmin的最大边权。 令e是Tmin的最大边。e将Tmin分成两个连通分块X和Y。 由于Tmin是最小生成树,那么图中连接X和Y的任意边e’, 其边权都大于等于e的边权——结论1。 而T是图的一棵生成树,那么T中的最大边e’’连接X和 Y,按照假设,e’’的边权小于e的边权。这与结论1矛盾, 因此最小生成树最大边权最小的结论是成立的。 因此只要用Prim或Kruscarl算法求出图的最小生成树 即可。
数据限制:n≤500,k≤100。 K=2——B和C,min(d)=d(A,B)=10。
逆向思维
已知k,求d,比较困难。 已知d,求k,相对简单!
村庄设为顶点,所有可以 互相通讯的村庄连边,边 长为村庄间的距离,构造 一个图。图中卫星设备的 台数k就是图的连通支的个 数,每个连通支内顶点间 的边长不大于d。
通过过程Union(i,j,c)合并顶点i和顶点 j所在的两棵树
现有边权为c的边(i,j)。若该边的两个端点分 属于两棵树,顶点i和顶点j所在子树的根分别为x 和v,则(i,j) 加入最小生成树,合并两棵树(即顶 点i和顶点j所在的并查集)。
proc Union(i,j,c:longint); /*合并 和j所在集合 合并i和 所在集合 所在集合*/ 合并 Var x,y:longint; { x←top(i); y←top(j); /*分别取出顶点 和顶点 所在子 分别取出顶点i和顶点 分别取出顶点 和顶点j所在子 树的根*/ 树的根 if x<>y Then { inc(ans,c);f[y]←x;}; /*若i和j分属于两棵 若 和 分属于两棵 子树,则该边权计入最小生成树的权和,两棵子树合并 子树,则该边权计入最小生成树的权和, */ };/* Union */