分块矩阵求逆公式及证明

合集下载

分块矩阵求逆特殊公式

分块矩阵求逆特殊公式

分块矩阵求逆特殊公式分块矩阵求逆特殊公式,这可真是个让人又爱又恨的数学知识。

在数学的海洋里,它就像是一座神秘的小岛,等待着我们去探索。

我还记得当年在大学的课堂上,教授在黑板上写下分块矩阵求逆的公式时,那密密麻麻的符号和复杂的结构,让整个教室都弥漫着一种紧张的气氛。

同学们有的紧皱眉头,有的咬着笔头,都在努力理解这个看似深奥的概念。

咱先来说说分块矩阵是啥。

简单来讲,就是把一个大矩阵分成几个小块,就像把一个大蛋糕切成几块一样。

而分块矩阵求逆,就是要找出这些小块组合起来的逆矩阵。

这可不像切蛋糕那么简单,得有特定的公式和方法。

比如说,有一个分块矩阵是这样的:\[\begin{pmatrix}A &B \\C & D\end{pmatrix}\] 其中 A 是可逆矩阵,D 是可逆矩阵。

那它的逆矩阵就有一个特殊公式:\[\begin{pmatrix}A &B \\C & D\end{pmatrix}^{-1} =\begin{pmatrix}A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\-(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1}\end{pmatrix}\]看起来是不是很复杂?别担心,咱们慢慢捋一捋。

就拿实际解题来说吧。

假设 A 是一个 2×2 的可逆矩阵\[\begin{pmatrix}2 & 1 \\1 & 3\end{pmatrix}\] ,B 是\[\begin{pmatrix}1 &2 \\0 & 1\end{pmatrix}\] ,C 是\[\begin{pmatrix}1 & 0 \\2 & 1\end{pmatrix}\] ,D 是\[\begin{pmatrix}4 & 1 \\1 & 2\end{pmatrix}\] 。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。

矩阵求逆方法大全-1

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例苏红杏广西民院计信学院00数本(二)班[摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的读者参考。

[关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。

但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。

为此,我介绍下面几种求逆矩阵的方法,供大家参考。

定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B方法 一. 初等变换法(加边法)我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。

即,必有一系列初等矩阵 m Q Q Q 21使E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2)把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。

例 1 . 设A= ⎪⎪⎪⎭⎫ ⎝⎛-012411210 求1-A 。

解:由(3)式初等行变换逐步得到:⎪⎪⎪⎭⎫ ⎝⎛-100012010411001210→ ⎪⎪⎪⎭⎫ ⎝⎛-100012001210010411 →⎪⎪⎪⎭⎫ ⎝⎛----123200124010112001→⎪⎪⎪⎪⎭⎫ ⎝⎛----21123100124010112001于是1-A = ⎪⎪⎪⎪⎭⎫ ⎝⎛----21123124112说明:此方法适用于求元素为具体数字的矩阵的逆矩阵,比较简便,特别是当阶数较高时,使用初等变换法的优点更明显。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:(2) s p p p Λ21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡WZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

二阶分块矩阵求逆公式

二阶分块矩阵求逆公式

二阶分块矩阵求逆公式1.引言分块矩阵在线性代数中占据重要地位,它可以帮助我们更好地理解和处理复杂的线性方程组。

在这篇文档中,我们将介绍二阶分块矩阵的求逆公式,探讨其应用和解决实际问题的方法。

2.二阶分块矩阵的表示二阶分块矩阵可以用如下形式来表示:$$A=\b eg in{b ma tr ix}A_{11}&A_{12}\\A_{21}&A_{22}\e nd{b ma tr ix}$$其中$A_{11}$、$A_{12}$、$A_{21}$、$A_{22}$均为$n\t im es n$的方阵。

3.二阶分块矩阵的求逆公式对于二阶分块矩阵$A$,其逆矩阵的求解公式如下:$$A^{-1}=\be gi n{bma t ri x}(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}&-A_{11}^{-1}A_{12}(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}\\-A_{22}^{-1}A_{21}(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}&(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}\e nd{b ma tr ix}$$这个公式为我们提供了计算二阶分块矩阵逆矩阵的方法,下面将详细解释其中的推导。

4.推导过程我们假设$A_{11}$、$A_{12}$、$A_{21}$、$A_{22}$均存在逆矩阵,并将其表示为$A_{11}^{-1}$、$A_{12}^{-1}$、$A_{21}^{-1}$、$A_{22}^{-1}$。

首先,我们来计算逆矩阵$A^{-1}$的各个分块元素:$$\b eg in{a li gn ed}(A^{-1})_{11}&=(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}\\(A^{-1})_{12}&=-A_{11}^{-1}A_{12}(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}\\(A^{-1})_{21}&=-A_{22}^{-1}A_{21}(A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}\\(A^{-1})_{22}&=(A_{22}-A_{21}A_{11}^{-1}A_{12})^{-1}\e nd{a li gn ed}$$通过计算可得以上结果,可以使用代数运算的性质和规则进行验证。

分块阵的逆矩阵公式

分块阵的逆矩阵公式

分块阵的逆矩阵公式在数学的世界里,分块阵可是个有点特别的存在。

一提到分块阵的逆矩阵公式,可能很多同学会觉得脑袋有点大,不过别担心,咱们一起来瞧瞧这其中的门道。

我记得有一次给学生们讲分块阵的逆矩阵公式,那场景真是让人印象深刻。

当时我在黑板上写下了一个复杂的分块矩阵,看着下面一张张迷茫的小脸,我就知道,这是一场“硬仗”。

咱们先来说说分块阵是啥。

简单来讲,就是把一个大矩阵分成几个小块,就像把一个大蛋糕切成几块一样。

比如说,一个矩阵可以分成四块,左上角一块,右上角一块,左下角一块,右下角一块。

那分块阵的逆矩阵公式又是啥呢?这可就有点复杂啦。

假设我们有一个分块矩阵 M ,它被分成了四块,分别是 A 、 B 、 C 、 D 。

如果满足一些特定的条件,那么它的逆矩阵就可以通过一些公式来计算。

这其中的条件就像是一道道关卡,得一个个闯过去。

比如说, A 得是可逆矩阵, D - CA^(-1)B 也得是可逆矩阵。

只有满足了这些条件,咱们才能愉快地使用逆矩阵公式。

在实际计算的时候,可不能马虎。

得一步步来,先算出一些中间量,然后再组合起来得到最终的结果。

这就像是搭积木,一块一块地搭,才能搭出漂亮的城堡。

还记得那次讲解之后,我给学生们布置了一些练习题。

有个学生跑来问我,说怎么感觉这个公式这么难记,用的时候总是出错。

我就告诉他,别着急,多做几道题,多琢磨琢磨其中的规律,慢慢就熟练了。

其实啊,分块阵的逆矩阵公式虽然看起来有点吓人,但只要咱们掌握了其中的关键,多练习,多思考,就一定能把它拿下。

就像我们在生活中遇到困难一样,只要有耐心,有方法,总能解决的。

总之,分块阵的逆矩阵公式是数学中的一个重要工具,虽然学习的过程可能会有点曲折,但当我们真正掌握了它,那种成就感可是无与伦比的。

希望同学们在面对这个知识点的时候,不要害怕,勇敢地去探索,相信自己一定能行!。

矩阵求逆方法大全-1

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例苏红杏广西民院计信学院00数本(二)班[摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的读者参考。

[关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。

但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。

为此,我介绍下面几种求逆矩阵的方法,供大家参考。

定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B方法 一. 初等变换法(加边法)我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。

即,必有一系列初等矩阵 m Q Q Q 21使E A Q Q Q m m =-11 (1)则1-A =E A Q Q Q m m =-11 (2)把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。

例 1 . 设A= ⎪⎪⎪⎭⎫ ⎝⎛-012411210 求1-A 。

解:由(3)式初等行变换逐步得到: ⎪⎪⎪⎭⎫ ⎝⎛-100012010411001210→ ⎪⎪⎪⎭⎫⎝⎛-100012001210010411 →⎪⎪⎪⎭⎫ ⎝⎛----123200124010112001→⎪⎪⎪⎪⎭⎫⎝⎛----21123100124010112001于是1-A = ⎪⎪⎪⎪⎭⎫ ⎝⎛----21123124112说明:此方法适用于求元素为具体数字的矩阵的逆矩阵,比较简便,特别是当阶数较高时,使用初等变换法的优点更明显。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )= E + A + A +…+A 1-21-K 证明 因为E 与A 可以交换, 所以(E- A )(E+A + A +…+ A )= E-A ,21-K K 因A = 0 ,于是得 K (E-A)(E+A+A +…+A )=E ,21-K 同理可得(E + A + A +…+A )(E-A)=E ,21-K 因此E-A 是可逆矩阵,且(E-A)= E + A + A +…+A .1-21-K 同理可以证明(E+ A)也可逆,且(E+ A)= E -A + A +…+(-1)A .1-21-K 1-K 由此可知, 只要满足A =0,就可以利用此题求出一类矩阵E A 的逆矩阵.K ±例2 设 A =,求 E-A 的逆矩阵.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00300000200010分析 由于A 中有许多元素为零, 考虑A 是否为零矩阵, 若为零矩阵, 则可以K 采用例2 的方法求E-A 的逆矩阵.解 容易验证A =, A =, A =02⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000000600002003⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006004而 (E-A)(E+A+ A + A )=E,所以23(E-A)= E+A+ A + A =.1-23⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10003100621062112.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵使S P P P ,,21 (1)A=I ,用A 右乘上式两端,得:s p p p 211- (2) I= A s p p p 211-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A .1-用矩阵表示(A I )为(I A ),就是求逆矩阵的初等行变换法,−−−→−初等行变换1-它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A =.1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明=0,则A 不存在.A 1-例2 求A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321 .→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ]为可逆的充分必要条件是A 非奇异.且ij A =1-A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中A 是中元素a 的代数余子式.ij A ij 矩阵称为矩阵A 的伴随矩阵,记作A ,于是有A = A .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A AA A A (2122212)1211131-A 13证明 必要性:设A 可逆,由A A =I ,有=,则=,所以1-1-AA I A 1-A I A0,即A 为非奇异.≠充分性: 设A 为非奇异,存在矩阵B=,A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111===I A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A AA A ...00.........0...00...0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1...00...1......0...100...01同理可证BA=I.由此可知,若A 可逆,则A =A .1-A13用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA =I 来检验.一1-旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 、A 都是非奇异矩阵,且A 为n 阶方阵,A 为m 阶方阵11221122 ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为==0, 所以A 可逆.A 22110A A 11A 22A ≠设A =,于是有=,1-⎥⎦⎤⎢⎣⎡WZYX⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡m nI I 00其中 X A =I , Y A =0,Z A =0,W A =I .又因为A 、A 都可逆,用11n 221122m 1122A 、A 分别右乘上面左右两组等式得:111-122-X= A ,Y=0,Z=0,W= A 111-122-故 A = 21⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:=121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 、A 都是非奇异矩阵,则有1122=12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 证明 因为=⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡22110A A 两边求逆得=1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--12211100A A 所以 =1221211-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 同理可证=12221110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E ,把题目中的逆矩阵化简掉。

分块矩阵逆矩阵公式

分块矩阵逆矩阵公式

分块矩阵逆矩阵公式分块矩阵逆矩阵是指将一个大的矩阵划分成多个小的矩阵,并对它们进行求逆操作得到整个矩阵的逆矩阵。

分块矩阵逆矩阵的求解可以用到很多公式和算法,在本文中,我们将会介绍其中的一些常用的公式和算法。

1. 矩阵分块首先,我们需要了解矩阵分块的概念。

矩阵分块是将一个大的矩阵划分成多个小的矩阵的过程。

这些小的矩阵可以是行向量或列向量,也可以是子矩阵。

矩阵的分块有很多种方法,其中比较常用的是二分法和多分法。

例如,将一个 $4 \times 4$ 的矩阵分成四个 $2 \times 2$ 的子矩阵,可以表示为:$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{pmatrix}$$其中 $A_{11}, A_{12}, A_{21}, A_{22}$ 分别是四个 $2 \times 2$ 的子矩阵。

2. 矩阵的秩接着,我们需要了解矩阵的秩的概念。

矩阵的秩定义为矩阵中非零行的最大个数或者矩阵中非零列的最大个数。

对于任意一个 $m \times n$ 的矩阵 $A$,其秩为 $r(A)$。

3. 矩阵的逆矩阵矩阵的逆矩阵是指一个矩阵 $A$ 的逆矩阵 $A^{-1}$ 满足以下条件:$$A A^{-1} = A^{-1} A = I$$其中 $I$ 是单位矩阵。

注意,只有可逆矩阵才有逆矩阵。

如果一个矩阵不可逆,则称其为奇异矩阵。

4. 矩阵的分块逆矩阵公式对于大的矩阵的求逆,我们可以通过对其进行分块并应用一些公式和算法来实现。

常见的分块逆矩阵公式有以下几种:- 逆矩阵的分块公式对于一个分块矩阵:$$A=\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{pmatrix}$$如果 $A_{11}$ 是可逆矩阵,则它的逆矩阵为:$$A^{-1}=\begin{pmatrix} (A_{11}-A_{12} A_{22}^{-1}A_{21})^{-1} & -(A_{11}-A_{12} A_{22}^{-1} A_{21})^{-1} A_{12} A_{22}^{-1} \\ -A_{22}^{-1} A_{21} (A_{11}-A_{12} A_{22}^{-1} A_{21})^{-1} & A_{22}^{-1} + A_{22}^{-1}A_{21} (A_{11}-A_{12} A_{22}^{-1} A_{21})^{-1} A_{12}A_{22}^{-1} \end{pmatrix}$$其中 $A_{11} - A_{12} A_{22}^{-1} A_{21}$ 是一个 $k \times k$ 的可逆矩阵,$A_{22}^{-1}$ 是一个 $(n-k) \times (n-k)$ 的可逆矩阵。

逆矩阵的几种求法与解析

逆矩阵的几种求法与解析
因此E-A是可逆矩阵,且
(E-A) = E + A + A +…+A .
同理可以证明(E+ A)也可逆,且
(E+ A) = E -A + A +…+(-1) A .
由此可知,只要满足A =0,就可以利用此题求出一类矩阵E A的逆矩阵.
例2设A = ,求E-A的逆矩阵.
分析由于A中有许多元素为零,考虑A 是否为零矩阵,若为零矩阵,则可以采用例2的方法求E-A的逆矩阵.
3.伴随阵法
定理n阶矩阵A=[a ]为可逆的充分必要条件是A非奇异.且
A =
其中A 是 中元素a 的代数余子式.
矩阵 称为矩阵A的伴随矩阵,记作A*,于是有A = A*.
证明必要性:设A可逆,由AA =I,有 = ,则 = ,所以 0,即A为非奇异.
充分性: 设A为非奇异,存在矩阵
B= ,
其中
AB=
X= A ,Y=0,Z=0,W= A
故 A =
把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:
=
4.2.准三角形矩阵求逆
命题设A 、A 都是非奇异矩阵,则有
=
证明因为 =
两边求逆得
=
所以 =
=
同理可证
=
此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.
5.恒等变形法
恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E,把题目中的逆矩阵化简掉。
例1计算(A+4E) (4E-A) (16E-A )的行列式,其中 A=

分块矩阵求逆矩阵的方法

分块矩阵求逆矩阵的方法

分块矩阵求逆矩阵的方法矩阵是线性代数中的重要概念,常常用于描述线性方程组的解法、计算线性变换的效果等。

在实际应用中,我们经常需要对矩阵进行求逆操作,以便进行矩阵的乘法、求解线性方程组等操作。

而分块矩阵求逆矩阵的方法是一种比较高效、实用的方法,本文将详细介绍其原理和实现方法。

1. 基本原理分块矩阵求逆矩阵的基本思想是将原矩阵分解成若干个子块矩阵,然后利用矩阵分块的性质,通过一系列简单的矩阵运算,将原矩阵求逆的问题转化为对子块矩阵求逆的问题。

具体来说,假设我们要求解一个n阶矩阵A的逆矩阵,可以将A分解成如下的分块矩阵:$$A = begin{bmatrix} A_{11} & A_{12} A_{21} & A_{22}end{bmatrix}$$其中,$A_{11}$是一个$ktimes k$的矩阵,$A_{22}$是一个$(n-k)times(n-k)$的矩阵,$A_{12}$是一个$ktimes(n-k)$的矩阵,$A_{21}$是一个$(n-k)times k$的矩阵。

根据矩阵分块的性质,我们可以得到如下的矩阵分解式:$$A^{-1} = begin{bmatrix} B_{11} & B_{12} B_{21} & B_{22} end{bmatrix}$$其中,$B_{11}$是一个$ktimes k$的矩阵,$B_{22}$是一个$(n-k)times(n-k)$的矩阵,$B_{12}$是一个$ktimes(n-k)$的矩阵,$B_{21}$是一个$(n-k)times k$的矩阵。

我们的目标是求解出$B_{11}$、$B_{12}$、$B_{21}$和$B_{22}$。

根据矩阵分块的性质,我们可以将原矩阵的逆矩阵表示为:$$A^{-1} = begin{bmatrix} A_{11}^{-1} +A_{11}^{-1}A_{12}B_{22}A_{21}A_{11}^{-1} &-A_{11}^{-1}A_{12}B_{22} -B_{22}A_{21}A_{11}^{-1} & B_{22} end{bmatrix}$$这个式子看起来很复杂,但是它的本质是非常简单的:将原矩阵分解成若干个子块矩阵,然后通过一系列简单的矩阵运算,将原矩阵的求逆问题转化为对子块矩阵的求逆问题。

关于分块矩阵求逆和行列式的方法探究与应用

关于分块矩阵求逆和行列式的方法探究与应用

关于分块矩阵求逆和行列式的方法探究与应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!关于分块矩阵求逆和行列式的方法探究与应用分块矩阵是线性代数中一个重要的概念,它能够有效地描述和处理复杂的线性系统和运算问题。

分块矩阵的逆矩阵推导过程

分块矩阵的逆矩阵推导过程

分块矩阵的逆矩阵推导过程分块矩阵的逆矩阵推导过程,听起来像是个高深的数学课题,但其实也可以聊得轻松有趣。

想象一下,我们在解决一个复杂问题时,就像在做一顿丰盛的晚餐,分块矩阵就是我们准备的食材,而逆矩阵就是那美味的成品。

可别小看这食材,巧妙地处理好,每块都能发挥它的独特魅力。

分块矩阵的结构就像一块大蛋糕,切成几块儿,分别是小的矩阵。

比如,假设我们有一个大的方阵,把它划分成四个小的方阵。

这就像把一块巧克力蛋糕切成四份,虽然每份小,但每块儿依然很美味。

这种分块的方式,让我们在运算时可以集中精力处理每一小块,效率直线上升。

然后,逆矩阵就像是我们对食材的调味品。

有些人喜欢甜的,有些人偏咸,调配得当,才能让最终的菜肴美味可口。

矩阵的逆,简单说就是把原来的矩阵“翻转”过来。

想象一下,如果你在厨房忙活,突然发现盐放多了,这时候你得加点糖来平衡味道。

数学上也是一样,逆矩阵的计算就是在为整个方阵“调味”,让它重新焕发活力。

让我们看看如何计算这个逆矩阵。

我们首先需要一个重要的条件,那就是这个分块矩阵必须是可逆的。

换句话说,它得“身体健康”,不然再好的调料也没用。

为了保证这个矩阵的可逆性,我们得确保它的行列式不为零。

就像是做菜之前先检查一下食材的新鲜度,坏了的可不能上桌。

一旦我们确定矩阵是可逆的,就可以开始计算逆矩阵了。

这个过程就像在调配一份复杂的酱料,得小心翼翼。

一般来说,我们可以通过分块的方式,把大的矩阵分成几个小块,每个小块都有自己的“特性”。

通过简单的公式,结合这些小块的逆,我们可以一步步把大矩阵的逆算出来。

就像把每种调料调和在一起,最终形成独特的味道。

具体的计算步骤有点复杂,不过不必担心,想象一下在厨房里尝试新菜谱的感觉,过程虽然有点繁琐,但最后那份成功的喜悦绝对值得。

你可以先找出每个小块的逆,然后把它们组合在一起。

每一步都要细心,别让“过火”或者“淡了”这种情况出现。

说到这里,可能有些人会问,为什么要用分块矩阵呢?这就像在日常生活中,我们分工合作的道理。

矩阵的分块求逆及解线性方程组

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组一、 问题化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。

二、 实验目的学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。

三、 预备知识1. 线性代数知识:(1) 向量},,,{21n x x x X 作出的 n 阶范德蒙矩阵为112112222121111n n n n n n x x x x x x x x x(2)分块矩阵22211211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设222112111B B B B A,则221211112112111212222,)(B A A B A A A A B , 111211211111111212221, A A B A B A A B B(3)常用的矩阵范数为Frobenius 范数;21112||||||n i n j ij F a A2. 本实验所用Matlab 命令提示:(1)输入语句:input('输入提示');(2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end(3)条件语句: if(条件式1)条件块语句组1elseif(条件式2)条件块语句组2 else条件块语句组3 end(4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A );(6)求矩阵A 的阶梯型的行最简形式:rref(A)。

四、 实验内容及要求1. 在建立的sy31.m 文件中编程将任意给定的n 阶方阵B1,化为上三角矩阵B1;调用时输入:B1=A ,n=6;其A 为实验1[矩阵的基本运算]中的矩阵A 矩阵;2. 在建立的sy32.m 文件中编程用1~6单位增量的行向量产生一个范德蒙矩阵B2; 3. 在建立的sy33.m 文件中编程对任意输入的高阶分块可逆矩阵B3实现分块法求逆;(1)调用sy33.m 文件时输入:B3=A^2 ,输入n1=2求出B3的逆C2 ; (2)调用sy33.m 文件时输入同上的B3,输入n1=4求出B3的逆C4 ; (3)调用sy33.m 文件时输入同上的B3,输入n1=6求出B3的逆C6 ;(4)用norm()函数对上面三种方法所求的逆作误差分析[即作(B3*Ci -E)的范数]; 4. 建立sy34.m 文件,求下列非齐次线性方程组的通解。

分块逆矩阵的公式

分块逆矩阵的公式

分块逆矩阵的公式分块逆矩阵是一种重要的矩阵运算方法,它可以将一个大矩阵分解成多个小矩阵的乘积形式。

这种分块逆矩阵的公式可以用来求解线性方程组、计算矩阵的特征值等问题,具有广泛的应用价值。

在介绍分块逆矩阵的公式之前,我们先来了解一下矩阵的基本概念。

矩阵是由m行n列元素排列而成的矩形数表,常用大写字母表示。

例如,一个3行2列的矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中,a11、a12等表示矩阵的元素。

矩阵运算包括加法、减法、乘法等,其中乘法是最为重要的运算之一。

对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=I,其中I为单位矩阵,则称B为A的逆矩阵,记作A^-1。

逆矩阵的存在与否是一个重要的问题,如果矩阵不存在逆矩阵,则称该矩阵为奇异矩阵。

现在我们来介绍分块逆矩阵的公式。

对于一个分块矩阵A,可以将其分解为多个小矩阵的形式,记作:A = [A11 A12A21 A22]其中A11、A12、A21、A22分别为矩阵A的四个子矩阵。

如果A11存在逆矩阵A11^-1,并且A11-A12A22^-1A21存在逆矩阵,则A的逆矩阵可以表示为:A^-1 = [A11^-1 + A11^-1A12A22^-1A21A11^-1 -A11^-1A12A22^-1-A22^-1A21A11^-1 A22^-1]这就是分块逆矩阵的公式。

通过这个公式,我们可以将一个大矩阵的逆矩阵计算转化为多个小矩阵的逆矩阵计算,从而简化了计算的复杂度。

分块逆矩阵的公式在实际问题中有着广泛的应用。

例如,在求解线性方程组Ax=b时,如果矩阵A是一个分块矩阵,我们可以使用分块逆矩阵的公式来计算A的逆矩阵,从而快速求解方程组。

分块逆矩阵的公式还可以用来计算矩阵的特征值。

特征值是一个矩阵的重要性质,它可以用来描述矩阵的变换特性。

通过分块逆矩阵的公式,我们可以快速计算大矩阵的特征值,从而更好地理解矩阵的性质。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档