相图及相图热力学共22页
相图和相图化学(五)
固溶体和机械混合物的区别? 固溶体和机械混合物的区别? 固溶体是以原子尺度相混合,是单相均匀的。 固溶体是以原子尺度相混合,是单相均匀的。 机 械混合物不是均匀的单相而是多相。 械混合物不是均匀的单相而是多相。
固溶体和(化学计量)化合物的区别? 固溶体和(化学计量)化合物的区别? 固溶体一定是多组分 两组分形成固溶体时, 固溶体一定是多组分,A和B两组分形成固溶体时, 之间不存在确定的物质的量比值, A和B之间不存在确定的物质的量比值,而形成化学计 按确定的物质的量比值(m∶n) 量化合物A 量化合物AmBn时,A和B按确定的物质的量比值(m∶n) 化合。固溶体的组成可改变, 化合。固溶体的组成可改变,其性质也会随之而发生 变化,而化学计量化合物,它的组成和性质是一定的。 变化,而化学计量化合物,它的组成和性质是一定的。
17
5.有限固溶体的二元系统相图 5.有限固溶体的二元系统相图
组分A 组分A、B间在液态下无限互溶,固态下可以形成 间在液态下无限互溶,固态下可以形成 下无限互溶 固溶体但溶解度有限,不能以任意比例互溶。 固溶体但溶解度有限,不能以任意比例互溶。有两种 类型: 类型: (1)低共熔点型-共晶相图 低共熔点型金属材料中Al-Si、 金属材料中Al-Si、 Al Pb-Sn、Ag-Au等合 Pb-Sn、Ag-Au等合 陶瓷材料MgO 金、陶瓷材料MgO CaO系中都具有共 -CaO系中都具有共 晶相图。 晶相图。
5
相律应用举例: 相律应用举例: 700℃时的石墨 Fe、 时的石墨、 〔例1〕 在700℃时的石墨、Fe、FeO 与另一个含有 CO及 的气体混合,存在下列平衡: CO及CO2的气体混合,存在下列平衡:
试问此混合平衡体系的自由度数为多少? 试问此混合平衡体系的自由度数为多少? 〔解〕 C=5-2=3 p=4(气体、石墨、Fe、FeO) 气体、石墨、Fe、FeO) 1= ∴f =C-P+1=3 – 4 + 1=0
相图热力学(简洁版)
图4-4 二元系平衡相的成分
G x 曲线的公切线只是确定了平衡相的成分,并没有确定体系中各相的数量。由组
元的质量平衡可得两相平衡体系中的所谓杠杆定律。即系统的总质量、各相的质量、系统 的化学成分与各相的化学成分之间保持着组元质量的分配平衡。如图4-5所示,组元 B 摩 尔分数为 xB 的体系,物质总量为 M 摩尔,由 、 两种相互平衡的相构成,各相中组元 M B 的摩尔分数分别为 x 、 B ,各相的摩尔数分别为 M 、 ,则有 x B
相图是合金体系热力学规律的一种表现形式。因此,利用相图可以获得合金体系的某 些热力学数据,由有关的热力学数据也可以绘制合金体系的相图。 4.1二元系的 G x 曲线与化学位之间的关系 纯组元的摩尔自由焓 i0 ,溶体中组元的偏摩尔自由焓 i ,即组元的化学位。 由(3-4)式,1mol单相溶体的自由焓为 因此,单相 G x 曲线的切线在两个纯组元轴上的截距即为相应组元在切点所指相中的化 学位。如下图所示。
0 0 G G ( x GA x GB ) A B
为α 相的摩尔生成自由焓(或混合自由焓)。同样,
x A A xB B [ Ax Bx ]
A B
假设 G 为β 相的摩尔自由焓,则
0 0 G G ( xA GA xB GB )
G G 0 G
0 0 G 0 x A A xB B
G H TS
H 0
故
0 0 G xA A xB B TS H
如图4-3所示,H 0 ,放热,中间相稳定; H 0,吸热,端际固溶体稳定
图4-3 非理想溶体的 G x 曲线
由此得理想溶体的摩尔自由焓
材料热力学——相图计算机计算精品PPT课件
什么是相图计算?
• 相图计算就是运用热力学原理计算 系统的相平衡关系并绘制出相图的 科学研究。
• 相图计算的关键就是选择合适的热 力学模型模拟各相的热力学性质随 温度、压力、成分等的变化。
模型
• 模型就是一些有用的数学表达式,有的表 达式可能有确切的物理意义,有的可能是 没有确切物理意义的经验公式。但是实际 经验表明,有坚实物理基础的模型比没有 物理基础的经验模型通常更有用,运用这 样的模型我们可以对实测范围以外的地方 作出恰当的预测。
T ( 2G TP )
i ( G ni )P ,T ,n j
ai
exp(
i
0 i
RT
)
纯物质Байду номын сангаас自由能
纯物质的自由能──点阵稳定性常数
• 纯物质的自由能只与温度与压力有关与成 分无关。
• 点阵稳定性常数就是纯物质两可能组态的 自由能差。自由能没有绝对值,影响两相 平衡相图形状的是两组态的自由能差,而 不是它的绝对值。之所以讲可能组态,是 因为在相图计算时,我们不仅要计算稳定 平衡,而且要计算亚稳平衡。
M. Hillert (1970): • Introduced the sub-lattice model: 1970Hil: M. Hillert, L.-I. Staffansson: Acta Chem. Scand. 24, 3618 (1970).
B. Sundman (1985): • Developed the most powerful software to perform phase diagram and thermodynamic calculation in multicomponent
第二章热力学状态图
2.1.4 Jeffes图-PCO/PCO2标尺 PCO/PCO2标尺图的画法:
为了更方便地使用氧势图判断氧化物被CO还原的情况, Jeffesz在氧势图上增加了PCO/PCO2标尺
2CO O2 (101325 Pa) 2CO2
△Go=-58150+167.78T
p CO2 1 DG RT ln 2 RT ln p O2 2 RT ln p CO2 p CO 2 p O2
直线的位臵
(2)在同一温度下,若几种元素同时与氧相遇,则位臵 低的元素最先氧化。如1673K时,元素Si、Mn、Ca、Al、 Mg同时与氧相遇时,最先氧化的是金属Ca, 然后依次为Mg、 Al、Si、Mn。 ——注意:先氧化是指同样条件,氧化所需的最低氧分压低 (3)位臵低的元素在标准状态下可以将位臵高的氧化物还 原。如1600℃时,Mg可以还原SiO2得到液态硅。
(2) 单元相图的基本类型与特点 对于单元系,C=1;则有:
F 3 P
单相体系:P=1,F=2,自由度为2 两相共存体系:P=2,F=1,自由度为1 三相共存体系:P=3,F=1,自由度为0
O点称为三相点,现在 国际单位规定水的三相 点温度为273.16K, 通常我们说的水的冰点 温度0 0C( 273.15K)
相图:将一定压力下,温度与组成的关系图,称为相图。
2.1 埃林汉姆(Ellingham)图及其应用
2.1.1 氧势图的形成原理;
2.1.2 氧势图的热力学特征;(特殊的线;直
线斜率;直线位臵)
2.1.3 氧势图的应用(氧气标尺;Jeffes图学
生自学)
2.1 埃林汉姆(Ellingham)图及其应用 2.1.1 氧势图的形成原理
无机材料科学基础相图热力学基本原理及相平衡PPT课件
3、自由度 (f) 定义: 温度、压力、组分浓度等可能影响系统平衡状态的变量中, 可以在一定范围内改变而不会引起旧相消失新相产生的 独立变量的数目 具体看一个二元系统的自由度。
L f=2
L+A f=1
f =0 E L+B f=1
A+B f=1
A
B
第7页/共124页
相律应用必须注意以下四点: 1. 相律是根据热力学平衡条件推导而得,因而只能处理真实 的热力学平衡体系。 2. 相律表达式中的“2”是代表外界条件温度和压强。 如果电场、磁场或重力场对平衡状态有影响,则相律中的 “2”应为“3”、“4”、“5”。如果研究的体系为固态物质,可以 忽略压强的影响,相律中的“2”应为“1”。 3. 必须正确判断独立组分数、独立化学反应式、相数以及限 制条件数,才能正确应用相律。 4. 自由度只取“0”以上的正值。如果出现负值,则说明体系可 能处于非平衡态。
第1页/共124页
2. 介稳态 即热力学非平衡态,经常出现于硅酸盐系统中。
如:
α-石英
870 ℃
573℃
α-鳞石英 163℃
1470℃ α-方石英 180~270℃
β-石英
β-鳞石英 117℃
β-方石英
γ-鳞石英
说明:介稳态的出现不一定都是不利的。由于某些介稳态具有 所需要的性质,因而创造条件(快速冷却或掺加杂质) 有意把它保存下来。 如:水泥中的β -C2S,陶瓷中介稳的四方氧化锆 ; 耐火材料硅砖中的鳞石英以及所有的玻璃材料。
B%
B
(1) T1: 固相量 S% = 0 ; 液相量 L%=100%;
(2) T2: S% = M2L2/S2L2 ×100% ;L% =M2S2/S2L2 ×100%
材料热力学第五章相图热力学
X
(2) 2 1
(5.13)
敞开系统的 d T V d P i d ni
i
dG SdT VdP i*dni RT ln X i dni RT ln i dni (5.14)
i i i
例氢 关气 系溶 如解 图度 和 所氢 示气 。压 力 的 平 方 根 的 比
5.2
含图 量 的总 变结 化说 对明 于了 氢在 气熔 溶融 解铁 度中 的合 影金 响元 。素
5.1
化学势定义为(2.40)
G i n i T , P , n j
引入活度,如式子(3.77), with
k
(5.23)
将 ei 的定义代入,当X0→1时, 根据3.84式的 定义 % i / X i 100 M i / M 0 得:
j
( j) i
230 M i ( j ) M 0 M j ei M0 M0
(5.24)
相应的5.13式也可以写成:
log
% i
e %j
( j) i j
ai lim i 1 X i 1 X i
如果溶质浓度由重量百分比来表示,上面的式子 可以表示为:(3.81)
a % i RT ln a & lim i 1 X 0 1 % i
i % i
% i
由 X 0 1(下标0表示溶剂)和温度以及压力可以 确定系统的状态 (此时 )。 X 1 0和 X 2 0
(5.25)
对于图5.1中所示的氢溶解在低浓度的铁合金中, 则5.25式可写成:
log
% H
相图热力学
Fundamentals of Materials Science
相图热力学
6.5 相图热力学
相图:表述物质成分、环境条件与 平衡相之间关系的图形。
✓平衡状态:系统吉布斯自由能处于最低所对应的状态。
相图是相平衡时热力学变量轨迹的几何表达。
实验测定相图
热力学数据
相图的测定: 二元相图:4000个(81%)(4950); 三元相图:8000(5%)(161700)。 四元相图:1000(0.1%)(3921225)
单相平衡
稳定的单相为在某一温度下, 该相的自由能最低,并且在该成分
点出的G(x)~x曲线为“上凹”。
1、在温度T下,AB组元可能形成α、 β两种相,为了降低系统的自由能, 显然将以单一的α存在比β相或α +β两相混合时的自由能低一些。
2、当曲线为“上凹”时,应为均匀成分xB的自由能最低。如果 某一处出现高出xB的成分时,因为物质不灭,必然存在另一处 为低于xB的成分,这时系统的自由能将高于均匀成分时的自由 能,系统未达到平衡,在动力学条件满足时,趋于形成单一均 匀成分。例如枝晶偏析较平衡态的能量高,均匀化退火加热时 通过扩散达到成分均匀的过程是自发的。
计算ΔGm变化。
(1)混合过程中H的变化:
N为原子数 , Z为配位数。
:混合能参量,形成一个A-B键内能的变化。 Ω: 相互作用参数, A,B原子间作用的大小。 • (Ω)0, A-B键稳定,A,B原子一般均匀混合。 • (Ω) 0, A,B原子倾向于偏聚。 • (Ω) =0,原子随机分布,理想固溶体。
(2)混合过程中S的变化: (3)固溶体自由能与成分温度的关系 :2.固溶体自由来自--成分曲线 G(x)为U 形线
• (Ω)0, A-B键稳定,A,B原子均匀混合。 • (Ω) 0, A,B原子倾向于偏聚。 • (Ω) =0,随机分布,理想固溶体。
第2章 相图及相图热力学主体
A
压 强
临界点 L C
S
O C’ B g
温度
BO:S = g 平衡线,即升华线,上限为熔点或凝固点;p=2,f = 1; AO:S = L平衡线,熔化曲线或熔点曲线,熔点随压力变化。一般压力增 大,熔点升高,但也有例外,如冰(图示); OC:L = g平衡线,汽化曲线,液相蒸汽压与温度的关系。
冰点:是一个大气压下被空气饱和的水和冰的平衡共存温度; 三相点O:是在它自己的蒸汽压力(4.579mmHg)下的凝固点(0.0099℃)。
采取的措施:
1.在870 ℃适当保温,促使鳞石英的生成; 2.在1200~1350 ℃小心加快升温速度,避免生成α方石英; 3.在配方中适当加入矿化剂,使之在1000 ℃左右产 生一定的液相, α-石英、α-方石英在此液相中的 溶解度大,而α-鳞石英的溶解度小,因而,石英、 方石英不断溶解,而鳞石英不断从液相中析出。
A
C
B
WL md WAcm
二、具有一个稳定化合物的二元相图
M点:化合物的熔点。 曲线aE1、bE2分别为 组元A、B的液相线。 E1ME2是化合物的液 相线。 相图特点:化合物的 组成点位于其液相线 的组成范围内。
具有一个一致熔融化合 物的二元系统相图
三、 具有一个不稳定化合物的二元相图
T=Tp时,发生包 晶反应: Lp + A (AmBn) C
6. ZrO2 体系相图
ZrO2 有三种晶型:单斜ZrO2 ,四方ZrO2和立方ZrO2 其转变关系:单斜ZrO2 四方ZrO2 立方ZrO2
1000℃
1200℃
2370℃
压 力 立方 四方 2000
熔体
0
单斜 1000
3000
相图
结晶过程:包晶线以下,L, α对β过饱和- 界面生成β-三相间存在浓度梯度-扩散-β 长大-全部转变为β。
室温组织: β或β+αⅡ。
64
2 成分在C-D之间合金的结晶 结晶过程:α剩余; 室温组织:α+β+αⅡ+βⅡ。
65
3 其他平衡结晶过程及其组织
66
三、不平衡结晶及其组织 异常α相导致包晶偏析〔包晶转变要经β扩
③ 室温组织(α+βⅡ) 其中βⅡ一般分布于相界面上,有时也在晶内 析出,呈细小颗粒状。
相对量计算:
4g
f
100 % fg
II
4f fg
100 %
35
2共晶合金的结晶过程 ① 凝固过程(冷却曲线、相变、组织示意图)。
36
② 组织: 共晶转变刚好结束后的组织:(αm+βn) 室温组织:(α+β+αⅡ+βⅡ)(二次相为脱熔 转变产物) (因为二次相依附共晶体中的 同类相析出,因此难以辨别) 通常室温组织:
共晶组织:共晶转变产物。(是两相混合物)
26
一、 相图分析(相图三要素) 1 点:纯组元熔点;最大溶解度点;共晶点 (是亚共晶、过共晶合金成分分界点)等。 2 线:液相线(结晶开始)、固相线(结晶结 束线);溶解度变化曲线。
Pb-Sn相图 27
3 区: 3个单相区(L、α、β) ; 3个两相区(L+α、L+β、α+β) ; 1个三相线(区)。
(α+β)共晶体
37
③共晶合金结晶过程中的相的相对量计算。
恰好要发生共晶反应时:L相,相对量:100 %;
共晶反应过程中:三相(L+α+β),不适用 杠杆定律;
共晶反应刚好结束:两相(αm+βn)
m
en 100% mn
物理化学第5章相律与相图
第五章相律与相图5.1 相平衡相平衡是热力学在化学领域中的重要应用,也是化学热力学的主要内容之一。
在第三章中已经应用热力学原理研究了纯物质系统的两相平衡;在第四章中研究了多组分系统的两相平衡,其结果是用热力学公式表达相平衡的规律。
而本章则是应用热力学原理采用图解的方法来表达相平衡规律,特别是对多相系统的相平衡规律的研究,用图解的方法更显得方便和实用。
研究多相系统的相平衡状态随组成、温度、压力等变量的改变而发生变化,并用图形来表示系统相平衡状态的变化,这种图称为相图,相图形象而直观地表达出相平衡时系统的状态与温度、压力、组成的关系。
相律为多相平衡系统的研究建立了热力学基础,是物理化学中最具有普遍性的规律之一,它讨论平衡系统中相数、独立组分数与描述该平衡系统的变数之间的关系,并揭示了多相平衡系统中外界条件(温度、压力、组成等)对相变的影响。
虽然相律不能直接给出相平衡的具体数据,但它能帮助我们从实验数据正确地画出相图,可以帮助我们正确地阅读和应用相图。
本章首先介绍相律,然后介绍单组分、二组分和三组分系统的最基本的几种相图,其中着重介绍二组分气-液相图和液-固相图,介绍相图的制法和各种相图的意义以及它们和分离提纯方法之间的关系。
应用:a、水泥熟料的烧成过程,系统中有C3S(硅酸三钙)、C2S(硅酸二钙)、C3A(铝酸三钙)、C4AF(铁铝酸四钙)————固相,还有一定的液相,是一个多相的系统。
随着温度升高,这个多相系统中那些相能继续存在?那些相会消失?有没有新的相生成?各相组成如何?各相含量为多少?b、在化工生产中对原料和产品都要求有一定的纯度,因此常常对原料和产品进行分离和提纯。
常用的分离提纯的方法是结晶、蒸馏、萃取和吸收等等,这些过程的理论基础就是相平衡。
相图:根据多相平衡的实验结果,可以绘制成几何图形用来描述这些在平衡状态下的变化关系,这种图相成为相图。
现实意义:水泥、玻璃、陶瓷等形成过程均在多相系统中实现,都是将一定配比的原料经过锻烧而形成的,并且要经历多次相变过程。
材料基础-第七章热力学及其相图x
(a+β )片状共晶 400 × 图7-9 Pb-Sn 二元合金的共晶显微组织 图中黑色为Pb的 a相,白色为Sn的β相 , a 相、β相呈片层状相间分布,称片层状共晶。
3)合金III的结晶过程(wsn=50%) 合金III的成分在M、E点之间,称为亚共晶 合金。图7-10为其冷却曲线及组织变化。 当缓冷到 1 点时,结晶出一次晶 a 相,温度 在1、2点之间为匀晶反应。温度降到2点共晶温 度tE时,液相L具有共晶成分E,发生共晶反应。 共晶反应后的组织为a+(a+β)共晶。 随温度下降,a相成分沿MF线改变,此时匀 晶和共晶中的a相都要析出βII,室温组织为 a+(a +β)共晶+β II ,显微组织见图7-11。 图中黑色粗大树枝状组织为一次晶a相,粗 黑色间的白色颗粒状组织为二次晶 βII ,其余黑 白相间部分为共晶组织(a+β)共晶。
(7-1) 式表示,自由度越小,平衡共存相就 越大。 自由度f 为零时,(7-1)式变为: P=C+2 (7-2)
再压力给定去掉一个自由度,(7-2)式变为 :
P=C+1
(7-3)
表明系统中平衡相数最多比组元数多一个
一元系:C=1,P=2,最多二相平衡共存。
例如,纯Fe结晶时,同时存在的平衡共存相 仅为液相和固相。
7.2 相图建立的基本方法
1.相图 相图是用图解方法描述在平衡条件下相的 状态和转变与成分、温度、压力的相互关系。 相图有二元相图、三元相图和多元相图。 二元相图是相图的基础,应用最广泛。通 过相图分析,可以了解: (1)不同条件下材料的相转变及相平衡的状态; (2)预测材料的性能; (3)为新材料研制提供依据。
共晶反应完成后,在温度下降过程中,a 固溶体和 β 固溶体分别沿 MF 线和 NG 线不断变化, 合金II从a相中析出二次晶βII,从β相中析出二 次晶aII,可用杠杆定律计算。 由于aII和βII量小,在组织中不易分辨,一 般不予区别。 所以,合金II在结晶过程中的反应为共晶 反应+二次析出,其室温组织为(a+β)共晶, 其形态见图7-9。
第二章相平衡及相图
pA p x
* A
* A A
* A
p pA pA p (1 xB ) xB * pA 适用条件:理想稀溶液中溶剂或理想液态混合物。
如果溶液中只有A,B两个组分,则
2-4-2 享利定律
在一定温度下,稀溶液中挥发性溶质在气相中 的平衡分压与在溶液中的摩尔分数(或质量摩尔浓 度、物质的量浓度)成正比。
def
S - R - R′
§2-1
R’包括:
相律
1)当规定系统中部分物种只通过化学反应由
另外物种生成时,由此可能带来的同一相的 组成关系。 2)由电中性条件带来的同一相的组成关系。
例1 (1) 仅由 NH4Cl(s) 部分分解,建立如下反应
平衡:
NH4Cl (s) =NH3(g)+HCl(g)
(2) 仅由CaCO3(s)部分分解,建立如下反应平衡: CaCO3 (s) = CaO(s)+CO2(g)
pB kx,B xB
pB kb,BbB
pB kc,BcB
式中比例系数称为亨利系数。 适用条件:稀溶液中挥发性溶质,且溶质在 气相和在溶液中的分子状态必须相同。
2-4-3 拉乌尔定律和亨利定律对比
1 共同点 (1)适用于稀溶液; (2)表达形式相似。 2区别
(1)比例常数不同;
(2)针对的具体对象不同。
和1molB(l)形成理想混合物,则
ΔmixS= J/K,
ΔmixH=
ΔmixG=
kJ,
kJ。
答案: ΔmixS = 11.53 J/K, ΔmixH = 0 kJ, ΔmixG = -3.44 kJ。
§2-6
理想稀溶液
2-6-1 理想稀溶液的定义 一定温度下,溶剂和溶质分别服 从拉乌尔定律和亨利定律的无限稀薄溶 液。
工程热力学相图相变全解
1 p dS dU dV dn T T T
d U p dS dV dn T T T
整个系统的熵
dU dU p p dSc dV dV dn dn 0 T T T T T T
dg sdT vdp
U H F G n n n n V ,S p ,S V ,T T , p
举例:等温等压条件下, dG SdT Vdp dn dn G 化学势等于转移1摩尔物质 n T , p 的自由焓变化量
推动物质转移的势— 单元系的化学势
右侧三项分别表示热传递、功传递和质量传递对热力学能变 化的贡献。
U n V ,S
结合H、F 和G 的定义
du Tds pdv 比较质量不 dh Tds vdp
变单元系统 吉布斯方程 df sdT pdv
dU TdS pdV dn dH TdS Vdp dn dF SdT pdV dn dG SdT Vdp dn
质量不变单元系统热力学能
dU TdS pdV
变质量单元系统热力学能 U U ( S ,V , n)
U U U dU dS dV dn S V ,n V S ,n n V ,S
dU TdS pdV dn
G 自由焓是广延量, G ngm gm n 等温等压,化学势等于摩尔自由焓。
三、单元系相平衡条件
考虑由同一种物质的两个不同的相 α和β组成的孤立系,若两相已分别达到 平衡,根据孤立系统熵增原理,在相和 相之间也达到平衡时必定有 dSC dS dS 0
相图热力学
两相平衡的自由能曲线
因为该公切线与A组元纵坐标的截距,表示A组元在两平衡相
切点成分时的化学势即 A A ,而公切线与B组元纵坐标
的截距,表示B组元在两平衡相切点成分时的化学势
即 B B 。公切线与两平衡相的自由能—成分曲线的切点的
结构也相同,而且无限互溶,由此可得组员混合前后的体
积不变,及混合前后的 V 0
H u
即焓的变化主要反映在内能的变化上,内能的变化是由
最近邻原子的结合健能的变化引起的。
H m x A xB
混合后的自由能为:
说明其与温度和Байду номын сангаас分均有关,在一定温度下,可
作出吉布斯自由能—成分曲线,对不同的固溶体,
多相平衡的公切线法则
由相平衡热力学条件的介绍可知,合金系实现多相平衡的 条件是同一组元在各平衡相中的化学势相等,即
A A A
若A-B二元合金系在某一温度时,实现
, A A B B
两相平衡
要满足该相平衡热力学条件,只有作该温度时
具有调幅分解的二元合金相图
调幅分解:单相固溶体分解为两相混合物的一种特殊方式, 其特殊之点是在这一分解过程中不需要新相的形核。 在调幅曲线成分范围内,固溶体将自发地分离成两个结构相 同而成分不同的两相,这种固溶体的分解不需要成核阶段, 可以说是一种自发的偏聚,即一部分为溶质原子的富集区, 另一部分为溶质原子的贫乏区。固溶体的这种分解方式即所
相图热力学
1 固溶体的自由能—成分曲线 2 多相平衡的公切线原理 3 混合物的自由能和杠杆法则 4 从自由能—成分曲线推测相图
相图热力学
5.2.1 淬冷法......................................................................................................................................... 2 5.2.2 热分析......................................................................................................................................... 7 5.2.3 相图拓扑学及反应图 ............................................................................................................... 13 5.3 相图热力学计算的一般原理............................................................................................................... 20 5.4 常用热力学模型................................................................................................................................... 22 5.4.1 纯组元和化学计量比化合物 ................................................................................................... 23 5.4.2 溶体相和中间化合物 ............................................................................................................... 23 5.4.3 磁性有序无序和化学有序无序对热力学性质的贡献 ........................................................... 31 5.4.4 多元系热力学性质的外推方法 ............................................................................................... 36 5.5 二元相图热力学计算实例................................................................................................................... 40 5.5.1 液相和固相均完全互溶的同晶型二元相图计算 ................................................................... 40 5.5.2 液相完全互溶,固相完全不互溶的简单共晶型二元相图计算 ........................................... 42 5.5.3 液相完全互溶,固相部分互溶的共晶型二元相图计算 ....................................................... 44 5.5.4 溶解度间隙的计算................................................................................................................... 46 5.5.5 生成中间化合物的二元相图计算 ........................................................................................... 48 5.5.6 亚稳相图计算........................................................................................................................... 51 5.6 相图热力学计算常用软件 ................................................................................................................. 53 5.6.1 Thermo-Calc............................................................................................................................. 53 5.6.2 Factsage................................................................................................................................... 58 5.6.3 Pandat....................................................................................................................................... 62 5.7 相图的热力学优化计算实例............................................................................................................... 65 5.8 多元相图测定及计算........................................................................................................................... 69 参考文献....................................................................................................................................................... 78
第七章 相图
7.2 单元系统
单元系统中,只有一种组分,不存在浓度问题。 影响因素只有温度和压力。 因为 c = 1,n=2 根据相律 F = C-P + n = 3 - p 一、水的相图 二、一元相图的型式
一、水的相图
2000个大气压以上,可得几重冰,比重大于水。 A
压 强
S
溶解
L 蒸发 O
C
临界点
T=374℃ P=217.7大气压
(4)自由度(F):在一定范围内可以任意改变 而不会引起旧相消失或新相产生的独立变量的数 目。
H2O在冰(固体)、水(液体)和蒸汽(气体)之间转变时都 不分解,研究温度和压强对水的存在形态的影响时,可以认为 是单(组)元系统。
变量:温度、压 力等。
水的三相点并非0℃,而是 (0.0099 ℃,610.483Pa)。
2.1 相平衡的几个基本概念
(1)系统
系统:选择的研究对象。
凝聚系统:没有气相或气相可忽不计的系统。 (2)组分、独立组分 组分:系统中每一个可以分离出来,并能存在的 化学纯物质(S)。
独立组分:构成平衡系统各相组成所需的最少数 目的化学纯物质(C)。
(3)相:系统中包含的,成分、结构和性能相同 部分。
(1)研究、开发新材料,确定材料成分 如:确定 配料范围,缩小实验范围。 (2)利用相图可以制订材料的生产和处理工艺 如: 材料的处理温度等工艺参数。
(3)可以分析平衡态的组织和推断不平衡态可能的
组织变化。 (4)利用相图与性能的关系预测材料性能。 (5)利用相图进行材料生产过程分析。
2 相平衡及其研究方法
压 强
f =2 β-固相
f=2 液相
ABE D
相区 EBCF FCD
物理化学课件二组分体系相图
指一个体系中相的数目。
相平衡的热力学基础
01
02
03
热力学基本定律
热力学第一定律、热力学 第二定律和热力学第三定 律是相平衡研究的理论基 础。
热力学函数
如内能、熵、焓等,用于 描述体系的热力学状态和 性质。
相平衡条件
根据热力学基本定律,当 两个或多个相在某一温度 和压力下达到平衡时,它 们的热力学函数值相等。
高分子聚合反应
聚合机理
高分子聚合反应通常需要在一定的温 度和压力条件下进行,相图可以提供 反应过程中物质的状态和相变信息, 有助于了解聚合机理和反应动力学。
产物性能
聚合产物的性能与反应条件密切相关 ,利用相图可以预测在不同组成和温 度下聚合产物的性能表现,如熔点、 粘度、结晶度等,有助于优化聚合反 应条件和产物性能。
液态部分互溶气态完全不互溶体系
总结词
该体系中,液态组分部分互溶,气态组分完全不互溶,相图较为复杂。
详细描述
在液态部分互溶气态完全不互溶体系中,液态的两个组分只能部分混合,会形成明显的相界,而气态 的两个组分则完全不互溶。这种体系的相图相对复杂,因为液态的部分互溶性和气态的不互溶性使得 体系在相变时可能发生双向变化,即可能出现固相的析出和气相的生成。
相图绘制方法
实验测定
通过实验测定不同温度和 压力下的物理性质(如密 度、蒸气压等),以绘制 相图。
计算相图
基于热力学模型和方程, 通过计算得出各相的热力 学函数值,从而绘制相图 。
计算机模拟
利用计算机模拟技术,模 拟不同温度和压力下的体 系行为,预测相图。
Part
02
二组分体系相图
液态完全互溶气态完全不互溶体系
混合物分离与提纯