实际问题与二次函数

合集下载

二次函数的应用与实际问题解决

二次函数的应用与实际问题解决

二次函数的应用与实际问题解决二次函数是高中数学中一个非常重要的概念,它在现实生活中有广泛的应用。

本文将介绍二次函数的基本概念和特点,并以几个实际问题为例,阐述二次函数在实际问题解决中的应用。

一、二次函数的基本概念和特点二次函数是代数学中的一种函数类型,其数学表达式为:\[y = ax^2 + bx + c\]其中,a、b、c为常数,且a≠0。

在二次函数中,x为自变量,y为因变量,它们之间存在一种二次关系。

二次函数的图像是一个抛物线,具有一些特点:1. 对称轴二次函数的对称轴是一个垂直于x轴的直线,它将图像分为两个对称的部分。

对称轴的方程为\(x = -\frac{b}{2a}\)。

2. 零点二次函数的零点是函数图像与x轴相交的点,也就是满足方程\(ax^2 + bx + c = 0\)的x的值。

如果方程有实根,则函数图像与x轴有两个交点,如果方程无实根,则函数图像与x轴没有交点。

3. 极值点二次函数的极值点是函数图像上离对称轴最近(或最远)的点,其y坐标称为极值。

如果a>0,则函数的图像开口向上,极值点是最低点;如果a<0,则函数的图像开口向下,极值点是最高点。

4. 函数增减性二次函数的增减性取决于a的正负性。

当a>0时,函数在对称轴左侧递减,在对称轴右侧递增;当a<0时,函数在对称轴左侧递增,在对称轴右侧递减。

以上是二次函数的基本概念和特点,下面我们将介绍几个实际问题,并运用二次函数解决这些问题。

二、实际问题的应用1. 弹体运动问题假设一个弹体从地面上射出,其轨迹可以用二次函数描述。

我们已知弹体离地面的高度与时间的关系为$h = -5t^2 + 20t$,其中h表示高度(米),t表示时间(秒)。

现在要求解这个问题的几个具体情况:(1)弹体达到最大高度时的时间和高度是多少?(2)弹体什么时间落地?(3)弹体射出后的高度变化过程。

对于(1),我们可以通过求解二次函数的极值点来得到。

实际问题与二次函数(面积问题)

实际问题与二次函数(面积问题)
分析:先写出S与l的函数关系式,再求出使S最大的l的值.
矩形场地的周长是60m,一边长为l,则另一边长为 (60 ml) ,场地的面积: S=l(30-l) 即(0S<=-ll<2+3300)l
2
要用总长为60米的铁栏杆,一面靠墙围成一个矩形的 花圃,怎样围法,才能使围成的花圃面积最大?
解:设AB为x米,BC为(60-2x)米,
22.3 实际问题与二次函数 (面积最大问题)
1. 二次函数y=-3(x+4)2-1的对称轴是 x=-4 , 顶点坐标是(-4,- .当x= -4 时,函数有最_大__ 值是 1 . 1)
2.二次函数y=2x2-8x+9的对称轴是 x=2 ,顶 点坐标是 (2,1).当x= 2时,函数有最__小_____ 值是 1 .
矩形面积为y米2,则
A
D
y x60 2x (0<X<30)
即y 2x2 60 x
B
C
2x 152 450
当x=15时,y有最大值=450
这时,AB=15米,BC=60-2x=30米
所以当围成的花圃与墙垂直的一边15米,与墙平行的
一边长30米时,花圃的面积最大,最大面积为450米2
新知2 利用二次函数求图形的最大面积问
第1题
A
D
B
C
第2题
达标检测 反思目标
A A
25
用二次函数的知识解决图形面积等问 题的一般步骤:
把实际问题转化为数学问题
二次函数
问题求解
找出实际问题的答案
3.如何求二次函数y=ax2+bx+c(a≠0)的 最值?写出求二次函数最值的公式
(1)配方法求最值 (2)公式法求最值

二次函数讲义(九):实际问题与二次函数

二次函数讲义(九):实际问题与二次函数

实际问题与二次函数【知识要点梳理】知识点1: 利用二次函数解决实际问题的一般步骤1.用二次函数知识解决实际问题的一般步骤:(1)仔细审题;(2)找出题中的变量和常量及它们之间的关系;(3)列函数解析式表示它们之间的关系;(4)借助函数的图象及其性质求解;(5)检验结果的合理性。

2.在实际问题中,有关用料最省、造价最低、利润最大等问题可以通过分析、联想,建立二次函数模型,转化为二次函数的最大值或最小值问题加以解答。

3.当a>0时,抛物线的开口向上,顶点是最低点。

当x=时,函数的最小值为。

当a<0时,抛物线的开口向下,顶点是最高点。

当x=时,函数的最大值为。

知识点2:利用二次函数求几何图形面积的最大值问题利用图形的面积公式建立二次函数模型并求出表达式,再利用配方法或公式法求出二次函数的最值。

知识点3: 利用二次函数求最大利润问题利用“总利润=每件的利润×件数”建立二次函数模型并求出表达式,利用配方法或公式法求出二次函数的最大值,即最大利润。

知识点4: 利用二次函数解决抛物线型问题1.抛物线型建筑物问题:几种常见的抛物线型建筑物有拱形桥洞、隧道洞口、拱形门等.解决这类问题的关键是根据已知条件选择合理的位置建立直角坐标系,结合问题中的数据求出函数解析式,然后利用函数解析式解决问题。

2. 运动问题:(1)运动中的距离、时间、速度问题,这类问题多根据运动规律中的公式求解.(2)物体的运动路线(轨迹)问题,解决这类问题的图想方法是利用数形结合思想和函数思想,合理建立直角坐标系,根据已知数据,运用待定系数法求出运动轨迹(抛物线)的解析式,再利用二次函数的性质去分析、解决问题。

【知识点过关训练】知识点1: 利用二次函数求几何图形面积的最大值问题1. 如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.2. 某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元。

第09讲 实际问题与二次函数 (解析版)

第09讲 实际问题与二次函数 (解析版)

第9讲实际问题与二次函数一、知识梳理1.根据实际问题列二次函数解析式【例1】.(1)某工厂1月份的产值是200万元,平均每月产值的增长率为x(x>0),则该工厂第一季度的产值y 关于x的函数解析式为y=200x2+600x+600(x>0).【分析】首先分别表示出二月、三月的产值,然后再列出函数解析式即可.【解答】解:由题意得:y=200+200(1+x)+200(1+x)2=200x2+600x+600(x>0),故答案为:y=200x2+600x+600(x>0).(2)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【变式训练1】.(1)某种商品的价格为5元,准备进行两次降价,如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y与x之间的关系式为y=5(1﹣x)2.【分析】根据题意可得第一次降价后的价格为5(1﹣x),第二次降价后价格为5(1﹣x)(1﹣x),进而可得y与x之间的关系式.【解答】解:由题意得:y=5(1﹣x)2,故答案为:y=5(1﹣x)2.(2)学校准备将一块长20m,宽14m的矩形绿地扩建,如果长和宽都增加xm,设增加的面积是ym2.(1)求x与y之间的函数关系式.(2)若要使绿地面积增加72m2,长与宽都要增加多少米?【分析】(1)根据题意可以得到y与x之间的函数关系式;(2)将y=72代入(1)中的函数关系式,即可解答本题.【解答】解:(1)由题意可得,y=(20+x)(14+x)﹣20×14化简,得y=x2+34x,即x与y之间的函数关系式是:y=x2+34x;(2)将y=72代入y=x2+34x,得72=x2+34x,解得,x1=﹣36(舍去),x2=2,即若要使绿地面积增加72m2,长与宽都要增加2米.2.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.【例2】.(1)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2.5m,那么水面宽度为()m.A.3B.6C.8D.9【分析】根据已知确定平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2.5代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,∴水面宽度为3﹣(﹣3)=6(m).故选:B.(2)如果矩形的周长是16,则该矩形面积的最大值为()A.8B.15C.16D.64【分析】首先根据矩形周长为16,设一条边长x,矩形面积为y,可表示出另一边长为8﹣x,再根据矩形面积=长×宽列出函数解析式并配方即可得结论.【解答】解:∵矩形周长为16,∴设一条边长x,矩形面积为y,则另一边长为8﹣x,∴y=(8﹣x)x=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,y有最大值是16.(3)若实数m、n满足m+n=2,则代数式2m2+mn+m﹣n的最小值是﹣6.【分析】设y=2m2+mn+m﹣n,由m+n=2得n=2﹣m,再由二次函数的性质即可解决问题.【解答】解:设y=2m2+mn+m﹣n,∵m+n=2,∴n=2﹣m,∴y=2m2+m(2﹣m)+m﹣(2﹣m)=m2+4m﹣2=(m+2)2﹣6,此为一个二次函数,开口向上,有最小值,当m=﹣2时,y有最小值为﹣6,故答案为:﹣6.(4)某百货商店服装在销售过程中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件,当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?【分析】根据题意可以得到利润与所将价格的关系式,根据二次函数的性质求最值即可.【解答】解:设每件童装降价x元,利润为y元,由题意,得:y=(40﹣x)(20+2x)=﹣2(x﹣15)2+1250,∴当x=15时,y取得最大值,此时y=1250元,答:每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.【变式训练2】.(1)一次足球训练中,小明从球门正前方将球射向球门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高是2.44m,若足球能射入球门,则小明与球门的距离可能是()A.10m B.8m C.6m D.5m【分析】建立直角坐标系,根据题意求出函数解析式,求y<2.44对应的x的值.【解答】解:如图,建立直角坐标系,设抛物线解析式为y=a(x﹣6)2+3,将(0,0)代入解析式得a=,∴抛物线解析式为y=(x﹣6)2+3,当x=10时,y=,<2.44,满足题意,故选:A.(2)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【分析】设P(x,x2﹣2x﹣3)根据矩形的周长公式得到C=﹣2(x﹣)2+.根据二次函数的性质来求最值即可.【解答】解:设P(x,x2﹣2x3),∵过点P分别向x轴和y轴作垂线,垂足分别为A、B,∴四边形OAPB为矩形,∴四边形OAPB周长=2P A+2OA=﹣2(x2﹣2x﹣3)+2x=﹣2x2+6x+6=﹣2(x2﹣3x)+6,=﹣2+.∴当x=时,四边形OAPB周长有最大值,最大值为.故答案为.(3)已知抛物线y=﹣x2﹣3x+3,点P(m,n)在抛物线上,则m+n的最大值是4.【分析】把点P(m,n)代入抛物线的解析式,得到n=﹣m2﹣3m+3,等式两边同加m得m+n=﹣m2﹣2m+3,得到m+n关于m的二次函数解析式,然后整理成顶点式形式,再根据二次函数的最值问题解答.【解答】解:∵点P(m,n)在抛物线y=﹣x2﹣3x+3上,∴n=﹣m2﹣3m+3,∴m+n=﹣m2﹣2m+3=﹣(m+1)2+4,∴当m=﹣1时,m+n有最大值4.故答案为:4.(4)某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套.现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套.设保暖内衣售价为x元,每星期的销量为y件.(1)求商家降价前每星期的销售利润为多少元?(2)求y与x之间的函数关系式.(3)当每件售价定为多少时,每星期的销售利润最大?最大销售利润是多少?【分析】(1)商家降价前,每套的利润是30元,销售量是80套,根据利润=每套的利润×销售量,即可得出结论;(2)根据每降价5元,每星期可多卖出20套,当保暖内衣售价为x元时列出函数关系即可;(3)根据每星期的销售利润等于单套的利润乘以销售量列出函数的关系式,然后根据二次函数的性质求函数最值.【解答】解:(1)由题意得:(130﹣100)×80=2400 (元),∴商家降价前每星期的销售利润为2400元;(2)由题意可得:y=×20+80=﹣4x+600,∴y与x之间的函数关系式为y=﹣4x+600;(3)设每星期的销售利润为w元,则:w=(x﹣100)y=(x﹣100)(﹣4x+600)=﹣4(x﹣125)²+2500,∴当每件售价定为125 元时,每星期的销售利润最大,最大销售利润2500元.答:当每件售价定为125 元时,每星期的销售利润最大,最大销售利润2500元.二、课堂训练1.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y,则y关于x的函数关系式为()A.y=x(40﹣x)B.y=x(18﹣x)C.y=x(40﹣2x)D.y=2x(40﹣2x)【分析】先用含x的代数式表示苗圃园与墙平行的一边长,再根据面积=长×宽列出y关于x的函数关系式.【解答】解:设这个苗圃园垂直于墙的一边长为x米,则苗圃园与墙平行的一边长为(40﹣2x)米.依题意可得:y=x(40﹣2x).故选:C.2.如图1,是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作抛物线,在如图2所示的平面直角坐标系中,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C)距球网的水平距离为2.5米,则排球运动路线的函数表达式为()A.y=﹣x2﹣x+B.y=﹣x2+x+C.y=x2﹣x+D.y=x2+x+【分析】方法一:根据题意结合函数的图象,得出图中A、B、C的坐标,再利用待定系数法求出函数关系式即可;方法二:根据四个选项中关系式系数的特点,结合抛物线位置,确定a、b的符号和c的值,就可以直接得出答案.【解答】解:方法一:0.26+2.24=2.5=(米)根据题意和所建立的坐标系可知,A(﹣5,),B(0,),C(,0),设排球运动路线的函数关系式为y=ax2+bx+c,将A、B、C的坐标代入得:,解得,a=﹣,b=﹣,c=,∴排球运动路线的函数关系式为y=﹣x2﹣x+,故选:A.方法二:排球运动路线的函数关系式为y=ax2+bx+c,由图象可知,a<0,a、b同号,即b<0,c=,故选:A.3.对于向上抛出的物体,在没有空气阻力的条件下,满足这样的关系式:h=vt﹣gt2,其中h是上升高度,v是初始速度,g为重力加速度(g≈10m/s2),t为抛出后的时间.若v=20m/s,则下列说法正确的是()A.当h=20m时,对应两个不同的时刻点B.当h=25 m时,对应一个时刻点C.当h=15m时,对应两个不同的时刻点D.h取任意值,均对应两个不同的时刻点【分析】把v=20m/s,g≈10m/s2代入h=vt﹣gt2,将其写成顶点式,根据二次函数的性质可得函数的最大值,则问题得解.【解答】解:∵h=vt﹣gt2,v=20m/s,g≈10m/s2,∴h=20t﹣5t2=﹣5(t2﹣4t)=﹣5(t﹣2)2+20,∴当t=2s时,h有最大值为20m,即物体能达到的最大高度为20m,且h=20m时,只有一个时刻,∴A、B、D均不正确.∵h=20t﹣5t2为开口向下的二次函数,h有最大值为20m,∴当h=15m时,对应两个不同的时刻点.∴C正确.故选:C.4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外【分析】根据题目中的二次函数解析式可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1(舍去),故D选项正确,故选:C.5.如图,已知二次函数的图象(0≤x≤1+2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值2【分析】根据图象及x的取值范围,求出最大值和最小值即可.【解答】解:根据图象及x的取值范围,当x=1时,y取最小值为﹣2,当x=1+2,y取最大值为2,∴该函数有最小值﹣2,有最大值2,故选:C.6.一台机器原价为60万元,如果每年价格的折旧率为x,两年后这台机器的价格为y万元,则y关于x的函数关系式为y=60(1﹣x)2.【分析】原价为60万元,一年后的价格是60×(1﹣x),二年后的价格是为:60×(1﹣x)×(1﹣x)=60(1﹣x)2,可得结论.【解答】解:由题意知:两年后的价格是为:y=60×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式是:y=60(1﹣x)2,故答案为:y=60(1﹣x)2.7.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=﹣2x2+4x+1,则喷出水珠的最大高度是3 m.【分析】先把函数关系式配方,求出函数的最大值,即可得出水珠达到的最大高度.【解答】解:∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3,∴当x=1时,y有最大值为3,∴喷出水珠的最大高度是3m,故答案为:3.8.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为39元.【分析】设销售单价为x元时,销售利润最大,单价利润为x﹣20元,销售数量为280﹣(x﹣30)•10,根据公式利润=(售价﹣进价)×销售数量.通过配方可求利润最大值.【解答】解:设销售单价为x元时,销售利润最大,单价利润为(x﹣20)元,销售数量为280﹣(x﹣30)•10,∴利润总额为y=(x﹣20)•[280﹣(x﹣30)•10],化简得:y=﹣10x2+780x﹣11600,配方得:y=﹣10(x﹣39)2+3160,当单价为39元时,有最大利润3610元,故答案为:39.9.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t,汽车从刹车到停下来所用时间是秒.【分析】当汽车停下来时,s最大,故将s=﹣3t2+8t写成顶点式,则顶点横坐标值即为所求.【解答】解:∵s=﹣3t2+8t,=﹣3(t﹣)2+,∴当t=秒时,s取得最大值,即汽车停下来.故答案为:.10.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测,某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y(单位:人)随时间x(单位:分钟)的变化情况的图象是二次函数图象的一部分,如图所示.(1)求y与x之间的函数解析式;(2)求校门口排队等待体温检测的学生人数最多时有多少人;(3)从7:00开始,需要多少分钟校门口的学生才能全部进校?【分析】(1)根据图象用待定系数法求函数解析式即可;(2)根据函数的性质求最值;(3)令y=0,解方程﹣x2+16x+34=0即可.【解答】解:(1)设y与x之间的函数解析式为y=ax2+bx+c,根据题意得:,解得:,∴y=﹣x2+16x+34;(2)由(1)知,﹣<0,∴y有最大值,y max===162,∴校门口排队等待体温检测的学生人数最多时有162人;(3)令y=0,得:﹣x2+16x+34=0,解得:x1=﹣2(舍),x2=34,∴从7:00开始,需要34分钟校门口的学生才能全部进校.11.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量×(售价﹣成本)=4000”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.【解答】解:(1)∵依题意,得:y=50+(100﹣x)××10=﹣5x+550,∴y与x的函数关系式为y=﹣5x+550;(2)∵依题意得:y(x﹣50)=4000,即(﹣5x+550)(x﹣50)=4000,解得:x1=70,x2=90,∵70<90,∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x﹣50)=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵﹣5<0,此图象开口向下,∴当x=80时,w有最大值为4500元,∴为了每月所获利润最大,该商品销售单价应定为80元.三、课后巩固1.设等边三角形的边长为x(x>0),面积为y,则y与x的函数关系式是()A.y=x2B.y=C.y=D.y=【分析】作出三角形的高,利用直角三角形的性质及勾股定理可得高,利用三角形的面积=底×高,把相关数值代入即可求解.【解答】解:作出BC边上的高AD.∵△ABC是等边三角形,边长为x,∴CD=x,∴高为h=x,∴y=x×h=x2.故选:D.2.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若AB=4,CD=3,以顶点C为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()A.B.C.D.【分析】直接根据题意得出B点坐标,进而假设出抛物线解析式,进而得出答案.【解答】解:∵AB=4,CD=3,∴B(2,3),设抛物线解析式为:y=ax2,则3=4x,解得:a=,故抛物线的表达式为:y=x2.故选:A.3.中国贵州省内的射电望远镜(F AST)是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点O到口径面AB的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是()A.y=x2﹣100B.y=﹣x2﹣100C.y=x2D.y=﹣x2【分析】直接利用抛物线解析式结合已知点坐标得出答案.【解答】解:由题意可得:A(﹣250,0),O(0,﹣100),设抛物线解析式为:y=ax2﹣100,则0=62500a﹣100,解得:a=,故抛物线解析式为:y=x2﹣100.故选:A.4.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是()①图象具有对称性,对称轴是直线x=1;②当﹣1<x<1或x>3时,函数值随x值的增大而增大;③当x=﹣1或x=3时,函数的最小值是0;④当x=1时,函数的最大值是4.A.4B.3C.2D.1【分析】观察图象,分别计算出对称轴、函数图象与x轴的交点坐标,结合图象逐个选项分析判断即可.【解答】解:观察图象可知,图象具有对称性,对称轴是直线x=﹣=1,故①正确;令|x2﹣2x﹣3|=0可得x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3,∴(﹣1,0)和(3,0)是函数图象与x轴的交点坐标,又对称轴是直线x=1,∴当﹣1<x<1或x>3时,函数值y随x值的增大而增大,故②正确;由图象可知(﹣1,0)和(3,0)是函数图象的最低点,则当x=﹣1或x=3时,函数最小值是0,故③正确;由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故④错误.综上,只有④错误.故选:B.5.如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米.当喷射出的水流距离喷水头20米时,达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌.下列说法正确的是()A.水流运行轨迹满足函数y=﹣x2﹣x+1B.水流喷射的最远水平距离是40米C.喷射出的水流与坡面OA之间的最大铅直高度是9.1米D.若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌【分析】设抛物线的解析式为y=a(x﹣20)2+c,用待定系数法求得解析式,则可判断A;当x=40时,y=0.1×40=4,y=4,解方程,即可判断B;计算当x=30时的y值,则可判断选项C和D.【解答】解:由题意可设抛物线的解析式为y=a(x﹣20)2+c,将(0,1),(20,11)分别代入,得:,解得:,∴y=﹣(x﹣20)2+11=﹣x2+x+1,故A错误;∵坡度为1:10,∴直线OA的解析式为y=0.1x,当x=40时,y=0.1×40=4,令y=4,得﹣x2+x+1=4,∴x2﹣40x+120=0,解得x=20±2≠40,∴B错误;设喷射出的水流与坡面OA之间的铅直高度为h米,则h=﹣x2+x+1﹣0.1x=﹣x2+x+1,∴对称轴为x=﹣=18,∴h max=9.1,故C正确;将喷灌架向后移动7米,则图2中x=30时抛物线上的点的纵坐标值等于x=37时的函数值,当x=37时,y=﹣×372+37+1=3.775,在图2中,当x=30时,点B的纵坐标为:0.1×30+2.3=5.3>3.775,故D错误.故选:C.6.如图,某抛物线型桥拱的最大高度为16米,跨度为40米,如图所示建立平面直角坐标系,则该抛物线对应的函数关系式为y=﹣x2+x.【分析】由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).利用顶点式即可解决问题.【解答】解:由图象可知抛物线顶点坐标(20,16),经过(0,0),(40,0).设抛物线的解析式为y=a(x﹣20)2+16,把(0,0)代入得到a=﹣,∴抛物线的解析式为y=﹣(x﹣20)2+16,即y=﹣x2+x,故答案为:y=﹣x2+x.7.一个球从地面上竖直向上弹起的过程中,距离地面高度h(米)与经过的时间t(秒)满足以下函数关系:h=﹣5t2+15t,则该球从弹起回到地面需要经过3秒,距离地面的最大高度为米.【分析】当该球从弹起回到地面时h=0,代入求出时间t即可;对函数关系式进行配方找到最大值即距离地面的最大高度.【解答】解:当该球从弹起回到地面时h=0,∴0=﹣5t2+15t,解得:t1=0或t2=3,t=0时小球还未离开地面,∴t=3时小球从弹起回到地面;∵h=﹣5t2+15t=﹣5(t﹣)2+,﹣5<0,∴当t=时,h取得最大值;故答案为:3,.8.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,飞机着陆至停下来共滑行750m.【分析】将函数解析式配方成顶点式求出y的最大值即可得.【解答】解:∵y=60t﹣t2=﹣(t﹣25)2+750,∴当t=25时,y取得最大值750,即飞机着陆后滑行750米才能停下来,故答案为:750m.9.二次函数y=x2﹣2x+m的最小值为2,则m的值为3.【分析】先把y=x2﹣2x+m配成顶点式得到y=(x﹣1)2+m﹣1,根据二次函数的性质得到当x=1时,y有最小值为m﹣1,根据题意得m﹣1=2,然后解方程即可.【解答】解:y=x2﹣2x+m=(x﹣1)2+m﹣1,∵a=1>0,∴当x=1时,y有最小值为m﹣1,∴m﹣1=2,∴m=3.故答案为:3.10.为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价﹣成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.【解答】解:(1)当8≤x≤32时,设y=kx+b(k≠0),则,解得:,∴当8≤x≤32时,y=﹣3x+216,当32<x≤40时,y=120,∴y=.(2)设利润为W,则:当8≤x≤32时,W=(x﹣8)y=(x﹣8)(﹣3x+216)=﹣3(x﹣40)2+3072,∵开口向下,对称轴为直线x=40,∴当8≤x≤32时,W随x的增大而增大,∴x=32时,W最大=2880,当32<x≤40时,W=(x﹣8)y=120(x﹣8)=120x﹣960,∵W随x的增大而增大,∴x=40时,W最大=3840,∵3840>2880,∴最大利润为3840元.11.为鼓励更多的农民工返乡创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给农民工自主销售,成本价与出厂价之间的差价由政府承担.王明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系满足一次函数:y=﹣5x+400.(1)王明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设王明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少?(3)物价部门规定,这种节能灯的销售单价不得高于35元,如果王明想要每月获得的利润不低于4125元,那么政府为他承担的总差价最少为多少元?【分析】(1)求出销售量,根据政府每件补贴2元,即可解决问题;(2)构建二次函数,利用二次函数的性质解决问题即可;(3)根据条件确定出自变量的取值范围,求出y的最小值即可解决问题.【解答】解:(1)当x=20时,y=﹣5x+400=﹣5×20+400=300,300×(12﹣10)=300×2=600(元),答:政府这个月为他承担的总差价为600元;(2)依题意得,w=(x﹣10)(﹣5x+400)=﹣5x2+450x﹣4000=﹣5(x﹣45)2+6125,∵a=﹣5<0,∴当x=45时,w有最大值6125元.答:当销售单价定为45元时,每月可获得最大利润6125元;(3)由题意得:﹣5x2+450x﹣4000=4125,解得:x1=25,x2=65,∵a=﹣5<0,抛物线开口向下,当25≤x≤65时,4125≤w≤6125,又∵x≤35,∴当25≤x≤35时,w≥4125,∴当x=35时,政府每个月为他承担的总差价最小,y=﹣5×35+400=225,225×2=450(元),∴政府每个月为他承担的总差价最小值450元,答:销售单价定为35元时,政府每个月为他承担的总差价最少为450元.。

实际问题与二次函数知识点总结和重难点精析

实际问题与二次函数知识点总结和重难点精析

实际问题与二次函数知识点总结和重难点精析一、实际问题与二次函数的定义和基本性质在九年级数学中,我们学习了二次函数的基本概念、表示方法和性质。

二次函数是指形如y = ax²+bx+c(a≠0)的函数,其中a、b、c为实数。

二次函数的图像是一个抛物线,具有以下基本性质:1.二次项系数a决定抛物线的开口方向和大小。

2.一次项系数b和二次项系数a共同决定抛物线的对称轴位置。

3.常数项c决定抛物线与y轴的交点。

二、实际问题与二次函数的解题方法解决实际问题时,需要灵活运用二次函数的性质和解题方法。

下面列举几种常见的解题方法:1.图像法:通过观察二次函数的图像,直接得出答案。

例如,在解决几何问题时,可以通过画图直接找出答案。

2.公式法:根据二次函数的公式,直接代入已知数进行计算。

例如,在解决代数问题时,可以运用二次方程求根公式等。

3.配方法:将二次函数化为顶点式,然后根据抛物线的性质进行解题。

例如,在解决最大值或最小值问题时,可以采用配方法。

4.因式分解法:将二次函数化为两个一次因式的乘积,然后通过解方程组得出答案。

例如,在解决某些代数问题时,可以采用因式分解法。

三、重难点精析1.重难点知识点介绍(1)二次函数的图像和性质:如何根据图像判断抛物线的开口方向、对称轴、顶点坐标等;如何根据性质求出抛物线的最值、单调区间等。

(2)二次函数的应用题:如何根据实际问题建立二次函数模型;如何求解模型得出实际问题的答案;如何验证答案的正确性。

2.解题思路和技巧(1)对于图像题,可以采用数形结合的方法,将抽象的数学问题转化为形象的图像问题,从而简化解题过程。

(2)对于性质题,需要熟练掌握抛物线的各种性质,例如最值、单调性等,从而可以灵活运用到解题中。

(3)对于应用题,需要认真审题,将实际问题转化为数学问题,然后建立模型求解。

同时需要注意答案的合理性和实际意义的符合性。

3.解题错误分析(1)对于图像题,可能出现的错误是将图像中的信息误解或遗漏,导致答案错误。

二次函数与实际问题

二次函数与实际问题

二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。

本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。

二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。

2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。

(4)零点:即方程ax²+bx+c=0的解。

当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。

3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。

(2)常数函数y=c是一个水平直线,其值始终为c。

(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。

三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。

2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。

可以使用求根公式或配方法等方式来求解。

3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。

例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。

由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。

由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。

实际问题与二次函数

实际问题与二次函数

实际问题与二次函数引言:二次函数是高中数学中的重要内容,它在实际问题中有着广泛的应用。

本文将从几个实际问题入手,探讨二次函数在解决这些问题中的作用和应用。

第一部分:抛物线与物体运动问题一:一个物体从地面上以初速度v0竖直向上抛出,忽略空气阻力,求物体的运动轨迹。

解决方法:根据物体竖直上抛运动的运动方程,可以得到物体的高度y与时间t的关系为y=-gt^2/2+v0t,其中g是重力加速度。

这个运动方程正好是一个二次函数,它的图像是一个抛物线,描述了物体的运动轨迹。

问题二:一个人从桥上向下抛掷物体,求物体的最大高度和落地点。

解决方法:根据物体竖直抛体运动的运动方程,可以得到物体的高度与时间的关系为y=-gt^2/2+v0t,其中g是重力加速度,v0是初速度。

我们可以通过求解二次函数的顶点,得到物体的最大高度和落地点的位置。

第二部分:二次函数与开口方向问题三:一块矩形花坛,长边是20米,宽边是10米,现在要在花坛四周修建一圈高度为h的围墙,求围墙的最小高度h。

解决方法:假设围墙的高度为h,围墙的长度为L,围墙的宽度为W。

根据题意,可以得到L=2(20+2h),W=2(10+2h),围墙的面积为S=LW。

我们可以将围墙的面积S表示为关于h的二次函数,然后求解这个二次函数的最小值,即可得到围墙的最小高度h。

第三部分:二次函数与最值问题问题四:某公司生产某种产品,每生产x单位的产品需要花费C(x)=80x+2000元,售价为p(x)=0.1x^2+2000元,求使得利润最大的生产数量。

解决方法:利润等于售价减去成本,即P(x)=p(x)-C(x)=0.1x^2-80x。

我们可以求解二次函数P(x)的最大值,得到使得利润最大的生产数量。

问题五:某人在银行存款10000元,银行的年利率为r%,每年计息一次,求多少年后存款会翻倍。

解决方法:存款的本利和可以表示为S(t)=10000(1+r/100)^t,其中t为年数。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数的应用背景1.二次函数在实际问题中的重要性2.常见实际问题与二次函数的关系二、二次函数典型例题解析1.例题一:抛物线与直角三角形的面积问题2.例题二:抛物线与最值问题3.例题三:抛物线与交点问题4.例题四:抛物线与对称性问题三、解决二次函数实际问题的方法与技巧1.利用二次函数的基本性质2.代数法与几何法的结合3.合理运用已知条件四、总结1.二次函数与实际问题的紧密联系2.解决二次函数实际问题的策略与方法正文:二次函数在实际问题中有着广泛的应用,它不仅可以帮助我们理解许多现实中的现象,还能为解决实际问题提供有力的工具。

本文将通过解析几道典型的二次函数实际问题例题,来探讨如何巧妙地运用二次函数来解决实际问题。

首先来看一道抛物线与直角三角形的面积问题。

题目描述:已知抛物线y = ax^2 + bx + c 与x 轴相交于A、B 两点,且AB = 4,点C 到AB 的距离为h。

求抛物线与三角形ABC 的面积。

解析:通过将抛物线与x 轴相交的点A、B 坐标代入解析式,可以求得a、b、c 的值,进一步计算出顶点坐标。

由于已知AB = 4,可以根据顶点到AB 的距离公式求得h,最后利用三角形面积公式计算出结果。

接下来是抛物线与最值问题。

题目描述:已知抛物线y = ax^2 + bx + c 在x = 1 处取得最小值,求a、b、c 的值。

解析:根据抛物线的性质,可以知道当a > 0 时,抛物线开口向上,此时可以通过配方法将解析式转化为顶点式,从而求得最小值点的坐标。

当a < 0 时,抛物线开口向下,此时可以通过配方和换元法求得最值。

再来一道抛物线与交点问题。

题目描述:已知抛物线y = ax^2 + bx + c 与直线y = mx + n 相交于不同的两点,求a、b、c、m、n 的关系。

解析:将直线方程代入抛物线方程,消去y 得到一个关于x 的二次方程,通过求解该方程可以得到交点的横坐标,再代入直线方程求得纵坐标,从而得到交点坐标。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数简介1.二次函数的定义2.二次函数的图像和性质二、二次函数与实际问题的联系1.实际问题中的二次函数模型2.二次函数在实际问题中的应用案例三、二次函数典型例题解析1.求解二次函数的顶点坐标2.求解二次函数的图像与x 轴的交点3.求解二次函数的最值问题4.二次函数在实际问题中的综合应用正文:二次函数与实际问题典型例题一、二次函数简介二次函数是数学中一种常见的函数形式,一般表示为f(x) = ax^2 + bx + c,其中a、b、c 为常数,x 为自变量。

二次函数的图像通常为抛物线,具有一定的对称性和顶点特征。

根据a 的值,二次函数可以分为开口向上或向下的两种情况,分别具有不同的性质。

二、二次函数与实际问题的联系1.实际问题中的二次函数模型在实际问题中,二次函数常常作为问题的数学模型出现。

例如,物体在重力作用下的自由落体运动、抛射物体的运动轨迹、电池的放电过程等都可以用二次函数来描述。

2.二次函数在实际问题中的应用案例(1)物体自由落体运动:假设物体从高度h 自由落下,空气阻力不计,仅受重力作用。

根据牛顿第二定律,物体下落的速度v 与时间t 的关系可以表示为v = gt - 1/2gt^2,其中g为重力加速度。

可以看出,这是一个开口向下的二次函数模型。

(2)抛射物体运动:假设一个物体在水平方向以初速度v0 抛出,仅受重力作用。

根据牛顿第二定律,物体在竖直方向上的运动可以表示为h = v0t - 1/2gt^2,其中h为物体的高度,t为时间。

这也是一个开口向下的二次函数模型。

三、二次函数典型例题解析1.求解二次函数的顶点坐标顶点坐标是二次函数的一个重要特征,可以通过公式法或配方法求解。

例如,对于二次函数f(x) = ax^2 + bx + c,顶点的x 坐标为x = -b/2a,y坐标为y = f(x) = c - b^2/4a。

2.求解二次函数的图像与x 轴的交点二次函数与x 轴的交点即为函数值为0 时的自变量解。

22.3实际问题与二次函数(实物抛物线)

22.3实际问题与二次函数(实物抛物线)

A、5米 B、6米;C、8米;D、9米
y
x
0
h
A
B
练习2一个涵洞成抛物线形,它的截面如图, 现测得,当水面宽AB=1.6 m时,涵洞顶点与 水面的距离为2.4 m.这时,离开水面1.5 m处, 涵洞宽ED是多少?是否会超过1 m?
加入QQ群:259315766,可获得无法上传的免费文档《二次曲线压轴100题真人讲解WORD精排打印版》100页
y 0.5 x 2 2
当水面下降1m时,水面的 纵坐标为y=-1,这时有:
1 0.5 x2 2 x 6 这时水面宽度为2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m
解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中
的一个交点(如左边的点)为原点,建立平面直角坐标系.
例1.某涵洞是抛物线形,它的截面如图所 示,现测得水面宽1.6m,涵洞顶点O到 水面的距离为2.4m,在图中直角坐标系 内,涵洞所在的抛物线的函数关系式是什
么?
解:如图,以AB的垂直平分线为y轴,以过点 O的y轴的垂线为x轴,建立了直角坐标系。
由题意,得点B的坐标为(0.8,-2.4), 又因为点B在抛物线上,将它的坐标代入
∴汽车长方形构成,长方
形的长是8m,宽是2m,抛物线可以用 y 1 x2 4 4
表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧 道吗?(2)如果该隧道内设双行道,那么这辆货运卡 车是否可以通过?
(1)卡车可以通过.
3
提示:当x=±1时,y =3.75, 3.75+2>4.
x1 2 6 , x2 2 6
∴这时水面的宽度为:
x2 x1 2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m

二次函数与实际问题-最大利润问题

二次函数与实际问题-最大利润问题
二次函数是解决实际问题 中常用的数学工具,具有 广泛的应用领域。
2 实际问题的挑战与机

实际问题的解决需要面对 各种挑战,但也提供了发 展和创新的机遇。
3 未来的发展趋势
随着技术的进步和需求的 变化,二次函数在解决实 际问题中的应用将继续发 展和演变。
可以引入其他约束、考虑风险和不确定性,提高决策的全面性和鲁棒性。
VI. 二次函数实践与练习
1 实际问题的解决方法和演示
通过实际案例和示例演示,帮助学习者理解 和应用二次函数解决实际问题。
2 练习题
提供一些练习题,加深对二次函数和实际问 题的理解。
VII. 二次函数与实际问题-总结与展望
1 二次函数的重要性
二次函数与实际问题-最 大利润问题
I. 二次函数概述
1 什么是二次函数?
二次函数是一个在方程中有二次项的函数,一般形式为y=ax^2+bx+c。
2 二次函数的一般式和标准式
一般式为y=ax^2+bx+c,标准式为y=a(x-h)^2+k。
3 二次函数图像
二次函数的图像可以是抛物线,开口向上或向下,取决于a的正负。
通过分析实际情况建立利润函数,将利润与决策因素相联系。
2
寻找最大值
通过求导或观察图像,找到利润函数的最大值,例,演示如何使用二次函数解决最大利润问题。
IV. 二次函数在其他问题中的应用
二次函数解决投影高度 问题
通过建立二次函数模型,可 以计算出物体的最大或最小 高度。
II. 最大利润问题简介
1 什么是最大利润问题?
最大利润问题是在实际情况中,通过优化决策来实现最大化利益的问题。
2 实际应用场景

实际问题与二次函数教案

实际问题与二次函数教案

课题:实际问题与二次函数(一)教学目标1.知识与技能:使学生会根据题意将实际问题转化为二次函数的问题来解决,会根据题意列出二次函数表达式、会求出自变量的取值范围、会使用二次函数的性质解决问题。

2. 过程与方法:经历将实际问题转化成二次函数的问题的过程完成由感性理解到理性理解的转变,实现理解上的升华。

3.情感态度与价值观:让学生体会数学与人类社会生活的密切联系,理解数学的应用价值;会建立二次函数的数学模型,进一步培养学生探索、创新、转化的水平。

(二).教学重点:根据具体的实际问题列出二次函数表达式、求出自变量的取值范围、并使用二次函数的性质解决问题。

(三).教学难点:准确的根据具体的实际问题列出二次函数表达式、求出自变量的取值范围、并使用二次函数的性质解决问题。

(四).教学方法:引导、分析、讨论、讲解、归纳(五).教学过程:一.创设问题情境,引入新课前面我们理解了二次函数,研究了它的图象与性质,今天将应用它去解决一些实际问题。

首先我们一起来作一个简要的回顾:1.二次函数y=a(x-h)2+k的图象与性质:①当a>0时,抛物线y=a(x-h)2+k的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____.②当a<0时,抛物线y=a(x-h)2+k的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____.2.二次函数y=ax2+bx+c的图象与性质:①当a>0时,抛物线y=ax2+bx+c的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____________.②当a<0时,抛物线y=ax2+bx+c的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____________.由此可知,确定了一个二次函数的解析式,我们就能够根据其性质求出相对应的函数的最大(小)值。

二次函数与实际问题

二次函数与实际问题

二次函数与实际问题引言二次函数是高中数学中的一个重要内容,也是实际问题中常常遇到的数学模型。

二次函数的图像呈现出一种开口向上或者开口向下的曲线形状,能够很好地描述实际问题中的曲线关系。

本文将深入探讨二次函数及其在实际问题中的应用。

二次函数的定义与性质二次函数的定义:设函数f(x) = ax^2 + bx + c(a≠0),其中a、b、c是常数,a称为二次函数的二次系数。

二次函数的图像当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

二次函数的顶点二次函数的顶点坐标为(h,k),其中h = -b/(2a),k = f(h)。

二次函数的对称轴二次函数的对称轴方程为x = h(即x = -b/(2a))。

二次函数的零点二次函数的零点即为方程f(x) = 0的解,可以通过求根公式或配方法求得。

二次函数在实际问题中的应用自由落体运动自由落体运动是一个常见的物理现象,也可以用二次函数来进行模拟和描述。

假设一个物体从高处自由落下,忽略空气阻力,它的下落距离与时间的关系可以用二次函数来表示。

抛物线轨迹抛物线轨迹是指一个物体在一个力的作用下进行受控抛射运动时所遵循的路径。

如投射运动中的抛体、水流喷泉等都可以用二次函数进行建模和描述。

开口向上的池塘有一片长方形的池塘,周围修建了一圈围墙。

围墙的材料价格是每米10元。

假设池塘的长为x米,宽为y米。

已知池塘的面积为100平方米。

要使得围墙的总价值最小,需要求解池塘的长和宽。

能量与时间的关系生活中很多实际问题涉及到能量的转化和传递,而能量与时间的关系常常可以用二次函数进行建模。

例如,弹簧振子的机械能与振动时间的关系、充电电池的电量衰减与使用时间的关系等等。

结论二次函数作为一种重要的数学模型,在实际问题中有着广泛的应用。

通过对二次函数的定义与性质的学习,我们可以更好地理解和解决实际问题,同时也提高了我们的数学建模能力。

通过本文对二次函数与实际问题的探讨,我们更深入地认识了二次函数的应用价值和意义。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题【实用版】目录1.二次函数的定义和性质2.实际问题中的二次函数应用3.典型例题解析正文二次函数是一种重要的数学函数形式,它在实际问题中有着广泛的应用。

通过对二次函数的学习和理解,我们可以更好地解决实际问题,从而提高我们的数学应用能力。

下面,我们将通过一些典型例题,来深入了解二次函数与实际问题的关系。

首先,我们来了解一下二次函数的定义和性质。

二次函数是指形如y=ax+bx+c(a≠0)的函数,其中 a、b、c 是常数,x 是自变量,y 是因变量。

二次函数的性质主要体现在它的图像、顶点、对称轴和开口方向等方面。

具体来说,二次函数的图像可以是向上开口的抛物线,也可以是向下开口的抛物线;它的顶点是抛物线的最高点或最低点,对称轴是抛物线的轴线,开口方向由二次项系数 a 的正负决定。

在了解了二次函数的基本概念后,我们再来看看二次函数在实际问题中的应用。

实际问题中,很多问题都可以用二次函数来描述和解决,比如物体的自由落体运动、抛物线的轨迹问题、人口增长问题等。

这些问题的解决过程,实际上就是对二次函数进行分析和求解的过程。

接下来,我们来解析一些典型的例题,以帮助大家更好地理解和掌握二次函数与实际问题的关系。

例题 1:某商场在进行促销活动,活动期间,每件商品的价格为原价的 80% 加上 10 元。

假设原价为 x 元,求活动期间购买该商品需要支付的金额。

解:设原价为 x 元,活动期间价格为 y 元。

根据题意,可得y=0.8x+10。

这是一个二次函数的形式,其中 a=0.8,b=0,c=10。

通过求解该二次函数,我们可以得到活动期间购买该商品需要支付的金额。

例题 2:一个物体从高度 h 处自由落下,经过 t 秒后,物体离地面的高度为 h"。

已知物体下落的速度是初速度的两倍,求物体下落的高度。

解:设物体下落的高度为 s,初速度为 v,则根据自由落体运动公式,可得 s=vt+0.5gt。

实际问题与二次函数的公式

实际问题与二次函数的公式

实际问题与二次函数的公式在咱们学习数学的这个大“乐园”里,有一个非常重要的“小伙伴”,那就是二次函数。

而二次函数在解决实际问题的时候,那可真是一把“利器”!先来说说啥是二次函数。

简单点讲,形如 y = ax² + bx + c (a ≠ 0)的函数就是二次函数。

这里的 a、b、c 都是常数,a 决定了函数图像的开口方向和大小。

比如说,咱在卖东西的时候。

有一次我去逛集市,看到一个卖水果的摊主。

他卖的是苹果,进价每个 2 块钱,他想定个价格,既要保证能赚钱,又不能太贵把客人吓跑。

这时候二次函数就派上用场啦。

假设他定的价格是 x 元每个,每天能卖出的数量是 y 个。

经过观察和分析,发现销量 y 和价格 x 之间有这样的关系:y = 100 - 10x。

那他每天的利润 z 就等于单个利润乘以销量,也就是 z = (x - 2)(100 - 10x)。

这就是一个二次函数!对这个函数进行整理,z = -10x² + 120x - 200。

接下来就是通过求这个二次函数的顶点,来找到利润最大时的价格。

再比如投篮问题。

咱打篮球投篮的时候,篮球在空中的轨迹其实就可以用二次函数来模拟。

假设篮球出手时的高度是 h 米,水平速度是 v 米/秒,垂直速度是 u 米/秒。

经过时间 t 秒后,篮球的高度 y 就可以用二次函数 y = h + ut - 5t²来表示。

通过这个公式,咱就能算出在啥时候篮球能达到最高点,或者判断能不能投进篮筐。

还有建桥的问题。

假如要在一条河上建一座拱桥,为了让船能顺利通过,拱桥得有一定的高度和跨度。

这时候就可以用二次函数来设计拱桥的形状。

比如说拱桥的形状可以用 y = ax² + bx + c 来表示,通过给定桥的跨度和最大高度等条件,就能确定 a、b、c 的值,从而设计出合适的拱桥。

在实际生活中,二次函数的应用真的是无处不在。

就像咱们找最优方案,比如怎样用有限的材料围出最大面积的场地;或者算喷泉能喷多高、多远;甚至是算火箭的飞行轨迹,都能用到二次函数。

22.3实际问题与二次函数PPT课件

22.3实际问题与二次函数PPT课件

=-10(x-5)2+6250
当x=5时,y的最大值是6250.
定价:60+5=65(元)
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) =(20-x)(300+20x)
怎样确定x 的取值范围
=-20x2+100x+6000
=-20(x2-5x-300)
=-20(x-2.5)2+6125 (0≤x≤20)
5.二次函数y=2x2-8x+9的对称轴是直线x=2 ,顶点 坐标是 (2 ,1) .当x= 2 时,函数有最 小值,是 1 。
题型1:最大高度问题
题型2:最大面积问题
解:设
场地的面积
l
答:
(1)列出二次函数的解析式,并根 据自变量的实际意义,确定自变量的 取值范围; (2)在自变量的取值范围内,运用 公式法或通过配方求出二次函数的最 大值或最小值。
题型4:二次函数建模问题 解:y ax2
由抛物线经过点(2,-2),可得
y
探究3:
a1 2
所以,这条抛物线的二次函数为:
C
D
y 1 x2
x 当水面下降1m时,水2面的纵坐标为
A
(2,-2)
0
●B
l
y 3 当 y 3时,x 6
如图是抛物线形拱桥,当拱 所以,水面下降1m,水面的宽
y1(x2)2 2
当水面下降1m2时,水面的纵坐标为
抛物线形拱桥,当水面在 l时,
拱顶离水面2m,水面宽度4m,
y 1
水面下降1m,水面宽度为多少?当 y 1 时, x 62
水面宽度增加多少? 所以,水面下降1m,水面的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)房间每天入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?
5.某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
实际问题与二次函数(1)
学习目标:
1.会将生活中的实际问题转化为数学问题。
2.能体验二次函数在生活中的应用。
学习重难点:
重点:体会二次函数最值的应用及数形结合思想。
难点:理在转化、建模中,体验解决问题的方法。
学习过程:
一,创设情景,明确目标
请同学们观察以下两个题:
1.抛物线 中,当x=___________时,y有_______值是__________.
X(十万元)
0
1
2

y
1
1.5
1.8

(1)求y与x的函数关系式;
(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;
(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?
五,作业布置
必作:
选作:
⑶增种多少棵橙子,能够使橙子的总产量在60400个以上?
3.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。
(1)求y关于x的二次函数关系式,并注明x的取值范围;
(2)求出该二次函数的顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少?
4,某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间能够住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x元,求:
②,S是l的什么函数?
③,当l怎样时,S有最大值?
点拨升华:
由题目可知,S与l的关系式为:
画出这个函数的图象为:
这条抛物线的顶点是函数的最高点,即当l取顶点的横坐标时,这个函数有最大值,最大值是顶点的纵坐标。
所以,当 时,S有最大值为
即:当l是15时,场地的面积S有最大值为225m2
变式训练:
1.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?
自我评价
1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?
三,合作探究,达成目标
探究主体1:抛物线对称轴及顶点坐标
例1用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化,当l是多少时,场地的面积S最大?
小组讨论:
①,由问题中“形面积S随矩形一边长l的变化而变化”可知,S与l存存怎样的关系?
分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?
解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,
设商品的利润为y元.则y与x的关系式为:
(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.
设商品的利润为y元.则y与x的关系式为:
2.抛物线 中,当x=___________时,y有_______值是__________.
3,某商品现在的售价是每件60元,每星期可卖出300件,已知商品的进价为每件40元,那么一周的利润是多少元?
二,自主学习,指向目标
自学导读
自学课本,思考回答下列问题
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?
2、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提升产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.
⑵利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.?
2.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是 .小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?
四,总结梳理内化目标
⑴,这节课,我学会了:
⑵,易错点:
⑶,这节课还存有的疑问是:
Байду номын сангаас五,达标检测,反思目标
1、某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就能够多售出200件.请你协助分析:销售单价是多少时,能够获利最多?
相关文档
最新文档