地下水动力学

合集下载

地下水动力学PDF

地下水动力学PDF

§1—2
渗流基本定律
实验过程:通过供水管从上面注入水,实验中保持恒定水头,水渗经试样
(砂子)以后由出水管流进量筒中,水渗经试样的水头损失用测压管测定。
实验结果:单位时间内通过筒中砂的流量Q与垂直水流方向的介质面积A及 上下测压管的水头差Δ H成正比,与渗透长度L成反比。
H1 H 2 Q KA l
由于自然界中地下水运动的速度一般都
比较小,因此地下水的运动大多看作层流运 动。为了对地下水运动进行定量研究,必须 把握地下水运动基本要素之间的最基本的数 量关系,即研究其基本规律。
L
h
H1
(1)达西定律表达式 实验条件:定水头、定流量、均质砂。 此时地下水做一维均匀运动,渗流速度 与水力坡度的大小和方向沿流程不变。
(3)一、二、三维流 根据渗流方向与所选坐标轴方向之间的关系来划分。
一维流运动:当地下水沿一个方向运动,将该方向取为坐标轴,此时地下水的 渗透速度只有沿该坐标轴的方向有分速度,其余坐标轴方向的分速度为0。 一维流(one-dimensional flow),也称单向运动,指渗流场中水头、流速等 渗流要素仅随一个坐标变化的水流,其速度向量仅有一个分量、流线呈平行的 水流。
§1—1
地下水运动的基本概念
三维流运动:地下水的渗透流速沿空间三个坐标轴的分量均不为0。 三维流(three-dimensional flow),也称空间运动,地下水的渗透流速沿 空间三个坐标轴的分量均不等于零的渗流;水头、流速等渗流要素随空间三 个坐标而变化的水流。
§1—2
渗流基本定律
A
1 达西定律(线性渗透定4 地下水运动特征分类 (1)渗流运动要素(Seepage elements)是表征渗流运动特征的物理量,主要有 渗流量Q、渗流速度V、压强P、水头H等。 地下水运动方向(Groundwater flow direction)为渗透流速矢量的方向。

地下水动力学(第一章 渗流理论基础-2-专)

地下水动力学(第一章 渗流理论基础-2-专)
(1) 对一给定的流线,流函数是常数。不同的流 线有不同的常数值。流函数决定于流线。 (2) 在平面运动中,两流线间的流量等于和这两 条流线相应的两个流函数的差值。 (3) 在均质各向同性介质中,流函数满足Laplace 方程;其他情况下均不满足Laplace方程。 (4) 在非稳定流中,流线不断地变化,只能给出 某一瞬时的流线图。因此,只有对不可压缩的液体 的稳定流动,流线才有实际意义。
∂2H ∂2ψ ∂2H ∂2ψ −K = ; −K =− 2 ∂x∂y ∂y2 ∂y∂x ∂x
二、流网及其性质
流网:在渗流场内,取一组流线和一组等势线 组成的网格。 流网的性质: 流网的性质: 1. 在各向同性介质中,流线与等势线处处垂直, 故流网为正交网格。 证明:等水头线和流线的梯度为:
gradH = ∇H = ∂H ∂H i+ j ∂x ∂y
一般地下水流都为Darcy流。 思考题
§1—3 岩层透水特征分类和渗透系数张量 一、岩层透水特征分类 据岩层透水性随空间坐标的变化情况,将岩层 分为均质的和非均质的两类。 均质岩层:在渗流场中,所有点都具有相同的 渗透系数。 非均质岩层:在渗流场中,不同点具有不同的 渗透系数。 非均质岩层有两种类型:一类透水性是渐变的, 另一类透水性是突变的。 均质、非均质:指 与空间坐标的关系 与空间坐标的关系, 均质、非均质 指K与空间坐标的关系,即不同位 是否相同; 置K是否相同; 是否相同
K1M1 + K2M2 M1 + M2 Kp − Kv = − M1 M2 M1 + M2 + K1 K2 M1M2 = >0 (K1M1 + K2M2 )(M1 + M2 )
(K1 − K2 )
2

地下水动力学

地下水动力学
Vb: 多孔介质中所取单元体的总体积 Vs: 是单元体中固体骨架体积,Vv是其中孔隙的体积。
第1节 渗流的基本概念
(2)多孔介质的压缩性

称为多孔介质固体颗粒压缩系数,表示固体颗粒本身的压缩性;
,称为孔隙压缩系数,表示孔隙的压缩性。
则 固体骨架本身的压缩性要比孔隙的压缩性小得多,即
第1节 渗流的基本概念
目录
第1章 渗流理论基础 第3章 地下水向完整井的稳定运动 第4章 地下水向完整井的非稳定运动 第5章 地下水向边界井附近的运动 第6章 地下水向不完整井的运动
第1章 渗流理论基础
第1节 渗流的基本概念 第2节 渗流基本定律 第3节 岩层透水性特征分类 第4节 突变界面的水流折射和等效渗透系数 第5节 流网 第6节 渗流的连续性方程 第7节 承压水运动的基本微分方程 第8节 潜水运动的基本微分方程 第9节 定解条件 第10节 数学模型及解
三、贮水率和贮水系数
取面积为1m2,厚度为1m的含水层,考察当水头降低1m时
释放的水量:
(1)此时有效应力增加了γ△H=ρg×1=ρg
由介质压缩性的定义可知,相应的含水层的体积变化为:
-dVb=αVbdP=α×1×ρg=αρg(负号表示体积减小) (2)同时水压强变化了-γ△H= -ρg,由水的体积压缩系 数的定义可知,相应的水体积的变化为:dV=-βVdP=βn(-ρg)=nβρg(正号表示水体积膨胀))
第1节 渗流的基本概念
3、承压含水层与潜水含水层的区别 (1)对于承压含水层,只要水头不降低到隔水顶板以下, 水头降低只引起含水层的弹性释水,可用贮水系数μ*表示 这种释水的能力。
第1节 渗流的基本概念
3、承压含水层与潜水含水层的区别 (2)对于潜水含水层,当水头下降时,可引起二部分水的 排出。在上部潜水面下降部位引起重力排水,用给水度μ 表示重力排水的能力;在下部饱水部分则引起弹性释水, 用贮水率μs表示这一部分的释水能力。

地下水动力学

地下水动力学

1,地下水动力学:研究地下水在孔隙岩石,裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学第一章渗流理论基础2,多孔介质:在地下水动力学中,把具有孔隙的岩石称为多孔介质3有效空隙:互相连通的,不为结合水所占据的那一部分空隙4,有效孔隙度:有效孔隙体积与多孔介质总体积之比5,贮水率:又称释水率面积为一个单位,厚度为一个单位,当水头降低一个单位时所能释放出的水量贮水系数(释水系数)=贮水率乘以含水层厚度表示面积为一个单位,厚度为含水层全厚度的含水层主体中,当水头改变一个单位时弹性释放或贮存的水量贮水率与贮水系数相互关系:1,都是表示含水层弹性释水能力的参数2,对于承压含水层,只要水头不降低到隔水底板以下,水头降低只会引起弹性释水,可用贮水系数表示这种释水能力3,对于潜水含水层,当水头下降时可引起两部分水的排出(1,在上部潜水面下降引起重力排水,用给水度表示重力排水的能力2,在下部饱水部则引起弹性释水,用贮水率表示这一部分的释水能力)弹性释水和重力排水的不同点:1,影响范围不同(弹性释水影响整个承压含水层,重力释水影响潜水含水层和包气带)2,和时间有关(1 弹性释水瞬时完成不随时时间变化 2 重力释水存在滞后效应是时间的函数)3 两只大小不同(弹性释水系数多在0.001-0.00005之间重力排水参数在0.1-0.01之间)7 渗流:假设这种假想水流运动时,在任意岩石体积内所受的阻力等于真是水流所受的阻力,通过任意断面的流量及任一点的压力或水头均和实际水流相同,这种假想水流称为渗流渗流与实际水流相比相同点:阻力相同水头相同流量相同8 渗流速度:代表渗流在过水断面上的平均流速,时一种假想流速实际平均流速:在空隙中的不同地点,地下水运动的方向和速度可能不同平均速度称为实际平均速度测压管水头:H_z=z+p/r水位:一般用在野外,基准面相同(黄海水位标高)水头:基准面可任意选定水位是一种特殊的水头9 地下水头:书十页10,水力坡度:把大小等于坡度值,方向沿着等水头面的法线指向水头降低方向的矢量称为水力坡度p1111,地下水运动特征的分类p11运动要素:表征渗流运动的物理量,主要有渗流量Q,渗流速度V ,压强P,水头H等按运动要素和时间的关系分为:(1)稳定流:运动要素不随时间变化;(2)非稳定流:运动要素随时间变化按地下水运动方向和空间坐标的关系:一维运动,二维运动,三维运动12,层流:流速较小时,液体质点做有条不紊的线性运动,彼此不相掺混紊流:流速较大时,液体质点的运动轨迹曲折混乱,互相掺混13,Dacry在此处键入公式。

地下水动力学1

地下水动力学1

地下水动力学:是研究地下水在孔隙岩石、裂隙岩石和喀什特岩石中运动规律的科学。

多孔介质:具有孔隙的岩石孔隙介质=多孔介质:含有孔隙水的岩层,如砂层或疏松砂岩贮水率:面积为1平方m、厚度为1m的含水层,当水头下降1m时释放的水量。

贮水系数:面积为1个单位,厚度为含水层整个厚度(M)的含水层柱体中,当水头改变一个单位时弹性释放或贮存的水量。

渗流:用一假象的水流代替真实的水流,这种假想的水流的性质和真实的地下水相同,但它充满了既包含岩石颗粒所占据的空间,同时,假设这种假想的水流运动时,在任意岩石体积内所受的阻力等于真实水流所受的阻力;通过任意断面的流量及任一点的压力或水头均和实际水流相同。

这种假想的水流称为渗流渗流速度:通过过水断面(A)有一个渗流量(Q)则为渗流速度V水力坡度:大小等于梯度值,方向沿着等水头面的法线指向水头降低方向的矢量Depuit假设:由于坡角θ很小可以用tanθ代替sinθ,意味着假设潜水面比较平缓,等水头面铅直,水流基本水平,可忽略渗流速度垂直分量V。

完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器,并能全面进水的井不完整井:水井没有贯穿整个含水层,只有井底和含水层的部分厚度上能进水水跃:井中水位与井壁水位不一样配线法步骤:1、在双对数坐标纸上绘制W(u)-1/u的标准曲线2、在另一张模数相同的透明双对数纸上实施的s-t/r平方曲线3、将实际曲线置于标准曲线上,在保持对应坐标轴彼此平行的条件下相对平移,直至两曲线重合为止4、任取一匹配点记下匹配点的相应坐标值,代入公式求参数。

地下水向完整井运动的特点:1、在含水层和径向距离的比值r/M<1.5~2.0的区域内,流线有明显的弯曲,而且离不完整井越接近,弯曲越厉害形成三维流区。

在r/M>1.5~2.0的地方,流线近于与层面平行,垂向分速度很小,由三维流过度为平面径向流。

2、不完整井的流量小于完整井的流量3、必须考虑过滤器在含水层中的位置和顶底板对水流状态的影响,如果含水层很厚,则可近似忽略隔水底板对水流的影响,按半无界厚含水层来研究。

地下水动力学习题及答案(1)

地下水动力学习题及答案(1)
17.等效含水层的单宽流量q与各分层单宽流量qi的关系:当水流平行界面时_ _,当水流垂直于界面时_ _。
18.在同一条流线上其流函数等于_常数_,单宽流量等于_零_,流函数的量纲为__ __。
19.在流场中,二元流函数对坐标的导数与渗流分速度的关系式为_ _。
20.在各向同性的含水层中流线与等水头线_除奇点外处处正交_,故网格为_正交网格_。
3.在多孔介质中,不连通的或一端封闭的孔隙对地下水运动来说是无效的,但对贮水来说却是有效的。
4.地下水过水断面包括_空隙_和_固体颗粒_所占据的面积.渗透流速是_过水断面_上的平均速度,而实际速度是_空隙面积上__的平均速度。
在渗流中,水头一般是指测压管水头,不同数值的等水头面(线)永远不会相交。
5.在渗流场中,把大小等于_水头梯度值_,方向沿着_等水头面_的法线,并指向水头_降低_方向的矢量,称为水力坡度。水力坡度在空间直角坐标系中的三个分量分别为_ _、 _和_ _。
31.在均质各向同性的介质中,任何部位的流线和等水头线都正交。(×)
32.地下水连续方程和基本微分方程实际上都是反映质量守恒定律。(√)
33.潜水和承压水含水层的平面二维流基本微分方程都是反映单位面积含水层的水量均方程。(√)
34.在潜水含水层中当忽略其弹性释放水量时,则所有描述潜水的非稳定流方程都与其稳定流方程相同。(×)
27.沿流线的方向势函数逐渐减小,而同一条等势线上各处的流函数都相等。(×)
28.根据流函数和势函数的定义知,二者只是空间坐标的函数,因此可以说流函数和势函数只适用于稳定流场。(×)
29.在渗流场中,一般认为流线能起隔水边界作用,而等水头线能起透水边界的作用。(√)
30.在同一渗流场中,流线在某一特定点上有时候也可以相交。(√)

(完整版)地下水动力学试题

(完整版)地下水动力学试题

地下水动力学《邹力芝》部分试题姜太公编一、名词解释1.渗透重力地下水在岩石空隙中的运动2.渗流不考虑骨架的存在,整个渗流区都被水充满,不考虑单个孔隙的地下水的运动状况,考虑地下水的整体运动方向,这是一个假想的水流。

3. 渗流量单位时间通过的过水断面(空隙、骨架)的地下水的体积。

4. 渗流速度单位通过过水断面(空隙、骨架)的渗流量。

5. 稳定流非稳定流渗流要素不随时间的变化而变化。

渗流要素随时间而变化。

6. 均匀流非均匀流渗流速度不随空间而变化。

非均匀流分为缓变流和急变流缓变流:过水断面近似平面满足静水压强方程。

急变流:流线弯曲程度大,流线不能近似看成直线过水断面不能近似平面。

7.渗透系数表征含水量的能力的参数。

数值上等于水力梯度为1的流速的大小8.导水系数水力梯度为1时,通过整个含水层厚度的单宽流量。

9.弹性释水理论含水层骨架压密和水的膨胀释放出来的地下水的现象为弹性释水现象,反之为含水层的贮水现象。

10.贮水系数《率》当承压含水层水头下降(上升)一个单位时,从单位水平面积《体积》的含水层贮体积中,由于水体积的膨胀(压缩)和含水层骨架压密(回弹)所释放(贮存)的地下水的体积。

11.重力给水度在潜水含水层中,当水位下降一个单位时,从单位水平面积的含水层贮体中,由于重力疏干而释放地下水的体积。

二、填空题1.地下水动力学是研究地下水在孔隙岩石、裂隙岩石、和岩溶岩石中运动规律的科学。

通常把具有连通性的含水岩石称为多孔介质,而其中的岩石颗粒称为骨架。

多孔介质的特点是多相性、孔隙性、连通性和压缩性。

2.地下水在多孔介质中存在的主要形式有吸着水、薄膜水、毛管水和重力水,而地下水动力学主要研究重力水的运动规律。

3.假想水流的密度、粘滞性、运动时在含水层的中所受阻力以及流量和水头都与真实的水流相同,假想水流充满整个含水层的空间。

4.在渗流中,水头一般是指测压水头,不同的数值的等水头面(线)永远不会相交。

5.在渗流场中,把大小等于水头梯度值,方向沿着等水头面的法线指向水头降低的方向的矢量,称为水力梯度。

地下水动力学PDF

地下水动力学PDF
由于在地下水中水流的运动速度很小,故速头hv=u2/2g可以忽略,所以 h近似等于H,即:
H≈Hn=Z+P/g
意义:渗流场中任意一点的水头实际上反映该点单位质量液体具有的总机械 能,地下水在运动过程中不断克服阻力,消耗总机械能,因此沿地下水流程, 水头线是一条降落曲线。
§1—1 地下水运动的基本概念
与水力坡度的大小和方向沿流程律
实验过程:通过供水管从上面注入水,实验中保持恒定水头,水渗经试样 (砂子)以后由出水管流进量筒中,水渗经试样的水头损失用测压管测定。
实验结果:单位时间内通过筒中砂的流量Q与垂直水流方向的介质面积A及 上下测压管的水头差ΔH成正比,与渗透长度L成反比。
等于测压水头(piezometric head),即:
通常称为渗流水头。 在水力学中定义总水头(total head):
式中右端三项分别称为位头(potential head)、压头(pressure head)和 速头(velocity head)。
总水头(Total head )为测压管水头和流速水头之和。
连续的,不同大小的等水头面(线)不能相交。
§1—1 地下水运动的基本概念
4 地下水运动特征分类 (1)渗流运动要素(Seepage elements)是表征渗流运动特征的物理量,主要有 渗流量Q、渗流速度V、压强P、水头H等。
地下水运动方向(Groundwater flow direction)为渗透流速矢量的方向。 (2) 层流与紊流
§1—1 地下水运动的基本概念
(3)渗流速度(Specific discharge/seepage velocity)又称渗透速度、比流 量,是渗流在过水断面上的平均流速。它不代表任何真实水流的速度,只是一种 假想速度。它描述的是渗流具有的平均速度,是渗流场空间坐标的连续函数,是 一个虚拟的矢量。单位m/d,表示为:

地下水动力学

地下水动力学
学模型的建立和解法,为基础理论和重点内容; (2)地下水向河渠的运动;排灌区地下水运动的规律即水
平方向运动规律。
主要研究内容
(3)地下水向井的运动和求参方法,重点是地下水向完整 井的稳定运动和非稳定运动;水井区地下水运动的规律即 垂直运动规律。
(4)地下水向非完整井和边界井的运动; (5)地下水运动中的若干问题(地下水中溶质运移规律、
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
3.发展 (1)原因: ①甲午战争以后列强激烈争夺在华铁路的 修。筑权 ②修路成为中国人 救的亡强图烈存愿望。 (2)成果:1909年 京建张成铁通路车;民国以后,各条商路修筑 权收归国有。 4.制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入 正轨。
用; (9)在含多组分溶质的水流中Darcy定律的表
达形式。
§6 地下水动力学的应用
(1)城市、工矿企业和农业供水:确定水文 地质参数,论证开采方案和预计开采量,预 报开采动态,正确评价地下水资源评价,科 学管理和保护地下水资源。
(2)矿山开采、建筑基坑和沼泽化、盐渍化 区的疏干:设计疏干量、疏干水平,预测疏 干范围、疏干过程,合理选择疏干设备。
目的:
(1)使学生了解学习该课程的意义,以及在生产实 践中能解决的具体问题。
(2)使学生系统掌握地下水运动的基本理论,并能 初步运用这些基本理论分析水文地质问题,建立相 应的数学模型和提出适当的计算方法或模拟方法, 对地下水进行定量评价。

地下水动力学

地下水动力学

1、地下水动力学就是研究地下水在孔隙岩石、裂隙岩石、与喀斯特岩石中运动规律的科学。

它就是模拟地下水流基本状态与地下水中溶质运移过程,对地下水从数量与质量上进行定量评价与合理开发利用,以及兴利除害的理论基础。

2、流量:单位时间通过过水断面的水量称为通过该断面的渗流量。

3、渗流速度(比流量):假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。

4、实际速度:孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T。

4、渗流场:发生渗流的区域称为渗流场。

由固体骨架与岩石空隙中的水两者组成5、层流:水质点作有秩序、互不混杂的流动。

6、紊流:水质点作无秩序、互相混杂的流动。

7、稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。

8、雷诺数:表征运动流体质点所受惯性力与粘性力的比值。

9、雷诺数的物理意义:水流的惯性力与黏滞力之比。

10、渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。

11、流网:在渗流场中,由流线与等水头线组成的网络称为流网。

12、折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。

13、裘布依假设:绝大多数地下水具有缓变流的特点。

14、缓变流:各流线接近于平行直线的运动14、完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。

15、非完整井:未揭穿整个含水层、只有井底与含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。

16、水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。

17、水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。

18、影响半径:就是从抽水井到实际观测不到水位降深处的径向距离。

地下水动力学简介

地下水动力学简介

第一章 渗流理论基础§1-1 渗流的基本概念一、渗流及连续介质假说1 多孔介质(porous medium)与连续介质(continuous medium)多孔介质很难给出其精确定义,在地下水动力学中,把具有孔隙的岩石称为多孔介质。

它包括孔隙介质和裂隙介质。

一般来说,具有以下特点的物质就称为多孔介质。

(1)该物体为多相体:固体相-骨架,流体相-空隙;(2)固体相的分布遍及整个多相体所占据的区域;(3)空隙空间具有连通性。

多孔介质由连续分布的多孔介质质点(图1-2)组成—多孔连续介质.此时孔隙度的表示公式为:--为数学点P 处多孔介质的表征体积元(简称为表征体元-REV ),将其所包含的所有流体质点与固体颗粒0v ∆的总体称为多孔介质质点.将其所包含的所有流体质点称为多孔介质流体质点。

图1-2 REV 的定义及孔隙度随体积的变化多孔介质的性质:1)孔隙性2) 压缩性2 渗透(seepage )渗透:地下水受重力作用在岩石空隙中的实际运动称为渗透。

由于岩石空隙结构极为复杂,空隙的大小、延伸方向、形状无一定规律。

渗透具有如下特征:(1)运动途径复杂多变;(2)状态函数非连续;(3)只有平均性质的渗透规律(图1-1),研究地下水质点的运动特征比较困难。

因此,在当前经济技术条件下研究单个孔隙中的水或单个水质点的运动是十分困难的,也没有必要。

vv p n v v v ∆∆=∆→∆0lim)(图1-2岩石中地下水的渗透针对这种极为复杂的地下水运功,在地下水动力学中一般可采用两种研究方法。

1) 研究微观情况下的运动,即研究地下水在以孔隙介质中的骨架为边界孔隙或裂隙中的运动。

由于空隙介质的结构具有随机性,所以用统计平均方法来确定地下水运动的宏观规律性;2) 从宏观角度出发,采用试验及数学分析方法,对大量微观运动进行宏观研究得出各种运动条件下地下水运动的基本规律。

3 渗流(seepage flow)前面已经提到,要研究实际的渗透十分困难,因此,我们用一种假想水流来代替真实水流,这种假想水流是在连续介质的基础上通过概化得出的:(1)假定水流充满整个含水层空间(既包括空隙所占据的空间,也包括颗粒/骨架所占据的空间);(2)只考虑水流运动的总体方向,不考虑水流实际运动途径的复杂变化.将通过上述概化后所得到的假想水流—渗流。

地下水动力学全

地下水动力学全

1、地下水动力学就是研究地下水在孔隙岩石、裂隙岩石、与喀斯特岩石中运动规律的科学。

它就是模拟地下水流基本状态与地下水中溶质运移过程,对地下水从数量与质量上进行定量评价与合理开发利用,以及兴利除害的理论基础。

2、流量:单位时间通过过水断面的水量称为通过该断面的渗流量。

3、渗流速度(比流量):假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。

4、实际速度:孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T。

4、渗流场:发生渗流的区域称为渗流场。

由固体骨架与岩石空隙中的水两者组成5、层流:水质点作有秩序、互不混杂的流动。

6、紊流:水质点作无秩序、互相混杂的流动。

7、稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。

8、雷诺数:表征运动流体质点所受惯性力与粘性力的比值。

9、雷诺数的物理意义:水流的惯性力与黏滞力之比。

10、渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。

11、流网:在渗流场中,由流线与等水头线组成的网络称为流网。

12、折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。

13、裘布依假设:绝大多数地下水具有缓变流的特点。

14、缓变流:各流线接近于平行直线的运动14、完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。

15、非完整井:未揭穿整个含水层、只有井底与含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。

16、水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。

17、水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。

18、影响半径:就是从抽水井到实际观测不到水位降深处的径向距离。

地下水动力学1.4

地下水动力学1.4

图1-27 某地的流网图
图1-28 叠加抽水井的流网图
(1-33a)
图1-17 流线
(1-33b)

• •
M和M’是任意流线上任选的两点。因此,上式对流线上的 任一点都是正确的,可以把它看成是流线的方程,用它来 描述流线。 上面的流线方程无论对各向同性和各向异性介质都是适用 的。 在各向异性介质中,如果选取的坐标轴(直角坐标系)的方 向分别与渗透系数的主方向一致,则上式变为:
(1)在各向同性介质中,流线与等水头线处处垂 直,流网为正交网格。 由(1-38)式,得:
(1-40)
消去K,得:
(1-41)
等水头线 流线 式中i,j——单位矢量。
(1-42) (1-43)
在非均质各向同性介质中,上式亦成立。 (2)在均质各向同性介质中,流网中每一网格的边长比为 常数。
(1-44)
(4) 流函数的特性
① 对于一给定的流线,流函数是常数。不同的流线有 不同的常数值。流函数决定于流线。Y=c ② 在平面运动中,两流线之间的单宽流量等于和这两 条流线相应的流函数之差。q=Y2 - Y1
③ 在均质各向同性介质中,流函数满足Laplace方程; 而在其他情况下,流函数均不满足该方程。
1.4.2 流函数方程
(1) 流线的方程
根据上述定义,没有水流穿越流线。如下图,在任一流 线上取任意两点M(x, y)和M' (x+dx, y+dy)。M点的渗流速度 矢量为v,它与它的两个分量Vx,Vy构成一个三角形MAB。自 M' 点作垂线Mb,并延长至a。 当M与M' 无限逼近时,弧线 MM’ 可用切线Ma来代替,故有 Mb= dx,ab=dy。因为 MAB≈Mab,有以下等式 成立---流线方程 :

地下水动力学

地下水动力学

地下水动力论文摘要关键词 越流 第一类越流系统 定流量井流1.绪论2.理论基础越流:如果抽水层上面或下面不是隔水层,而是弱透水层,那么相邻含水层通过弱透水层或者弱透水层自身弹性储量的储存、释放与抽水层发生水力联系,这种水里现象称为越流。

越流系统:相邻含水层之间为弱透水层,使含水层之间发生水力联系,或弱透水层与含水层之间发生水力联系,叫越流系统。

第一类越流系统:弱透水层的弹性储水释水可忽略不计。

而且在主含水层抽水期间相邻含水层的水头保持不变。

井流:3. 第一类越流系统中定流量井流计算的基本方程3.1建立基本方程的假定条件汉图什和雅可布是在下列假定条件下建立方程的:(1)相邻含水层与主含水层的初始水头面水平且相等(2)在抽水过程中,相邻含水层中的水头保持不变;(3)与主含水层释放的弹性储存量的释放量及相邻含水层的补给量相比,弱透水层释放 的弹性储存量可忽略不计;(4)弱透水层中的渗流几乎是垂直运动;(5)主含水层中的渗流近似认为是二维的,即假定是水平径向流动;(6)其他条件与泰斯假定相同。

1.含水层均质,各项同性,无限延伸;2.渗流服从达西定律;3.完整井;4.主含水层中地下水瞬时释放。

3.2 对于基本方程的的推导根据上述条件,可以利用越流系统不稳定承压井流的微分方程式,t /)//1/(e 22∂∂=+∂∂+∂∂H W r H r r H T μ只是其中的越流强度W(r,t)需要依其具体条件来建立起关系。

越流强度w 是单位时间通过单位水平面积补给主含水层的水量,因次为[I 。

T 。

]。

依据前面所给的条件,越流强度W 为 w MH K KIw vw Q ''∆===式中:H 。

为主含水层的初始水头,也是相邻含水层在抽水过程中要保持的水头; H 为主含水层的水头;K `为弱透水层的垂向渗透系数;M`为弱透水层的厚度。

这样,方程(2—3—24)式与其定解条件可写为通过积分变换,由此定解问题可解得降深方程(1-1)3.3 对基本方程的讨论分析3.3.1基本方程满足一定条件时可以变为泰斯公式同样,当抽水延续时间t 较短,即甜较大时,方程(8—1—5)式也变为泰斯公式。

地下水动力学

地下水动力学
在农业灌溉中,地下水动力学也发挥着重要作用。通过研究地下水的运动,我们可以确定适宜的灌溉量和灌溉时间,避免过度灌溉造成水资源浪费和土壤盐碱化。
另外,在工程建设中,比如修建地铁、隧道或者大坝时,我们必须考虑地下水的影响。如果对地下水的运动情况估计不足,可能会导致工程事故,如隧道涌水等。
为了研究地下水的运动,科学家们发展了一系列的方法和模型。其中,达西定律是一个基础的理论。它描述了在层流状态下,地下水的流量与水力梯度和渗透系数之间的关系。
地下水的运动主要受到两种力的驱动。一种是重力,就像水往低处流一样,地下水在重力的作用下会从地势高的地方向地势低的地方流动。另一种是压力差,当地下水所处的区域存在压力差异时,水也会从压力高的地方流向压力低的地方。
含水层是地下水储存和运动的重要场所。根据含水层的水力性质,我们可以将其分为孔隙含水层、裂隙含水层和岩溶含水层。孔隙含水层就像一个装满细沙的容器,水在沙粒之间的孔隙中流动;裂隙含水层则像是一块布满裂缝的石头,水沿着这些裂缝运动;岩溶含水层则如同一个巨大的溶洞系统,水在其中复杂地穿梭。
地下水动力学
地下水动力学是研究地下水在含水层中运动规律的科学。它对于合理开发利用地下水资源、解决与地下水有关的环境和工程问题具有重要意义。
想象一下,大地就像一个巨大的海绵,而地下水就藏在这个海绵的孔隙和裂缝中。地下水动力学要研究的,就是这些水是如何流动的,受到哪些因素的影响,以及我们如何去预测和控制它们的运动。
除了达西定律,还有一些更复杂的模型,如泰斯模型、裘布依模型等。这些模型可以帮助我们更准确地预测地下水的动态变化。
然而,地下水动力学的研究也面临着一些挑战。例如,自然界ቤተ መጻሕፍቲ ባይዱ的地下水系统非常复杂,很难用简单的模型完全准确地描述。而且,人类活动对地下水的影响日益加剧,使得地下水的运动规律变得更加难以捉摸。

地下水动力学资料

地下水动力学资料

一:名词解释:1.多孔介质:在地下水动力学中,把具有空隙的岩石称为多孔介质。

2.贮水率:单位体积岩石柱体或含水层,水头上升一个单位所贮存的水量。

3.贮水系数:表示面积为一个单位时,厚度为含水层厚度M的含水层柱体中,当水头改变一个单位时,弹性释放所贮存的水量。

4.水力坡度:在地下水动力学中,把大小等于梯度值,方向沿着等水头面的法线,指向水头降低方向的矢量为水力梯度。

5.单宽流量:单位宽度的渗流量。

6.导水系数:当水力坡度为1时的单位流量称为导水系数。

7.流网:渗流场内,取一组流线和一组等势线组成的网格称为流网。

8.渗透系数:水力坡度为1时的渗流速度。

9.渗流率:把表征岩层渗透性能的参数。

10.边界条件:即渗透区边界所处的条件,用来表达水头在渗流区边界上所满足的条件,也就是渗流区内水流与其周围环境相互制约的关系。

11.初始条件:就是在某一点选定的初始时刻(t=0)渗流区内水头H的分布情况。

12.典型单元体用渗流场中某物理量的平均值近似代替整个渗流场的特征值的代表性单元体。

13.入渗强度:单位时间单位面积上的入渗补给量。

14.降落漏斗:总体上形成的漏斗状水头下降区。

15.井损:水头经过滤器的水头损失和在井管内部水的向上运动至水泵吸水口时的水头损失。

16.有效半径:由井轴到井管外壁某一点的水平距离。

17.水跃:潜水流入井中时也存在渗出面也也称水跃,即井壁水位高于井中水位。

18.叠加原理:可表达为和H1,H2...Hn是关于水头H的线性偏微分方程的特解,为任意常数,则由这些解的线性组合H=∑CiHi仍为原方程的解。

19.导压系数:渗透系数与贮水率之比。

20.越流:当含水层与相邻含水层存在水头关系时,地下水从高水头通过弱透水层向低水头含水层补给。

21.有效孔隙度:指有效空隙体积占多孔介质总体积之比。

22.给水度:地下水位下降一个单位深度,从地下水延伸到地表面的单位水平面积岩石柱体在重力作用下释出的水量。

23.渗流:为研究地下水的整体运动特征而引入的一种假象水流,具有实际水流的运动特点,并连续充满整个含水层。

地下水动力学

地下水动力学

地下水动力学地下水动力学主要是研究地下水在孔隙含水层,裂隙含水层及喀斯特含水层中运动规律的科学。

地下水动力学着重研究地下水向井的稳定运动和非稳定运动理论及地下水在含水层中的稳定运动和非稳定运动。

地下水运动特征及规律的研究是以数学,物理学及水力学等学科的成就为基础,应用数学分析和模拟试验等一系列的研究方法进行的。

地下水运动的实际速度总是大于其渗流速度渗透:地下水在空隙介质的空隙中运动,空隙介质是指由固体骨架和相互沟通的孔隙或裂隙(包括溶蚀裂隙等)两部分组成的整体。

地下水受重力作用在空隙介质中的运动称为渗透。

渗流:不考虑骨架,认为空隙及骨架所占的空间全都可为水流所充满;不考虑地下水实际运动途径的迂回曲折,运动方向多变,只考虑运动的总体方向,把这种概化了的假想水流称为渗流。

渗流量:单位时间通过过水断面的水量渗流速度:通过单位过水断面的流量流速水头:由液体的运动速度产生的水头高度。

研究地下水运动时,可略而不计水力坡度:J=—dLdH 渗流通过该点单位渗流途径长度上的水头损失。

(随着渗流途径增加,水头值减小,则水头值增量dH 沿渗流运动方向为负值)流线:在给定时刻,于渗流场中绘制的一些曲线,曲线上各点处的渗流速度向量均与该点处的曲线相切等水头线:渗流场中水头值相等的各点联成的面称为等水头面,在剖面上表现为等水头线 流网:在渗流场中,由流线和等水头线组成的网格称为流网一维流:在流线相互平行的渗流场中,可选择坐标系中任一坐标轴与渗流速度向量一致,此种情形下的渗流为一维流;二维流:各点的速度向量均与某一平面平行;三维流:又称空间流,各点的速度向量相互之间不平行渗透系数:表征含水介质透水性能的重要水文参数,是与空隙介质的结构特点(n 和d )及水的性质(γ和μ)相关的量K=n 322d μγ 渗透率:反应空隙介质本身的透水性能322nd渗透主方向:通常将渗透性能最强的方向与渗透性能最弱的方向称为渗透的主方向均质各向异性运动特征:在均质各向异性介质中任一点的流线相对于等水头线的法向要产生偏转,且偏向主渗透系数大的主方向。

地下水动力学第一章

地下水动力学第一章
渗透系数不仅取决于岩石的性质 (如粒度、成分、颗粒排列、充填状况、裂隙性质及其发育程度等), 而且与渗透液体的物理性质(容重、粘滞性等)有关。 理论分析表明,空隙大小对K值起主要作用
地下水动力学
第一章 渗流理论基础
通常采用的单位是cm2 或D
D是这样定义的:在液体的动力粘度为0.001Pa·s,压强差为 101325Pa的情况下,通过面积为1 cm2 、长度为1理论基础
四、渗流
“典型单元体” (REV)
(Representative elementary volume)
“典型单元体积” (V0 ) Vmin<V0<Vmax
地下水动力学
第一章 渗流理论基础
五、渗流速度(渗透速度,比流量)
在垂直于渗流方向取的一个岩石截面,称为过水断面
当渗流平行流动时,过水断面为平面,弯曲流动时则为曲面
第二阶段:非稳定流理论,1935年至今,Theis、Jacob Bear、Neuman 为代表。我国20世纪70年代开始推广。60年代国际上开始数值解(我国80年代 开始),80年代随机理论(我国上世纪末开始)。
五、前沿课题:裂隙、包气带、非均质、溶质运移(污染、海水入侵、多相、 反应)、地面沉降、随机理论、数据融合
Darcy定律的微分形式:
5
地下水动力学
第一章 渗流理论基础
Reynolds数不超过1~10时,地下水的运动才符合Darcy定律
地下水动力学
第一章 渗流理论基础
实例
当地下水通过平均粒径d=0.5mm的粗砂层,水温为 15℃时,运动粘滞度ν=0.1m2/d,当Reynolds数Re=1
为什么?
这是惯性力的影响。地下水流通道弯弯曲曲,形状、大小不断变化,水 流方向、速度、加速度连续不断变化,有时很剧烈,产生惯性力的影响。 当速度较小时,惯性力的影响不大,粘滞力占优势,水流服从Darcy定律。 速度增大,惯性力增大至占优势时, Darcy定律不再适用。

地下水动力学(第一章 渗流理论基础-1-专)

地下水动力学(第一章 渗流理论基础-1-专)

2. 贮水率和贮水系数 贮水率:面积为1单位面积,厚度为1单位 的含水层,当水头降低1单位时所能释出的 水量。用µs表示。 弹性释水:由于水头降低引起的含水层释 水现象称为弹性释水。 贮水系数:面积为1单位面积,厚度为含 水层全厚度M的含水层柱体中,当水头改变 一个单位时弹性释放或贮存的水量。用µ*表 示。 二者关系: µ* = µs M
V =V0e
−β ( p− p0 )
用Taylor级数展开,舍去高次项,得到如 下的状态方程: V = V0[1-β(p-p0)] ρ=ρ0[1+β(p-p0)]
2 多孔介质的某些性质 (1)多孔介质的孔隙性
孔隙度:指孔隙体积和多孔介质总体积之比。 孔隙度 有效孔隙:互相连通的、不为结合水所占据的那一 有效孔隙 部分孔隙。 有效孔隙度:指有效孔隙体积和多孔介质总体积之 有效孔隙度 比。 死端孔隙: 死端孔隙 一端与其它孔隙 连通,另一端是 封闭的,其中的 地下水是相对停 滞的。
是研究地下水在孔隙岩石裂隙岩石和岩溶岩石中运动规律的科它是模拟地下水流基本状态和地下水中溶质运移过程对地下水从数量上和质量上进行定量评价和合理开发利用以及兴利防害的理论基础
地下水动力学
高志娟 工程学院
绪 论 地下水动力学:是研究地下水在孔隙岩 石、裂隙岩石和岩溶岩石中运动规律的科 学。 它是模拟地下水流基本状态和地下水中 溶质运移过程,对地下水从数量上和质量 上进行定量评价和合理开发利用,以及兴 利防害的理论基础。
第一章 渗流理论基础 §1—1 渗流的基本概念
一、地下水在含水岩石中的运动 1 多孔介质:具有孔隙的岩石。 含水介质一般分为三类: 孔隙介质:含有孔隙水的岩层。 裂隙介质:含裂隙水的岩层。 岩溶(Karst)介质:含岩溶水的岩层。 2 地下水的流动类型可归纳为两类: (1)地下水沿多孔介质的孔隙或遍步于介质中的 裂隙运动; (2)地下水沿大裂隙和管道的流动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014考研《地下水动力学》考试大纲
一、考试形式和试题类型
1. 试卷满分及考试时间
试卷满分为100分,考试时间为120分钟.
2、考试方式:
闭卷、笔试。

3、考试范围及试题类型:
考试内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。

其它内容如地下水向非完整井的运动、非饱和带的地下水运动、地下水非线性运动、裂隙水运动、水动力弥散理论和地下水运动的实验模拟方法等,不作为考试的重点。

重点考核地下水运动的基本概念、基本原理和方法。

题目类型有名词解释、简答题、绘制流网、分析论述和计算题等,其中计算题占试题总分数的60%。

4、教材及参考书
(1)薛禹群主编,《地下水动力学》(第二版),地质出版社,1997;
(2)吴吉春,薛禹群主编,《地下水动力学》,中国水利水电出版社,2008
(3)其它《地下水动力学》教材亦可。

二、地下水动力学主要考核内容
一、渗流理论基础
1、考试内容
渗流的基本概念、渗流基本定律、岩层透水特征分类、渗透系数张量、等效渗透系数、流网、渗流连续性方程、承压水运动的基本微分方程、越流含水层(半承压含水层)中地下水非稳定运动基本微分方程、潜水运动的基本微分方程、定解条件、描述地下水运动数学模型及解法。

2、考试要求
(1)掌握渗流的基本概念,包括多孔介质、渗流、渗流速度、渗透系数、渗透率、导水系数、给水度、弹性给水度(储水系数或释水系数)、储水率、渗透系数张量、越流系数、水流折射、等效渗透系数、流网等;
(2)掌握渗流的基本定律(达西定律),并能用其进行相关计算;
(3)掌握流网的性质及其应用,能够徒手绘制地下水稳定运动的流网,能够用流网定性和定量分析水文地质条件;
(4)掌握渗流连续性方程、地下水非稳定运动基本微分方程和定解条件,能够依据给定的水文地质物理模型,建立描述地下水运动的数学模型及定解条件;
(5)了解求解地下水数学模型的有限差分方法。

二、河渠间地下水的稳定运动
1、考试内容:
有入渗时潜水的稳定运动、无入渗时潜水的稳定运动、承压水的稳定
运动、潜水-承压水的稳定运动
2、考试要求
1、掌握河渠间地下水的稳定运动的特点,建立并求解河渠间地下水稳定运动的数学模型;
2、掌握计算河渠间潜水稳定流任意过水断面单宽流量和水头、分水岭位置的计算公式,能够灵活选择并运用公式进行有关渗流计算;
3、掌握潜水一维稳定流、承压水一维稳定流和潜水—承压水一维稳定流条件下,任意过水断面流量和水头的计算方法,能够灵活选择并运用公式进行有关渗流计算。

4、能够绘制河渠间地下水稳定运动时的流网,并定性分析水文地质条件。

三、地下水向完整井的稳定运动
1、考试内容
水井的类型、地下水向承压水井和潜水井的稳定流动、越流含水层中地下水向承压水井的稳定流动、流量和水位降深经验公式、地下水向干扰井群的稳定运动、叠加原理的应用。

2、考试要求:
(1)掌握地下水向承压水井和潜水井的稳定流动的方程和求解方法,熟悉公式的适用条件;
(2)牢记潜水和承压水的Dupuit公式,能熟练利用这些公式计算水井流量或降深;
(3)掌握越流的概念及其井流计算方法;
(4)掌握叠加原理并能进行干扰井群的地下水运动计算;
(5)熟悉流量和水位降深的关系的经验公式;
(6)了解均匀流中的井周围流场特征,井损与有效井径的确定方法。

四、地下水向完整井的非稳定运动
1、考试内容
承压含水层中的完整井流和Theis公式、有越流补给的完整井流、有弱透水层弹性释水补给和越流补给的完整井流、潜水完整井流。

2、考试要求
(1)掌握泰斯(Theis)公式、雅格布(Jacob)近似公式及使用条件;能够运用这些公式进行相关计算;
(2)掌握利用抽水试验数据求水文地质参数的直线图解法和配线法,能够运用直线图解法和配线法求水文地质参数;
(3)掌握潜水重力滞后给水的概念,了解潜水完整井的非稳定运动Boulton模型、Neuman模型及其适用条件。

五、地下水向边界附近井的运动
1、考试内容
镜像法原理及直线边界附近的井流、扇形含水层中的井流、条形含水层中的井流。

2、考试要求:
(1)掌握镜像法原理及抽水井和边界的映射规则;
(2)能够应用叠加原理进行井群的计算。

相关文档
最新文档