电力系统谐波

合集下载

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统质量的一个不容忽视的因素。

谐波不仅会导致电力设备的损坏,还会增加电能损耗,降低电力系统的可靠性。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有十分重要的意义。

一、谐波的产生要理解谐波,首先需要了解它的产生原因。

谐波主要来源于电力系统中的非线性负载。

常见的非线性负载包括各种电力电子设备,如变频器、整流器、逆变器等,以及电弧炉、荧光灯等。

以变频器为例,它通过对电源进行快速的通断控制来实现对电机转速的调节。

在这个过程中,电流和电压的波形不再是标准的正弦波,而是包含了各种频率的谐波成分。

整流器在将交流电转换为直流电的过程中,由于其工作特性,也会产生谐波。

同样,电弧炉在工作时,电弧的不稳定燃烧会导致电流的剧烈变化,从而产生谐波。

二、谐波的危害谐波的存在给电力系统带来了诸多危害。

对电力设备而言,谐波会使变压器、电动机等设备产生额外的损耗,导致设备发热增加,缩短使用寿命。

对于电容器来说,谐波电流可能会使其过载甚至损坏。

在电能质量方面,谐波会导致电压和电流波形的畸变,使电能质量下降,影响用电设备的正常运行。

例如,对于计算机等精密电子设备,谐波可能会引起数据丢失、误操作等问题。

此外,谐波还会增加电力系统的无功功率,降低功率因数,从而增加线路损耗和电能浪费。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析。

目前,常用的谐波分析方法主要有傅里叶变换、小波变换和瞬时无功功率理论等。

傅里叶变换是谐波分析中最常用的方法之一。

它可以将一个复杂的周期性信号分解为不同频率的正弦波分量,从而得到各次谐波的幅值和相位信息。

然而,傅里叶变换在处理非平稳信号时存在一定的局限性。

小波变换则能够很好地处理非平稳信号,它通过对信号进行多尺度分析,可以更准确地捕捉到信号在不同时间和频率上的特征。

电力系统中谐波问题如何治理

电力系统中谐波问题如何治理

电力系统中谐波问题如何治理在当今的电力系统中,谐波问题日益凸显,给电力设备的正常运行和电力质量带来了诸多挑战。

那么,究竟什么是谐波?它又是如何产生的?更重要的是,我们应该如何有效地治理它呢?首先,让我们来了解一下谐波的概念。

简单来说,谐波是指在电力系统中,电流或电压的频率不是基波频率(通常为 50Hz 或 60Hz)整数倍的分量。

这些谐波分量会导致电力系统中的电流和电压波形发生畸变,从而影响电力设备的性能和使用寿命。

谐波的产生原因是多种多样的。

其中,电力电子设备的广泛应用是主要原因之一。

例如,变频器、整流器、逆变器等在工作时会产生大量的谐波电流注入到电力系统中。

此外,电弧炉、电焊机等非线性负载也会产生谐波。

那么,谐波问题会给电力系统带来哪些危害呢?一方面,它会增加电力设备的损耗,导致设备发热、效率降低,缩短设备的使用寿命。

例如,变压器在谐波的作用下,铁芯损耗会显著增加,容易出现过热现象。

另一方面,谐波会影响电力系统的稳定性,可能导致继电保护装置误动作,影响电力系统的安全可靠运行。

同时,谐波还会对通信系统产生干扰,影响通信质量。

既然谐波问题如此严重,我们应该如何治理呢?目前,主要的治理方法可以分为无源滤波和有源滤波两大类。

无源滤波是一种传统的谐波治理方法,它通过电感、电容等无源元件组成滤波器,对特定频率的谐波进行滤波。

无源滤波器结构简单、成本较低,但存在一些局限性。

例如,它的滤波效果容易受到系统参数变化的影响,而且只能对固定频率的谐波进行有效滤波。

有源滤波则是一种较为先进的谐波治理技术。

它通过实时检测电力系统中的谐波电流,并产生与之大小相等、方向相反的补偿电流注入到系统中,从而实现谐波的动态补偿。

有源滤波器具有响应速度快、滤波效果好、能够适应系统参数变化等优点,但成本相对较高。

除了滤波技术,改善电力系统的设计和运行管理也是治理谐波的重要措施。

在电力系统规划和设计阶段,应合理选择电力设备,尽量减少非线性负载的接入。

电力系统中的谐波问题与分析技术研究

电力系统中的谐波问题与分析技术研究

电力系统中的谐波问题与分析技术研究引言:现代社会对电力的需求越来越大,电力系统的稳定运行对于社会经济的发展至关重要。

然而,电力系统在运行过程中会面临一些问题,如谐波问题。

谐波是电力系统中的一种普遍现象,它对系统的稳定性和设备的正常运行产生了不可忽视的影响。

因此,对电力系统中的谐波问题进行深入研究和分析,提出相应的解决方法和技术手段是非常必要的。

一、谐波问题的定义与影响1. 谐波的定义谐波是指电力系统中存在的频率是基波频率整数倍的谐振现象。

电力系统中产生谐波的主要原因包括非线性负载、发电机组的谐波励磁和谐波源的接入等。

谐波问题主要表现在电压和电流波形畸变、系统损耗增加以及设备寿命缩短等方面。

2. 谐波问题的影响谐波对电力系统的影响主要体现在以下几个方面:(1)设备损坏:谐波会导致电力设备的工作电流和温度升高,进而加速设备的老化和损坏;(2)电网损失:谐波会导致电网中的有功和无功损失增加,降低系统的效率;(3)通信干扰:谐波会对通信设备产生干扰,降低通信质量和可靠性。

二、谐波分析技术为了解决电力系统中的谐波问题,需要进行谐波分析,找出谐波源,并提出相应的处理措施。

目前,谐波分析技术主要包括频谱分析和时域分析两种方法。

1. 频谱分析频谱分析是通过观察电力系统中各频率成分的振幅和相位关系,以及谐波频率分布情况来分析谐波问题。

常用的频谱分析方法包括傅里叶变换和小波变换。

(1)傅里叶变换傅里叶变换能够将信号在频域中分解成各个频率成分,并得到各频率成分的幅度和相位信息。

通过对电压或电流波形进行傅里叶变换,可以得到具体的谐波频率及其振幅,从而判断谐波的产生原因。

(2)小波变换小波变换是一种时频分析方法,能够同时提供时间和频率信息。

它通过对信号进行连续的分解,得到各个频率成分在时域和频域上的分布情况,更能反映谐波在时间上的变化特性。

2. 时域分析时域分析是通过观察电力系统中各时刻的电压和电流波形来分析谐波问题。

常用的时域分析方法包括快速傅里叶变换和窗函数法。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波是指频率是电力系统基波频率的整数倍的电压或电流波形,其频率通常为50Hz或60Hz。

谐波是电力系统中的一种电磁干扰,可能引起许多问题和危害,包括设备的过热、降低效率、产生故障以及影响电力网络的稳定性。

谐波的产生主要是由于非线性负载和电源引起的,下面将详细讨论谐波的危害与产生。

谐波的危害:1. 电力设备过热:谐波会导致设备内部的电压和电流波形畸变,造成设备的过载和过热。

设备过热会导致设备寿命缩短,甚至发生火灾等危险。

2. 降低设备效率:设备在谐波环境下工作时,可能会发生电流滞后和电压损失,导致设备的效率降低。

例如,变压器在谐波环境下由于电流滞后而产生降温,这会导致能量损失和电力供应的不稳定。

3. 产生设备故障:谐波会导致设备的电压和电流波形失真,从而损坏设备的绝缘性能和电线连接,引发故障。

例如,变频器引起的谐波可能导致电机绝缘击穿,造成电机损坏。

4. 影响电力网络的稳定性:谐波会改变电力系统的频谱特性,降低系统的稳定性。

谐波的存在可能导致电力网络中的共振现象,引起电压和电流的不稳定性,进一步导致电力系统的故障。

谐波的产生:1. 非线性负载:非线性负载是指对电压和电流响应非线性的负载设备。

这些设备通常包括整流器、变频器、电弧炉、放电灯等。

非线性负载会引起谐波电流的产生,造成电力系统的谐波问题。

2. 电源:电源本身也可能产生谐波。

例如,由于电力系统中存在电压降低和电压暂降,电源系统中的设备可能引入谐波频率。

3. 并联谐波滤波器:并联谐波滤波器通常用于减少负载设备引起的谐波,但滤波器本身可能引入谐波频率。

4. 反射和谐波:电力系统中的传输线上的谐波可能会反射,并返回到电源系统中,从而产生额外的谐波。

为减少谐波的危害,可以采取以下措施:1. 负载侧的措施:使用非线性负载时,可以采取滤波器、谐波限制器等措施来减少谐波的产生。

2. 电源侧的措施:电源系统应具备良好的谐波抑制能力,可以采用对称三相电源供应、提高电源的电压和频率稳定性等措施。

电力系统谐波基本原理

电力系统谐波基本原理

电力系统谐波基本原理一、谐波定义谐波是指一个周期电气量的正弦波分量,其频率为基波频率的整数倍。

在电力系统中,谐波产生的根本原因是由于非线性负载所致。

当电流流经非线性负载时,负载不能吸收全部的基波能量,剩余的部分就会以高次谐波的形式释放出来。

二、谐波产生电力系统中的谐波主要来源于两方面:一方面是由于发电机和变压器等元件的非线性特性;另一方面是由于电力电子设备、整流器、逆变器等的大量应用。

这些设备在正常工作时会产生大量的谐波电流,注入到电力系统中,对电力系统造成影响。

三、谐波频率谐波的频率是基波频率的整数倍。

对于50Hz的基波频率,其产生的谐波主要为50Hz、100Hz、150Hz等。

对于400Hz的基波频率,其产生的谐波主要为400Hz、800Hz、1200Hz等。

四、谐波影响谐波对电力系统的影响是多方面的,主要表现在以下几个方面:1. 增加电力损耗:由于谐波的存在,会导致线损增加,特别是在高次谐波的场合下,线损会更加明显。

2. 影响设备正常运行:谐波会导致变压器、电动机等设备的效率降低,甚至引发设备故障。

3. 干扰通信系统:高次谐波会对通信线路产生干扰,影响通信质量。

4. 引发继电保护误动作:谐波会导致继电保护装置误动作,从而引发停电事故。

5. 影响电子设备:对于电子设备来说,谐波会影响其正常工作,导致设备性能下降。

五、谐波抑制为了减小谐波对电力系统的影响,需要采取相应的措施来抑制谐波的产生和传播。

常用的抑制谐波的方法包括:1. 改善供电系统设计:采用合适的变压器连接方式和合理的供电布局,降低系统中各元件的谐波产生量。

2. 增加无功补偿装置:通过在系统中增加无功补偿装置,可以提高系统的功率因数,减小谐波电流。

3. 采用滤波器:滤波器是抑制谐波的重要手段之一,可以通过滤波器将特定频率的谐波进行过滤。

4. 使用有源滤波器:有源滤波器能够主动产生与谐波大小相等、方向相反的电流,对系统中的谐波进行补偿,达到消除谐波的目的。

电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。

谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。

谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。

常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。

谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。

2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。

3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。

为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。

它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。

2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。

3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。

4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。

5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。

综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。

通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波的危害与产生谐波指的是频率为基波频率的倍数的电信号成分,在电力系统中的原因有很多,比如电力设备的非线性负载、电子设备的交流-直流变换等。

虽然谐波信号的功率一般较低,但由于其具有频率较高、波形失真的特点,对电力系统和电力设备的运行安全和电能质量造成了一定的影响和危害。

一、对电力设备的危害1.导致设备过热:谐波信号导致电流和电压波形失真,使电力设备的磁路饱和,导致设备出现额外的损耗,产生额外的热量,从而导致设备过热、老化、性能降低。

2.损害设备绝缘:谐波会提高设备绝缘材料的介质损耗角正切值,使设备的绝缘等级下降,从而导致电气设备的绝缘性能降低。

3.损伤电动机:谐波信号会使电动机的转矩波形失真,加剧机械振动,引起转子的加速损伤或者负载不平衡问题,从而降低电动机的性能。

4.降低电力设备的寿命:谐波会使电力设备的运行稳定性降低,电力设备的寿命也随之降低。

二、对电能质量的危害1.导致电能损耗:谐波会使电能的传输损耗增大,电能的利用效率降低,从而造成电能浪费。

2.引起电压波动:谐波会使电源电压的总谐波畸变THD值增大,从而导致电源电压的变化、波动明显。

3.引起电流不平衡:谐波信号会加剧相间电流之间的差异,导致电流的不平衡问题,从而影响电力系统的运行稳定性和性能。

4.影响电力系统的稳定性:谐波会使电力系统的总谐波畸变THD值较大,从而影响电力系统的稳定性和电能质量。

为减小谐波的危害,可采取以下措施:1.选择适当的电力设备,如交流电动机、逆变器、电子变压器等,以减小非线性负载对电力系统产生的谐波。

2.配置滤波器装置,用于消除电力系统中的谐波信号。

3.加强电力设备的维护与管理,延长设备的寿命,减少谐波产生的数量。

4.优化电力系统的运行参数,如改善电力系统的谐波阻抗,减小电力系统的谐波电流等。

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统性能的一个重要因素。

谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。

一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。

在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。

2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。

3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。

二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。

2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。

3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。

4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。

常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。

通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。

2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。

电力系统谐波的危害及其常用抑制方法

电力系统谐波的危害及其常用抑制方法

电力系统谐波的危害及其常用抑制方法电力系统中的谐波是指频率为基波频率的整数倍的电压和电流成分,它们在电力系统中的存在会引起一系列的问题和危害。

下面将详细介绍电力系统谐波的危害及其常用抑制方法。

一、谐波的危害1.电压失真:谐波的存在会使电压波形发生畸变,进而导致电压的失真,使电力设备无法正常运行。

电压失真还会对电力设备造成较大的冲击和损害,缩短设备的寿命。

2.系统能效下降:谐波会导致电力系统中电流的失真,由于谐波电流引起的额外功耗,使得系统能效下降。

这会导致电力设备的能耗增加,降低整个系统的效率。

4.电磁兼容性问题:谐波信号会干扰电力系统周围的其他电子设备,导致电磁兼容性问题。

这会对邻近的电子设备造成干扰,影响设备的正常运行。

5.高频谐波产生的热问题:高频谐波会导致电力设备产生过多的热量,进而引起绝缘材料的老化和烧损,甚至造成火灾。

这对电力系统的安全性构成严重威胁。

二、谐波抑制的常用方法1.变压器和电机的设计优化:在变压器和电机的设计中考虑谐波的影响,通过选择合适的材料和结构,减小谐波对设备的影响。

例如,在电机设计中,可以增加骨架的厚度或配置合适的磁路副将谐波分向其他通道。

2.滤波器的应用:安装合适的滤波器可以有效地抑制谐波。

滤波器可以通过改变电源电路的阻抗特性,将谐波电流引向滤波器,从而减小谐波的水平。

4.负载侧的谐波抑制:对于谐波敏感的设备,可以在负载侧采取一些措施来抑制谐波。

例如,使用谐波阻抗装置或磁性隔离器等。

5.教育和培训:提高电力系统从业人员对谐波问题的认识和理解,增强其对谐波抑制方法的应用能力,能够及时发现和解决谐波问题。

总之,谐波对电力系统的危害不容忽视。

为了保证电力系统的正常运行和设备的安全性,需要采取有效的措施来抑制谐波。

以上所提到的方法是目前常用的谐波抑制方法,但需要根据具体情况选择合适的方法。

电力系统谐波的研究与治理

电力系统谐波的研究与治理

分析方法包括:频域分析、时域分析和统 计方法等。
分析过程中需要考虑电力系统的运 行状态、负荷特性和设备参数等因 素,以便更准确地分析谐波的影响 。
03
电力系统谐波治理方案
无源滤波器
总结词
无源滤波器是一种常见的谐波治理方案,具有结构简单、运行可靠、成本低等优 点。
详细描述
无源滤波器主要由电感、电容和电阻组成,通过设计合理的电路参数,可以滤除 电力系统中的谐波电流。无源滤波器通常安装在电力系统中,对特定频率的谐波 电流进行滤除,同时还可以改善系统的功率因数。
有源滤波器
总结词
有源滤波器是一种先进的谐波治理方案,能够实时监测和补 偿电力系统中的谐波电流。
详细描述
有源滤波器通过采样和计算,实时监测系统中的谐波电流, 并产生相应的补偿电流进行抵消。有源滤波器具有灵活性和 可扩展性,可以同时补偿多个谐波频段,对谐波电流进行动 态跟踪和补偿。
混合滤波器
总结词
混合滤波器是一种综合方案,结合了无源滤波器和有源滤波器的优点,具有更高的治理效果和更低的成本。
未来发展趋势
智能化发展
随着人工智能和大数据技术的进步,电力系统谐波治理将更加智 能化,包括智能检测、智能分析和智能控制等方面。
模块化与集成化发展
未来电力系统谐波治理将更加注重模块化和集成化,以提高治理 效果和降低成本。
绿色环保发展
随着环保意识的提高,电力系统谐波治理将更加注重绿色环保,减 少对环境的影响。
该电网公司采用了无源滤波器、有源 滤波器、静止无功补偿装置等多种技 术手段进行治理。其中,无源滤波器 主要针对特定频率的谐波进行滤除, 有源滤波器则主动消除谐波,而静止 无功补偿装置则用于动态调节无功功 率。

电力系统中的谐波分析技术及应用教程

电力系统中的谐波分析技术及应用教程

电力系统中的谐波分析技术及应用教程简介:在电力系统中,谐波分析技术被广泛应用于电力质量监测与评估、设备故障诊断与排除、谐波滤波器的设计等方面。

本文将介绍电力系统中谐波分析的基本原理、常用的谐波分析方法以及谐波分析在电力系统中的应用。

一、谐波分析的基本原理1.1 谐波的概念谐波是指波形与基波具有相同频率但具有不同幅值和相位的波形。

在电力系统中,谐波是由非线性负载和电力设备引起的。

常见的负载谐波包括电弧炉、变频器、电子设备等。

1.2 谐波分析的原理谐波分析的基本原理是将电力系统中的电压和电流信号经过傅里叶变换,将复杂的波形分解为一系列的正弦波,然后通过计算得到各个谐波分量的频率、幅值和相位。

根据这些参数,可以评估电力系统中的谐波程度,进而采取相应的措施进行修复或优化。

二、谐波分析方法2.1 快速傅里叶变换(FFT)快速傅里叶变换是最常用的谐波分析方法之一,它可以将时域信号转换为频域信号。

通过FFT分析,可以得到电力系统中各个谐波分量的频率、幅值和相位,并进一步计算谐波总畸变率(THD)等参数。

FFT算法的优势在于高速、高效,并且可以利用现有的计算平台进行实时分析。

2.2 小波变换小波变换是一种时频分析方法,可以同时提供时间域和频域信息。

相比于FFT,小波变换在时域和频域的分辨率上更具优势,能够更准确地分析瞬态过程和短时谐波。

小波变换在电力系统中的应用越来越广泛。

2.3 自适应滤波器法自适应滤波器法结合了信号处理和协方差分析原理,可以自动识别和消除电力系统中的谐波。

通过建立自适应滤波器,可以实时跟踪电力系统中的谐波分量,并对其进行有效的滤波补偿。

自适应滤波器法在电力系统的谐波控制中具有重要的应用价值。

三、谐波分析在电力系统中的应用3.1 电力质量监测与评估谐波对电力质量产生显著的影响,会导致电压波动、电流畸变、设备损坏等问题。

通过谐波分析,可以准确评估电力系统中的谐波情况,及时发现潜在问题,并采取措施改善电力质量。

电力系统中的谐波治理

电力系统中的谐波治理

电力系统中的谐波治理电力系统中的谐波是指频率为基波频率的整数倍的电压或电流的波动。

它们可能是由非线性负载引起的,如电脑、UPS、LED照明、变频器、电动机等。

谐波不仅会影响电力系统的稳定性和电能质量,还会给设备带来潜在的损害。

因此,对电力系统中的谐波进行治理至关重要。

在进行谐波治理之前,需要先了解谐波的特性。

谐波的主要特性包括:频率、振幅、相位、波形和谐波总畸变率(THD)。

其中,THD是指总谐波含量与基波电压或电流的比值。

THD越高,电能质量越差,设备受到的影响也越大。

治理谐波的方法主要包括:被动治理和主动治理。

被动治理是通过安装谐波滤波器等被动元件来限制谐波传播,从而达到治理的目的。

主动治理则是通过控制非线性负载,减少谐波的产生。

被动治理不仅可以减少谐波对电网的影响,还能够提高设备的寿命和可靠性。

但是,被动治理有其局限性,比如无法处理谐波产生的根本问题。

主动治理则可以从根本上解决谐波产生的问题,但成本较高,需要配备高度控制的设备。

被动治理中最常见的方法是安装滤波器,如谐波停波器、谐波抑制器等。

谐波停波器是一种被动电子设备,它可以用来过滤电路中的谐波。

谐波停波器主要由电感、电容和电阻等元件组成,其作用是消除电路中的高频噪声。

谐波抑制器是一种被动元件,它可以消除电力系统中谐波对设备的影响。

谐波抑制器主要由电感、电容和电阻等元件组成。

主动治理主要有以下几个方面:调整电脑、LED照明、UPS等非线性负载的工作状态;使用有源滤波器和多电平变频器等技术;使用LCL型滤波器等,从而控制谐波的产生和分布。

调整非线性负载的工作状态,可以减少谐波的产生,从而降低谐波的总畸变率。

有源滤波器可以根据实际需要自动选择不同的滤波器参数,从而达到滤波的目的。

多电平变频器可以产生多种不同频率的电压,从而控制谐波的产生和分布。

LCL型滤波器则可以限制谐波的传播,从而提高电能质量和设备的寿命。

在电力系统中,谐波治理需要遵循以下几个原则:首先,应尽可能采取前端控制措施,控制接入电网的非线性负载;其次,应优先考虑被动治理措施,如安装谐波滤波器等;最后,如果被动治理无法满足要求,应考虑采用主动治理措施。

电力系统谐波影响及消除

电力系统谐波影响及消除

电力系统谐波影响及消除电力系统中的谐波是指频率为基波频率的整数倍的电压或电流成分。

谐波会对电力系统产生一系列负面影响,如降低设备的效率、增加设备的损耗、引起电力系统的不稳定等。

因此,消除电力系统中的谐波是十分重要的。

谐波对电力系统的影响主要体现在以下几个方面:1.降低设备的效率:谐波使电压和电流波形失真,导致电力设备工作在非线性区域,增加了电力设备的损耗,降低了设备的效率。

尤其是对于变压器、电机等负载设备,谐波会导致设备温升增加、损耗加大,严重时还会引起设备损坏。

2.增加电力设备的损耗:谐波在电力系统中会产生大量的功率损耗,增加电力设备的负荷,使设备的损耗增加。

特别是在高谐波环境下,电力设备的损耗可能会增加几倍甚至十几倍,导致设备寿命大幅缩短。

3.引起电力系统的不稳定:谐波会导致系统电压和电流频谱产生畸变,引起供电质量下降,造成电力系统的不稳定。

尤其是在电力系统中存在共振点的情况下,谐波会引起系统共振,导致电压失真增大、频率波动等问题,进一步影响电力系统的稳定运行。

消除电力系统中的谐波可以采取以下几种方法:1.添加谐波滤波器:谐波滤波器是一种专门用于消除电力系统中谐波的装置。

通过选择合适的谐波滤波器,可以将谐波电流和谐波电压从电力系统中分离出来,减少其对系统的影响。

2.更新设备:对于已经老化的电力设备,特别是变压器、电机等,可以考虑进行更新,采用能够抵抗谐波干扰的新型设备。

新型设备通常具有更好的谐波抑制能力,可以减少谐波对设备的影响。

4.加强电力系统的维护和管理:定期对电力系统进行检查和维护,及时发现和处理谐波问题,可以有效地减少谐波对电力系统的影响。

此外,加强对电力系统的管理,合理规划电力负载,避免负载过大或不平衡,也能够降低谐波的产生和传播。

综上所述,电力系统中的谐波会对系统产生诸多负面影响,因此,消除谐波是电力系统运行和设备保护的重要任务。

通过采取合适的技术手段和管理措施,可以有效地消除谐波,提高电力系统的运行稳定性和设备的使用寿命。

2024年电力系统中谐波的危害与产生(三篇)

2024年电力系统中谐波的危害与产生(三篇)

2024年电力系统中谐波的危害与产生电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。

本文全面论述了电力系统中谐波的危害及产生情况,希望能引起我们的高度重视。

谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面:1.对供配电线路的危害(1)影响线路的稳定运行供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。

但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。

晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。

这样,谐波将严重威胁供配电系统的稳定与安全运行。

(2)影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。

如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。

另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。

2.对电力设备的危害对电力电容器的危害当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。

对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。

尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。

另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。

电力系统谐波

电力系统谐波

中 文 摘 要I摘 要近年来,随着电力电子技术的发展,电网中具有非线性、冲击性和不平衡用电特性的负荷不断增加,产生大量谐波。

电网中的谐波污染日益严重,影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。

本文首先针对谐波问题,叙述了谐波产生原因、危害等,并介绍了谐波抑制方法。

其中,有源电力滤波器是抑制电网谐波的有效手段之一,这种滤波器能对频率和幅度都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到了广泛重视。

其次,对有源电力滤波器的基本原理、分类和基本组成进行了阐述。

本文重点研究了谐波电流的检测方法。

本文对平均功率理论和瞬时功率理论进行了分析、比较,指出了它们适用的范围及优缺点。

详细介绍了瞬时基于无功功率理论的几种谐波和无功电流检测方法:p-q 检测法和q p i i -检测法,并分析了它们的检测原理、特点及使用局限性。

本文建立MATLAB/Simulink 的仿真模型,着重对基于瞬时无功功率理论的几种谐波电流检测方法:p-q 检测法、q p i i -检测法分别进行仿真,并对比仿真结果,得出较好的谐波或无功电流检测方案。

针对不同的负载和负载突变情况进行了仿真,得出不同方法的使用条件和最优结果。

关键词:有源电力滤波器,瞬时无功功率,电流检测,仿真ARSTRACTIIAbstractIn recent years, with the development of power grids, converters are to be a wide range of development and application. Though its large-scale transformation of the energy and transport play a significant role, it also brought pollution to the power grid, resulting in a harmonic. These harmonics to the electrical equipment hazards. For harmonic suppression and reactive power, power system applications of the filter. However, the shortcomings of passive power filter, active power filter has been a rapid development.Harmonic suppression method of filtering technology are mainly passive and active power filter technology. Active power filter technology and passive power filter technology, with little effect by the grid impedance, dynamic compensation to the advantages of harmonic pollution in governance has played a leading role. Active power filter of the study focused on the main circuit structure of the form (in series, parallel and series-parallel), harmonic current detection method and the compensation current control methods. This article focuses on the harmonic current detection method.This paper analyzes the emergence of power system harmonics and hazards, of power theory and the theory of instantaneous power analysis, comparison, pointing out that their scope and the advantages and disadvantages. Detailed information on the instantaneous reactive power theory based on the number of harmonics and reactive current detecting method, p-q detection method, q p i i detection method and analysis of their detection principle, characteristics and use limitation.MATLAB / Simulink simulation model, focusing on instantaneous reactive power based on the theory of harmonic current detection method of p-q detection method and q p i i -detection method simulations, were carried out and compared the experimental results, obtaining better harmonics or reactive current detection program. For different mutation load and load simulation experiments, the use of differentARSTRACTmethods to arrive at the conditions and optimal results.Keywords:active power filter , instantaneous reactive power , current detection , simulationIII目 录IV目 录摘 要 ............................................................................................................. I ABSTRACT . (II)第一章 绪论 (1)1.1谐波的发展及现状 (1)1.2电力系统谐波的产生原因及其危害 (2)1.2.1 谐波产生原因 (2)1.2.2 电力系统谐波的危害及对电能计量的影响 (2)第二章 谐波及有源电力滤波器的基本概念及原理 (4)2.1电力系统有关谐波的基本概念及含义 (4)2.1.1 谐波的定义 (4)2.1.2 谐波分析中的常用概念 (5)2.2有源电力滤波器技术的提出 (6)2.2.1 无源电力滤波器 (6)2.2.2 有源电力滤波器 (7)2.3有源电力滤波器的组成、原理和发展趋势 (7)2.3.1 有源电力滤波器的基本结构和工作原理 (7)2.3.2 有源电力滤波器的分类 (8)2.3.3 有源电力滤波器的发展趋势 (9)2.4有源电力滤波器的谐波电流检测技术及其发展 (10)第三章 无功功率理论 (12)3.1平均功率理论 (12)3.20 坐标系下瞬时无功理论 (13)3.3 0dq 坐标系下瞬时无功理论 (18)3.4 无功功率理论的对比研究 (21)目 录V3.4.1平均功率理论 (21)3.4.2瞬时功率理论 (21)第四章 基于瞬时无功理论的谐波电流检测法 (23)4.1三相三线制电路 (23)4.1.1q p -检测法 (23)4.1.2 ip-iq 检测法 (24)4.2 三相四线制电路 .................................................................错误!未定义书签。

电力系统谐波

电力系统谐波

11
0
( 4 ) 控制角 0 ,即相当于不可控整流。
2、A相电压和A相电流
13
图2-4
A相电压和简化后A相电流的波形
3、对A相电流进行傅立叶级数分解
1 1 ia (sin t sin 5 t sin 7 t 5 7 1 1 1 sin 11 t sin 13 t sin 17 t 11 13 17 1 sin 19 t ) 19 2 3Id
24
三、谐波特点:
1、谐波电流与输出电流脉动系数有关. 2、 5次谐波的幅值最高,而且随着r的 增加单调增加 . 3、其它谐波则只在一定的范围内变化.
25
图2-17 具有电感负载的6脉动整流 In与r 的关系
第四节 变压器的非正弦励磁电流
一、空载变压器的励磁电流
1、畸变原因: 若外施电压为: u U m sin t 则磁通 Um Φ cost Φm sin(t ) w 2 由于 f (i0 ) 为非线性曲线,故励磁电 流 i0 为尖顶波
26
28
第五节 电力机车产生的谐波
一、电力机车的工作原理
29
图2-24
电力机车整流回路原理接线图
图2-23 韶山—I型电力机车原理 接线图( 牵引工作状态 )
31
图 2-25 (a) 整流回路电流;
机车电流波 (b) 整流变压器原方电流
31
三、电力机车产生谐波电流的特点
1、机车电流的波形中只包含奇次谐 波。 2、谐波成分和大小随机车载重和行 车速度的变化而变化。 3、当考虑到换相重叠角时,波形更 接近于正弦波,高次谐波幅值减小。
0.219 0.0103
24
3、波形的傅立叶分解 基波幅值:

电力系统中的谐波

电力系统中的谐波

2)电子荧光灯镇流器: 电子荧光灯镇流器近年被大量采用.它的优点 是在工作于高频时可显著提高灯管的效率,而其缺 点是其逆变器在电源电流中产生谐波和电气噪声. 使用带有功率因数校正的型号产品可减少谐波,但 成本昂贵. (3)直流调速传动装置: 直流电动机的调速控制器通常采用三相桥式整 流电路,它也称作六脉冲桥式整流电路,因为在直 流输出侧每周波内有六个脉冲(在每相的半波上有一 个).直流电动机的电感是有限的,故在直流电流中 有300Hz的脉动波(即为供电频率的6倍),这就改变 了供电电流的波形.
率是基频的整倍数,例如基频为50Hz,二次 率是基频的整倍数, 谐波为100Hz,三次谐波则为150Hz.因此畸
2,产生谐波的设备
所有的非线性负荷都能产生谐波电流,产生谐波的设备 类型有:开关模式电源(SMPS),电子荧火灯镇流器,调速 传动装置,不间断电源(UPS),磁性铁芯设备及某些家用电
器如电视机等.
电力系统中的谐波分析
谐波的产生,危害及抑制
电气工程07-2 董洪凯
一 ,谐波的定义 二 ,谐波的产生 三 ,电力系统中谐波的危害 四 ,电力系统中谐波的分析和抑制 五 ,小结 六 ,参考文献 七 ,致谢
一,谐波的定义
什么叫谐波? 有关谐波的数学分析在18世纪和19世纪已经奠定了良好的 基础.傅里叶等人提出的谐波分析方法至今仍被广泛应用.谐 波是一个数学或物理学概念,是指周期函数或周期性的波形中 不能用常数,与原函数的最小正周期相同的正弦函数和余弦函 数的线性组合表达的部分. "谐波"一词起源于声学. 电力系统的谐波问题早在20世纪20年代和30年代就引起了 人们的注意.当时在德国,由于使用静止汞弧变流器而造成了 电压,电流波形的畸变.1945年J.C.Read发表的有关变流器 谐波的论文是早期有关谐波研究的经典论文. 定义:谐波是指电流中所含有的频率为基波的整数倍的电 量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其 余大于基波频率的电流产生的电量.

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中的谐波是指频率不同于基波频率的周期性电压或电流成分。

谐波是由非线性负载引起的,诸如电力电子装置(如变频器、整流装置、电弧炉)等。

它们产生的谐波电流会通过电力系统的线路和设备传播,对电力系统和相关设备产生一定的危害。

下面将详细讨论谐波的危害和产生原因。

首先,谐波对电力系统的主要危害包括以下几个方面:1. 电力质量损害:谐波会导致电网电压波形失真,破坏电网电压的纯度和稳定性。

谐波电流进入电网后,会导致电网频率响应下降,严重时会引发电网失供故障。

2. 线路过载:谐波电流会导致电力系统中的导线和变压器等设备过载。

这是因为谐波电流具有较高的频率,使得设备的额定电流在该频率范围内有效值变大。

3. 电磁干扰:谐波产生的电磁场会对电力系统周围的通讯设备、调控系统和其他敏感设备产生干扰。

这些干扰可能导致设备的误操作或数据传输错误。

4. 电力设备损坏:谐波会引起电力设备内部的电场和磁场分布不均匀,导致绝缘损坏和局部热点。

同时,谐波还会产生机械振动和声音,对设备的机械结构造成损害。

其次,谐波的产生主要源于以下几个因素:1. 非线性负载:非线性电子元器件和负载(如电力电子装置)是主要的谐波源。

它们的工作原理要求电流和电压之间的关系不是线性的,这就会产生非基波的电流和电压成分。

2. 不平衡负载:不平衡电网或不平衡负载会引入谐波电流。

此类条件下的非对称性会产生额外的谐波电流成分。

3. 非线性磁性元件:磁性元件(如变压器和电感器)的饱和和非线性特性也会导致谐波的产生。

这是因为在这些元件中,电流和磁场之间的关系不是线性的。

4. 电力电子装置的开关操作:电力电子装置的开关(如IGBT 和MOSFET)引起了电流和电压瞬时变化,从而引入谐波电流和电压。

为了减轻谐波对电力系统的危害,可以采取以下措施:1. 选择低谐波负载和电力电子设备:在设计和采购阶段选择低谐波负载和电力电子设备,这将减少谐波电流和电压的产生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈电力系统谐波
摘要:本文介绍了谐波的产生、来源以及并联谐振和串联谐振,谐波对电网以及其他用电设备的不良影响。

并简要地介绍了负序的概念和它的产生原因。

对其影响做了定性的论述,最后对当今谐波的滤除方法做了介绍,主要包括无源滤波器以及有源滤波器对谐波进行滤除。

关键词:谐波;滤波器;电力系统
中图分类号:tm714 文献标识码:a 文章编号:1674-7712 (2013)02-0217-01
一、电力系统谐波简介
谐波是电力系统中一种较频繁出现的有害现象,由于它的产生会对电力系统产生很大的负面影响,已经引起人们对他的担忧和关注。

当在电力系统中接入非线性负载时,即使电源都以国家标准频率供电,当工频电压或电流作用于非线性负载时,除了产生工频频率的正弦电压或电流,还会产生不同于工频的其它频率的正弦电压或电流,若对这些电压或电流用富氏级数展开,就会得到电力谐波。

谐波是一个电气量的正弦分量,它具有周期性,它的频率不同于是基波频率,是它的的整数倍。

当给非线性设备供电时,这些设备在传递、变换、吸收系统发电机所供给基波能量的同时,也会把部分基波能量以谐波形式储存,继而向系统回送大量的高次谐波,以至于影响电能质量,给用户用电带来不便。

目前我们将产生高次谐波的谐波源主要分为三类:
1.铁磁饱和型:铁芯设备,如变压器、电抗器等,其表现出非线性铁磁饱和特性,产生以高次为主的谐波。

2.电力设备开关型:包括各种整流器件、电子开关和可控晶闸管等,这些设备产生的谐波以1,3,5次谐波为主。

3.电弧型:电力高压断路器在断开闭合时瞬间,炼钢电弧炉在工作期间及交流电弧焊机在焊接期间,电弧剧烈燃烧所形成的电弧电压与电流的会具有高度非线性,产生以一定次数的谐波。

二、电力系统谐波产生原因
电力系统中的谐波从大类上可主要划分为电压谐振和电流谐振两种形式。

三、电网谐波的来源
1.发电源质量不高产生谐;
2.输配电系统产生谐波;
3.用电设备产生谐波。

四、负序简介
负序是由于三相负荷的不平衡引起。

正是三相负荷的不平衡,才导致中性点偏移,系统中出现负序电压、负序电流。

负序电流产生的原因:正常运行的电力系统是三相对称的,表现为三相电源的电势对称、各项阻抗的对称。

当系统或发电机的对称或发电机的对称运行状态遭到破坏时,就会出现电压或电流的不对称。

这时对称分量法可以将其分解为正序电流、负序电流、零序电流,因发电机常接成星形,且中性点不接地或经阻抗接地,零序电
流可忽略不计。

单相非线性负载不仅使波形畸变,而且能造成三相系统不平衡。

对电网不平横的研究主要是对电网负序的研究。

根据电力系统的特点,负序电流的产生原因可分为几个方面:(1)短时不对称运行;(2)电力系统不对称故障(包括不对称短路及一相断线);(3)发电机不对称故障(包括单相、两相短路,分支短路,匝间短路);(4)出口断路器和主变压器高压侧断路器在正常及故障情况下,未能进行三相全合上或断开的动作过程;(5)出口断路器事故跳闸,灭弧开关因故未能及时灭弧。

(6)长时不对称运行,长时间负荷不对称:如广泛使用德尔电力机车,冶金单相电弧炉等大容量单相负荷,由此形成较大的负序电流。

五、谐波和负序的影响
(一)降低电力设备的经济效益和利用率。

由于电力系统中谐波电流的频率高于基波的频率,当高频电流流过导体时,会发热,导体对谐波电流的能损耗,使导体的产生过多的热量,如果散热系统不完善,很容易损坏导体。

(二)对变压器产生危害。

谐波电流在流经变压器时,会在很大程度上增加其功耗,主要表现在铜损和铁损上,导致噪声,降低变压器工作效率,使变电所的噪声污染超出指数标准,在一定程度影响工作人员的身心健康。

(三)增加输电线路的功耗。

谐波电流在流经线路时,由于发热,会使输电线路的功耗增加。

当注入电力系统的谐波频率处于在网络谐振点附近的谐振区内时,对输电线路会产生绝缘击穿现象。

由电
力系统知识知,电缆导体截面积的大小与其趋肤效应称正相关,横截面积越大,效应越明显。

再加上随着谐波频率次数的上升,会导致导体的阻抗增大,继而使得电缆的允许通过电流减小。

(四)对电容器的影响。

将含有电力谐波的电压加在电容器两端,由电容器的工作特性知,其对谐波的阻抗能力很弱,谐波作用在电容器上,会增大电容器的电流,使其可能超过额定值,由于发热,使的电容器的温度急剧升高,这会缩短电容器的寿命,严重时会引起电容器因负荷过大而爆炸。

(五)降低继电保护和自动装置的工作可靠性。

电力谐波对于电磁式继电器的影响同样十分巨大,谐波会引起继电保护及自动装置误动或拒动,一旦发生这类事件,就会使其动作失去控制性,大大降低了装置的可靠性,严重影响着电力系统的正常运作,给人民日常生活带来巨大的损失。

(六)影响电能质量。

谐波会使电网的电压与电流波形产生畸变,从而影响电能的质量,给人们生活带来很大不便。

六、谐波的滤除
(一)无源滤波器。

无源滤波器由l、c、r元件构成谐振回路,常安装在电力电子设备的交流侧,当lc回路的谐振频率和高次谐波电流频率相同时,即可避免该次谐波流入电网。

由于该方法具有投资成本低、工作效率高、易于维护等优点,无源滤波是目前广泛采用的抑制谐波及无功补偿的手段。

但与此同时,无源滤波器也并非是完美无缺的,比如说,它易受系统参数的影响;可能会放大某
些次数的谐波;投资成本高、体积庞大等。

因而随着电力电子技术的不断发展,人们将目光逐步转向有源滤波器。

(二)有源滤波器。

在电力系统中,我们为了抵消电源的总谐波电流,常向电网注入一种特殊的电流,这种电流具有与原有谐波电流幅值相等、相位相反的特点,这就是有源滤波器的工作原理。

与前者相比,有源滤波器可控性更高,响应更快速,避免闪变、补偿无用功率;在价位上较便宜;滤波特性不受系统阻抗的影响,可避免与系统阻抗发生谐振的可能;具有自我适应的功能,可实时跟踪变化着的谐波并自我补偿。

参考文献:
[1]李群湛.牵引供电系统分析[m].成都:西南交通大学出版社,2007.
[2]韩祯祥.电力系统分析[m].杭州:浙江大学出版社,2007.
[3]张丽艳.基于系统潮流的牵引变电所综合补偿方案研究[d].西南交通大学,2006.。

相关文档
最新文档