永磁同步电机(PMSM)-1- 矢量变换基本概念
永磁同步电机的矢量控制系统
永磁同步电机的矢量控制系统一、本文概述随着科技的不断进步和工业的快速发展,电机作为核心动力设备,在各种机械设备和工业自动化系统中扮演着至关重要的角色。
其中,永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)因其高效率、高功率密度和优良的控制性能等优点,被广泛应用于电动汽车、风力发电、机床设备等领域。
为了实现永磁同步电机的精确控制,提高其运行效率和稳定性,矢量控制(Vector Control)技术被引入到永磁同步电机的控制系统中。
本文将对永磁同步电机的矢量控制系统进行深入探讨。
文章将简要介绍永磁同步电机的基本结构和运行原理,为后续的矢量控制理论奠定基础。
接着,文章将重点阐述矢量控制的基本原理和实现方法,包括坐标变换、空间矢量脉宽调制(SVPWM)等关键技术。
文章还将分析矢量控制系统中的传感器选择、参数辨识以及控制策略优化等问题,以提高系统的控制精度和鲁棒性。
通过本文的研究,读者可以对永磁同步电机的矢量控制系统有一个全面而深入的了解,为实际应用中提高永磁同步电机的控制性能提供理论支持和指导。
本文还将探讨未来永磁同步电机矢量控制系统的发展趋势和挑战,为相关领域的研究者和工程师提供有价值的参考信息。
二、永磁同步电机的基本原理永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高效、高性能的电机类型,其工作原理基于电磁感应和磁场相互作用。
PMSM的核心组成部分包括定子、转子和永磁体。
定子通常由三相绕组构成,负责产生旋转磁场;转子则装有永磁体,这些永磁体在定子产生的旋转磁场作用下,产生转矩从而驱动电机旋转。
PMSM的工作原理可以简要概括为:当定子三相绕组通入三相交流电时,会在定子内部形成旋转磁场。
由于转子上的永磁体具有固定的磁极,它们在旋转磁场的作用下会受到力矩的作用,从而使转子跟随定子磁场的旋转而旋转。
通过控制定子电流的相位和幅值,可以精确控制旋转磁场的转速和转向,从而实现对PMSM的精确控制。
三相永磁同步电机(PMSM)矢量控制建模与仿真
目录1 引言 (1)1.1 课题的背景与意义 (1)1.1.1 课题背景 (1)1.1.2 课题意义 (1)1.2 永磁电机发展概况 (1)2 机电能量转换和拉格朗日方程 (2)2.1 机电能量转换 (2)2.2 三相同步电机电磁转矩 (7)2.3 拉格朗日方程 (9)3 三相永磁同步电机的数学模型 (11)3.1 三相PMSM的基本数学模型 (11)3.2 三相PMSM的坐标变换 (13)3.2.1 Clark变换 (13)3.2.2 Park变换 (14)3.3 同步旋转坐标系下PMSM的数学模型 (14)4 三相永磁同步电机的矢量控制 (16)4.1 转速环PI调节器的参数整定 (16)4.2 电流环PI调节器的参数整定 (17)4.3 三相PMSM矢量控制系统的仿真 (19)4.3.1 仿真建模 (19)4.3.2 仿真结果分析 (22)总结 (23)参考文献 (23)三相永磁同步电机矢量控制建模与仿真摘要:永磁同步电机具有体积小、效率和功率因数高等优点,因此越来越多的应用在各种功率等级的场合。
永磁同步电机的控制是永磁同步电机应用的关键技术,永磁同步电机的结构特点使得采用矢量控制系统有很大的优势。
本文首先分析了永磁同步电机矢量控制的发展概况,然后从机电能量转换的角度出发,解释三相永磁同步电机的机电能量转换原理,推导拉格朗日运动方程。
此外,列写出永磁同步电机在三相静止坐标系和dq坐标系下的数学模型。
基于Simulink建立了转速电流双闭环矢量控制系统的仿真模型,通过对仿真结果分析,验证了永磁同步电机矢量控制系统性能的优越性。
关键词:永磁同步电机,矢量控制,Simulink1 引言1.1 课题的背景与意义1.1.1 课题背景交流电机的控制性能在磁场定向矢量控制技术提出后才有了质的飞跃。
磁场定向矢量控制技术采用的是励磁电流和转矩电流的解稱控制,兼顾磁场和转矩的控制,克服了交流电机自身耦合的缺点。
详解永磁同步电机矢量控制
永磁同步电机矢量控制
由于永磁同步电机(PMSM)在诸多方面的优势,在控制领域引起了极大的兴趣。
矢量控制的基本思想[4-5]是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律。
按磁场定向坐标,将电流矢量分解成产生磁通的励磁电流分量和产生转矩的转矩电流分量,并使两分量互相垂直,彼此独立,然后分别进行调节。
这样交流电动机的转矩控制。
从原理和特性上就和直流电动机相似了。
矢量控制的目的是为了改善转矩控制性能.而最终仍然是对定子电流的控制。
由于在定子侧的各物理量,如电压、电流、电动势、磁动势都是交流量,其空间矢量在空间以同步转速旋转,调节和控制都不容易。
因此需要借助于坐标变换,使各物理量从静止坐标系转换到同步旋转坐标系,这时各空间矢量就都变成了直流量。
电流矢量分解成产生磁通的励磁电流分量i d和产生转矩的转矩电流分量i q,如图2所示,这样转矩和被控量定子电流之间的关系就一目了然。
图2.转矩和被控量定子电流之间的关系
永磁同步电机的矢量控制系统由四部分组成:1.位置、速度检测模块;2.速度环,电流环PI控制器;3.坐标变换模块;4.SVPWM模块和逆变模块。
控制过程为:速度给定信号指令与检测到的转子速度相比较,经速度控制器的调节,输出I指令信号(电流控制器得给定信号)。
同时,经过坐标变换后,定子反馈的三相电流变为i d,i q,通过电流控制器使:i d=0,i q与给定的i∗q相比较后,经过电流调节器的输出为d,q轴的电压,经Park逆变换后为α、β电压。
通过SVPWM模块输出六路PWM驱动IGBT.产生可变频率和幅值的三相正弦电流输入电机定子。
永磁同步电动机电流环矢量控制文档
永磁同步电动机电流环矢量控制文档永磁同步电动机的数学模型和矢量控制1.坐标变换原理(1)坐标系介绍三种:三相静止坐标系(abc)、两相静止坐标系(αβ)以及同步旋转坐标系(dq)(2)坐标变换主要目的是为了将交流电机的物理模型等效地变成直流电机的物理模型,使控制大大简化。
不同电机模型等效的原则是:在不同坐标系下产生的磁动势相同。
三相静止坐标系与两相静止坐标系之间转换为方便起见,取α轴与A轴重合,设三相系统每相绕组的有效匝数为N3,两相系统每相绕组的有效匝数为N2,各相磁动势均为有效匝数及其瞬时电流的乘积。
交流电流的磁动势大小随时间耳边,图中磁动势矢量的长短是任意画的。
设磁动势波形是正弦分布,当三相磁动势与两相磁动势相等时,两套绕组瞬时磁动势在α、β上的投影应当相等。
为了便于求反变换,最好将变换阵表示成可逆的方阵。
为此,在两相系统上人为地增加一相零轴磁动势N2i,并定义为将以上三式合在一起,写成矩阵形式,得式中是三相坐标系变换到两相坐标系的变换阵。
满足功率不变条件时应有显然,两矩阵的乘积应该为单位阵,由此求得这就是满足功率不变约束条件时的参数关系。
由此得到在实际电机中并没有零轴电流,因此实际的电流变换式为如果三相绕组是星形不带零线接法则整理得●两相静止/两相旋转变换●由三相静止坐标系到任意两相旋转坐标系上的变换2.永磁同步电动机的数学模型当永磁同步电动机的定子通入三相交流电I时,电枢电流在定子绕组电枢电阻R上产生电压降IR。
由三相交流电流I产生的旋转电枢磁动势Fa,及建立的电S枢磁场aφ,一方面切割定子绕组并在定子绕组中产生感应反电动势a E,另一方面以电磁力拖动转子以同步转速n旋转。
电枢电流I还会产生仅与定子绕组相交s链的定子绕组漏磁通。
并在定子绕组中产生感应漏电动势Eσ。
此外转子永磁极产生的磁场0φ以同步转速切割定子绕组,从而产生空载电动势0E。
因此永磁同步电动机运行时的电磁关系如下所示:该变换将转子两相旋转坐标系中的量直接变换到定子三相静止坐标系中,对电流、电压、磁链都适用、由此可得:由转矩方程可以看出来,永磁同步电机的电磁转矩基本上决定于定子交轴电流分量和转子次梁。
永磁同步电机控制原理
iq PI
uq
r
id
id PI
ud
iq id
u
d,q
α,β u
d,q
i
i
α,β
SV PWM
驱动模块
逆变器
α,β
ia
ib
a,b,c
d / dt
控制模块
高压直流电输入输出 电机控制器外部低压输入信号 电机控制器内部输入信号 数学计算输出信号 控制程序输出信号 IGBT信号
电机控制器
PMSM
旋转变压器
永磁同步电机控制原理
控制方式
永磁同步电机 (PMSM)
矢量控制 控制方式
直接转矩控制
矢量控制(磁场定向控制)
矢量控制实现的基本原理是测量和控制电机定子电流矢量
根据磁场定向原理分别对电机的励磁电流和转矩电流进行 控制,从而达到控制电机转速和转矩的目的
对电流的空间矢量 进行坐标变换,并 进行控制,所以叫 矢量控制
数据 观测
上位机
RS232
LED 显示
外部 存储器 仿真器
DAC
键盘控制
I/O
PDPINT
SCI
CPU
PWM
产生
SPI
存储器
模块
EMIF
ADC PLL
JTAG
WD/RTI
DSP
QEP
U DC C
故障检 测电路
光
驱
三相
耦
动
逆变
隔
电
电路
离
路
IPM
电流 检测
位置 检测
PMSM
IPM内部集成: 6个IGBT 驱动电路 保护电路
驱动电机总成
软件流程图
永磁同步电机矢量控制分析
永磁同步电机矢量控制分析一、本文概述永磁同步电机(PMSM)作为一种高性能的电机类型,在现代工业、交通以及新能源等领域的应用日益广泛。
其矢量控制技术,即通过对电机电流的精确控制,实现对电机转矩和磁场的独立调节,从而实现电机的高效、稳定运行。
本文旨在全面分析永磁同步电机的矢量控制技术,包括其基本原理、控制策略、实现方法以及在实际应用中的优缺点,为相关领域的研究者和工程师提供有益的参考。
本文将对永磁同步电机的基本结构和工作原理进行简要介绍,为后续的分析奠定理论基础。
然后,将重点讨论矢量控制技术的理论基础和实现方法,包括空间矢量脉宽调制(SVPWM)技术、电流环和速度环的设计与控制策略等。
在此基础上,本文将深入分析矢量控制技术在永磁同步电机中的应用,包括其在提高电机效率、优化动态性能以及提升系统稳定性等方面的作用。
本文还将对矢量控制技术在永磁同步电机应用中的挑战和前景进行探讨。
一方面,将分析当前矢量控制技术在实际应用中面临的主要问题,如参数敏感性、控制复杂度以及成本等;另一方面,将展望未来的发展趋势,如智能化、集成化以及优化算法的应用等。
本文将对永磁同步电机矢量控制技术的未来发展提出展望,以期为该领域的进一步研究和应用提供参考。
二、永磁同步电机基本原理永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)是一种高效、高功率密度的电机,广泛应用于电动汽车、风力发电、工业自动化等领域。
其基本原理主要基于电磁感应和磁场相互作用。
PMSM的核心部件是永磁体,这些永磁体通常嵌入在电机的转子中,形成固定的磁场。
当电机通电时,定子中的电流会产生一个旋转磁场。
这个旋转磁场与转子中的永磁体磁场相互作用,使得转子开始旋转。
通过精确控制定子中的电流,可以实现对转子旋转速度、方向和扭矩的精确控制。
在PMSM中,矢量控制是一种重要的控制策略。
矢量控制通过独立控制电机的磁通和扭矩分量,实现了对电机的高效、高性能控制。
MatlabSimulink对永磁同步电机(PMSM)_矢量控制原理
基于Matlab的永磁同步电机矢量控制原理摘要:在现代交流伺服系统中,矢量控制原理以及空间电压矢量脉宽调制(SVPWM)技术使得交流电机能够获得和直流电机相媲美的性能。
永磁同步电机(PMSM)是一个复杂耦合的非线性系统。
关键词:永磁同步电机;电压空间矢量脉宽调制0、引言永磁同步电机(PMSM)是采用高能永磁体为转子,具有低惯性、快响应、高功率密度、低损耗、高效率等优点,成为了高精度、微进给伺服系统的最佳执行机构之一。
永磁同步电机构成的永磁交流伺服系统已经向数字化方向发展。
因此如何建立有效的仿真模型具有十分重要的意义。
对于在Matlab中进行永磁同步电机(PMSM)建模仿真方法的研究已经受到广泛关注。
本文介绍了电压空间矢量脉宽调制原理并给出了坐标变换模块、SVPWM模块以及整个PMSM闭环矢量控制仿真模型,给出了仿真模型结构图和仿真结果。
1、永磁同步电机的数学模型永磁同步电机在d-q轴下的理想电压方程为:(1)(2)(3)(4)(5)(6)(7)式中,ud和uq分别为d、q轴定子电压;id和iq分别为d、q 轴定子电流;和分别为d、q轴定子磁链;ld和lq分别为定子绕组d、q轴电感;r为定子电阻;p为微分符号;lmd为定、转子间的d轴电感;ifd为永磁体的等效d轴励磁电流;pn为极对数;te为电磁转矩;tl为负载转矩;j为转动惯量;b为阻尼系数;为转子角速度。
2、电压空间矢量脉宽调制原理2.1电压空间矢量电机输入三相正弦电压的最终目的是在空间产生圆形旋转磁场,从而产生恒定的电磁转矩。
直接针对这个目标,把逆变器和异步电机视为一体,按照跟踪圆形旋转磁场来控制PWM 电压,这样的控制方法称为“磁链跟踪控制”,磁链的轨迹是靠电压空间矢量相加得到的,所以又称“电压空间矢量PWM控制”。
空间矢量是按电压所加绕组的空间位置来定义的。
在图1中,A、B、C分别表示在空间静止不动的电机定子三相绕组的轴线,它们在空间互差120°,三相定子相电压U A、U B、U C分别加在三相绕组上,可以定义三个电压空间矢量U A、U B、U C,它们的方向始终在各相的轴线上,而大小则随时间按正弦规律变化,时间相位互差120°。
(完整word版)永磁同步电机矢量控制简要原理
关于1.5KW永磁同步电机控制器的初步方案基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。
矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id 和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。
当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。
由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。
根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。
其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。
电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。
输入输出部分用来输入控制量,显示实时信息等。
原理框图如下:n_ref Isq_ref Vsq_ref Vsa_refn IsqVsb_refIsaIsbθ基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref ,用这个电流量作为电流控制器的给定信号。
励磁分量Isd_ref 由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。
另一端通过电流采样得到三相定子电流,经过Clarke 变换将其变为α-β两相静止坐标系下的电流,再通过park 变换将其变为d-q 两相旋转坐标系下电流Isq ,Isd ,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref 和Vsq_ref ,再经过park 逆变换,得到Vsa_ref 和Vsb_ref 作为SVPWM 的控制信号,然后产生6路驱动信号控制IGBT 逆变器,再供给同步电机,控制其转速及位置。
永磁同步电动机PMSM矢量控制系统的研究
永磁同步电动机PM SM矢量控制系统的研究夏燕兰(南京工业职业技术学院,南京2100146)研究与开发摘要本文根据永磁同步电动机PM SM I钩数学模型,分析了PM SM的矢量控制原理,对PM SM矢量控制系统。
进行了分析和仿真,实验结果证明PM SM矢量控制系统具有优良的动、静态性能。
关键词:PM SM;数学模型;矢量控制R es ear ch of V ect or C ont r ol Sys t em f or PM SMX i d Y anl an(N anj i ng I nst i t ut e of l ndust ry and Technol ogy,N anj i ng210046)A bs t r act A cc or di ng t o t he m at hem at i cal m ode l of PM SM,t he paper i nt r oduces t he pri nc i pl e ofvec t o r C ont r ol f or PM SM,anal yzes and s i m ul at es t he vect or c ont r ol s ys t em of PM SM.The exper i m entr e sul t s s how t he c ont r ol s ys t em of P M SM can achi eve go od dyna m i c and st a t i c per f orm ances.K ey w or ds:per m anent m a gne t s yn chr ono us m ot or;m at he m at i c al m odel;vec t or c ont r oll引言永磁直流无刷电动机因体积小、性能好、结构简单、调节控制方便、调速范围广、动态响应快等特点而得到了越来越广泛的应用,尤其应用在智能机器人、航空航天、精密电子仪器与设备等对电机性能、控制精度要求比较高的领域和场合。
PMSM同步电动机矢量控制
矢量控制能够实现对电机的精确控制,具有较高的动态性能和稳态精度。同时, 矢量控制能够有效地抑制转矩波动,减小转矩脉动。
局限性
矢量控制需要精确的电机参数和准确的传感器测量,增加了系统的复杂性和成 本。此外,矢量控制对于电机参数的变化较为敏感,参数变化可能导致控制性 能下降。
03
PMSM同步电动机的矢 量控制策略
数据处理
对采集到的数据进行滤波、去噪、 归一化等处理,提取有用的信息 进行分析。
数据分析
利用分析软件对处理后的数据进 行分析,研究矢量控制策略对 PMSM同步电动机性能的影响。
实验结果与结论
结果展示
通过图表、曲线等形式展示实验结果, 直观地反映矢量控制策略对PMSM同 步电动机性能的影响。
结论总结
基于直接转矩控制的矢量控制策略
总结词
基于直接转矩控制的矢量控制策略是一种先进的控制方法,通过直接控制电机的输出转 矩和磁通来实现对PMSM同步电动机的高性能控制。
详细描述
基于直接转矩控制的矢量控制策略采用离散的时间采样方法,通过检测电机的输出转矩 和磁通状态,直接调节电机的输入电压或电流,实现对电机输出转矩和磁通的快速、精 确控制。这种控制方法具有响应速度快、动态性能好等优点,适用于高性能的伺服系统
基于磁场定向的矢量控制策略
总结词
基于磁场定向的矢量控制策略是PMSM同步电动机中最常用的控制策略之一,通过控制励磁和转矩电流分量,实 现对电机磁场的解耦控制。
详细描述
基于磁场定向的矢量控制策略通过将PMSM的电流分解为与磁场方向正交的励磁电流和与磁场方向一致的转矩电 流,实现了对电机磁场的完全解耦控制。通过调节励磁和转矩电流分量,可以独立地控制电机的磁通和转矩,从 而实现高性能的调速控制。
基于电流反馈解耦的永磁同步电机矢量控制研究
基于电流反馈解耦的永磁同步电机矢量控制研究一、引言永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)由于其高效率、高功率密度和良好的动态性能,被广泛应用于工业和交通领域。
在PMSM控制中,矢量控制是一种常用的控制技术,其通过控制电机的电流和转子位置以实现精确的控制。
然而,PMSM控制中的交叉耦合和电流传感器的非线性等问题,限制了控制系统的性能和精度。
本文旨在通过基于电流反馈解耦的方法,对PMSM的矢量控制进行深入研究和探讨。
二、矢量控制原理1.矢量控制概述矢量控制是一种基于转子参考帧的控制方法,通过将PMSM电流和电压转换到dq坐标系下,以实现无触点的控制。
矢量控制可分为直接矢量控制和间接矢量控制两种方法。
2.直接矢量控制(Direct Vector Control)直接矢量控制是一种通过控制定子电流和转子磁链矢量,实现PMSM转矩和磁通的无触点控制方法。
直接矢量控制包含以下步骤:•dq坐标变换•转子磁链估算•转子磁链方向控制•定子电流控制3.间接矢量控制(Indirect Vector Control)间接矢量控制是一种通过控制PMSM的电压,以实现转子位置和速度的闭环控制方法。
间接矢量控制包含以下步骤:•dq坐标变换•转子位置估算•位置反馈环•转子位置和速度控制三、电流反馈解耦技术在传统的矢量控制中,由于PMSM的定子电流是交叉耦合的,即dq轴之间存在相互影响,会导致系统的性能下降。
因此,电流反馈解耦技术可以用来提高系统的响应速度和稳定性。
电流反馈解耦技术主要包括以下几个方面的内容:1.dq电流反馈解耦通过采用dq坐标系下的控制方法,可以实现定子电流之间的解耦。
2.PI控制器的设计利用PI控制器对dq电流进行控制,实现定子电流的精确控制。
3.动态参考电流生成通过动态参考电流生成技术,可以提高系统的动态响应和稳定性。
4.静态参考电流生成通过静态参考电流生成技术,可以提高系统的静态精度和稳定性。
PMSM控制方式简介
采用新型材料和优化结构设计,降低电机重量, 提高其紧凑性和集成度。
驱动系统集成化与智能化
集成化驱动模块
将电机控制器、驱动电路和传感器等集成在一个模块中,简化系 统结构,降低成本。
智能化监控与诊断
利用传感器和智能算法,实时监测电机运行状态,预测故障并及 时处理,提高系统可靠性。
无线连接与远程控制
通过无线通信技术,实现电机远程监控和控制,提高系统的灵活 性和可维护性。
谢谢观看
直接转矩控制算法
采用空间矢量分析方法,直接控制电机转矩,具有快速动态响应和 鲁棒性强的特点。
滑模变结构控制算法
通过滑模面的设计,使系统状态在滑模面上滑动,具有对参数变化 和外部扰动不敏感的优点。
电机本体优化设计
磁路优化
通过改进电机磁路结构,提高电机效率、减小谐 波损耗和温升。
冷却系统设计
合理设计电机冷却系统,提高散热性能,延长电 机使用寿命。
控制方式的比较和选择
比较
矢量控制、直接转矩控制和智能控制各有优缺点,适用于不同的应用场景。需要根据电机的具体性能要求、运行 环境和工况等因素进行选择。
选择
在高性能的电机控制系统,如伺服系统和电动车驱动系统中,通常选择矢量控制;在需要快速响应和高动态性能 的场合,如电梯和压缩机中,通常选择直接转矩控制;在复杂的电机运行环境和工况中,如高温、高湿和强干扰 等场合,通常选择智能控制。
负责将直流电转换为交流电。
03
驱动电路的设计要点
设计时需要考虑电路的效率、可靠性、安全性和成本等因素,以确保驱
动电路能够满足PMSM的驱动需求。
控制系统设计
控制系统的作用
控制系统是PMSM驱动系统的关键部分,负责控制PMSM 的电流、电压和转速等参数,以实现PMSM的高效、稳定 运行。
永磁同步电机基础知识
(一) PMSM 的数学模型交流电机是一个非线性、强耦合的多变量系统;永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上;在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的;为了简化永磁同步电机的数学模型,我们通常做如下假设:1) 忽略电机的磁路饱和,认为磁路是线性的;2) 不考虑涡流和磁滞损耗;3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波;4) 驱动开关管和续流二极管为理想元件;5) 忽略齿槽、换向过程和电枢反应等影响;永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下:l 电机在两相旋转坐标系中的电压方程如下式所示:其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链;若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示;2d/q 轴磁链方程:其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r pωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项绕组反电动倍;3转矩方程:把它带入上式可得:对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq,则不存在磁阻转矩,此时,转矩方程为:这里,t k 为转矩常数,32t f k p ψ=; 4机械运动方程:其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量包括电机惯量和负载惯量,B 是摩擦系数;(二) 直线电机原理永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级;由此得到了直线电机的定子和动子,图1为其转变过程;直线电机不仅在结构上是旋转电机的演变,在工作原理上也与旋转电机类似;在旋转的三相绕组中通入三相正弦交流电后,在旋转电机的气隙中产生旋转气隙磁场,旋转磁场的转速又叫同步转速为:60(/min)s f n r p= 1-1 其中,f —交流电源频率,p —电机的极对数;如果用v 表示气隙磁场的线速度,则有:22(/)60s p v n f mm s ττ== 1-2 其中,τ为极距;当旋转电机展开成直线电机形式以后,如果不考虑铁芯两端开断引起的纵向边端效应,此气隙磁场沿直线运动方向呈正弦分布,当三相交流电随时间变化时,气隙磁场由原来的圆周方向运动变为沿直线方向运动,次级产生的磁场和初级的磁场相互作用从而产生电磁推力;在直线电机当中我们把运动的部分称为动子,对应于旋转电机的转子;这个原理和旋转电机相似,二者的差异是:直线电机的磁场是平移的,而不是旋转的,因此称为行波磁场;这时直线电机的同步速度为v=2f τ,旋转电机改变电流方向后,电机的旋转方向发生改变,同样的方法可以使得直线电机做往复运动;图1永磁直线同步电机的演变过程 图2 直线电机的基本工作原理对永磁同步直线电机,初级由硅钢片沿横向叠压而成,次级也是由硅钢片叠压而成,并且在次级上安装有永磁体;根据初级,次级长度不同,可以分为短初级-长次级结构和长初级-短次级的结构;对于运动部分可以是电机的初级,也可以是电机的次级,要根据实际的情况来确定;基本结构如图3所示,永磁同步直线电机的速度等于电机的同步速度:2s v v f τ== 1-3图3 PMLSM 的基本结构(三) 矢量控制磁场定向控制技术矢量控制技术是磁场定向控制技术是应用于永磁同步伺服电机的电流力矩控制,使得其可以类似于直流电机中的电流力矩控制;矢量控制技术是通过坐标变换实现的;坐标变换需要坐标系,变化整个过程给出三个坐标系:1) 静止坐标系a,b,c :定子三相绕组的轴线分别在此坐标系的a,b,c 三轴上;2) 静止坐标系α,β:在a,b,c 平面上的静止坐标系,且α轴与a 轴重合,β轴绕α轴逆时针旋转90度;3) 旋转坐标系d,q:以电源角频率旋转的坐标系;矢量控制技术对电流的控制实际上是对合成定子电流矢量s i的控制,但是对合成定子电流矢量s i的控制的控制存在以下三个方面的问题:1)s i是时变量,如何转换为时不变量2)如何保证定子磁势和转子磁势之间始终保持垂直3)s i是虚拟量,力矩T的控制最终还是要落实到三相电流的控制上,如何实现这个转换s i从静止坐标系a,b,c看是以电源角频率旋转的,而从旋转坐标系d,q上看是静止的,也就是从时变量转化为时不变量,交流量转化为直流量;所以,通过Clarke和Park坐标变换即3/2变换,实现了对励磁电流id和转矩电流iq的解耦;在旋转坐标系d,q中,s i已经成为了一个标量;令s i在q轴上即让id=0,使转子的磁极在d轴上;这样,在旋转坐标系d,q中,我们就可以象直流电机一样,通过控制电流来改变电机的转矩;且解决了以上三个问题中的前两个;但是,id、iq不是真实的物理量,电机的力矩控制最终还是由定子绕组电流ia、ib、ic或者定子绕组电压ua、ub、uc实现,这就需要进行Clarke和Park坐标逆变换;且解决了以上三个问题中的第三个;力矩回路控制的实现:1)图中电流传感器测量出定子绕组电流ia,ib作为clarke变换的输入,ic可由三相电流对称关系ia+ib+ic=0求出;2)clarke变换的输出iα,iβ,与由编码器测出的转角Θ作为park变换的输入,其输出id与iq作为电流反馈量与指令电流idref及iqref比较,产生的误差在力矩回路中经PI运算后输出电压值ud,uq;3)再经逆park逆变换将这ud,uq变换成坐标系中的电压u α,uβ;4)SVPWM算法将uα,uβ转换成逆变器中六个功放管的开关控制信号以产生三相定子绕组电流;(四)电流环控制交流伺服系统反馈分为电流反馈、速度反馈和位置反馈三个部分;其中电流环的控制是为了保证定子电流对矢量控制指令的准确快速跟踪;电流环是内环,SVPWM控制算法的实现主要集中在电流环上,电流环性能指标的好坏,特别是动态特性,将全面影响速度、位置环;PI调节器不同于P调节器的特点:1)P调节器的输出量总是正比于其输入量;2)而PI调节器输出量的稳态值与输入无关, 而是由它后面环节的需要决定的;后面需要PI调节器提供多么大的输出值, 它就能提供多少, 直到饱和为止;电流环常采用PI控制器,目的是把P控制器不为0 的静态偏差变为0;电流环控制器的作用有以下几个方面:3)内环;在外环调速的过程中,它的作用是使电流紧跟其给定电流值即外环调节器的输出;4)对电网电压波动起及时抗干扰作用;5)在转速动态过程中起动、升降速中,保证获得电机允许的最大电流-即加速了动态过程;6)过载或者赌转时,限制电枢电流的最大值,起快速的自动保护作用;电流环的控制指标主要是以跟随性能为主的;在稳态上,要求无静差;在动态上,不允许电枢电流在突加控制作用时有太大的超调,以保证电流电流在动态过程中不超过允许值;双闭环电机调速过程中所希望达到的目标:1)起动过程中: 只有电流负反馈, 没有转速负反馈;2)达到稳态后: 转速负反馈起主导作用; 电流负反馈仅为电流随动子系统;双闭环电机具体工作过程:根据检测模块得到的速度值和电流值实现电机转速控制;当测量的实际转速低于设定转速时,速度调节器的积分作用使速度环输出增加,即电流给定上升,并通过电流环调节使PWM占空比增加,电动机电流增加,从而使电机获得加速转矩,电机转速上升;当测量的实际转速高于设定转速时,转速调节器速度环的输出减小,电流给定下降,并通过电流环调节使PWM占空比减小,电机电流下降,从而使电机因电磁转矩的减小而减速;当转速调节器处于饱和状态时,速度环输出达到限幅值,电流环即以最大限制电流实现电机加速,使电机以最大加速度加速;电流环的主要影响因素有:电流调节器参数、反电动势、电流调节器零点漂移;电流调节器的参数中,比例参数Kp越大,动态响应速度越快,同时超调也大,因此,在调节过程中应该根据动态性能指标来选择Kp;而积分系数Ti越大,电流响应稳态精度就越高;(五)弱磁控制所谓弱磁控制和强磁控制是指通过对电动机或发电机的励磁电流进行的控制;“弱磁”就是励磁电流小于额定励磁电流;“强磁”则是比额定励磁电流大的励磁电流;强磁控制又称为强励控制,主要用在发电机短路保护或欠电压保护方面;当发电机端电压接近于0或下降太多,此时需要通过强行励磁,可使发电机的端电压升高,输出电流增大,触发保护装置动作跳闸,实现保护;弱磁控制则主要是电动机进行弱磁调速用,发电机弱磁控制则主要是指由直流发电机-直流电动机构成的G-M拖动系统,为了得到软的或下坠的机械特性时才使用;(六)电流传感器霍尔传感器是一种磁传感器;用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用;霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器;霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用;霍尔效应:如图1所示,在半导体薄片两端通以控制电流I ,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为U H 的霍尔电压,它们之间的关系为:dIB k U H 式中d 为薄片的厚度,k 称为霍尔系数,它的大小与薄片的材料有关;电流传感器:由于通电螺线管内部存在磁场,其大小与导线中的电流成正比,故可以利用霍尔传感器测量出磁场,从而确定导线中电流的大小;利用这一原理可以设计制成霍尔电流传感器;其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感;霍尔电流传感器工作原理如图6所示,标准圆环铁芯有一个缺口,将霍尔传感器插入缺口中,圆环上绕有线圈,当电流通过线圈时产生磁场,则霍尔传感器有信号输出;。
pmsm数学模型及矢量控制
第2章永磁同步电机的结构特点及数学模型2.1 永磁同步电机概述电机是一种机电能量转换或信号转换的电磁机械装置。
自1831年电磁感应定律为人们所知,人们发现可以利用磁场将电能与机械能进行相互转化,由此发明了电机。
随着不同种类的电机相继出现,大力推动了电气工程行业及电力电子工业的发展。
众所周知,要于电机之内建立所需的磁场,一种方式是可以通过在电机内部对电机绕组通以电流产生磁场,需要持续的提供电能维持磁场存在,磁场强度取决于电机内部的电流及绕组的结构。
另一种可以通过永磁体产生磁场,由于永磁材料的固有特性故不再需要提供其他外在能量便可以持续维持磁场存在,因此采用永磁材料产生磁场可以使电机在自身结构上更为简单,其运行的安全程度和效率也随之提高。
起初人们并未发现可用于建立磁场的较为合适的材料,因此人们利用天然的磁铁矿石制成永磁材料,并在19世纪20年代制成世界上第一台永磁电机。
但由于天然磁铁矿石的磁性较低,因此为了满足磁场需求,制成的电机体积庞大,性能较差,并不能达到人们在工业等相关领域的要求。
直到1845年,英国的惠斯通用电磁铁代替永久磁铁,随后又发明了自励电励磁发电机,开创了电励磁方式的先河。
它弥补了天然磁铁的不足,在随后的几十年中,电励磁电机逐渐取代了原始的永磁电机随着电机技术发展的需要,人们开始不断寻找磁性能更好的永磁材料。
20世纪中期被发现并加以应用的铝镍钴永磁材料和铁氧体永磁材料就是很好的例子,因其磁性能在原有材料基础上的较大提高,因此在工业、农业、军事或者在日常生活中人们又重新重视起永磁电机的应用。
但这两种材料也有其自身的缺陷,铝镍钴永磁材料矫顽力较低、易退磁,铁氧体永磁材料的剩磁较低,在一定程度上又限制了永磁电机的发展。
随着人们的继续探索,20世纪60年代美国人K.J.Stmat研制出的以钐钴为主要成分的稀土永磁材料,被称为第一代稀土永磁材料,引领永磁电机发展到一个新的阶段。
由于其价格昂贵,起初各国研发的重点通常在航空航天和要求高性能的高科技领域。
永磁同步电机pwm调速控制原理
永磁同步电机PWM调速控制原理引言永磁同步电机(P erm a ne nt Ma gn et Sy nch r on ou sM ot or,简称P MSM)是一种高效、可靠、具有较高功率因数和较低惯量的电动机。
P W M(P ul se Wi dt hM od ul a ti on,脉宽调制)技术被广泛应用于P MS M的调速控制中,本文将介绍永磁同步电机PW M调速控制的原理。
1. PM SM基本原理P M SM由永磁转子和绕组的定子构成。
当通过定子绕组通以三相对称交流电流,会在转子上产生旋转磁场。
由于永磁体的特性,转子会跟随旋转磁场同步旋转。
这样,P MS M就能够将电能转化为机械能。
2. PW M调制原理P W M是一种调制技术,通过控制开关管的导通时间来控制输出信号的平均功率。
在PM SM的P WM调速控制中,通过调节输出端的电压和电流的占空比来控制电机的转速。
2.1P W M信号生成P W M信号由一个固定频率的周期信号和一个可以改变的占空比调制信号组成。
常用的生成PW M信号的方法有两种:基于比较器和基于定时器。
2.2P W M调速控制原理P W M调速控制原理是通过改变开关管导通时间比例,间接改变电机输入的电流大小,从而实现调速控制。
在调速控制中,通过改变PW M信号的宽度来改变电机的平均输入电压。
当占空比增大时,电机输入的电压也相应增大,转矩增大,电机转速也增加。
当占空比减小时,电机输入的电压减小,转矩减小,电机转速也减小。
3. PM SM PWM调速控制策略P M SM的P WM调速控制可以采用多种策略,根据不同的需求选择合适的控制策略,常用的有矢量控制和直接转矩控制两种。
3.1矢量控制矢量控制是通过控制转子磁场的矢量旋转来实现转矩和转速控制的方法。
通过转子磁场的旋转,将其分解为直轴和交轴两个分量,通过控制这两个分量的大小和相位差,实现电机的转速和转矩控制。
3.2直接转矩控制直接转矩控制通过实时测量电机的转速和电流,根据转速误差和电流误差进行控制,实现对电机转矩和转速的精确控制。
永磁同步电机的矢量控制系统
永磁同步电机的矢量控制系统永磁同步电机的矢量控制系统永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)是一种在工业领域广泛使用的电机。
由于其出色的动态响应和高效率,它已经成为众多应用中的首选。
然而,PMSM的控制却是一个复杂的问题,需要一种高级的控制策略来实现其最佳性能。
矢量控制系统(Vector Control System)正是为了满足这一需求而被引入。
矢量控制是一种基于数学模型的控制方法,旨在使电机的转矩、速度和位置具有优异的性能。
从根本上讲,矢量控制系统通过将电机的状态表示为一个矢量来处理电机运行。
这个矢量通常包括转矩矢量和磁通矢量,用于描述电机的转速和磁场方向。
在矢量控制系统中,电机的数学模型是基础。
它以电机的转子位置和转子与定子磁场之间的相对位置作为输入,输出电机的状态,如转矩、速度和位置。
其中,转子位置传感器是矢量控制系统的重要组成部分,用于获取电机转子的精确位置信息。
虽然有一些技术可以在缺少转子位置传感器的情况下实现矢量控制,但它们通常会导致系统性能的降低。
矢量控制系统的核心是控制算法。
在运行过程中,控制算法会根据电机的输入和输出状态进行计算,并输出控制信号来调节电机的运行。
其中,最常用的控制算法是电流环和转速环。
电流环用于控制电机的输出电流,确保电机的电流与期望电流保持一致。
转速环用于控制电机的转速,通过调整输出信号以匹配期望转速。
在矢量控制系统中,控制算法还包括一个磁通定向控制器。
磁通定向控制器的目标是使电机的磁通矢量始终与旋转磁场保持一致。
为了实现这一目标,磁通定向控制器需要获取电机的转子位置信息,并根据该信息来调整电机的输出电流。
通过将电机的磁通矢量与旋转磁场保持一致,磁通定向控制器可以实现电机的精确控制,并提供最佳的动态响应和高效率。
除了控制算法,矢量控制系统还包括一些辅助模块,如速度和位置估算器。
速度估算器用于估算电机的转速,通过处理电机的反馈信号和控制信号来计算转速。
pmsm数学模型及矢量控制
第2章永磁同步电机的结构特点及数学模型2.1 永磁同步电机概述电机是一种机电能量转换或信号转换的电磁机械装置。
自1831年电磁感应定律为人们所知,人们发现可以利用磁场将电能与机械能进行相互转化,由此发明了电机。
随着不同种类的电机相继出现,大力推动了电气工程行业及电力电子工业的发展。
众所周知,要于电机之内建立所需的磁场,一种方式是可以通过在电机内部对电机绕组通以电流产生磁场,需要持续的提供电能维持磁场存在,磁场强度取决于电机内部的电流及绕组的结构。
另一种可以通过永磁体产生磁场,由于永磁材料的固有特性故不再需要提供其他外在能量便可以持续维持磁场存在,因此采用永磁材料产生磁场可以使电机在自身结构上更为简单,其运行的安全程度和效率也随之提高。
起初人们并未发现可用于建立磁场的较为合适的材料,因此人们利用天然的磁铁矿石制成永磁材料,并在19世纪20年代制成世界上第一台永磁电机。
但由于天然磁铁矿石的磁性较低,因此为了满足磁场需求,制成的电机体积庞大,性能较差,并不能达到人们在工业等相关领域的要求。
直到1845年,英国的惠斯通用电磁铁代替永久磁铁,随后又发明了自励电励磁发电机,开创了电励磁方式的先河。
它弥补了天然磁铁的不足,在随后的几十年中,电励磁电机逐渐取代了原始的永磁电机随着电机技术发展的需要,人们开始不断寻找磁性能更好的永磁材料。
20世纪中期被发现并加以应用的铝镍钴永磁材料和铁氧体永磁材料就是很好的例子,因其磁性能在原有材料基础上的较大提高,因此在工业、农业、军事或者在日常生活中人们又重新重视起永磁电机的应用。
但这两种材料也有其自身的缺陷,铝镍钴永磁材料矫顽力较低、易退磁,铁氧体永磁材料的剩磁较低,在一定程度上又限制了永磁电机的发展。
随着人们的继续探索,20世纪60年代美国人K.J.Stmat研制出的以钐钴为主要成分的稀土永磁材料,被称为第一代稀土永磁材料,引领永磁电机发展到一个新的阶段。
由于其价格昂贵,起初各国研发的重点通常在航空航天和要求高性能的高科技领域。
永磁同步电机最大风能捕获,矢量控制原理公式。
永磁同步电机最大风能捕获,矢量控制原理公式。
永磁同步电机(PMSM)是一种常见的电机类型,具有高效、高精度和快速响应的特点。
矢量控制是永磁同步电机的一种常见控制策略,它通过对电机的电流和电压进行解耦控制,实现对电机转矩的高效控制。
最大风能捕获通常是指风力发电系统中,通过控制风力发电机组的运行状态,使得风能得以最大程度地转化为电能。
具体来说,当风吹向风力发电机时,风能将带动风力发电机旋转,进而通过发电机将机械能转化为电能。
为了实现最大风能捕获,需要对发电机的转速和功率进行控制,使得发电机在最佳状态下运行,从而最大化风能转化为电能。
矢量控制原理公式如下:
1. 定义:矢量控制是一种通过坐标变换将三相交流电机转化为直流电机进行控制的策略。
2. 公式:假设电机三相电流为ia、ib、ic,将它们通过Clarke变换转换为
dq坐标系下的电流Id、Iq,然后通过Park变换转换为同步旋转坐标系下
的电流Iα、Iβ。
通过控制Id、Iq或Iα、Iβ,可以实现电机的转矩和磁通解
耦控制。
3. 目的:矢量控制的目的是通过解耦控制,实现对电机转矩的高效控制,从而提高电机的性能和效率。
需要注意的是,具体的矢量控制算法和实现方式可能因不同的电机和控制策略而有所差异。
在实际应用中,需要根据具体的电机和控制需求进行相应的设计和优化。
永磁同步电机的控制原理介绍
一、电机分类二、永磁同步电机的分类三、PMSM的运行原理四、坐标变换五、PMSM的数学模型六、伺服系统软件设计七、SVPWM原理及实现方法一、电机分类:1、按作用分:电动机和发电机。
电动机将电能转化为机械能;发电机将其他形式的能量转化为电能。
2、按工作电源分类根据电动机工作电源的不同,可分为直流电动机和交流电动机。
其中交流电动机还分为单相电动机和三相电动机。
3、按结构及工作原理分类电动机按结构及工作原理可分为直流电动机,异步电动机和同步电动机。
同步电动机还可分为永磁同步电动机、磁阻同步电动机和磁滞同步电动机。
异步电动机可分为感应电动机和交流换向器电动机。
感应电动机又分为三相异步电动机、单相异步电动机和罩极异步电动机等。
交流换向器电动机又分为单相串励电动机、交直流两用电动机和推斥电动机。
直流电动机按结构及工作原理可分为无刷直流电动机和有刷直流电动机。
有刷直流电动机可分为永磁直流电动机和电磁直流电动机。
电磁直流电动机又分为串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。
永磁直流电动机又分为稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。
4、按用途分类电动机按用途可分为驱动用电动机和控制用电动机。
驱动用电动机又分为电动工具(包括钻孔、抛光、磨光、开槽、切割、扩孔等工具)用电动机、家电(包括洗衣机、电风扇、电冰箱、空调器、录音机、录像机、影碟机、吸尘器、照相机、电吹风、电动剃须刀等)用电动机及其它通用小型机械设备(包括各种小型机床、小型机械、医疗器械、电子仪器等)用电动机。
二、永磁同步电机的分类:永磁同步电机由于具有以下优点而得到了广泛的应用:1)功率密度大(同等功率,特性体积小)2)功率因数高(气隙磁场主要或全部由转子磁场提供)3)效率高(不需要励磁绕组,绕组损耗小)4)结构紧凑、体积小、重量轻、维护简单。
永磁同步电机分为正弦波电流驱动的永磁同步电机(PMSM)和方波电流驱动永磁同步电机(BLDCM)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
写成矩阵形式,得
1 ⎡ − 1 ⎢ i ⎡ α ⎤ N3 2 ⎢ ⎢i ⎥ = 3 ⎣ β ⎦ N 2 ⎢0 ⎢ 2 ⎣
1 ⎤ ⎡i ⎤ − ⎥ A 2 ⎢i ⎥ ⎥⎢ B ⎥ 3⎥ − ⎢ ⎥ i C ⎣ 2 ⎥ ⎦ ⎦
dq坐标系
矢量控制系统的基本思路 以产生同样的旋转磁动势为准则,在三相 坐标系上的定子交流电流 iA、 iB 、iC ,通 过三相/两相变换可以等效成两相静止坐标 系上的交流电流 iα、iβ ,再通过同步旋转变 换,可以等效成同步旋转坐标系上的直流电 流 id 和 iq 。
如果观察者站到铁心上与坐标系一起旋 转,他所看到的便是一台直流电机,可以 控制使交流电机的转子总磁通 Φ r 就是等 效直流电机的磁通,则D绕组相当于直流 电机的励磁绕组,id 相当于励磁电流,Q 绕组相当于伪静止的电枢绕组,iq 相当于 与转矩成正比的电枢电流。
• 2s/2r变换公式
iα = id cos ϕ − iq sin ϕ
i β = id sin ϕ + iq cos ϕ
• 两相旋转—两相静止坐标系的变换矩阵 写成矩阵形式,得
⎡iα ⎤ ⎡cos ϕ ⎢i ⎥ = ⎢ ⎣ β ⎦ ⎣ sin ϕ ⎡id ⎤ − sin ϕ ⎤ ⎡id ⎤ ⎢i ⎥ = C 2 r / 2 s ⎢i ⎥ ⎥ cos ϕ ⎦ ⎣ q ⎦ ⎣ q⎦
ω
交流电动机
交流电动机的坐标变换结构图 3/2——三相/两相变换; VR——同步旋转变换; ϕ ——D轴与α轴(A轴)的夹角
C a)三相交流绕组
A
• 旋转磁动势的产生 然而,旋转磁动势并不一定非要三 相不可,除单相以外,二相、三相、 四相、…… 等任意对称的多相绕组, 通以平衡的多相电流,都能产生旋转 磁动势,当然以两相最为简单。
(2)等效的两相交流电机绕组
β
β iβ
ω1
α iα
F
α
b)两相交流绕组
图b中绘出了两相静止绕组 α 和 β ,它 们在空间互差90°,通以时间上互差90° 的两相平衡交流电流,也产生旋转磁动势 F。 当图a和b的两个旋转磁动势大小和转速 都相等时,即认为图b的两相绕组与图a的 三相绕组等效。
现在的问题是,如何求出iA、iB 、iC 与 iα、iβ 和 id、iq 之间准确的等效关系,这 就是坐标变换的任务。
2. 三相--两相变换(3/2变换) 现在先考虑上述的第一种坐标变换 ——在三相静止绕组A、B、C和两相静 止绕组α、β 之间的变换,或称三相静止 坐标系和两相静止坐标系间的变换,简 称 3/2 变换。
式中
C2 r / 2s
⎡cos ϕ =⎢ ⎣ sin ϕ
− sin ϕ ⎤ ⎥ cos ϕ ⎦
是两相旋转坐标系变换到两相静止坐标系 的变换阵。
对前式两边都左乘以变换阵的逆矩阵, 即得
⎡id ⎤ ⎡cos ϕ ⎢i ⎥ = ⎢ ⎣ q ⎦ ⎣ sin ϕ − sin ϕ ⎤ ⎡iα ⎤ ⎡ cos ϕ sin ϕ ⎤ ⎡iα ⎤ ⎢i ⎥ = ⎢ ⎢i ⎥ ⎥ ⎥ cos ϕ ⎦ ⎣ β ⎦ ⎣− sin ϕ cos ϕ ⎦ ⎣ β ⎦
下图中绘出了 A、B、C 和 α、β 两个坐 标系,为方便起见,取 A 轴和 α 轴重合。 设三相绕组每相有效匝数为N3,两相绕组 每相有效匝数为N2,各相磁动势为有效匝 数与电流的乘积,其空间矢量均位于有关 相的坐标轴上。由于交流磁动势的大小随 时间在变化着,图中磁动势矢量的长度是 随意的。
• 三相和两相坐标系与绕组磁动势的空间矢量
• 等效的概念 由此可见,以产生同样的旋转磁动势为准 则,图a的三相交流绕组、图b的两相交流绕 组和图c中整体旋转的直流绕组彼此等效。 或者说,在三相坐标系下的 iA、iB 、iC,在 两相坐标系下的 iα、iβ 和在旋转两相坐标系 下的直流 id、iq 是等效的,它们能产生相同 的旋转磁动势。
有意思的是:就图c 的 D、Q 两个绕组 而言,当观察者站在地面看上去,它们是 与三相交流绕组等效的旋转直流绕组;如 果跳到旋转着的铁心上看,它们就的的确 确是一个直流电机模型了。这样,通过坐 标系的变换,可以找到与交流三相绕组等 效的直流电机模型。
β
q iβ iq
ϕ
ω1
Fs
ϕ id
iqcosϕ idsinϕ it sinϕ
d
iα Idcosϕ
α
图中,两相交流电流 iα、iβ 和两个直流 电流 id、iq 产生同样的以同步转速ω1旋转 的合成磁动势 Fs 。由于各绕组匝数都相 等,可以消去磁动势中的匝数,直接用电 流表示,例如 Fs 可以直接标成 is 。但必 须注意,这里的电流都是空间矢量,而不 是时间相量。
众所周知,交流电机三相对称的静止绕 组 A 、B 、C ,通以三相平衡的正弦电流 时,所产生的合成磁动势是旋转磁动势F, 它在空间呈正弦分布,以同步转速 ω1 (即电流的角频率)顺着 A-B-C 的相序旋 转。这样的物理模型绘于下图a中。
(1)交流电机绕组的等效物理模型
B iB
B A
F
ω1
iA iC C
• 三相—两相坐标系的变换矩阵
令 C3/2 表示从三相坐标系变换到两相坐标系的 变换矩阵,则
C3 / 2
1 ⎡ 1 − ⎢ 2 2 = ⎢ 3 3⎢ 0 ⎢ 2 ⎣
1 ⎤ − ⎥ 2 ⎥ 3⎥ − 2 ⎥ ⎦
如果三相绕组是Y形联结不带零线, 则有 iA + iB + iC = 0,或 iC = − iA − iB 。 代入前式并整理后得
D,Q 轴和矢量 Fs( is )都以转速 ω1 旋 转,分量 id、iq 的长短不变,相当于D,Q 绕组的直流磁动势。 但 α、β 轴是静止的,α 轴与 D 轴的夹 角 ϕ 随时间而变化,因此 is 在 α、β 轴上 的分量的长短也随时间变化,相当于绕组 交流磁动势的瞬时值。由图可见, iα、 iβ 和 id、iq之间存在下列关系
⎡ ⎡i α ⎤ ⎢ ⎢i ⎥ = ⎢ ⎣ β⎦ ⎢ ⎢ ⎣ 3 2 1 2 ⎤ 0 ⎥ ⎡i ⎤ A ⎥⎢ ⎥ iB ⎦ ⎥ ⎣ 2 ⎥ ⎦
⎡ ⎡iA ⎤ ⎢ ⎢i ⎥ = ⎢ ⎣ B ⎦ ⎢− ⎢ ⎣
2 3 1 6
⎤ 0 ⎥ ⎡i ⎤ ⎥⎢ α ⎥ 1 ⎥ ⎣iβ ⎦ 2⎥ ⎦
(6-95)
按照所采用的条件,电流变换阵也就是 电压变换阵,同时还可证明,它们也是磁 链的变换阵。
−1
• 两相静止—两相旋转坐标系的变换矩阵 则两相静止坐标系变换到两相旋转坐标系的 变换阵是
C2s / 2 r
⎡ cos ϕ =⎢ ⎣− sin ϕ
sin ϕ ⎤ ⎥ cos ϕ ⎦
电压和磁链的旋转变换阵也与电流(磁动势) 旋转变换阵相同。
• 变换过程
ABC坐标系
3/2变换
αβ 坐标系
C2s/2r
考虑变换前后总功率不变,在此前提下, 可以证明,匝数比应为
N3 = N2
2 3
代入式(6-89),得
1 ⎡ − 1 ⎢ i ⎡ α⎤ 2 2 = ⎢ ⎢i ⎥ 3 3⎢ ⎣ β⎦ 0 ⎢ 2 ⎣ 1 ⎤ ⎡i ⎤ − ⎥ A 2 ⎢i ⎥ ⎥⎢ B ⎥ 3⎥ − ⎢ ⎥ i C ⎣ 2 ⎥ ⎦ ⎦
矢量变换的基本概念
( 本讲稿来自网络)
• 直流电机的物理模型 直流电机的数学模型比较简单,先分析 一下直流电机的磁链关系。图6-46中绘出 了二极直流电机的物理模型,图中 F为励 磁绕组,A 为电枢绕组,C 为补偿绕组。 F 和 C 都在定子上,只有 A 是在转子上。 把 F 的轴线称作直轴或 d 轴(direct axis),主磁通Φ的方向就是沿着 d 轴的; A和C的轴线则称为交轴或q 轴(quadrature axis)。
B N3iB
60o 60o
β
N2iα
α
N3iA A
N2iβ N3iC C
设磁动势波形是正弦分布的,当三相总磁 动势与二相总磁动势相等时,两套绕组瞬时 磁动势在 α、β 轴上的投影都应相等,
1 1 N2iα = N3iA − N3iB cos60° − N3iC cos60° = N3 (iA − iB − iC ) 2 2
3. 两相—两相旋转变换(2s/2r变换) 从上图等效的交流电机绕组和直流电机绕 组物理模型的图 b 和图 c 中从两相静止坐标 系到两相旋转坐标系 D、Q 变换称作两相— 两相旋转变换,简称 2s/2r 变换,其中 s 表示 静止,r 表示旋转。 把两个坐标系画在一起,即得下图。
z
两相静止和旋转坐标系与磁动势(电流)空间矢量
把这个旋转磁动势的大小和转速也控制成与图 a 和图 b 中的磁动势一样,那么这套旋转的直流 绕组也就和前面两套固定的交流绕组都等效了。 当观察者也站到铁心上和绕组一起旋转时,在他 看来,D 和 Q 是两个通以直流而相互垂直的静止 绕组。 如果控制磁通的位置在 D 轴上,就和直流电 机物理模型没有本质上的区别了。这时,绕组D 相当于励磁绕组,Q 相当于伪静止的电枢绕组。
分析结果 电枢磁动势的作用可以用补偿绕组磁 动势抵消,或者由于其作用方向与 d 轴 垂直而对主磁通影响甚微,所以直流电 机的主磁通基本上唯一地由励磁绕组的 励磁电流决定,这是直流电机的数学模 型及其控制系统比较简单的根本原因。
• 交流电机的物理模型 如果能将交流电机的物理模型(见下 图)等效地变换成类似直流电机的模式, 分析和控制就可以大大简化。坐标变换正 是按照这条思路进行的。 在这里,不同电机模型彼此等效的原则 是:在不同坐标下所产生的磁动势完全一 致。
(3)旋转的直流绕组与等效直流电机模型
ω1
it
T M
F D im
Q
c)旋转的直流绕组