19年10月稼轩初级中学初三上学期月考数学
2019~2020学年12月山东济南历城区济南稼轩初级中学初三上学期月考数学试卷
与抛物线交于 , 两点( 在 的左
侧),当以点 , 和( )中第二象限的点 为顶点的三角形是直角三角形时,求 的
值.
/
单位长度为半径作⊙ ,当⊙ 与直线 相切时,点 的坐标是
.
18. 已知函数 点,则 的取值范围为
的图象如图所示,若直线 .
与该图象恰有三个不同的交
三、解答题
(共7个题,共78分) 19. 计算:
/
(1) (2)
20. 如图,在
中,
为线段 上一点,且
. .
,以 为直径的半圆交 于点 , 是该半圆所在圆的圆心, .
的图象经过
、
、
,则 、 、 的大小关系是( ).
A.
B.
C.
、
、
D.
10. 如图,一个扇形纸片的圆心角为 ,半径为 ,将这张扇形纸片折叠,使点 与点 恰好重合, 折痕为 ,图中阴影为重合部分,则阴影部分的面积为( ).
/
A.
B.
C.
D.
11. 如图,二次函数
①
;②
;④若方程
确的有( ).
的图象过点
,对称轴为直线
;③若
,
是抛物线上的两点,当
的两根为 , ,且
,则
,有以下结论: 时,
,其中结论正
y
x
O
A. 个
B. 个
C. 个
D. 个
12. 如图,在
中,
,
,
,点 是 的三等分点,半圆 与 相
切, , 分别是 与半圆弧上的动点,则 的最小值和最大值之和是( ).
A.
B.
C.
D.
二、填空题
(共6个小题,每小题4分,共24分)
陕西省2019年九年级上学期10月月考数学试题C卷
陕西省2019年九年级上学期10月月考数学试题C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2016﹣a﹣b的值是()A.2018B.2011C.2014D.20212 . 在下列方程中,一元二次方程的个数是()①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2﹣=0.A.1个B.2个C.3个D.4个3 . 如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.B.5C.+1D.4 . 如图,正方形ABCD的边长为3,将等腰直角三角板的45°角的顶点放在B处,两边与CD及其延长线交于E、F,若CE=1,则BF的长为()A.B.C.D.5 . 如图,菱形ABCD中,∠A=60°,AB=6,⊙A,⊙B的半径分别为4和2,P,E,F分别是线段CD,⊙A,⊙B上的动点,则PE+PF的最大值为()A.B.C.D.66 . 下列说法正确的是()A.垂直于弦的直线平分弦所对的两条弧B.平分弦的直径垂直于弦C.垂直于直径平分这条直径D.弦的垂直平分线经过圆心二、填空题7 . 关于x的一元二次方程kx2﹣4x﹣1=0有两个实根,则k的取值范围是_____.8 . 如图,把一个圆分成三个扇形,则圆心角∠AOB=______度.9 . 在中,,,在外有一点,且,则的度数是__________.10 . 若,是方程的两个实数根,则______.11 . 如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.12 . 当________时,方程是一元二次方程.13 . 如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点A.则图中阴影部分的面积为__.14 . 已知的半径为,圆心到直线的距离为,则直线与的位置关系是________.15 . 如图所示,已知⊙O是△ABC的外接圆,AD是⊙O的直径,连结CD,若AD=3,AC=2,则cosB的值为________.16 . 如图,点A、B在半径为3的⊙O上,以OA、AB为邻边作平行四边形OCBA,作点B关于OA的对称点D,连接CD,则CD的最大值为________.三、解答题17 . 若是一元二次方程的根,,,试比较A、B的大小。
济南市稼轩中学九年级上册压轴题数学模拟试卷含详细答案
济南市稼轩中学九年级上册压轴题数学模拟试卷含详细答案一、压轴题1.⊙O 是四边形ABCD 的外接圆,OB AC ⊥,OB 与AC 相交于点H ,21012BC AC CD ===,.(1)求⊙O 的半径; (2)求AD 的长;(3)若E 为弦CD 上的一个动点,过点E 作EF//AC ,EG//AD . EF 与AD 相交于点F ,EG 与AC 相交于点G .试问四边形AGEF 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由. 2.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC 在(2)的旋转变换下,若2PC =①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长. 3.如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为()3,0,过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ;M 是直线l 上的一点,其纵坐标为32m -+,以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值. (4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.4.已知抛物线2y ax bx c =++经过原点,与x 轴相交于点F ,直线132y x =+与抛物线交于()()2266A B -,,,两点,与x 轴交于点C ,与y 轴交于点D ,点E 是线段OC 上的一个动点(不与端点重合),过点E 作//EG BC 交BF 于点C ,连接DE DG ,.(1)求抛物线的解析式及点F 的坐标; (2)当DEG ∆的面积最大时,求线段EF 的长;(3)在(2)的条件下,若在抛物线上有一点()4H n ,和点P ,使EHP ∆为直角三角形,请直接写出点P 的坐标.5.在平面直角坐标系中,O 是坐标原点,抛物线2115:L y x bx a a=+-的顶点D 在第四象限,且经过(1,)A m n +,(1,)(0,0)B m n m n ->>两点直线AB 与y 轴交于点C ,与抛物线的1L 对称轴交于点E ,8AC BC ⋅=,点E 的纵坐标为1. (1)求抛物线1L 所对应的函数表达式;(2)若将直线AB 绕着点E 旋转,直线AB 与抛物线1L 有一个交点Q 在第三象限,另一个交点记为P ,抛物线2L 与抛物线1L 关于点P 成中心对称,抛物线2L 的顶点记为1D . ①若点Q 的横坐标为-1,抛物线1L 与抛物线2L 所对应的两个函数y 的值都随着x 的增大而增大,求相应的x 的取值范围;②若直线PQ 与抛物线2L 的另一个交点记为Q ,连接1PD ,11Q D ,试间:在旋转的过程中,1PDQ ∠的度数会不会发生变化?请说明理由. 6.如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A ,B 两点,A 点坐标为(2,0)-,与y 轴交于点(0,4)C ,直线12y x m =-+与抛物线交于B ,D 两点.(1)求抛物线的函数表达式; (2)求m 的值和D 点坐标;(3)点P 是直线BD 上方抛物线上的动点,过点P 作x 轴的垂线,垂足为H ,交直线BD 于点F ,过点D 作x 轴的平行线,交PH 于点N ,当N 是线段PF 的三等分点时,求P 点坐标;(4)如图2,Q 是x 轴上一点,其坐标为4,05⎛⎫-⎪⎝⎭,动点M 从A 出发,沿x 轴正方向以每秒5个单位的速度运动,设M 的运动时间为t (0t >),连接AD ,过M 作MG AD ⊥于点G ,以MG 所在直线为对称轴,线段AQ 经轴对称变换后的图形为A Q '',点M 在运动过程中,线段A Q ''的位置也随之变化,请直接写出运动过程中线段A Q ''与抛物线有公共点时t 的取值范围.7.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.8.如图1,抛物线24y ax bx =+-与x 轴交于(3,0)A -、(4,0)B 两点,与y 轴交于点C ,作直线BC .点D 是线段BC 上的一个动点(不与B ,C 重合),过点D 作DE x⊥轴于点E .设点D 的横坐标为(04)m m <<.(1)求抛物线的表达式及点C 的坐标; (2)线段DE 的长用含m 的式子表示为 ;(3)以DE 为边作矩形DEFC ,使点F 在x 轴负半轴上、点G 在第三象限的抛物线上. ①如图2,当矩形DEFC 成为正方形时,求m 的值;②如图3,当点O 恰好是线段EF 的中点时,连接FD ,FC .试探究坐标平面内是否存在一点P ,使以P ,C ,F 为顶点的三角形与FCD ∆全等?若存在,直接写出点P 的坐标;若不存在,说明理由.9.已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACECEBS S=,求直线CE 的解析式(3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、C 、P 、Q 为顶点的四边形是平行四边形时,求点P 的坐标; (4)已知点450,,(2,0)8H G ⎛⎫⎪⎝⎭,在抛物线对称轴上找一点F ,使HF AF +的值最小此时,在抛物线上是否存在一点K ,使KF KG +的值最小,若存在,求出点K 的坐标;若不存在,请说明理由.10.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.11.新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P 分别作x 轴、y 轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P 是“和谐点”.(1)点M (1,2)_____“和谐点”(填“是”或“不是”);若点P (a ,3)是第一象限内的一个“和谐点”,3x ay =⎧⎨=⎩是关于x ,y 的二元一次方程y x b =-+的解,求a ,b 的值.(2)如图②,点E 是线段PB 上一点,连接OE 并延长交AP 的延长线于点Q ,若点P (2,3),2OBE EPQ S S ∆∆-=,求点Q 的坐标;(3)如图③,连接OP ,将线段OP 向右平移3个单位长度,再向下平移1个单位长度,得到线段11O P .若M 是直线11O P 上的一动点,连接PM 、OM ,请画出图形并写出OMP ∠与1MPP ∠,1MOO ∠的数量关系.12.如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于点,的解析式为,若将抛物线平移,使平移后的抛物线经过点, 对称轴为直线,抛物线与轴的另一个交点是,顶点是,连结.(1)求抛物线的解析式;(2)求证:∽(3)半径为的⊙的圆心沿着直线从点运动到,运动速度为1单位/秒,运动时间为秒,⊙绕着点顺时针旋转得⊙,随着⊙的运动,求的运动路径长以及当⊙与轴相切的时候的值.13.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN,AB交于P点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD.小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD.想法2:设∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通过角度计算得∠APE=2α.想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.……请你参考上面的想法,帮助小宇证明∠APE=2∠MAD.(一种方法即可)14.如图,正方形ABCD中,对角线AC、BD交于点O,E为OC上动点(与点O不重合),作AF⊥BE,垂足为G,交BO于H.连接OG、CG.(1)求证:AH=BE ;(2)试探究:∠AGO 的度数是否为定值?请说明理由; (3)若OG ⊥CG ,BG=32,求△OGC 的面积.15.在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(0)4,,直线CM x ∥轴(如图所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD . (1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD 是等腰三角形,求点P 的坐标;16.如图,Rt △ABC 中,∠C =90°,AB =15,BC =9,点P ,Q 分别在BC ,AC 上,CP =3x ,CQ =4x (0<x <3).把△PCQ 绕点P 旋转,得到△PDE ,点D 落在线段PQ 上. (1)求证:PQ ∥AB ;(2)若点D 在∠BAC 的平分线上,求CP 的长;(3)若△PDE 与△ABC 重叠部分图形的周长为T ,且12≤T ≤16,求x 的取值范围.17.如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若60180MPN ︒︒≤∠<,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在123(1,0),(1,1),(0,2)P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以3,(0)3m m m ⎛⎫> ⎪ ⎪⎝⎭为圆心,33m 为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的取值范围. 18.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A 、C 两点,与x 轴的另一交点为点B . (1)求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.19.如图,在矩形ABCD 中,已知AB=4,BC=2,E 为AB 的中点,设点P 是∠DAB 平分线上的一个动点(不与点A 重合). (1)证明:PD=PE .(2)连接PC ,求PC 的最小值.(3)设点O 是矩形ABCD 的对称中心,是否存在点P ,使∠DPO=90°?若存在,请直接写出AP 的长.20.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,AP=13AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,连接PC,且ABE为等边三角形.(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是.(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P在A的左侧时,若△PBC的面积为934,求线段AC的长.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)⊙O的半径为10,(2)AD长为19.2,(3)存在,四边形AGEF的面积的最大值为34.56.【解析】【分析】(1)如图1利用垂径定理构造直角三角形解决问题.(2)如图2在(1)基础上利用圆周角和圆心角的关系证明△OCH∽△DCK,求出Dk,再据垂径定理求得AD.(3)如图3以平行四边形AGEF的面积为函数,以AG边上的高为自变量,列出一个二次函数,利用二次函数的最值求解.【详解】(1)如图1连接OC ,因为OB AC ⊥,根据垂径定理知 HC=1112622AC =⨯= 在RT △BCH 中 ∵210BC = ∴由勾股定理知:2222BH (210)62BC HC =-=-=∴OH=OB-BH=OB-2 又∵OB=OC所以在RT △OCH 中,由勾股定理可得方程:2222)6OC OC -+=( 解得OC=10.(2)如图2,在⊙O 中:∵AC=CD ,∴OC ⊥AD (垂径定理) ∴AD=2KD ,∠HCK=∠DCK 又∵∠DKC=∠OHC=90° ∴△OCH ∽△DCK ∴KD DC HO OC= ∴DC 1248KD=8105HO OC =⨯==9.6 ∴AD=2KD=19.2.本题与⊙O 无关,但要运用前面数据.作FM ⊥AC 于M ,作DN ⊥AC 于N ,显然四边形AGEF 为平行四边形,设平行四边形AGEF 的面积为y 、EM=x 、DN=a (a 为常量), 先运用(2)的△OCH ∽△DCK ,得CK=7.2. 易得△DFE ∽△DAC , ∴DN-EM EFDN AC =(相似三角形对应高之比等于相似比) ∴DN EMAG=EF=AC DN- ∴AG=12()aa x - ∴平行四边形AGEF 的面积y=212()1212a x x x x a a -=-+(0<x <a ) 由二次函数知识得,当x=12a1222a-=-⨯时,y 有最大值. 把x=2a 代入到中得,12EF AC = ∴此时EF 、EG 、FG 恰是△ADC 的中位线 ∴四边形AGEF 的面积y 最大=111S 34.56222ADC AD CK ∆=⨯⨯=. 【点睛】本题主要考查与圆有关线段的计算、与二次函数有关的几何最值问题.(1)的关键是利用垂径定理构造直角三角形,最后用勾股定理进行计算.(2)的关键是运用与圆有的角的性质证明相似,再进行计算.(3)难点是分清图形的变与不变,选择恰当的变量并列出函数关系式.2.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =231或CM =123+【解析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由2PC =及旋转的性质,证明△EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长. 【详解】 (1)∵点()6,0C在抛物线上,∴103664b c =-⨯++,得到6=9b c +, 又∵对称轴2x =, ∴2122()4b b x a =-=-=⨯-, 解得1b =, ∴3c =,∴二次函数的解析式为2134y x x =-++;(2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4), ∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF , ∴FM=CM ,∠2=∠1=45°, 设点M 的坐标为(m ,0), ∴点F (m ,6-m ), 又∵∠2=45°,∴直线EF 与x 轴的夹角为45°, ∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m , 直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点,∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=,∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点. 综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵2PC 2)知∠BCA=45°, ∴PG=GC=1, ∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF , ∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°, ∴∠HEM=∠GMP , 在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EHM ≌△MGP (AAS ), ∴EH=MG=5-m ,HM=PG=1, ∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴22(12)(50)m m --+--221634m m -+ 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴22(14)(52)m m --+--221634m m -+ ∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED . ②当点E 在(1)所求的抛物线2134y x x =-++上时,把E (m-1,5-m )代入,整理得:m 2-10m+13=0, 解得:m=523+m=523-, ∴CM =231或CM =123+. 【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键. 3.(1)1b =;(2)120,4m m ;(3)71m =-;(4)03m <<或4m >.【解析】 【分析】(1)将A 点坐标代入函数解析式即可求得b 的值;(2)分别表示出P 、Q 、M 的坐标,根据Q 、M 的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可;(3)分别表示出PQ 和MQ 的长度,根据矩形PQMN 是正方形时PQ MQ =,即可求得m 的值,再根据顶点在正方形内部,排除不符合条件的m 的值;(4)分1m ,13m <<,3m =,3m >四种情况讨论,结合图形分析即可. 【详解】解:(1)将点()3,0A 代入21322y x bx =-++ 得21303322b =-⨯++, 解得b=1,;(2)由(1)可得函数的解析式为21322y x x =-++, ∴213,22P m m m ⎛⎫-++ ⎪⎝⎭,∵PQ l ⊥于点Q , ∴233,122m m Q ⎛⎫ ⎪⎝-+⎭+, ∵M 是直线l 上的一点,其纵坐标为32m -+,∴3(3,)2m M -+, 若点Q 与点M 重合,则2133222m m m -++=-+, 解得120,4m m ;(3)由(2)可得|3|PQm ,223131)2222|(()||2|MQ m m mm m,当矩形PQMN 是正方形时,PQ MQ = 即212|2||3|m m m , 即22123m m m 或22123mm m ,解22123m m m 得1271,71m m , 解22123mm m 得3233,33m m ,又2131(1)2222y x x x =-++=--+, ∴抛物线的顶点为(1,2), ∵抛物线的顶点在该正方形内部,∴P 点在抛物线对称轴左侧,即1m <,且M 点的纵坐标大于抛物线顶点的纵坐标,即322m,解得12m <-,故m 的值为71;(4)①如下图当1m 时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该小于P 点纵坐标,且P 点应该在x 轴上侧, 即2313222m m m 且213022m m -++>, 解2313222m m m得04m <<, 解213022m m -++>得13m -<<, ∴01m <≤,②如下图当13m <<时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该小于P 点纵坐标, 即2313222mm m,解得04m <<, ∴13m <<;③当3m =时,P 点和M 点都在直线x=3上不构成矩形,不符合题意; ④如下图当3m >时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该大于P 点纵坐标, 即2313222mm m,解得0m <或4m >, 故4m >,综上所述03m <<或4m >. 【点睛】本题考查二次函数综合,正方形的性质定理,求二次函数解析式.能分别表示出M 、P 、Q 的坐标并结合图形分析是解决此题的关键,注意分类讨论. 4.(1)抛物线的解析式为21142y x x =-,点F 的坐标为()20,;(2)4EF =;(3)点P 的坐标为()()()466121456---,,,,,或()22.-, 【解析】 【分析】(1)因为抛物线经过原点,A,B 点,利用待定系数法求得抛物物线的解析式,再令y=0,求得与x 轴的交点F 点的坐标。
2022-2023学年山东省济南市历城区稼轩中学九年级第一学期月考数学试卷
2022-2023学年济南市历城区稼轩中学九年级(上)月考数学试卷一、选择题(每题4分)1.如图是一根空心方管,它的俯视图是( )A .B .C .D .2.已知在Rt △ABC 中,∠C =90°,AB =5,BC =3,则cos B 的值是( ) A .35B .45C .34D .433.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( ) A .15个B .20个C .30个D .35个4.若关于x 的一元二次方程2304kx -=有实数根,则实数k 的取值范围是( ) A .k =0B .13k -≥且k ≠0C .13k -≥D .13k >-5.若()13,A y -,21,2B y ⎛⎫ ⎪⎝⎭,()32,C y 在二次函数22y x x c =++的图象上,则1y ,2y ,3y 的大小关系是( ) A .213y y y <<B .132y y y <<C .123y y y <<D .321y y y <<6.如图,AB 是⊙O 的直径,点D 在⊙O 上,若∠AOC =120°,则∠D 的度数是( )A .20°B .30°C .40°D .45°7.如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦,则sin OBD ∠=( )A .12B .34C .45D .358.如图,当ab >0时,函数2y ax =与函数y bx a =+的图象大致是( )A .B .C .D .9.如图,在平面直角坐标系中,在△OAB 中,点A 在x 轴上,OA =OB =6,函数ky x=(k >0,x >0)的图象经过点B 与AB 边的中点D ,则k 的值为( )A .24B .C .36D .10.已知函数245y x ax =-+(a 为常数),当x ≥4时,y 随x 的增大而增大,()11,P x y ,()22,Q x y 是该函数图象上的两点,对任意的1215a x -≤≤和2215a x -≤≤,1y ,2y 总满足21254y y a -+≤,则实数a 的取值范围是( ) A .-1≤a ≤2B .2≤a ≤3C .1≤a ≤2D .2≤a ≤4二、填空题(每题4分)11.如图,在△ABC 中,DE ∥BC ,AD =2,BD =3,AC =10,则AE 的长为 .12.将抛物线25y x =先向右平移2个单位,再向上平移3个单位后,得到新抛物线的表达式是 。
中学初三年级第一次月考数学试题
2 中学初三年级第一次月考数学试题一、选择题(3×8=24)1、下列函数中,y 是x 的反比例函数的有( ) (1)y =-πχ (2)xy =2 (3)y =2x 2 (4)y = x1 (5)y =x 12+ (6)y =11+x (7)y =x 21- (8)y =21-x A.1个 B.2个 C.3个 D.4个 2、已知反比例函数y =xk 2-的图像位于第一、三象限,则k 的取值范围是( )A.k >2B.k ≥2C.k ≤2D.k <23、若点A (1,1y )B (2,2y )都是反从例函数y=xk (k >0)的图象上,则1y与2y 的大小关系是( )A.1y <2y B.1y ≤2y C.1y >2y D.1y ≥2y4、正比例函数y =x 6的图象与反比例函数y =x6的图像的交点位于( ) A.第一象限 B.第二象限 C.第二、四象限 D.第一、三象限 5、下列方程中,一元二次方程有( )① x x =5 ①(x -3)2-6=0 ①x 2 =1 ①7x (x -2)=7x 2 ①ax 2+bx +c=0 A.1个 B.2个 C.3个 D.4个 6、一元二次方程x 2-2x -4=0的根的情况是( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根7、若一元二次方程2x (kx -4)-x 2-6=0有实数根,则k 的最小整数值是( )A.-1B.0C.1D.28、若关于x 的一元二次方程x 2+kx +4k 2-3=0的两个实数根分别是1x .2x ,且满足1x +2x =1x .2x ,则k 的值为( )A.-1或43B.-1C.43 D.不存在 二、填空题(3×6=18)9、如图,已知A 点是反比例函数y =xk (k ≠0)的图像上一点,AB①y 轴于B ,①ABO 的面积为5,则k 的值为 。
10、已知反比例函数y =x6在第一象限的图像,如图所示,点A 在其图象上,点B 在x 轴的正半轴上,连结A0、AB,且AO=AB,则①AOB 的面积= 11、若y =x 2与双曲线y =xk的一个交点是(36),则另一个交点是 12、若关于x 的一元二次方程kx 2+3x +1=0有两不相等的实数根,则k 的取值范围是13、关于x 的一元二次方程(m -2)x 2+2x +m 2+m -6=0有一个实数根为0,则m 的值是14、已知一个三角形的两边长分别是3cm 和7cm ,第三边长为acm ,且满足a 2-10a+21=0,则此三角形的周长为 。
2019-九年级数学上学期第一次月考试题华东师大版
2019-2020年九年级数学上学期第一次月考试题华东师大版一、选择题:(每题3分,共 30分) 1 、式子:①a ;②;③1 x ;④x 2 ;⑤x ;⑥5 x 2 1 ;⑦ a 2 2⑧ 3b 2 中是二次根式的代号为()A 、①②④⑥ B、②④⑧C 、②③⑦⑧D、①②⑦⑧2 、计算:18 ÷3 × 4的结果是()43A 、 0 B、 4 2C、 22 D、 323 、以下说法中,正确的选项是()A、假如ab cd ,那么 acB、ababbdbdC、方程 x 2x 20的根是 x 1 1, x 2 2D 、 (x1)2 x 14、若分式方程6m 1 有增根, 则它的增根是()( x 1)(x1)x 1A 、 0B 、 1C、- 1 D 、± 15 一元二次方程k2 x 23xk 2 4 0 有一个解为 0,则 k 的值( )A、±2B、2C、- 2D、随意实 数6、已 知 210 ,21 0 ,且,的值为()A 、2 B、 -2 C、-1 D、07 、若方程 x 24 xa 0 无实数根,则化简16 - 8a a 2 等于()A 、 4-aB 、 a-4C 、 -a-4D 、没法确立8 、若正比率函数 y=(a-1)x的图像过第一、 三象限, 化简 (1 a)2 的结果是()A 、 a-1B、1-aC、( a-1) 2D 、- ( 1-a) 29、某工厂改良工艺降低了某种产品的成本,两个月内从每件产品 250元,降低到了每件 160元,设均匀每个月的降低率为 x , 则可列方程( )A 、250( 1-x ) =160B 、250( 1-x ) 2=160C 、250( 1-x 2) =160D 、250( 1-2x )=160 10 、已知三个对于 y 的方程: y 2y a0 , (a 1) y 22y1 0 和 (a2) y 22y 1 0 ,若 此中起码有两个方程有实根,则实数a 的取值范围是( )A 、 a 2B 、 a1或 1 x 2C 、 a 1 D、1a 144二、填空题:( 每题3 分,共 18 分)11、若a 3 3 a 存心义,则 a =。
武汉市2019届10月九年级上月考数学试卷含答案解析.docx
武汉市 2019 届 10 月九年级上月考数学试卷含答案解析一、选择题(本大题共10 小题,每小题 3 分,共 30分)1.方程 4x2﹣ x+2=3 中二次项系数、一次项系数、常数项分别是()A. 4、﹣ 1、﹣ 1B. 4、﹣ 1、 2 C. 4、﹣ 1、3D. 4、﹣ 1、52.方程 x( x﹣ 1) =2 的解是()A. x=﹣ 1B. x=﹣ 2C. x1 =1, x2=﹣ 2D. x1=﹣1, x2=23.若 x , x是一元二次方程 x2+4x+3=0 的两个根,则x +x的值是()1212A. 4 B. 3 C.﹣ 4 D.﹣ 34.抛物线 y=2( x+3)2﹣5 的顶点坐标是()A.(﹣ 3,﹣ 5)B.(﹣ 3,5) C.( 3,﹣ 5) D.( 3, 5)5.如图,△ ABC中,∠ C=65°,将△ ABC绕点 A顺时针旋转后,可以得到△ AB′C′,且C′在边 BC上,则∠ B′C′B的度数为()A.56°B.50°C.46°D.40°6.若关于x 的一元二次方程为ax2+bx+5=0(a≠ 0)的解是x=1,则﹣ a﹣b 的值是()A. 2019B.C.D.7.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅年月退休金为1500 元,年达到2160元.设李师傅的月退休金从年到年年平均增长率为x,可列方程为()A.( 1﹣ x)2=1500B. 1500( 1+x)2=2160C. 1500( 1﹣ x)2=2160D. 1500+1500( 1+x) +1500(1+x)2=21608.如图,已知△ABC中,∠ C=90°, AC=BC=,将△ ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则 C′B的长为()A. 2B.C.1D. 19.已知α是一元二次方程2x 22x 3=0 的两个根中大的根,下面α 的估正确的是()A. 0<α<B.<α<1C. 1<α<D.<α<210.如:在△ABC中,∠ ACB=90°,∠ B=30°,AC=1, AC在直 l 上,将△ ABC点 A旋到位置①,可得到点P1,此 AP1=2;将位置①的三角形点P1旋到位置②,可得到点P2,此 AP2=2+;将位置②的三角形点P2旋到位置③,可得到点P3,可得到点P3,此 AP3=3+;⋯,按此律旋,直到得到点P 止,AP=()A. +672B. +671 C . +672D. +671二、填空(共 6 小,每小 3 分,共 18 分)11.在平面直角坐系中,点P( 2, 3)关于原点称点P′的坐是.12.如果二次函数y=( 1 2k)x23x+1 的象开口向上,那么常数k 的取范是.13.关于 x 的一元二次方程(p 1) x2x+p21=0 一个根0,数p 的是.14.明德小学了美化校园,准在一32 米, 20 米的方形地上修筑两条度相同的道路,余下部分作草坪,在有一位学生了如所示的方案,求中道路的是米,草坪面540 平方米.15.如图,抛物线y=ax2+bx+c 分别交坐标轴于A(﹣ 2, 0)、 B( 6, 0)、 C( 0, 4),则0≤ ax2 +bx+c< 4 的解集是.16.如图所示,在菱形ABCD中, AB=4,∠ BAD=120°,△ AEF为正三角形,点E、 F 分别在菱形的边BC、 CD上滑动,且 E、 F 不与 B、 C、 D重合.当点E、 F 在 BC、 CD上滑动时,则△CEF的面积最大值是.三、解答题(共8 小题,共 72 分)17.解方程: x2+5x=﹣ 2.18.已知抛物线y=x2﹣ 4x+5.求抛物线的开口方向、对称轴和顶点坐标.19.为了应对市场竞争,某手生产厂计划用两年的时间把某种型号的手机的生产成本降低64%,若每年下降的百分数相同,求这个百分数.20.已知一元二次方程x2﹣ 4x+k=0 有两个实数根.(1)求 k 的取值范围;(2)如果 k 是符合条件的最大整数,且一元二次方程x2﹣ 4x+k=0 与 x2+mx﹣ 1=0 有一个相同的根,求此时m的值.21.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣ 2, 3), B(﹣ 6, 0), C(﹣1, 0).(1)请直接写出点 B 关于点 A 对称的点的坐标;(2)将△ ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点 B 的对应点的坐标;(3)请直接写出:以A、 B、C 为顶点的平行四边形的第四个顶点 D 的坐标.22.某商场在 1 月至 12 月份经销某种品牌的服装,由于受到时令的影响,该种服装的销售情况如下:销售价格y1(元 / 件)与销售月份x(月)的关系大致满足如图的函数,销售成本 y2(元 / 件)与销售月份x(月)满足y2=,月销售量 y3(件)与销售月份x(月)满足y3 =10x+20.(1)根据图象求出销售价格y1(元 / 件)与销售月份x(月)之间的函数关系式;(6≤ x ≤12 且 x 为整数)(2)求出该服装月销售利润W(元)与月份x(月)之间的函数关系式,并求出哪个月份的销售利润最大?最大利润是多少?(6≤ x≤ 12 且 x 为整数)23.如图,等边三角形ABC和等边三角形DEC,CE和 AC重合, CE=AB.(1)求证: AD=BE;(2)若 CE绕点 C 顺时针旋转 30 度,连 BD交 AC于点 G,取 AB的中点 F 连 FG.求证:BE=2FG;(3)在( 2)的条件下AB=2,则 AG=.(直接写出结果)24.如图,开口向下的抛物线y=ax2+bx+c 交 x 轴于 A(﹣ 1, 0)、 B( 5, 0)两点,交y 轴于点 C( 0, 5)(1)求抛物线的解析式;(2)设抛物线的顶点为 D,求△ BCD的面积;(3)在( 2)的条件下, P、Q为线段 BC上两点( P 左 Q右,且 P、Q不与 B、 C 重合),PQ=2 ,在第一象限的抛物线上是否存在这样的点R,使△ PQR为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.- 学年九年级(上)月考数学试卷( 10 月份)参考答案与试题解析一、选择题(本大题共10 小题,每小题 3 分,共 30 分)1.方程 4x2﹣ x+2=3 中二次项系数、一次项系数、常数项分别是()A. 4、﹣ 1、﹣ 1B. 4、﹣ 1、 2C. 4、﹣ 1、3 D. 4、﹣ 1、5【考点】一元二次方程的一般形式.【分析】要确定一次项系数和常数项,首先要把方程化成一般形式.【解答】解:∵方程4x2﹣ x+2=3 化成一般形式是 4x2﹣ x﹣ 1=0,∴二次项系数为 4,一次项系数为﹣ 1,常数项为﹣ 1,故选: A.【点评】一元二次方程的一般形式是:ax2+bx+c=0( a,b, c 是常数且 a≠0)特别要注意 a ≠0 的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项, bx 叫一次项, c 是常数项.其中a,b, c 分别叫二次项系数,一次项系数,常数项.2.方程 x( x﹣ 1) =2 的解是()A. x=﹣ 1B. x=﹣ 2C. x1 =1, x2=﹣ 2D. x1=﹣1, x2=2【考点】解一元二次方程- 因式分解法.【分析】观察方程的特点:应用因式分解法解这个一元二次方程.【解答】解:整理得:x2﹣ x﹣ 2=0,(x+1)( x﹣ 2) =0,∴x+1=0 或 x﹣ 2=0,即x1 =﹣ 1, x2=2故选 D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.3.若 x1, x2是一元二次方程x2+4x+3=0 的两个根,则x1+x2的值是()A. 4B. 3C.﹣ 4 D.﹣ 3【考点】根与系数的关系.【分析】根据x1+x 2=﹣即可得.【解答】解:∵x1, x2是一元二次方程x2+4x+3=0 的两个根,∴x1+x 2=﹣ 4,故选: C.【点评】本题主要考查一元二次方程根与系数的关系,x1, x2是一元二次方程ax2+bx+c=0(a≠ 0)的两根时, x1 +x2=﹣,x1x2=.4.抛物线y=2( x+3)2﹣5 的顶点坐标是()A.(﹣ 3,﹣ 5)B.(﹣ 3,5) C.( 3,﹣ 5) D.( 3, 5)【考点】二次函数的性质.【分析】由于抛物线y=a( x﹣ h)2 +k 的顶点坐标为(h, k),由此即可求解.2【解答】解:∵抛物线y=2(x+3)﹣ 5,故选 A.【点评】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的顶点坐标公式即可解决问题.5.如图,△ ABC中,∠ C=65°,将△ ABC绕点 A顺时针旋转后,可以得到△AB′C′,且C′在边 BC上,则∠ B′C′B的度数为()A.56°B.50°C.46°D.40°【考点】旋转的性质.【分析】根据旋转的性质和∠C=65°,从而可以求得∠ AC′B′和∠ AC′C的度数,从而可以求得∠ B′C′B的度数.【解答】解:∵将△ABC绕点 A 顺时针旋转后,可以得到△AB′C′,且C′在边 BC上,∴AC=AC′,∠ C=∠AC′B′,∴∠ C=∠AC′C,∵∠ C=65°,∴∠ AC′B′=65°,∠ AC′C=65°,∴∠ B′C′B=180°﹣∠ AC′B′﹣∠ AC′C=50°,故选 B.【点评】本题考查旋转的性质,解题的关键是明确题意,找出所求问题需要的条件.6.若关于x 的一元二次方程为ax2+bx+5=0(a≠ 0)的解是x=1,则﹣ a﹣b 的值是()A. 2019B.C.D.【考点】一元二次方程的解.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出 b 的值.【解答】解:∵一元二次方程为ax2+bx+5=0(a≠ 0)的解是 x=1,∴a+b+5=0,即 a+b=﹣ 5,∴﹣ a﹣ b=﹣( a+b)=﹣(﹣ 5) =2019,故选 A.【点评】此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.7.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅年月退休金为1500 元,年达到2160元.设李师傅的月退休金从年到年年平均增长率为x,可列方程为()A.( 1﹣ x)2=1500B. 1500( 1+x)2=2160C. 1500( 1﹣ x)2=21602D. 1500+1500( 1+x) +1500(1+x) =2160【专题】增长率问题.【分析】本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设李师傅的月退休金从年到年年平均增长率为x,那么根据题意可用x 表示今年退休金,然后根据已知可以得出方程.【解答】解:如果设李师傅的月退休金从年到年年平均增长率为x,那么根据题意得今年退休金为:1500 ( 1+x)2,列出方程为: 1500 (1+x)2=2160.故选: B.【点评】考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a( 1+x)2=b, a 为起始时间的有关数量, b 为终止时间的有关数量.8.如图,已知△ABC中,∠ C=90°, AC=BC=,将△ ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则 C′B的长为()A. 2﹣B.C.﹣1D. 1【考点】旋转的性质.【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△ B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交 AB′于 D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ ABC绕点 A 顺时针方向旋转60°得到△ AB′C′,∴AB=AB′,∠ BAB′=60°,∴△ ABB′是等边三角形,∴A B=BB′,在△ ABC′和△ B′BC′中,,∴△ ABC′≌△ B′BC′(SSS),∴∠ ABC′=∠B′BC′,延长 BC′交 AB′于 D,则 BD⊥AB′,∵∠ C=90°, AC=BC=,∴AB==2,∴BD=2×=,C′D=× 2=1,∴BC′=BD﹣C′D=﹣1.故选: C.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出 BC′在等边三角形的高上是解题的关键,也是本题的难点.9.已知α是一元二次方程2x 2﹣ 2x﹣ 3=0 的两个根中较大的根,则下面对α 的估计正确的是()A. 0<α<B.<α<1C. 1<α<D.<α<2【考点】解一元二次方程- 公式法;估算无理数的大小.【分析】先求出方程的解,再求出的范围,最后即可得出答案.【解答】解:△=(﹣ 2)2﹣ 4× 2×(﹣ 3) =28,x==,由意得,α=,∵2<< 3∴<α< 2,故: D.【点】本考了解一元二次方程,估算无理数的大小的用,正确解出方程、掌握估算无理数的大小的方法是解的关.10.如:在△ABC中,∠ ACB=90°,∠ B=30°,AC=1, AC在直 l 上,将△ ABC点 A旋到位置①,可得到点P1,此 AP1=2;将位置①的三角形点P1旋到位置②,可得到点P2,此 AP2=2+;将位置②的三角形点P2旋到位置③,可得到点P3,可得到点P3,此 AP3=3+;⋯,按此律旋,直到得到点P 止,AP=()A. +672B. +671 C . +672D. +671【考点】旋的性;含30 度角的直角三角形;勾股定理.【】律型.【分析】先求出△ABC三的,再依次算AP 、 AP、 AP、⋯,每旋三次,A123到 P 的距离三角形的周,增加一次,度增加2,增加 2 次,度增加2+,增加3 ,度增加周3+;因此要算AP=的度,要先算除以3,商是多少,余数是多少,从而得出果.【解答】解:在Rt△ ABC中,∵∠ B=30°, AC=1,∴A B=2, BC= ,由旋得: AP1 =AB=2,AP =AP+P P =2+,2112AP =AP+P P +P P =3+,31 1 223⋯∵÷ 3=671⋯2,∴AP=671(3+)+2+=+672,故 A.【点】本是旋,也是形律;考了含30°角的直角三角形的性和勾股定理,此的解思路:①先表示出直角三角形各;②因要算AP的,所以从AP1、 AP2、 AP3、依次算,并律,如果看不出可以多算几个度.二、填空(共 6 小,每小 3 分,共 18 分)11.在平面直角坐系中,点P( 2, 3)关于原点称点P′的坐是(2,3).【考点】关于原点称的点的坐.【】常型.【分析】平面直角坐系中任意一点P(x, y),关于原点的称点是(x, y).【解答】解:根据中心称的性,得点P( 2, 3)关于原点的称点P′的坐是(2, 3).故答案:(2, 3).【点】关于原点称的点坐的关系,是需要的基本.方法是合平面直角坐系的形.12.如果二次函数y=( 1 2k)x23x+1 的象开口向上,那么常数k 的取范是k<.【考点】二次函数的性.【分析】由抛物开口向上,可得到关于k 的不等式,可求得k 的取范.【解答】解:∵二次函数y=( 1 2k) x23x+1 的象开口向上,∴1 2k> 0,解得 k<,故答案: k<.【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向由二次项系数的正负决定是解题的关键.13.关于 x 的一元二次方程(p﹣ 1) x2﹣ x+p2﹣ 1=0 一个根为0,则实数p 的值是﹣1.【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程的解的定义,将x=0 代入原方程,然后解关于p 的一元二次方程.另外注意关于x 的一元二次方程(p﹣ 1) x2﹣ x+p2﹣ 1=0 的二次项系数不为零.【解答】解:∵关于x 的一元二次方程(p﹣ 1) x2﹣ x+p2﹣ 1=0 一个根为0,∴x=0 满足方程( p﹣ 1) x2﹣ x+p2﹣ 1=0,∴p2﹣ 1=0,解得, p=1 或 p=﹣ 1;又∵ p﹣ 1≠0,即 p≠ 1;∴实数 p 的值是﹣ 1.故答案是:﹣ 1.【点评】此题主要考查了方程解的定义.此类题型的特点是,将原方程的解代入原方程,建立关于 p 的方程,然后解方程求未知数 p.14.明德小学为了美化校园,准备在一块长32 米,宽 20 米的长方形场地上修筑两条宽度相同的道路,余下部分作草坪,现在有一位学生设计了如图所示的方案,求图中道路的宽是 2 米时,草坪面积为 540 平方米.【考点】一元二次方程的应用.【专题】计算题;应用题.【分析】如果设路宽为xm,耕地的长应该为32﹣ x,宽应该为20﹣x;那么根据耕地的面积为 540m2,即可得出方程,求解即可.【解答】解:设道路的宽为x 米.依题意得:(32﹣ x)( 20﹣ x)=540,解之得 x1=2, x2=50(不合题意舍去).答:道路宽为2m.故答案为2.【点评】本题考查一元二次方程的应用,难度中等.可将耕地面积看作一整块的矩形的面积,根据矩形面积 =长×宽求解.215.如图,抛物线y=ax +bx+c 分别交坐标轴于A(﹣ 2, 0)、 B( 6, 0)、 C( 0, 4),则【考点】二次函数与不等式(组).【分析】根据点A、B 的坐标确定出对称轴,再求出点C的对称点的坐标,然后写出即可.【解答】解:∵A(﹣ 2, 0)、 B( 6,0),∴对称轴为直线x==2,∴点 C 的对称点的坐标为(4, 4),∴0≤ ax2+bx+c <4 的解集为﹣ 2≤ x<0 或 4< x≤ 6.故答案为:﹣ 2≤ x<0 或 4<x≤ 6.【点评】本题考查了二次函数与不等式,难点在于求出对称轴并得到 C 点的对称点的坐标.16.如图所示,在菱形ABCD中, AB=4,∠ BAD=120°,△ AEF为正三角形,点E、 F 分别在菱形的边BC、 CD上滑动,且 E、 F 不与 B、 C、 D重合.当点E、 F 在 BC、 CD上滑动时,则△CEF的面积最大值是.【考点】菱形的性质;等边三角形的性质.【分析】先求证AB=AC,进而求证△ ABC、△ ACD为等边三角形,得∠ 4=60°,AC=AB进而求证△ ABE≌△ ACF,可得 S△=S△,故根据S 四边形=S△+S△=S△+S△=S△即可解ABE ACF AECF AEC ACF AEC ABE ABC题;当正三角形AEF的边 AE与 BC垂直时,边AE最短.△ AEF的面积会随着AE的变化而变化,且当AE 最短时,正三角形AEF的面积会最小,又根据S△=S 四边形﹣S△,则△CEF AECF AEFCEF的面积就会最大.【解答】解:如图,连接AC,∵四边形ABCD为菱形,∠ BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠ 1=∠ 3,∵∠ BAD=120°,∴∠ ABC=60°,∴△ABC和△ACD为等边三角形,∴∠ 4=60°, AC=AB,∴在△ ABE和△ ACF中,,∴△ ABE≌△ ACF( ASA),∴S△=S△,ABE ACF∴S 四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥ BC于 H 点,则 BH=2,∴S=S = BC?AH= BC?=4 ,四边形 AECF △ ABC由“垂线段最短”可知:当正三角形AEF的边 AE与 BC垂直时,边 AE最短,∴△ AEF的面积会随着 AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵ S△CEF=S四边形AECF﹣ S△AEF,则此时△ CEF的面积就会最大,∴S△=S 四边形﹣S△=4﹣× 2×=.CEF AECF AEF故答案为:【点评】本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ ACF,得出四边形AECF的面积是定值是解题的关键.三、解答题(共8 小题,共 72 分)2【考点】解一元二次方程- 配方法.【分析】利用配方法即可求出方程的解.【解答】解: x2+5x+=,(x+ )2= ,x=【点评】本题考查一元二次方程的解法,本题采用配方法求解,属于基础题型.18.已知抛物线y=x2﹣ 4x+5.求抛物线的开口方向、对称轴和顶点坐标.【考点】二次函数的性质.【分析】用配方法将抛物线的一般式转化为顶点式,直接写出开口方向,顶点坐标和对称轴.【解答】解:∵y=x 2﹣ 4x+5,∴y= ( x﹣ 2)2 +1,∵a=1> 0,∴该抛物线的开口方向上,∴对称轴和顶点坐标分别为:x=2,( 2,1).【点评】本题考查了抛物线解析式与二次函数性质的联系.顶点式y=a( x﹣h)2 +k,当 a >0 时,抛物线开口向上,当a< 0 时,抛物线开口向下;顶点坐标为(h, k),对称轴为x=h.19.为了应对市场竞争,某手生产厂计划用两年的时间把某种型号的手机的生产成本降低64%,若每年下降的百分数相同,求这个百分数.【考点】一元二次方程的应用.【专题】增长率问题.【分析】可设原来的成本为1.等量关系为:原来的成本×(1﹣每年下降的百分数)2=原来的成本×( 1﹣ 64%),把相关数值代入求合适解即可.【解答】解:设每年下降的百分数为x.1×( 1﹣ x)2=1×( 1﹣ 64%),∵1﹣ x> 0,∴1﹣ x=0.6 ,∴x=40%.答:每年下降的百分数为 40%.【点评】此题主要考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为 a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a( 1± x)2=b.20.已知一元二次方程x2﹣ 4x+k=0 有两个实数根.(1)求 k 的取值范围;(2)如果 k 是符合条件的最大整数,且一元二次方程x2﹣ 4x+k=0 与 x2+mx﹣ 1=0 有一个相同的根,求此时m的值.【考点】根的判别式;一元二次方程的解.【专题】计算题.【分析】( 1)方程 x2﹣ 4x+k=0 有两个实数根,即知△≥0,解可求k 的取值范围;(2)结合( 1)中 k≤ 4,且 k 是符合条件的最大整数,可知k=4,把 k=4 代入 x2﹣4x+k=0中,易解x=2,再把 x=2 代入 x2+mx﹣ 1=0 中,易求m.【解答】解:(1)∵方程x2﹣ 4x+k=0 有两个实数根,∴△≥ 0,即16﹣ 4k≥ 0,解得 k≤ 4;(2)∵ k≤4,且 k 是符合条件的最大整数,∴k=4,解方程 x2﹣ 4x+4=0 得 x=2,把 x=2 代入 x2+mx﹣ 1=0 中,可得4+2m﹣ 1=0,解得 m=﹣.【点评】本题考查了根的判别式、解不等式,解题的关键是知道△≥0? 方程有两个实数根.21.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣ 2, 3), B(﹣ 6, 0), C(﹣1, 0).(1)请直接写出点 B 关于点 A 对称的点的坐标;(2)将△ ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点 B 的对应点的坐标;(3)请直接写出:以A、 B、C 为顶点的平行四边形的第四个顶点 D 的坐标.【考点】作图 - 旋转变换.【分析】( 1)点 B 关于点 A 对称的点的坐标为(2, 6);(2)分别作出点 A、 B、 C 绕坐标原点 O逆时针旋转 90°后的点,然后顺次连接,并写出点B 的对应点的坐标;(3)分别以 AB、 BC、 AC为对角线,写出第四个顶点D 的坐标.【解答】解:(1)点 B 关于点 A 对称的点的坐标为(2, 6);(2)所作图形如图所示:,点 B' 的坐标为:(0,﹣ 6);(3)当以 AB为对角线时,点 D坐标为(﹣ 7, 3);当以 AC为对角线时,点 D 坐标为( 3,3);当以 BC为对角线时,点 D 坐标为(﹣ 5,﹣ 3).【点评】本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.某商场在 1 月至 12 月份经销某种品牌的服装,由于受到时令的影响,该种服装的销售情况如下:销售价格y1(元 / 件)与销售月份x(月)的关系大致满足如图的函数,销售成本 y2(元 / 件)与销售月份x(月)满足y2=,月销售量 y3(件)与销售月份x(月)满足y3 =10x+20.(1)根据图象求出销售价格y1(元 / 件)与销售月份x(月)之间的函数关系式;(6≤ x ≤12 且 x 为整数)(2)求出该服装月销售利润W(元)与月份x(月)之间的函数关系式,并求出哪个月份的销售利润最大?最大利润是多少?(6≤ x≤ 12 且 x 为整数)【考点】二次函数的应用.【分析】( 1)根据待定系数法,可得函数解析式;(2)根据销售额减去销售成本,可得销售利润,根据函数的性质,可得最大利润.【解答】解:( 1)设销售价格 y1(元 / 件)与销售月份 x(月)之间的函数关系式为y1=kx+b(6≤ x≤ 12),函数图象过( 6, 60)、( 12, 100),则,解得.故销售价格y1(元 / 件)与销售月份x(月)之间的函数关系式y1 =x+20(6≤ x≤12且x为整数);(2)由题意得 w=y1?y3﹣ y2?y3即w=(x+20 ) ?(10x+20 )﹣x?( 10x+20)化简,得w=20x2 +240x+400,∵a=20, x=﹣=﹣=﹣ 6 是对称轴,当 x>﹣ 6 时, w 随 x 的增大而增大,∴当 x=12 时,销售量最大,W最大 =20× 122+240× 12+400=6160,答: 12 月份利润最大,最大利润是6160 元.【点评】本题考查了二次函数的应用,利用了待定系数法求解析式,利用了函数的减区间求函数的最大值.23.如图,等边三角形ABC和等边三角形DEC,CE和 AC重合, CE=AB.(1)求证: AD=BE;(2)若 CE绕点 C 顺时针旋转 30 度,连 BD交 AC于点 G,取 AB的中点 F 连 FG.求证:BE=2FG;(3)在( 2)的条件下AB=2,则 AG=.(直接写出结果)【考点】旋转的性质;全等三角形的判定与性质.【专题】证明题.【分析】( 1)由三角形 ABC和等三角形 DEC都是等边三角形,得到∠ BCE=∠ACD=60°,CE=CD, CB=CA,则△ CBE≌△ CAD,从而得到 BE=AD.(2)过 B作 BT⊥ AC于 T,连 AD,则∠ ACE=30°,得∠ GCD=90°,而C E=AB,BT=AB,得 BT=CD,可证得Rt △ BTG≌ Rt △ DCG,有BG=DG,而 F 为 AB的中点,所以 FG∥ AD, FG= AD,易证 Rt△ BCE≌ Rt △ ACD,得到BE=AD=2FG;(3)由( 2) Rt △ BTG≌ Rt △DCG,得到 AT=TC,GT=CT,即可得到 AG= .【解答】解:(1)证明:∵三角形ABC和等三角形DEC都是等边三角形,∴∠ BCE=∠ACD=60°, CE=CD, CB=CA,∴△ CBE≌△ CAD,∴B E=AD.(2)证明:过 B 作 BT⊥ AC于 T,连 AD,如图:∵CE绕点 C 顺时针旋转30 度,∴∠ ACE=30°,∴∠ GCD=90°,又∵ CE=AB,而 BT=AB,∴B T=CD,∴R t △ BTG≌ Rt △ DCG,∴ BG=DG.∵F 为 AB的中点,∴FG∥ AD,FG=AD,∵∠ BCE=∠ACD=90°,CB=CA, CE=CD,∴R t △ BCE≌ Rt △ ACD.∴ BE=AD,∴B E=2FG;(3)∵ AB=2,由( 2) Rt△ BTG≌ Rt△ DCG,∴A T=TC, GT=CG,∴G T= ,∴AG= .故答案为.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的性质、三角形全等的判定与性质以及三角形中位线的性质.24.如图,开口向下的抛物线y=ax2+bx+c 交 x 轴于 A(﹣ 1, 0)、 B( 5, 0)两点,交y 轴于点 C( 0, 5)(1)求抛物线的解析式;(2)设抛物线的顶点为 D,求△ BCD的面积;(3)在( 2)的条件下, P、Q为线段 BC上两点( P 左 Q右,且 P、Q不与 B、 C 重合),PQ=2 ,在第一象限的抛物线上是否存在这样的点R,使△ PQR为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.【考点】待定系数法求二次函数解析式.【分析】( 1)直接把点 A(﹣ 1, 0)、 B( 5, 0), C( 0, 5)代入抛物线 y=ax2+bx+c ,利用待定系数法即可得出抛物线的解析式;(2)作 DE⊥ AB于 E,交对称轴于F,根据( 1)求得的解析式得出顶点坐标,然后根据S△BCD=S△ CDF+S△ BDF即可求得;(3)分三种情况:①以点 P 为直角顶点;②以点 R 为直角顶点;③以点 Q为直角顶点;进行讨论可得使△ PQR为等腰直角三角形时点 R 的坐标.【解答】解:( 1)∵抛物线 y=ax 2+bx+c 与 x 轴交于两点 A(﹣ 1, 0), B( 5, 0), C(0, 5)∴,解得.∴此抛物线的解析式为:y=﹣x2+4x+5;(2)由 y=﹣ x2 +4x+5=﹣( x﹣ 2)2+9 可知顶点D的坐标为( 2, 9),作DE⊥ AB于 E,交对称轴于 F,如图,∴E( 2, 0),∵B( 5, 0), C( 0, 5)∴直线 BC的解析式为y= ﹣ x+5,把x=2 代入得, y=3,∴F(2,3),∴DF=9﹣ 3=6,S△=S△+S△=×6× 2﹣× 6×(5﹣2)=× 6× 5=15;BCD CDF BDF(3)分三种情况:①以点 P 为直角顶点,∵P Q=2 ,∴RQ= PQ=4∵C( 0, 5), B( 5, 0),∴OC=OB=5,∴∠ OCB=∠OBC=45°,∵∠ RQP=45°∴RQ∥ OC可求得直线BC的解析式为设R( m,﹣ m2+4m+5),则2则 RQ=(﹣ m+4m+5)﹣(﹣解得 m=4, m=1,12∵点 Q在点 P 右侧,∴m=4,y=﹣ x+5,Q( m,﹣ m+5)m+5) =4∴R( 4, 5);②以点 R 为直角顶点,∵P Q=2 ,∴RQ=PQ=222设 R( m,﹣ m+4m+5)则 Q( m,﹣ m+5),则 RQ=(﹣ m+4m+5)﹣(﹣ m+5) =2,解得 m=,m=,12∵点 Q在点 P 右侧,∴m=,∴R(,);③以点 Q为直角顶点,∵P Q=2 ∴ PR= PQ=4∵C( 0, 5), B( 5, 0)∴OC=OB=5∴∠ OCB=∠OBC=45°∵∠ RPQ=45°,∴PR∥ OB设R( m,﹣ m2+4m+5),则 P( m﹣ 4,﹣ m2+4m+5),把P( m﹣ 4,﹣ m2+4m+5)代入 y=﹣ x+5,得﹣( m﹣ 4) +5=﹣ m2+4m+5解得 m=4, m=1,12此时点 P(0, 5)因为点 P 在线段 BC上运动,且不与B、C 重合,所以不存在以Q为直角顶点的情况.综上所述:当R ( 4, 5)或((,)时,△ PQR为等腰直角三角形.【点评】考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的解析式,顶点坐标,面积计算,等腰直角三角形的判定与性质,以及分类思想的应用,综合性较强,有一定的难度.。
2019届山东省九年级上学期10月月考数学试卷【含答案及解析】
2019届山东省九年级上学期10月月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列方程中,是一元二次方程的是()A.2x2﹣7=3y+1B.5x2﹣6y﹣2=0C.x﹣=+xD.ax2+(b﹣3)x+c+5=02. 三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定3. 下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形4. 正方形具有而菱形不具有的性质是()A.对角线平分一组对角 B.对角线相等C.对角线互相垂直平分 D.四条边相等5. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A.20 B.16 C.12 D.106. 关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定7. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0 B.x2﹣4x+3=0 C.x2+4x﹣3=0 D.x2+3x﹣4=08. 两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为()A. B. C. D.9. 2012年张掖市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为()A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2=9.5C.2+2(1+x)+2(1+x)2=9.5 D.2(1+x)=9.5二、填空题10. 一元二次方程2x2+4x=1的二次项系数、一次项系数及常数之和为.11. ▱ABCD中,对角线AC、BD交于点O,若AC=8,BD=6,则边AB长的取值范围为.12. 顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是形.13. 从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是.14. 在△ABC中,已知∠A、∠B、∠C的度数之比为1:2:3,AB边上的中线长为4cm,则△ABC面积等于 cm2.15. 若关于x的方程3x2+mx+m﹣6=0有一根是0,则m= .16. 如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE的度数为度.17. 如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在E处,折痕为MN,则线段CN的长是.18. 如图,在▱ABCD中,AE平分∠B AD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD,若AB=4,AD=6,∠ABC=60°,PD的长,四边形ABEF的面积.三、解答题19. 解方程(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x+2=0(公式法解)(3)3(x﹣5)2=2(5﹣x)(4)(3x+2)(x+3)=x+14.20. 小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.21. 已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.22. 某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?23. 如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?24. D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?为什么?(3)当OA与BC满足时,四边形DGEF是一个矩形(直接填答案,不需证明.)25. 已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
济南稼轩中学九年级上册期中试卷检测题
济南稼轩中学九年级上册期中试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.【答案】(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥,90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-, ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.【答案】(1)k>34;(215【解析】【分析】(1)根据关于x的方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n,利用根与系数的关系得出m+n=5,mn=5,22m n+,利用完全平方公式进行变形即可求得答案.【详解】解:(1)∵方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,∴Δ=[-(2k+1)]2-4×1×(k2+1)=4k-3>0,∴k>34;(2)当k=2时,原方程为x2-5x+5=0,设方程的两个根为m,n,∴m+n=5,mn=5,()222215m n m n mn+=+-=.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.在等腰三角形△ABC中,三边分别为a、b、c,其中ɑ=4,若b、c是关于x的方程x2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.4.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.【答案】0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k ≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,5.定南县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售. (1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【答案】(1)10%;(2)方案② 【解析】试题分析:首先设下调的百分率为x ,根据题意列出方程进行求解,得出答案;分别求出两种方案所需要花费的钱数,然后进行比较.试题解析:(1)设平均每次下调的百分率是x ,依题意得,4000(1-x )2=3240 解之得:x=0.1=10%或x=1.9(不合题意,舍去) 答:平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元 方案②实际花费=100×3240-100×80=316000元∵317520>316000 ∴方案②更优惠 考点:一元二次方程的应用二、初三数学 二次函数易错题压轴题(难)6.已知函数2266()22()x ax a x a y x ax a x a ⎧-+>=⎨-++≤⎩(a 为常数,此函数的图象为G )(1)当a =1时,①直接写出图象G 对应的函数表达式 ②当y=-1时,求图象G 上对应的点的坐标(2)当x >a 时,图象G 与坐标轴有两个交点,求a 的取值范围 (3)当图象G 上有三个点到x 轴的距离为1时,直接写出a 的取值范围【答案】(1)①2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩,②(1,1),(31),(31)--+--;(2)0a <或2635a <<;(3)1a -<,1153a <<,113a <<-【解析】 【分析】(1)①将1a =代入函数解析式中即可求出结论;②分1x >和1x ≤两种情况,将y=-1分别代入求出x 的值即可;(2)根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可;(3)先求出266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+,222y x ax a =-++的对称轴为直线()221ax a =-=⨯-,顶点坐标为()2,2a aa +,然后根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可. 【详解】(1)①1a =时,2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩②当1x >时,2661x x -+=-2670x x -+=1233x x ==当1x ≤时,2221x x -++=-2230x x --=121,3x x =-=(舍)∴坐标为(1,1),(31),(31)---- (2)当0a <时266()y x ax a x a =-+>与y 轴交点坐标(0,6)a ,266y x ax a =-+对称轴为直线6321ax a -=-=⨯,过点(1,1) ∴x >a >3a ,此时图像G 与坐标轴有两个交点(与x 轴一个交点,与y 轴一个交点) 当0a ≥时,266()y x ax a x a =-+>的图像与y 轴无交点顶点坐标为()23,96a a a -+当x a =时,256y a a =-+>0①,且2960a a -+<②时,此时图像G 与x 轴有两个交点将①的两边同时除以a ,解得65a <; 将②的两边同时除以a ,解得23a > ∴2635a << 即当2635a <<时,图像G 与坐标轴有两个交点,综上,0a <或2635a <<(3)266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+ 222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a + ①当a <0时,()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +由()210a +≥可得221a a +≥-,即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>必过(1,1),即此图象必有一个点到x 轴的距离为1,此时x>3a ,y >225666a a a a a a ⋅+=-+-当2221561a a a a ⎧+<⎨-+<-⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:1a-<;当2221561a aa a⎧+>⎨-+>-⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点解得:315a+-+<<,与前提条件a<0不符,故舍去;②当a≥0时,()222y x ax a x a=-++≤中,当x=a时,y的最大值为22a a+,必过点(-1,-1),即此图象必有一个点到x轴的距离为1而()266y x ax a x a=-+>,此时当x=3a时,y的最小值为296a a-+,由()2310a--≤可得2961a a-+≤,即此图象必有一个点到x轴的距离为1当222221561961961a aa aa aa a⎧+<⎪-+>⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴只有一个交点,()266y x ax a x a=-+>与x轴有两个交点解得:115a<<-+且13a≠;当222221561961961a aa aa aa a⎧+<⎪-+<⎪⎨-+<-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴只有一个交点,()266y x ax a x a=-+>与x轴有两个交点此不等式无解,故舍去;当222221561961961a aa aa aa a⎧+>⎪-+<⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点此不等式无解,故舍去;综上:315a--<或1153a<<或113a<<-【点睛】此题考查的是二次函数的性质和分段函数的应用,此题难度较大,掌握二次函数的性质和分类讨论的数学思想是解决此题的关键.7.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22bb D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22b b D ⎛⎫- ⎪⎝⎭. 3B 在抛物线2C 上,2333122222b b b ⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去), ()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=- ⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.8.如图所示,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的顶点坐标为()3, 6C ,并与y 轴交于点()0, 3B ,点A 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)如图①所示, P 是抛物线上的一个动点,且位于第一象限,连结BP 、AP ,求ABP ∆的面积的最大值;(3)如图②所示,在对称轴AC 的右侧作30ACD ∠=交抛物线于点D ,求出D 点的坐标;并探究:在y 轴上是否存在点Q ,使60CQD ∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)21233y x x =-++;(2)当92n =时,PBA S ∆最大值为818;(3)存在,Q 点坐标为((0,330,33-或,理由见解析【解析】【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S △PAB=S △BPO+S △APO-S △AOB,设P 21,233n n n ⎛⎫-++ ⎪⎝⎭求出关于n 的函数式,从而求S △PAB 的最大值.(3) 求点D 的坐标,设D 21,233t t t ⎛⎫-++ ⎪⎝⎭,过D 做DG 垂直于AC 于G,构造直角三角形,利用勾股定理或三角函数值来求t 的值即得D 的坐标;探究在y 轴上是否存在点Q ,使60CQD ∠=?根据以上条件和结论可知∠CAD=120°,是∠CQD 的2倍,联想到同弧所对的圆周角和圆心角,所以以A 为圆心,AO 长为半径做圆交y 轴与点Q,若能求出这样的点,就存在Q 点.【详解】解:()1抛物线顶点为()3,6∴可设抛物线解析式为()236y a x =-+将()0,3B 代入()236y a x =-+得 396a =+13a ∴=- ∴抛物线()21363y x =--+,即21233y x x =-++ ()2连接,3, 3OP BO OA ==,PBA BPO PAO ABO S S S S ∆∆∆∆=+-设P 点坐标为21,233n n n ⎛⎫-++ ⎪⎝⎭ 1133222BPO x S BO P n n ∆=== 2211119323322322PAO y S OA P n n n n ∆⎛⎫==-++=-++ ⎪⎝⎭11933222ABO S OA BO ∆==⨯⨯= 22231991919813222222228PBA S n n n n n n ∆⎛⎫⎛⎫=+-++-=-+=--+ ⎪ ⎪⎝⎭⎝⎭ ∴当92n =时,PBA S ∆最大值为818()3存在,设点D 的坐标为21,233t t t ⎛⎫-++ ⎪⎝⎭过D 作对称轴的垂线,垂足为G ,则213,6233DG t CG t t ⎛⎫=-=--++ ⎪⎝⎭30ACD ∠=2DG DC ∴=在Rt CGD ∆中有222243CG CD DG DG DG DG =+=-=()21336233t t t ⎛⎫∴-=--++ ⎪⎝⎭化简得()1133303t t ⎛⎫---= ⎪⎝⎭ 13t ∴=(舍去),2333t =+∴点D(333+,-3)3,33AG GD ∴==连接AD ,在Rt ADG ∆中229276AD AG GD =+=+=6,120AD AC CAD ∴==∠=Q ∴在以A 为圆心,AC 为半径的圆与y 轴的交点上此时1602CQD CAD ∠=∠= 设Q 点为(0,m), AQ 为A 的半径 则AQ ²=OQ ²+OA ², 6²=m ²+3²即2936m += ∴1233,33m m ==-综上所述,Q 点坐标为()()0,330,33-或故存在点Q ,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.9.如图,已知抛物2(0)y ax bx c a=++≠经过点,A B,与y轴负半轴交于点C,且OC OB=,其中B点坐标为(3,0),对称轴l为直线12x=.(1)求抛物线的解析式;(2) 在x轴上方有一点P,连接PA后满足PAB CAB∠=∠,记PBC∆的面积为S ,求当10.5S=时点P的坐标(3)在(2)的条件下,当点P恰好落在抛物线上时,将直线BC上下平移,平移后的10.5S=时点P的坐标;直线y x t=+与抛物线交于,C B''两点(C'在B'的左侧),若以点,,C B P''为顶点的三角形是直角三角形,求出t的值.【答案】(1)211322y x x=--(2)(2,6)(3)19或32【解析】【分析】(1)确定点A的坐标,再进行待定系数法即可得出结论;(2)确定直线AP的解析式,用m表示点P的坐标,由面积关系求S和m的函数关系式即可求解;(3)先确定点P的坐标,当'''90B PC∠=,利用根与系数的关系确定'''B C的中点E的坐标,利用''2B C PE=建立方程求解,当''''90PC B∠=时,确定点G的坐标,进而求出直线''C G的解析式,得出点''C的坐标即可得出结论.【详解】(1)∵OC OB=,且B点坐标为(3,0),∴C点坐标为(0,3)-.设抛物线解析式为21()2y a x k=-+.将B、C两点坐标代入得254134a ka k⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258ak⎧=⎪⎪⎨⎪=-⎪⎩.∴抛物线解析式为22112511()-322822y x x x =-=--. (2)如图1,设AP 与y 轴交于点'C .∵PAB CAB ∠=∠,OA OA =,90AOC AOC ∠'=∠=︒,∴AOC ∆≌AOC ∆',∴3OC OC ='=,∴(0,3)C '.∵对称轴l 为直线12x =, ∴(2,0)A -,∴直线AP 解析式为332y x =+, ∵(3,0)B ,(0,-3)C ,∴直线BC 解析式为-3y x =,∴313(3)622PF x x x =+--=+, ∴13924PBC S OB PF x ∆=⨯⨯=+, ∵10.5S =,∴3910.54x +=, ∴2x =. 此时P 点的坐标为(2,6).(3)如图2,由211-322332y x x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P (), 当90C PB ∠=''︒时,取''B C 的中点E ,连接PE .则2B C PE ''=,即224B C PE =''.设1122(,),(,)B x y C x y ''. 由211-322y x x y x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t --+=, ∴12123,(26)x x x x t +==-+, ∴点33(,)22E t +, 222221212121212()()2()2()41666B C x x y y x x x x x x t ⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t =-+-=-+), ∴226116664(21)2t t t +=-+, 解得:19t =或6(舍去),当90PC B ''''∠=︒时,延长C P ''交BC 于H ,交x 轴于G .则90,45BHG PGO ∠=︒∠=︒,过点P 作PG x ⊥轴于点Q ,则12GQ PQ ==,∴(18,0)G ,∴直线C G ''的解析式为18y x =-+, 由211-322-18y x x y x ⎧=-⎪⎨⎪=+⎩得725x y =-⎧⎨=⎩或612x y =⎧⎨=⎩(舍去), ∴(7,25)C '-',将(7,25)C '-'代入y x t =+中得32t =.综上所述,t 的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.10.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点, ②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.三、初三数学 旋转易错题压轴题(难)11.阅读材料并解答下列问题:如图1,把平面内一条数轴x 绕原点O 逆时针旋转角00)90(θ︒︒<<得到另一条数轴,y x 轴和y 轴构成一个平面斜坐标系.xOy规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B ,若点A 在x 轴对应的实数为a ,点B 在y 轴对应的实数为b ,则称有序实数对(),a b 为点P 在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ︒=,点P 的斜坐标是()3,6,点C 的斜坐标是()0,6.(1)连接OP ,求线段OP 的长;(2)将线段OP 绕点O 顺时针旋转60︒到OQ (点Q 与点P 对应),求点Q 的斜坐标; (3)若点D 是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点D 为圆心,DC 长为半径作D ,当⊙D 与x 轴相切时,求点D 的斜坐标,【答案】(1)37OP =;(2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为:(32,3)或(6,12). 【解析】【分析】 (1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ=︒,由AP=6,则AC=3,33PC =,再利用勾股定理,即可求出OP 的长度;(2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ 是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q 的斜坐标;(3)根据题意,可分为两种情况进行分析:①当OP 和CM 恰好是平行四边形OMPC 的对角线时,此时点D 是对角线的交点,求出点D 的坐标即可;②取OJ=JN=CJ ,构造直角三角形OCN ,作∠CJN 的角平分线,与直线OP 相交与点D ,然后由所学的性质,求出点D 的坐标即可.【详解】解:(1)如图,过点P 作PC ⊥OA ,垂足为C ,连接OP ,∵AP∥OB,∴∠PAC=60θ=︒,∵PC⊥OA,∴∠PCA=90°,∵点P的斜坐标是()3,6,∴OA=3,AP=6,∴1 cos602ACAP︒==,∴3AC=,∴226333PC=-=,336OC=+=,在Rt△OCP中,由勾股定理,得226(33)37OP=+=;(2)根据题意,过点Q作QE∥OC,QF∥OB,连接BQ,如图:由旋转的性质,得OP=OQ,∠POQ=60°,∵∠COP+∠POA=∠POA+∠BOQ=60°,∴∠COP=∠BOQ,∵OB=OC=6,∴△COP≌△BOQ(SAS);∴CP=BQ=3,∠OCP=∠OBQ=120°,∴∠EBQ=60°,∵EQ∥OC,∴∠BEQ=60°,∴△BEQ是等边三角形,∴BE=EQ=BQ=3,∴OE=6+3=9,OF=EQ=3,∵点Q在第四象限,∴点Q的斜坐标为(9,3-);(3)①取OM=PC=3,则四边形OMPC是平行四边形,连接OP、CM,交点为D,如图:由平行四边形的性质,得CD=DM,OD=PD,∴点D为OP的中点,∵点P的坐标为(3,6),∴点D的坐标为(32,3);②取OJ=JN=CJ,则△OCN是直角三角形,∵∠COJ=60°,∴△OCJ是等边三角形,∴∠CJN=120°,作∠CJN的角平分线,与直线OP相交于点D,作DN⊥x轴,连接CD,如图:∵CJ=JN,∠CJD=∠NJD,JP=JP,∴△CJD≌△NJD(SAS),∴∠JCD=∠JND=90°,则由角平分线的性质定理,得CD=ND;过点D作DI∥x轴,连接DJ,∵∠DJN=∠COJ=60°,∴OI∥JD,∴四边形OJDI是平行四边形,∴ID=OJ=JN=OC=6,在Rt△JDN中,∠JDN=30°,∴JD=2JN=12;∴点D的斜坐标为(6,12);综合上述,点D的斜坐标为:(32,3)或(6,12).【点睛】本题考查了坐标与图形的性质,解直角三角形,旋转的性质,全等三角形的判定和性质,角平分线的性质等知识,解题的关键是理解题意,正确寻找圆心D的位置来解决问题,属于中考创新题型.注意运用分类讨论的思想进行解题.12.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.13.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE ,∴∠DAB=∠EAC ,在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE.∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.14.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B (0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S≤30334+.【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD22AD AC-,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-34)=30334-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(3430334+综上所述,303344-≤S ≤303344+. 【点睛】 本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.15.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)【解析】【分析】。
2019九年级数学上学期第一次月考试题华东师大版
2019-2020 年九年级数学上学期第一次月考试题华东师大版学校班级姓名得分(总分: 120 分考试时间:120 分钟)一、选择题(每题 3 分,共 30 分)1 、以下各式中,必定是二次根式的是()A、-43C 、 x2+1D、 x-1 B 、 2a2、以下二次根式中,与24 是同类二次根式的是()。
A、18B、30C、48D、543、以下方程中,是对于x 的一元二次方程的是:()A 、 2x2+2x=x(2x+2)B 、 3x2+y=0C、 5x2+5+3=0D、 (a 2+2)x 2-3x+2=0x4、方程 x2-4x-3=0 根的状况是()A、有两个不相等的实数根; B 、有两个相等的实数根;C、有一个实数根 ;D、没有实数根5、以下计算中,正确的选项是()A、23 42 65B、27 3 3C、3332 66D、( 3)236 、某型号的手机连续两次降阶,每个售价由本来的1185 元降到 580 元,设每次降价的百分率为x ,则列出方程正确的选项是()A、 580(1+x) 2 =1185B、 1185(1+x) 2 =580C、580(1-x)2=1185D、 1185(1-x) 2 =5807、对于 x 的方程 ax2+bx+c=0, 若知足 a-b+c=0 ,。
则方程() .A、必有一根为 1B、必有两相等实根C、必有一根为- 1D、没有实数根。
8、已知( x- 1)2+=0,则( x+y)2的算术平方根是()y2A、±1B、 1C、- 1D、 09 、若方程 (m-1)x 2+m x-2=0是对于 x 的一元二次方程,则 m的取值范围是()。
A、 m = 0B、 m ≠ 1C、 m ≥ 0 且 m ≠ 1D、 m 为任意实数10、用配方法解一元二次方程x2+8x+7=0,则方程可化为()。
A、 (x+4) 2=9B、 (x-4)2=9C、 (x+8) 2=23D、 (x-8)2=9二、填空(每 3 分,共 18分)11、化:12______ ,32 =________。
人教版2024-2025学年九年级数学上册第一次月考(第二十一章至第二十三章)(解析版)
九年级上册数学第一次月考(考试范围:第二十一章至第二十三章)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 在下面用数学家名字命名图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查中心对称图形与轴对称图形的识别,轴对称图形指的是延某条直线折叠,两边的图形能够完全重合;将图形旋转180°,能够与原图形重合的图形叫做中心对称图形,掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义逐一判断即可.【详解】解:AB .不是中心对称图形,是轴对称图形,不符合题意;C .既不是中心对称图形,也不是轴对称图形,不符合题意;D .既是中心对称图形,又是轴对称图形,符合题意;故选:D .2. 方程23x x =的解为( )A. 120x x == B. 123x x == C. 123x x ==− D. 10x =,23x =【答案】D【解析】 【分析】本题考查了因式分解法解一元二次方程,根据因式分解法计算即可得出答案.【详解】解:∵23x x =,∴230x x −=,的∴()30x x −=, ∴0x =或30x −=,解得:10x =,23x =,故选:D .3. 抛物线 ()2213y x =−−向左平移2个单位,再向上平移5个单位,所得的抛物线的解析式为( )A. ()2212y x =++B. ()2212y x =−+C. ()2212y x =+−D. ()2212y x =−− 【答案】A【解析】【分析】根据函数图像平移法则“左加右减、上加下减”,将题中文字描述转化为数学符号即可解决问题.【详解】∵抛物线()2213y x =−−向左平移2个单位,再向上平移5个单位,∴所得的抛物线的解析式为()221235y x =−+−+,即()2212y x =++故选:A【点睛】熟练掌握函数图像平移法则“左加右减、上加下减”是解决问题的关键.4. 用配方法解一元二次方程2870x x −+=,方程可变形为( )A. 2(4)9x +=B. 2(4)9x −=C. 2(8)16x −=D. 2(8)57x +=【答案】B【解析】【分析】先将常数项移到等号的右边,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:x 2-8x +7=0,x 2-8x =-7,x 2-8x +16=-7+16,(x -4)2=9.故选:B .【点睛】本题考查了运用配方法解一元二次方程,解答时熟练掌握配方法的步骤是关键.5. 如图,将OAB ∆绕O 点逆时针旋转60 得到OCD ∆,若4OA =,35AOB ∠= ,则下列结论不一定正确的是( )A. 60BDO ∠=°B. 25BOC ∠=°C. 4OC =D. //CD OA【答案】D【解析】 【分析】由题意△OAB 绕O 点逆时针旋转60°得到△OCD 知∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,可判断C 正确;由△AOC 、△BOD 是等边三角形可判断A 选项;由∠AOB=35°,∠AOC=60°可判断B 选项,据此可得答案.【详解】∵△OAB 绕O 点逆时针旋转60°得到△OCD ,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,故C 选项正确;则△AOC 、△BOD 是等边三角形,∴∠BDO=60°,故A 选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B 选项正确;故选:D .【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质. 6. 已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A. ac >0B. b >0C. a +c <0D. a +b +c =0【答案】D【解析】 【分析】根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a −<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a −=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型. 7. 已知关于x 的一元二次方程x 2+(2m +1)x +m ﹣1=0的两个根分别是x 1,x 2,且满足x 12+x 22=3,则m 的值是( )A. 0B. ﹣2C. 0 或﹣12D. ﹣2或0【答案】C【解析】 【分析】根据根与系数的关系得到()1221x x m ++=-,121x x m =-,再由()22212121223x x x x x x ++=-=,然后整体代入即可得到关于m 方程,解方程即可得到m 的值.【详解】解:∵方程()22110x m x m +++-=的两个根分别是x 1,x 2,∴()1212211x x m x x m ++=-,=-, ∵22123x x +=,即()2121223x x x x +-=, ∴()()221213m m +---=, 解得m =0或m =﹣12, ∵方程()22110x m x m +++-=的两个根, ∴()()222141450m m m ∆++≥=--=, ∴m 为任意实数,方程均有实数根,当m =0, 5∆=>0;当 m =﹣12,6∆=>0 ∴m =0或m =﹣12均符合题意. 故选:C . 【点睛】本题考查根与系数的关系,将根与系数的关系与代数式变形相结合是解题的关键.8. 如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用抛物线2142y x x =−刻画,斜坡可以用直线12y x =刻画.下列结论错误的是( )A. 小球落地点与点O 的水平距离为7mB. 当小球抛出高度达到7.5m 时,小球与点O 的水平距离为3mC. 小球与点O 的水平距离超过4m 时呈下降趋势D. 小球与斜坡的距离的最大值为49m 8【答案】B【解析】【分析】本题考查了二次函数的性质,令211422x x x −=,解得10x =,27x =,即可判断A ;把7.5y =代入2142y x x =−得2147.52x x −=,求解即可判断B ;将抛物线解析式化为顶点式即可判断C ;设抛物线上一点A 的坐标为21,42a a a−,作AB x ⊥轴交直线12y x =于B ,则1,2B a a ,表示出AB ,结合二次函数的性质即可判断D ,熟练掌握二次函数的性质是解此题的关键. 【详解】解:令211422x x x −=,解得10x =,27x =, ∴小球落地点与点O 的水平距离为7m ,故A 正确,不符合题意; 把7.5y =代入2142y x x =−得2147.52x x −=, 解得:13x =,25x =,∴当小球抛出高度达到7.5m 时,小球与点O 的水平距离为3m 或5m ,故B 错误,符合题意; ∵()221144822y x x x =−=−−+, ∴抛物线的对称轴为直线4x =, ∵102−<, ∴当4x >时,y 随x 的增大而减小,∴小球与点O 的水平距离超过4m 时呈下降趋势,故C 正确,不符合题意;设抛物线上一点A 的坐标为21,42a a a−, 作AB x ⊥轴交直线12y x =于B ,则1,2B a a, , ∴2221117174942222228AB a a a a a a =−−=−+=−−+ , ∵102−<,∴当72a =时,AB 有最大值,最大值为498, ∴小球与斜坡的距离的最大值为49m 8,故D 正确,不符合题意; 故选:B . 9. 如图,抛物线2=23y x x −−与y 轴交于点A ,与x 轴的负半轴交于点B ,点M 是对称轴上的一个动点,连接AM ,BM ,则AM BM +的最小值为( )A. 2B.C.D.【答案】D【解析】 【分析】设抛物线与x 轴的另一个交点为C ,连接MC ,AC ,根据解析式求得,A C 的坐标,根据轴对称的性质得出MB MC =,继而得出AM BM +取得最小值,最小值为AC 的长,勾股定理即可求解.【详解】解:如图所示,设抛物线与x 轴的另一个交点为C ,连接MC ,AC ,∵2=23y x x −−,令0y =,即2230x x −−=,解得:121,3x x =−=, ∴()3,0C ,令0x =,解得=3y −,∴()0,3A −,∵点M 是对称轴上的一个动点,∴MB MC =,∵AM BM AM CM AC +=+≥∴当,,A M C 三点共线时,AM BM +取得最小值,最小值为AC 的长,故选:D .【点睛】本题考查了根据二次函数对称性求线段和的最值,掌握二次函数对称性是解题的关键. 10. 如图,在OAB ∆中,顶点(0,0)O ,(3,4)A −,(3,4)B ,将OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( )A. (10,3)B. (3,10)−C. (10,3)−)D. (3,10)−【答案】D【解析】 【分析】先求出6AB =,再利用正方形的性质确定(3,10)D −,由于704172=×+,所以第70次旋转结束时,相当于OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【详解】解:(3,4)A − ,(3,4)B ,336AB ∴=+=,四边形ABCD 为正方形,6AD AB ∴==,(3,10)D ∴−,704172=×+ ,∴每4次一个循环,第70次旋转结束时,相当于OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D 的坐标为(3,10)−.故选D .【点睛】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分)11. 已知()211350mm x x +−+−=是关于x 的一元二次方程,则m 的值为______. 【答案】1−【解析】【分析】此题主要考查了一元二次方程的定义:含有一个未知数,且未知数的最高次幂是2次的整式方程,特别注意二次项系数不为0,正确把握定义是解题关键.直接利用一元二次方程的定义知道二次项系数不为0同时x 的最高次幂为2,得出m 的值进而得出答案.【详解】解:由题意知:212m +=且10m −≠,解得1m =−,故答案为:1−.12. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,则这个位置是_______.【答案】③【解析】【分析】如果一个图形绕着某一点旋转180°后,能够与原来的图形完全重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义和性质思考判断即可.【详解】当放置在①位置时,构成的图形不是中心对称图形,∴①不符合题意;当放置在②位置时,构成的图形不是中心对称图形,∴②不符合题意当放置在③位置时,构成的图形是中心对称图形,∴③符合题意当放置在④位置时,构成的图形不是中心对称图形,∴④不符合题意故答案为:③.【点睛】本题考查了拼图中的中心对称图形,熟练掌握中心对称图形的定义和性质是解题的关键. 13. 抛物线()2223,=−−+y x ,当03x ≤≤时,y 的最小值与最大值的和是________.【答案】2−【解析】【分析】本题主要考查了二次函数的最值问题,先根据解析式得到抛物线顶点坐标为(2,3),且抛物线开口向下,则y 的最大值为32x =,再根据自变量的取值范围推出当0x =时,函数有最小值,据此求出最小值即可得到答案.【详解】解:∵抛物线解析式为()2223,y x =−−+∴抛物线顶点坐标为(2,3),且抛物线开口向下,∴y 的最大值为3,离对称轴越远,函数值越小,且对称轴为直线2x =,∵2032−>−,∴当03x ≤≤时,当0x =时,函数有最小值,最小值为()220235y =−−+=−,∴y 的最小值与最大值的和是532−+=−,故答案为:2−.14. 《念奴娇·赤壁怀古》,在苏轼笔下,周瑜年少有为,文采风流,雄姿英发,谈笑间,樯橹灰飞烟灭,然天妒英才,英年早逝,欣赏下面改编的诗歌,“大江东去浪淘尽,千古风流数人物. 而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿符.”则这位风流人物去世的年龄为_____岁.【答案】36【解析】【分析】本题考查了由实际问题抽象出一元二次方程,根据“十位恰小个位三,个位平方与寿符”以及10×十位数字+个位数字=个位数字的平方,据此列方程可得答案,找准等量关系,正确列出一元二次方程是解题的关键.【详解】解:设这位风流人物去世的年龄十位数字为x ,则个位数字为3x +,则根据题意:()()21033x x x ++=+,整理得:2560x x −+=,解得12x =,23x =,由题意,而立之年督东吴,则2x =舍去,∴这位风流人物去世的年龄为36岁,故答案为:36.15. 函数222y x ax =−−在12x −≤≤有最大值6,则实数a 的值是______.【答案】1−或72【解析】【分析】先求出二次函数的对称轴为x a =,再分1a ≤−,1a 2−<<和2a ≥三种情况,分别利用二次函数的性质求解即可得. 【详解】二次函数222y x ax =−−的对称轴为22a x a −=−=, 由题意,分以下三种情况:(1)当1a ≤−时,在12x −≤≤内,y 随x 的增大而增大, 则当2x =时,y 取得最大值,最大值为224224a a −−=−,因此有246a −=,解得1a =−,符合题设;(2)当1a 2−<<时,在12x −≤≤内,当1x a −≤≤时,y 随x 的增大而减小;当2a x <≤时,y 随x 的增大而 增大, 则当1x =−或2x =时,y 取得最大值,因此有1226a +−=或22426a −−=, 解得72a =或1a =−(均不符题设,舍去); (3)当2a ≥时,在12x −≤≤内,y 随x 的增大而减小,则当1x =−时,y 取得最大值,最大值为12221a a +−−,因此有216a −=,解得72a =,符合题设; 综上,1a =−或72a =, 故答案为:1−或72. 【点睛】本题考查了二次函数的图象与性质,依据题意,正确分三种情况讨论是解题关键.三、解答题(本大题共8个小题,共75分)16. 解一元二次方程:(1)210150x x −+=(2)()()124x x −+=.【答案】(1)15x =+,25x =(2)13x =−,22x =【解析】【分析】本题考查了解一元二次方程,熟练掌握配方法和因式分解法是解此题的关键.(1)利用配方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【小问1详解】解:∵210150x x −+=,∴21015x x −=−,∴210252515x x −+=−,∴()2510x −=,∴5x −=,∴15x =,25x =;【小问2详解】 解:∵()()124x x −+=, ∴2224x x x +−−=,∴260x x +−=,∴()()320x x +−=, ∴30x +=或20x −=,∴13x =−,22x =.17. 若关于x 的一元二次方程2420x x a −++=有两个不相等的实数根.(1)求a 的取值范围;(2)求当a 为正整数时方程的根.【答案】(1)a 的取值范围为2a <(2)若a 为正整数时,方程的根为1和3【解析】【分析】本题考查了根的判别式,解一元一次不等式和解一元二次方程,能根据根的判别式和已知得出不等式是解题的关键.(1)根据判别式即可求出答案;(2)根据a 的范围可知,代入原方程后根据一元二次方程的解法即可求出答案.【小问1详解】解:∵关于x 的一元二次方程2420x x a −++=有两个不相等的实数根,∴()()22Δ444120b ac a =−=−−××+>,解得:2a <,∴a 的取值范围为2a <.【小问2详解】解:∵a 为正整数,∴1a =,∴原方程2430x x −+=, 即()()130x x −−=, 解得:11x =,23x =,∴若a 为正整数时,方程的根为1和3.18. 在正方形网格中建立如图所示的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,A 的坐标是(4,4),请回答下列问题:为(1)将△ABC向下平移六个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2,并写出点A2的坐标;(3)判断△A1B1C1与△A2B2C2是否关于某点成中心对称;若是,请画出对称中心M,并写出点M的坐标【答案】(1)图形见解析,A1(4,-2)(2)图形见解析,A2(-4,-4)(3)图形见解析,M(0,-3)【解析】【分析】(1)根据网格结构找出点A、B、C向下平移6个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A、B、C关于原点对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可;(3)根据中心对称的定义判断,对称中心是各个对应点连线的交点.【详解】(1) 如图,△A1B1C1即为所求,点A的对应点A1的坐标:(4,-2)(2)如图,△A2B2C2即为所求,点A2的坐标(-4,-4)(3)如图,△A1B1C1与△A2B2C2关于点M成中心对称,M (0,-3).【点睛】本题考查作图,旋转变换,平移变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19. 如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为6m ,宽BC 为4m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为5米.(1)求出抛物线的解析式.(2)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【答案】(1)2119y x =−+ (2)这辆货运卡车能通过该隧道【解析】【分析】(1)抛物线的解析式为()20y ax bx c a ++≠,把()()()303001,,,D ,C ,E −代入计算即可; (2)把 4.5y =时代入(1)的解析式,求出x 的值即可求出结论.【小问1详解】解:根据题意得:()()()303001,,,D ,C ,E −,设抛物线的解析式为()20y ax bx c a ++≠, 把()()()303001,,,D ,C ,E −代入()20y ax bx c a ++≠ 得:193109310c a b a b = ++=−+=解得1901a b c =− = =, ∴抛物线的解析式为2119y x =−+; 【小问2详解】这辆货运卡车能通过该隧道,理由如下: 在2119y x =−+中,令45405..y =−=得: 210519.x =−+,解得:x =±,()28.49m x ∴=≈, 8493.> ,∴这辆货运卡车能通过该隧道.【点睛】本题考查了二次函数的应用,解题的关键是求出二次函数的解析式.20. 解决问题:邓州公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔7月份到9月份的销量,该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,经市场预测,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?【答案】(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个.【解析】【分析】(1)设该品牌头盔销售量的月增长率为x ,根据“该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同”列一元二次方程求解即可;(2)设该品牌头盔的实际售价为y 元/个,根据月销售利润=每个头盔的利润×月销售量,即可得出关于y 的一元二次方程,解之即可求出答案.【小问1详解】解:设该品牌头盔销售量月增长率为x ,由题意得:()25001750x +=, 解得:10.220%x ==,2 2.2x =−(不合题意,舍去), 答:该品牌头盔销售量月增长率为20%;【小问2详解】解:设该品牌头盔的实际售价应定为y 元/个,由题意得:()()30600104010000y y −−−=, 整理得:213040000y y −+=,解得:150y =,280y =,∵尽可能让顾客得到实惠,∴50y =,答:该品牌头盔的实际售价应定为50元/个.【点睛】本题考查了列一元二次方程解决实际问题,解题关键是准确理解题意,找出等量关系且熟练掌握解一元二次方程的方法.21. 已知二次函数 2y x bx c =++中,函数y 与自变量x 的部分对应值如下表: x 0 1 2 3 4y 5 2 1 2 5(1)求该二次函数的关系式.的的(2)当x 为何值时,y 有最小值? 最小值是多少?(3)若()1,A m y ,()2,B c y 两点都在该函数的图象上,当12y y <时,求m 的取值范围.【答案】(1)245y x x =−+(2)当2x =时,y 有最小值,最小值为1(3)15m −<<【解析】【分析】本题考查了待定系数法求二次函数解析式、二次函数最值、二次函数的对称性,熟练掌握以上知识点并灵活运用是解此题的关键.(1)利用待定系数法计算即可得出答案;(2)将二次函数解析式化为顶点式即可得出答案;(3)由(1)得出()25,B y ,将二次函数解析式化为顶点式即可得出抛物线的对称轴为直线2x =,抛物线开口向上,得出()25,B y 关于直线2x =对称的点的坐标为()21,y −,即可得解.【小问1详解】解:∵二次函数2y x bx c =++的图象经过点()0,5,()1,2,∴512c b c = ++=, 解得:54c b = =−, ∴该二次函数的关系式是245y x x =−+;【小问2详解】解:∵()224521y x x x −=+=−+,∴当2x =时,y 有最小值,最小值为1;【小问3详解】解:由(1)可得:5c =,即()25,B y ,∵()224521y x x x −=+=−+,∴抛物线的对称轴为直线2x =,抛物线开口向上,∴()25,B y 关于直线2x =对称的点的坐标为()21,y −,∵()1,A m y ,()2,B c y 两点都在该函数的图象上,12y y <,∴15m −<<.22. 如图,抛物线2y x mx =+与直线y x b =−+交于点()2,0A 和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>−+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标x 的取值范围.【答案】(1)2m =−,2b =(2)点B 的坐标为()1,3−,不等式2x mx x b +>−+的解集为1x <−或2x >(3)12x −≤<或3x =【解析】【分析】本题考查了待定系数法求函数解析式、二次函数与一次函数交点问题,熟练掌握以上知识点并灵活运用,采用分类讨论与数形结合的思想是解此题的关键.(1)利用待定系数法计算即可得解;(2)由(1)可得:抛物线的解析式为22y x x =−,直线的解析式为2y x =−+,联立222y x y x x =−+ =−,求出点B 的坐标为()1,3−,再结合图象即可得出答案;(3)分类求解确定MN 的位置,进而求解.【小问1详解】解:将()2,0A 代入抛物线表达式2y x mx =+可得420m +=, 解得:2m =−,将()2,0A 代入直线y x b =−+可得:20b −+=, 解得:2b =;【小问2详解】解:由(1)可得:抛物线的解析式为22y x x =−,直线的解析式为2y x =−+, 联立222y x y x x =−+ =−, 解得13x y =− = 或20x y = =, ∴点B 的坐标为()1,3−,从图象看,不等式2x mx x b +>−+的解集为1x <−或2x >;小问3详解】解:如图:当点M 在线段AB 上时(不含A 点),线段MN 与抛物线只有一个公共点,∵M ,N 的距离为3,而A 、B 的水平距离是3,故此时只有一个交点,即12x −≤<, 如图,当线段MN P 时,线段MN 与抛物线只有一个公共点,∵()22211y x x x =−=−−, ∴抛物线的顶点()1,1P −, 在2y x =−+中,当1y =−时,21x −+=−,解得3x =; 综上所述,12x −≤<或3x =.23. 在等腰直角三角形ABC 和等腰直角三角形EBF 中,90ACB BEF ∠=∠=°,连接AF ,M 是AF 的中点,连接CM ,EM .【(1)观察猜想:图1中,线段CM 与EM 的数量关系是 ,位置关系是 .(2)探究证明:把EBF △绕点B 顺时针旋转一周,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.(3)拓展延伸:如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为()6,0,点C 的坐标为()6,4,P 为平面内一动点,且2AP =,连接CP ,D 是CP 的中点,连接BD .请直接写出BD 的最值.【答案】(1)CM EM =,CM EM ⊥(2)成立,证明见解析(3)BD 的最小值为1−,最大值为1+【解析】【分析】(1)由直角三角形的性质得出12CM AM AF ==,12EM AM AF ==,从而得出CM EM =,由等边对等角得出MAC MCA ∠=∠,MAE MEA ∠=∠,由三角形外角的定义及性质得出2EMC BAC ∠=∠,最后再由等腰直角三角形的性质即可得出答案; (2)延长AC 到点G ,使CG AC =,连接BG ,FG ,延长FE 到点H ,使EH FE =,连接BH ,AH ,证明()SAS ACB GCB ≌,得出AB BG =,45BAC BGC ∠=∠=°,同理可得:BH BF =,90∠=°FBH ,证明HBA FBG ≌,得出AH FG =,HAB FGB ∠=∠,由三角形中位线定理可得12EM AH =,EM AH ∥,12CM FG =,CM FG ∥,得出EM CM =,由平行线的性质得出EMF HAF ∠=∠,MCA FGA ∠=∠,求出FMC FAC FGA ∠=∠+∠,即可得解; (3)连接AC ,BC ,由题意得出4AB =,4BC =,90ABC ∠=°,以AP 为斜边作等腰直角三角形AKP ,连接DK ,BK ,由等腰直角三角形的性质得出AK AP =,由(2)可得,DK BD =,DK BD ,同理可得:BD =,结合AB AK BK AB AK −≤≤+,得出当点K 在AB 线段上时,BK 取得最小值,即BD 取得最小值,当点K 在BA 的延长线上时,BK 取得最大值,即BD 取得最大值,即可得解.【小问1详解】解:∵90BEF ∠=°,∴18090AEF BEF ∠=°−∠=°,∵90ACB ∠=°,M 是AF 的中点, ∴12CM AM AF ==,12EM AM AF ==, ∴CM EM =,MAC MCA ∠=∠,MAE MEA ∠=∠,∴222EMC EMF CMF MAE MAC BAC ∠=∠+∠=∠+∠=∠,∵三角形ABC 是等腰直角三角形,∴45BAC ∠=°,∴90EMC ∠=°,即CM EM ⊥;故答案为:CM EM =;CM EM ⊥【小问2详解】解:成立,证明如下:如图,延长AC 到点G ,使CG AC =,连接BG ,FG ,延长FE 到点H ,使EH FE =,连接BH ,AH ,∵90ACB ∠=°,∴91800BCG A ACB CB ∠=−°=∠°∠=,∵CG AC =,BC BC =,∴()SAS ACB GCB ≌,∴AB BG =,45BAC BGC ∠=∠=°,∴18090ABG BAC BGC ∠=°−∠−∠=°,同理可得:BH BF =,90∠=°FBH ,∴HBA ABF FBG ABF ∠+∠=∠+∠,即HBA FBG ∠=∠,∴HBA FBG ≌,∴AH FG =,HAB FGB ∠=∠,∵EH EF =,M 是AF 的中点,CG AC =,∴EM 是AFH 的中位线,CM 是AFG 的中位线, ∴12EM AH =,EM AH ∥,12CM FG =,CM FG ∥, ∴EM CM =,EMF HAF ∠=∠,MCA FGA ∠=∠, ∴FMC FAC MCA FAC FGA ∠=∠+∠=∠+∠,∴90EMC EMF FMC HAF FAC FGA BAC BGC ∠=∠+∠=∠+∠+∠=∠+∠=°,即CM EM ⊥;【小问3详解】解:如图,连接AC ,BC ,,∵点A 的坐标为(2,0),点B 的坐标为()6,0,点C 的坐标为()6,4,∴4AB =,4BC =,90ABC ∠=°,以AP 为斜边作等腰直角三角形AKP ,连接DK ,BK ,∵AK PK =,90AKP ∠=°,∴AP =,∴AK AP =,由(2)可得,DK BD =,DK BD ,同理可得:BD =, ∵AB AK BK AB AK −≤≤+,∴当点K 在AB 线段上时,BK 取得最小值,即BD 取得最小值,此时4BK ==−;1BD当点K在BA的延长线上时,BK取得最大值,即BD取得最大值,此时4BK=,=+;1BD综上所述,BD的最小值为1+.−,最大值为1【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形外角的定义及性质、坐标与图形、三角形中位线定理等知识点,熟练掌握以上知识点并灵活运用,添加适当的辅助线是解此题的关键.。
山东省济南市历城区济南稼轩学校2024-2025学年九年级上学期10月月考数学试题
山东省济南市历城区济南稼轩学校2024-2025学年九年级上学期10月月考数学试题一、单选题1.已知()230a b ab =≠,则下列比例式成立的是()A .32a b=B .32a b =C .23a b =D .32b a =2.世乒赛颁奖台如图所示,它的左视图是()A .B.C.D .3.已知2x =是一元二次方程220x mx ++=的一个解,则另一个解是()A .3B .1C .0D .3-4.2023年12月16日,贵阳市轨道交通三号线正式运营.某校共有1000个学生,随机调查了100个学生,其中有16个学生在三号线开通首日乘坐了地铁三号线.在该校随机问一个学生,他在三号线开通首日乘坐该地铁的概率大约是()A .0.016B .0.1C .0.116D .0.165.下列说法中,正确的是()A .对角线互相垂直的四边形是平行四边形B .菱形的对角线互相垂直且平分C .菱形的对角线相等且互相平分D .对角线互相平分的四边形是矩形6.已知111ABC A B C ∽△△,且1123AB A B =,若ABC V 的面积为4,则111A B C △的面积是()A .83B .6C .9D .187.一次函数²1y kx k =++与反比例函数ky x=在同一平面直角坐标系中的图象可能是()A .B .C .D .8.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为()A .()11035x x +=B .()110352x x -=C .()11035x x -=D .()211035x x +=9.如图,小明周末晚上陪父母在马路上散步,他由灯下A 处前进4米到达B 处时,测得影子BC 长为1米,已知小明身高1.6米,他若继续往前走4米到达D 处,此时影子DE 长为()A .1米B .2米C .3米D .4米10.如图,正方形ABCD 和正方形DEFG 的顶点A 在y 轴上,顶点D ,F 在x 轴上,点C 在DE 边上,反比例函数y =kx(k≠0)的图象经过点B 、C 和边EF 的中点M .若S 正方形ABCD=2,则正方形DEFG 的面积为()A .103B .329C .4D .154二、填空题11.如图,123l l l ∥∥,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F ,已知32AB BC =,6DE =,则DF 的长为.12.春节期间,小明和小亮分别从三部影片《飞驰人生2》、《热辣滚烫》、《第二十条》中随机选择一部观看,则他们选择的影片相同的概率为.13.已知一元二次方程220x x m +-=有两个不相等的实数根,请写出一个符合要求的m 数值.14.已知点()2,A a -、()1,B b 、()3,C c 都在反比例函数()0my m x=>的图象上,则a 、b 、c 间的大小关系为(用“<”号连接).15.如图,在矩形ABCD 中,AB =3,BC =4,P 是对角线AC 上的动点,连接DP ,将直线DP 绕点P 顺时针旋转使∠DPG =∠DAC ,且过D 作DG ⊥PG ,连接CG ,则CG 最小值为.三、解答题16.解下列方程:(1)24450x x --=;(2)()33x x x -=-.17.书面装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术,如图,一幅书画在装裱前的大小是 1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是m a 、m b 、m c 、m d ,若装裱后AB 与AD 的比是1610∶,且,,2a b c d c a ===,求a 的值.18.如图,在ABC V 中,AB AC =,延长AB 到点D ,使BD BC =,延长BC 到点E ,连接DE ,AE ,且D AEC ∠=∠.(1)求证:DBE ECA ∽ ;(2)若3BC =,2CE =,求AD 的长.19.如图,在平面直角坐标系中,OAB △的三个顶点的坐标分别为(0,0),(2,1),(1,2)O A B -.(1)以原点O 为位似中心,在y 轴左侧画一个11OA B ,使它与OAB △位似,且相似比为2:1;(2)请写出点A 的对应点1A 的坐标__________;(3)若以点A ,B ,O ,P 为顶点的四边形是平行四边形,请直接写出满足条件的点P 的坐标.20.根据以下调查报告解决问题.调查主题学校八年级学生视力健康情况学生视力健康问题引起社会广泛关注.某学习小组为了解本校八年级学生视背景介绍力情况.随机收集部分学生《视力筛查》数据.调查结果八年级学生右眼视力频数分布表右眼视力频数≤<3x3.84.0x≤<244.0 4.2≤<18x4.2 4.4x≤<124.4 4.6≤<9x4.6 4.8x≤<94.85.0≤<15x5.0 5.2合计90建议:……(说明:以上仅展示部分报告内容)(1)本次调查活动采用的调查方式是________(填写“普查”或“抽样调查”);x≤<”是视力“最佳矫正区”,该范围的数据为:4.8、4.9、4.8、4.8、4.9、(2)视力在“4.8 5.04.8、4.8、4.9、4.9,这组数据的中位数是________;(3)视力低于5.0属于视力不良,该校八年级学生有600人,估计该校八年级右眼视力不良的学生约为________人;x≤<”范围有两位男生和一位女生,从中随机抽取两位学生采访,恰好抽(4)视力在“3.8 4.0到两位男生的概率________.21.甲、乙两栋楼的位置如图所示,甲楼AB高16米.当地中午12时,物高与影长的比是(1)如图1,当地中午12时,甲楼的影子刚好不落到乙楼上,则两楼间距BD 的长为_________米.(2)当地下午14时,物高与影长的比是1:2.如图2,甲楼的影子有一部分落在乙楼上,求落在乙楼上的影子DE 的长.22.第十九届亚运会在杭州举行.某网络经销商购进了一批以杭州亚运会为主题的文化衫进行销售,文化衫的进价每件30元.根据市场调查:在一段时间内,销售单价是45元时,每日销售量是550件;销售单价每涨1元,每日文化衫就会少售出10件.设该批文化衫的销售单价为x 元(55x >).(1)请你写出销售量y (件)与销售单价x (元)的函数关系式.(2)若经销商获得了10000元销售利润,则该文化衫单价x 应为多少元?23.如图,在ABC V 中,已知10cm AB AC ==,16cm BC =,AD BC ⊥于D ,点E ,F 分别从B ,C 两点同时出发,其中点E 沿BC 向终点C 运动,速度为4cm/s ;点F 沿CA 向终点A 运动速度为5cm/s ,一个点到达终点时另一个点也随之停止.设它们运动的时间为()s t .(1)是否存在这样的t 值使EFC 的面积为18?若存在,求出t 的值;若不存在,请说明理由;(2)t 为何值时,EFC 和ACD 相似?24.【问题背景】在平面直角坐标系中,若两点分别为()()111222,,P x y P x y ,,则12PP 中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,如图1,在平面直角坐标系中,O 为坐标原点,点A 在x 轴的正半轴上,点B ,C 在第一象限,四边形OABC 是平行四边形.【构建联系】若点C 在反比例函数ky x=的图象上,点C 的横坐标为2,点B 的纵坐标为3.(1)求反比例函数的表达式;(2)如图2,点D 是A 边的中点,且在反比例函数ky x=图象上,求平行四边形OABC 的面积;【深入探究】(3)如图3,将直线1l :34y x =-向上平移6个单位得到直线2l ,直线2l 与函数(0)ky x x =>图象交于12M M ,两点,点P 为12M M 的中点,过点1M 作11M N l ⊥于点N ,请直接写出P 点坐标和1M NOP的值.25.(1)如图1,正方形ABCD 和正方形DEFG (其中)AB DE >,连接CE ,AG 交于点H ,请直接写出线段AG 与CE 的关系______;(2)如图2,矩形ABCD 和矩形DEFG ,2AD DG =,2AB DE =,AD DE =,将矩形DEFG 绕点D 逆时针旋转(0360)αα︒<<︒,连接AG ,CE 交于点H ,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG ,CE 的数量关系和位置关系,并说明理由;(3)矩形ABCD 和矩形DEFG ,26AD DG ==,28AB DE ==,将矩形DEFG 绕点D 逆时针旋转(0360)αα︒<<︒,直线AG ,CE 交于点H ,当点E 与点H 重合时,请直接写出线段AE 的长.。
稼轩中学初三月考数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √4C. πD. 2√22. 下列代数式中,同类项是()A. 3x^2y 和 2xy^2B. 4ab 和 2a^2bC. 5x 和 -5xD. 2xy 和 -3xy3. 已知等腰三角形ABC中,AB=AC,若∠B=40°,则∠C的度数是()A. 40°B. 50°C. 80°D. 90°4. 下列图形中,是轴对称图形的是()A. 矩形B. 菱形C. 三角形D. 梯形5. 已知函数y=2x+1,当x=3时,y的值为()A. 5B. 6C. 7D. 86. 一个正方体的棱长为a,则它的表面积是()A. 4a^2B. 6a^2C. 8a^2D. 12a^27. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)8. 下列等式中,正确的是()A. a^2 = aB. (a+b)^2 = a^2 + b^2C. (a-b)^2 = a^2 - b^2D. (a+b)(a-b) = a^2 - b^29. 已知一元二次方程x^2 - 5x + 6 = 0,下列选项中,正确的是()A. x=2B. x=3C. x=2或x=3D. x=1或x=410. 下列数列中,是等差数列的是()A. 1,3,5,7,9B. 2,4,8,16,32C. 1,2,4,8,16D. 1,3,6,10,15二、填空题(每题3分,共30分)11. 已知a=5,b=-3,则a^2 + b^2 = _______。
12. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB=_______。
13. 分式2/(3x-5)的分子、分母同时乘以2,则分式的值不变,新的分式为_______。
14. 一个圆的半径为r,则它的周长为_______。
济南稼轩中学九年级数学上册第二十二章《二次函数》经典测试(答案解析)
一、选择题1.函数y =ax 2与y =ax +a ,在第一象限内y 随x 的减小而减小,则它们在同一直角坐标系中的图象大致位置是( )A .B .C .D .2.将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+B .()212y x =-- C .()212y x =++ D .()=+-2y x 12 3.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个4.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 5.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,5)-B .(2,8)-C .(3,18)-D .(4,20)- 6.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( ) A .233y x =+B .231y x =-C .()2321y x =++D .()2321y x =-+ 7.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( ) A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n8.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >> 9.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 10.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤ 11.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1 12.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 A .5 B .3- C .13- D .27-13.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x << 14.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a b x a+=-其中正确的有( )A .1个B .2个C .3个D .4个15.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<二、填空题16.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.17.某商店销售一批头盔,售价为每顶60元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶40元,则该商店每月获得最大利润时,每顶头盔的售价为__________元. 18.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.19.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____. 20.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次不等式220x x m -++>的解集为______________________.21.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .22.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.23.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.24.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表: x2- 1- 0 1 2 3 y 8 3 0 1-0 3 则在实数范围内能使得成立的x 取值范围是_______.25.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m .26.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.三、解答题27.如图,点O 是矩形ABCD 对角线的交点,过点O 的两条互相垂直的直线分别交矩形与动点E 、F 、G 、H ,点E 在线段AB 上运动,4=AD ,2AB =,设AE x =,AH y =(1)四边形EFGH 是什么特殊四边形?请说明理由;(2)写出y 关于x 的关系式,并写出y 的取值范围;(3)求四边形EFGH 的面积及其最值.28.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点()4,0A 和()1,0B -,交y 轴于点C .(1)求二次函数的解析式;(2)将点C 向右平移n 个单位,再次落在二次函数图象上,求n 的值;(3)对于这个二次函数,若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围.29.某公司销售一种进价为20元/个的计算器,其销售量y (万个)与销售价格x (元/个)的变化满足1810y x =-+;同时,销售过程中的其他开支(不含进价)总计40万元.(1)求出该公司销售这种计算器的净得利润z (万元)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(2)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?30.如图,在平面直角坐标系xOy 中,一次函数y x m =-+的图象过点()1,3A ,且与x 轴交于点B .(1)求m 的值和点B 的坐标;(2)若二次函数2y ax bx =+图象过A ,B 两点,直接写出关于x 的不等式2ax bx x m +>-+的解集.。
九年级上学期月考数学试卷(带答案)
2019 届九年级上学期月考数学试卷(带答案)光影似箭,光阴似箭。
月考离我们愈来愈近了。
同学们必定想在月考取获取好成绩吧!查词典数学网初中频道为大家准备了 2019 届九年级上学期月考数学试卷,希望大家多练习。
2019 届九年级上学期月考数学试卷(带答案)一、选择题 (此题共 10 小题,每题 3 分,共 30 分 )1.抛物线 y=2(x+1)2 ﹣ 3 的极点坐标是 ( )A.(1 , 3)B.(﹣ 1, 3)C.(1,﹣ 3)D.( ﹣1,﹣ 3)2.已知函数,当函数值y 随 x 的增大而减小时,x 的取值范围是()A.x1B.x1C.x ﹣2D.﹣ 23.将二次函数y=x2 的图象向右平移 1 个单位,再向上平移 2 个单位后,所得图象的函数表达式是( )A.y=(x ﹣ 1)2+2B.y=(x+1)2+2C.y=(x ﹣ 1)2﹣ 2D.y=(x+1)2 ﹣24.若二次函数y=﹣x2+6x+c 的图象过点A( ﹣ 1,y1) , B(1,y2),C(4, y3)三点,则y1, y2, y3 的大小关系是 ( )A.y1y3B.y2y3C.y3y1D.y3y25.抛物线 y= ﹣ x2+2kx+2 与 x 轴交点的个数为( )A.0 个B.1 个C.2 个D.以上都不对6.已知函数 y=ax2+bx+c 的图象以下图,则函数y=ax+b 的图象是()A.B.C.D.7.已知函数 y=x2 ﹣2x﹣ 2 的图象以下图,依据此中供给的信息,可求得使 y1 成立的 x 的取值范围是 ( )B.﹣ 31C.x ﹣3D.x ﹣ 1 或 x38.已知函数 y=ax2+bx+c 的图象以下图,那么对于 x 的方程ax2+bx+c+2=0 的根的状况是 ( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根9.如图,有一座抛物线形拱桥,当水位线在AB 地点时,拱顶(即抛物线的极点)离水面 2m,水面宽为 4m,水面降落 1m 后,水面宽为 ( )A.5mB.6mC.mD.2m10.二次函数 y=ax2+bx+c(a0) 的部分图象如图,图象过点 (﹣ 1,0),对称轴为直线x=2 ,以下结论:①4a+b=0;② 9a+c③ 8a+7b+2c④当 x﹣1 时, y 的值随 x 值的增大而增大 .此中正确的结论有( )B.2 个C.3 个D.4 个二、填空题 (此题共 10 小题,每题 4 分,共 4 0 分 )11.二次函数y=ax2+bx+c 的部分对应值以下表:二次函数 y=ax2+bx+c 图象的对称轴为x=__________ , x= ﹣1 对应的函数值y=__________.12.将二次函数y=x2 ﹣ 2x﹣3 化为 y=(x ﹣ h)2+k 的形式,则__________.13.抛物线 y=a(x+1)(x ﹣ 3)(a0)的对称轴是直线__________.14.若二次函数 y=(m+1)x2+m2 ﹣9 的图象经过原点且有最大值,则 m=__________.15.抛物线 y=x2+6x+m 与 x 轴只有一个公共点,则m 的值为__________.16.若抛物线 y=bx2 ﹣ x+3 的对称轴为直线x= ﹣ 1,则 b 的值为__________.17.若二次函数 y=ax2 ﹣ 4x+a 的最小值是﹣ 3,则a=__________.18.二次函数 y=x2 ﹣2x﹣ 1 的图象在 x 轴上截得的线段长为__________.19.如图,一拱桥呈抛物线状,桥的最大高度是32m,跨度是80m,在线段AB 上距离中心M20m 的 D 处,桥的高度是__________m.20.二次函数 y=x2+b x 的图象如图,对称轴为 x= ﹣ 2.若对于 x 的一元二次方程 x2+bx ﹣ t=0(t 为实数 )在﹣ 5 三、解答题 (此题共 7 小题,共 80 分 )21.已知二次函数y=﹣ x2+4x+5.(1)用配方法把该函数化为y=a(x ﹣ h)2+k( 此中 a、h、k 都是常数且 a0)的形式,并指出函数图象的对称轴和极点坐标; (2)求这个函数图象与x 轴、 y 轴的交点坐标 .22.如图,直线y=x+m 和抛物线y=x2+bx+c 都经过点A(1 ,0),B(3 , 2).(1)求 m 的值和抛物线的分析式;(2)求不等式x2+bx+cx+m 的解集 .(直接写出答案 )23.如图,二次函数y=ax2﹣ 4x+c 的图象经过坐标原点,与x 轴交于点 A( ﹣4, 0).(1)求二次函数的分析式;(2)在抛物线上存在点P,知足 S△ AOP=8 ,请直接写出点P 的坐标 .24.某校初三年级的一场篮球竞赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m 时抵达最大高度4m,设篮球运转的轨迹为抛物线,篮圈距地面3m.(1)成立如图的平面直角坐标系,问此球可否正确投中;照本宣科是一种传统的教课方式 ,在我国有悠长的历史。
九上数学第一次月考试卷及答案.doc
绝密★启用前2016-2017学年九年级9月月考卷考试范围:1. 用配方法解方程a 2-4a- 1=0,下列配方正确的是()A. (a-2) 2-4=0B. (a+2) 2 - 5=0C. (a+2) 2 - 3=0D. (a-2) 2 - 5=02. 下列命题中正确的是()A. 有一组邻边相等的四边形是菱形B. 有一个角是直角的平行四边形是矩形C. 对角线垂直的平行四边形是正方形D. 一组对边平行的四边形是平行四边形3. 已知x 二・1是一元二次方程x'+mx ・5二0的一个解,则m 的值是()A.・ 4B.・ 5C. 5D. 44. 如图:在菱形ABCD 屮,AC 二6, BD 二8,则菱形的边长为()A. 5B. 10C. 6D. 85. 某种品牌运动服经过两次降价,每件零售价由560元降为315元,己知两次降价的 百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程屮正确 的是()A. 560 (1+x)冬315B. 560 (1 - x) 2=315C. 560 (1 - 2x) 2二315 0. 560 (1 - x 2) =3156. 一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是 () A. 2B. 5C. 8D. 107. 关于x 的一元二次方稈3x+m 二0有两个不相等的实数根,则实数m 的取值范围为 ()A. ID >-YB. m<C-7C.D. 4 4 4 48. 如图,点0 (0, 0), A (0, 1)是正方形0AA t B 的两个顶点,以OAi 对角线为边作正 方形0AAB”再以正方形的对角线0A2作正方形OA 1A 2B l ,…,依此规律,则点A&的坐标 是() A. ( - 8, 0) B. (0, 8) C. (0, 8^2)D. (0, 16) 评卷人 得分题号—- 二总分得分评卷人 得分一、选择题(每题3分,共24分)北师大九上一二章;考试时间:100分钟;满分120分;二、填空题(每题3分,共21分)9.若一元二次方程x2・3x+l二0的两根为Xi和X2,则X1+X2二__ .10.已矢口m是关于x的方程X2-2X-3=0的一个根,则2m2-4m= __________ .11.如图,口ABCD中,ZC=110° , BE平分ZABC,则ZAEB的度数等于______ .12.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若11题图 12题图13. 如果x J - x - 1= (x+1) °,那么x 的值为 __________ .14. 如图,己知:正方形EFGH 的顶点E 、F 、G 、H 分别在正方形ABCD 的边DA 、AB 、BC 、CD 上.若正方形ABCD 的面积为16, AE=1,则正方形EFGII 的面积为 ____________ .15. 如图,把矩形ABCD 沿EF 折耗,使点C 落在点A 处,点D 落在点G 处,若ZCFE 二60° , 且DE 二1,则边BC 的长为 ____三、解答题(16-19题每题8分,20题9分,21题10分, 22题、23题各12分,共75分)16. 解下列方程:(1) (x+3) 2=5 (x+3); (2) x'+4x - 2二0.17. 如图,在平行四边形ABCD 屮,点E, F 分别为边BC, AD 的屮点.求证:四边形AECF18. 如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间 隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料 做了宽为1米的两扇小门.(1) 设花圃的一边AB 长为x 米,请你用含x 的代数式表示另一边AD 的长为 ______ 米;(2) 若此时花圃的面积刚好为45m 2,求此时花圃的长与宽.l§14mA—m\—— —D —19. 如图,在AABC 中,AB 二BC, D 、E 、F 分别是BC 、AC 、AB 边上的中点.试卷第2页,总2页(1) 求证:四边形BDEF 是菱形;(2) 若AB 二12cm,求菱形BDEF 的周长.20. 如图,在AABC 中,ZBAC=90° , AD 是中线,E 是AD 的中点,过点A 作AF 〃BC 交 BE 评卷人得分15题图 14题图的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB二AC,试判断四边形ADCF的形状,并证明你的结论.21・买树一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?22.已知关于x的方程x1 2 3- (k+1) x+4 k2+l=0的两根是一个矩形两邻边的长,且矩形的对角线长为、仮,求k的值.23.如图,在厶ABC44, D是BC边上的一点,E是AD的屮点,过A点作BC的平行线交CE 的延长线于点F,且AF二BD,连接BF.1BD与CD有什么数量关系,并说明理由;2①当AABC满足什么条件时,四边形AFBD是矩形?并说明理由.②当AABC满足什么条件时,四边形AFBD是菱形?并说明理由.参考答案1. D2. B3. A4. A5. B6. D7. B8. D9. 310. 6.11.35°12.(35 - 2x) (20 - x) =60013. 214.1015. 316.(1) xi= - 3, X2二2; (2) xi= - 2+V6> x2= - 2 - V6-17.详见解析18.(1) (24 - 3x); (2)花圃的长为9米,宽为5米.19.(1)见解析(2) 24cm20.(1)见解析;(2)四边形ADCF是正方形.21.该校共购买了80棵树苗.22. 2.23.(1) BD二DC (2)①当AB二AC时,四边形AFBD是矩形.②当ZBAC二90°时,四边形AFBD 是菱形.。
河南省郑州市中原区第十九初级中学2023-2024学年九年级上学期10月月考数学试题
河南省郑州市中原区第十九初级中学2023-2024学年九年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .AC BD =B .AB AD ⊥C .AB AD =D .AC BD ⊥7.一个口袋中装有m 个除颜色外完全相同的球,这m 个球中红球只有4个,每次搅拌均匀后,随机从中摸出一个球,记下颜色后放回,通过大量重复试验后发现,摸到红球的频率为0.4,由此可以推算出m 约为()A .7B .8C .10D .68.如图,四边形ABCD 是菱形,8AC =,6DB =,DH AB ⊥于点H ,则DH 的长为()A .2.4B .4.8C .3.6D .9.69.如图,利用一面墙(墙的最大可利用长度为25米),用栅栏围成一个矩形场地ABCD (靠墙一面不用栅栏),中间再用栅栏分隔成两个小矩形,且在如图所示位置留两个1米宽的小门,若所用栅栏的总长度为52米,矩形场地ABCD 的面积为240平方米.若设栅栏BC 的长为x 米,则x 的值为()A .10B .9C .8D .710.如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()二、填空题15.如图,在矩形ABCD合),将△CDE沿DE所在直线折叠,点三角形时,CE的长为三、解答题16.解方程:(1)22410x x --=(2)()()23230x x x -+-=17.已知:如图,线段AC ,请你用尺规作图的方法作一个菱形,使AC 为菱形的一条对角线.(要求:不写作法,保留作图痕迹)18.如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m .问:当梯子的顶端下滑几米时,梯子底端滑动的距离和它相等?19.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,3,4,7.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)用树状图或列表法表示出按上述规定得到的所有可能的两位数;(2)从这些两位数中任取一个,求其大于50的概率.20.关于x 的一元二次方程230x x k -+=有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.21.如图,▱ABCD 中,E 为BC 边的中点,连接AE 并延长交DC 的延长线于点F ,延长EC 至点G ,使CG =CE ,连接DG 、DE 、FG .的平分线OC.(要求:保留作图痕迹,②.请你在图③中利用他们的方法画出AOB不写作法)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
B.
C.
D.
11. 如图,在
中,
,
,点 、 分别是边 、 上点,连结 ,
将
沿 翻折得到
,点 的对称点 恰好落在边 上,若以点 、 、 为顶
点的三角形与
相似,则 的长为( ).
/
A.
B.
C. 或
D. 或
12. 如图, 、 是函数
( ).
①
≌
,②
,则
上两点, 为一动点,作
,③若 .
轴,
轴,下列说法正确的是
B.
C.
D.
6. 如图,四边形
和
边形
与四边形
是以点 为位似中心的位似图形,若 的面积比为( ).
,则四
A.
B.
C.
D.
7. 已知
是反比例函数,则关于函数图象说法错误的是( ).
A. 两支曲线关于原点对称
B. 两支曲线分别在第二、四象限
C. 当
时,
D. 图象经过点
8. 如图,线段 的两端点的坐标分别为
眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“ 男 女”的概率.
/
25. 教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升 ,加热到
停止加
热,水温开始下降,此时水温
与开机后用时
成反比例关系,直至水温降至 ,
饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为 时接通电源,
水温
与时间
的关系如图所示:
( 1 )分别写出水温上升和下降阶段 与 之间的函数关系式. ( 2 )怡萱同学想喝高于 的水,请问她最多需要等待多长时间?
26. 四边形
中,点 为 边上一点,点 为对角线 上的一点,且
.
( 1 )若四边形
为正方形.
1 如图 ,请直接写出
.
2将
图 绕点 逆时针旋转到图 所示的位置,连接 , ,猜想 与 的数
正面
A.
B.
C.
D.
3. 某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线统计 图,那么符合这一结果的实验最有可能的是( ). 频率
A. 挪一枚质地均匀的硬币,落地时结果是“正面向上” B. 掷一个质地均匀的正六面体骰子,落地时朝上的面点数是 C. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
/
量关系并说明理由.
( 2 )如图 ,若四边形
为矩形,
针旋转
得到
写出 与 的数量关系.
,其它条件都不变,将
图 绕点 顺时
,连接 , ,请在图 中画出草图,并直接
/
27. 如图 ,反比例函数
作
轴,垂足为 .
图像经过等边
图 的一个顶点 ,点 坐标为 ,过点
图 ( 1 )求点 的坐标和 的值.
( 2 )若将
为
.
15. 若函数
与
的图象的交点坐标为
,则
的值为
.
16. 一个正棱柱的三视图如图所示,其俯视图为正三角形,则该三棱柱的体积是
.
/
正视图
左视图
俯视图
17. 如图,在 并延长交
中, 是 于点 ,则
边上的中线, 是 .
上一点,且
,连结 ,
18. 如图, 点,
是等边三角形,点 , 分别在 ,
,
,则 的长是
根据数据绘制了如下的表格和统计图:
等级
视力( )
频数
频率
合计 人数
根据上面提供的信息,回答下列问题:
等级
( 1 )统计表中的
,
.
( 2 )请补全条形统计图.
( 3 )根据抽样调查结果,请估计该校八年级学生视力为“ 级”的有多少人?
( 4 )该年级学生会宣传部有 名男生和 名女生,现从中随机挑选 名同学参加“防控近视,爱
睛贴着地面观察 点,使 , , 三点成一线,从 处退行 米到点 处,从 观察 点,使
, , 三点也成一线.请你利用以上的信息计算出 的高度(测量过程中,建筑物 ,
标杆 和 均与地面垂直).
/
24. 某学校八年级共 名学生,为了解该年级学生的视力情况,从中随机抽取 名学生的视力数据 作为样本,数据统计如下:
,则 平分
,④若
A. ①③
B. ②③
二、填空题
(本大题共6小题,每小题4分,共24分。)
13. 如图,点 在
的边 上,要使
C. ②④
D. ③④
,添加一个条件
.
14. 某鱼塘里养了 条鲤鱼、若干条草鱼和 条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕
捞到草鱼的频率稳定在 左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约
,
,以点
为位似中心,将线段
缩小为原来的 后得到线段 ,则端点 的坐标为( ).
/
A.
B.
C.
D.
9. 如图,在矩形 是( ).
中, 是 边的中点,且
于点 ,连接 ,则下列结论错误的
A.
B.
C.
D.
10. 如图,正方形
是一块绿化带,其中阴影部分
,
都是正方形的花圃.已知
自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( ).
( 2 )请直接写出不等式
的解集.
( 3 )点 为 轴上一动点,当
时,求点 的坐标.
22. 如图,点 , 在线段 上,
是等边三角形,
.
( 1 )说明线段 、 、
( 2 )求
的度数.
之间的数量关系.
23. 如图,要测量建筑物 的高度,可以采用以下方法:立两根高 米长的标杆 和 ,两杆之
间的距离
米,并使 , , 三点在一条直线上,从点 处退行 米到点 处,人的眼
.
上,且
, 与 相交于
三、解答题
(本大题共9小题,共78分。) 19. 如上右图是一根空心方管,请补全它的三视图.
20.
/
已知:
于,
于,
,Leabharlann 以 , , 为顶点的三角形与
相似时,求
, 的长?
,点 在 上移动,当
21. 如图,一次函数
为
.
图象与反比例函数
图象相交于 , 两点,已知点 的坐标
( 1 )求一次函数和反比例函数的解析式.
次数
/
D. 袋子中有 个红球和 个黄球,只有颜色上的区别,从中随机取出一个球是黄球
4. 如图,已知线段 ,过点 作 的垂线,并在垂线上取
;连接 ,以点 为圆
心, 为半径画弧,交 于点 ;再以点 为圆心, 为半径画弧,交 于点 ,则
的值是( ).
A.
5. 函数 A.
B.
C.
D.
与
在同一坐标系中的图象可能是( ).
2019~2020学年10月山东济南历城区济南稼轩初级中学 初三上学期月考数学试卷
一、选择题
(本大题共12小题,每小题4分,共48分。)
1. 已知:
,则
的值为( ).
A.
B.
C.
D.
2. 如图所示是张老师电动车的一个零件,张老师要求小亮按如图摆放位置画出它的左视图,小亮经 过仔细观察画出了正确的图形,则小亮画的图形是:( ).
沿直线 翻折,得到
,判断该反比例函数图象是从点 的上方经
过,还是从点 的下方经过,又或是恰好经过点 ,并说明理由.
( 3 )如图 ,在 轴上取一点 ,以 为边长作等边
,恰好使点 落在该反比例
函数图象上,连接 ,求
的面积.
图
扫码关注“学而思爱智康济南”微信公众号 回复【初三月考】获得答案解析及其他学校真题