全国自考2015年4月月04183概率论与数理统计真题及答案
概率论与数理统计
04183 概率论与数理统计(经管类)一 、单选题1、将一枚硬币连抛两次,则此随机试验的样本空间为 【 】 A:{(正,正),(反,反),(一正一反)}B:{ (反,正),(正,反),(正,正),(反,反)} C:{一次正面,两次正面,没有正面}D:{先得正面,先得反面} 做题结果:A 参考答案:B.{ (反,正),(正,反),(正,正),(反,反)}2、若AB ≠Φ,则下列各式中错误的是【 】A:P(AB)>=0B:P(AB)<=1 C:P(A+B)=P(A)+P(B) D:P(A-B)<=P(A) 做题结果:A 参考答案:C.P(A+B)=P(A)+P(B)3、袋中有a 个白球,d 个黑球,从中任取一个,则取得白球的概率是 【 】A:1/2B:1/(a+d) C:a/(a+d) D:d/(a+d)做题结果:A 参考答案:C.a/(a+d)4、四人独立地破译一份密码,已知各人能译出的概率分别为1/5,1/4,1/3,1/6则密码最终能被译的概率为 【 】B:1/2A:1C:2/5 D:2/3做题结果:A 参考答案:D.2/35、已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/16,则事件A,B,C全不发生的概率为【】B:3/8A:1/8C:5/8 D:7/8做题结果:A 参考答案:B.3/86、设X服从[1,5]上的均匀分布,则【】B:P{3<X< 4>A:P{a<=X<=b}=(b-a)/4C:P{0<X<> D:P{-1<X<=3}=1 td < 2>做题结果:A 参考答案:D.P{-1<X<=3}=1 td < 2>7、B:P(B-A)>=0A:B未发生A可能发生C:P(A)<=P(B) D:B发生A可能不发生做题结果:A 参考答案:A.B未发生A可能发生8、B:A与B相容A:A与B不相容C:A与B不独立D:A与B独立做题结果:A 参考答案:D.A与B独立9、B:0.2A:0C:0.3 D:0.5做题结果:A 参考答案:C.0.310、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】B:a=2/3,b=2/3A:a=3/5,b=-2/5C:a=-1/2,b=3/2 D:a=1/2,b=-3/2做题结果:A 参考答案:A.a=3/5,b=-2/511、X为随机变量,E(X)=-1,D(X)=3,则E[3(X2)+20]= 【】B:9A:18C:30 D:32做题结果:C 参考答案:D.3212、X,Y独立,且方差均存在,则D(2X-3Y)= 【】B:4DX-9DYA:2DX-3DYC:4DX+9DY D:2DX+3DY做题结果:C 参考答案:C.4DX+9DY13、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】B:分布相同但不相互独立A:独立同分布C:独立但分布不同D:不能确定做题结果:A 参考答案:A.独立同分布14、B:0.4A:0C:0.8 D:1做题结果:A 参考答案:D.115、袋中有c个白球,d个黑球,从中任取一个,则取得白球的概率是【】B:1/(c+d)A:1/2C:c/(c+d) D:d/(c+d)做题结果:A 参考答案:C.c/(c+d)16、从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为【】B:51/101A:50/101C:50/100 D:51/100做题结果:C 参考答案:A.50/10117、四人独立地破译一份密码,已知各人能译出的概率分别为1/2,1/4,1/3,1/5,则密码最终能被译的概率为【】B:1/2A:1C:4/5 D:2/3做题结果:A 参考答案:C.4/518、已知P(A)=P(B)=P(C)=1/8,P(AB)=0,P(AC)=P(BC)=1/16,则事件A,B,C全不发生的概率为【】B:3/8A:3/4C:5/8 D:7/8做题结果:C 参考答案:A.3/419、设X服从[1,5]上的均匀分布,则【】B:P{3<X< 2>A:P{a<=X<=b}=(b-a)/4C:P{0<X<> D:P{-1<X<=3}=1 td < 4>做题结果:C 参考答案:B.P{3<X< 2>20、A:0.2B:0.4C:0.8 D:1做题结果:C 参考答案:A. 0.221、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】A:a=3/5,b=-4/5B:a=2/3,b=2/3C:a=-1/2,b=3/2 D:a=1/2,b=-1/2做题结果:C 参考答案:D.a=1/2,b=-1/222、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:边缘分布之积即为联合分布D:两个随机变量各自的联合分布不同,但边缘分布可能相同做题结果:C 参考答案:C.边缘分布之积即为联合分布24、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:两个随机变量各自的联合分布不同,但边缘分布可能相同D:边缘分布之积即为联合分布做题结果:C 参考答案:D.边缘分布之积即为联合分布25、下列关于“统计量”的描述中,不正确的是【】A:统计量为随机变量B:统计量是样本的函数C:统计量表达式中不含有参数D:估计量是统计量做题结果:C 参考答案:C.统计量表达式中不含有参数26、已知D(X)=4,D(Y)=25,Coν(X,Y)=4,则ρXY= 【】A:0.004B:0.04C:0.4 D:4做题结果:A 参考答案:C.0.427、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】A:独立但分布不同B:分布相同但不相互独立C:独立同分布D:不能确定做题结果:C 参考答案:C.独立同分布28、X,Y独立,且方差均存在,则D(3X-4Y)= 【】B:9DX-16DYA:9DX+16DYC:3DX-4DY D:3DX+4DY做题结果:A 参考答案:A.9DX+16DY29、设事件A,B相互独立,且P(A)=1/3,P(B)>0,则P(AㄧB)= 【】B:1/5A:1/15C:4/15 D:1/3做题结果:A 参考答案:D.1/330、袋中有a个白球,d个黑球,从中任取一个,则取得白球的概率是【】B:1/(a+d)A:1/2C:a/(a+d) D:d/(a+d)做题结果:A 参考答案:C.a/(a+d)31、B:P(A)A:1C:P(B) D:P(AB)做题结果:C 参考答案:A.132、四人独立地破译一份密码,已知各人能译出的概率分别为1/5,1/4,1/7,1/6,则密码最终能被译的概率为【】B:1/2A:1C:3/7 D:4/7做题结果:A 参考答案:D.4/7已知P(A)=P(B)=P(C)=1/5,P(AB)=0,P(AC)=P(BC)=1/25则事件A,B,C全不发生的概率为【】B:12/25A:1/25C:15/25 D:13/25做题结果:A 参考答案:B.12/2534、B:0.6A:0.5C:0.66 D:0.7做题结果:A 参考答案:C.0.6635、B:1/2A:1/6C:2/3 D:1做题结果:A 参考答案:C.2/336、设随机变量X与Y独立同分布,它们取-1,1两个值的概率分别为1/4,3/4,则P{XY=-1}= 【】B:3/16C:1/4 D:3/8做题结果:A 参考答案:D.3/837、设X服从[1,5]上的均匀分布,则【】A:P{a<=X<=b}=(b-a)/4B:P{3<X< 2>C:P{0<X<> D:P{-1<X<=3}=3 td < 4>做题结果:A 参考答案:B.P{3<X< 2>38、A:0B:0.2C:0.3 D:0.5做题结果:C 参考答案:D.0.539、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】A:a=3/5,b=2/5B:a=2/3,b=-1/3C:a=-1/2,b=3/2 D:a=1/2,b=-3/2做题结果:A 参考答案:B.a=2/3,b=-1/340、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:两个随机变量各自的联合分布不同,但边缘分布可能相同D:边缘分布之积即为联合分布做题结果:C 参考答案:D.边缘分布之积即为联合分布41、已知随机变量X服从参数为2的指数分布,则随机变量X的期望为【】A:-1/2B:0C:1/2 D:2做题结果:C 参考答案:C.1/242、下列关于“统计量”的描述中,不正确的是【】A:统计量为随机变量B:统计量是样本的函数C:统计量表达式中不含有参数D:估计量是统计量做题结果:A 参考答案:C.统计量表达式中不含有参数43、X,Y独立,且方差均存在,则D(2X-5Y)= 【】A:2DX-5DYB:4DX-25DYC:4DX+25DY D:2DX+5DY做题结果:A 参考答案:C.4DX+25DY44、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】A:独立但分布不同B:分布相同但不相互独立C:不能确定D:独立同分布做题结果:A 参考答案:D.独立同分布58、设X~N(μ,4),则B:P{X<=0}=1/2A:(X-μ)/4~N(0,1)C:P{X-μ>2}=1-φ(1) D:μ>=0做题结果:A 参考答案:C.P{X-μ>2}=1-φ(1)59、设随机变量X的分布函数为F(X),下列结论中不一定成立的是【】B:F(-∞)=0A:F(+∞)=1C:0<=F(X)<=1 D:F(X)为连续函数做题结果:A 参考答案:D.F(X)为连续函数60、某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为【】B:(1-p)(1-p)A:p*pC:1-2p D:p(1-p)做题结果:A 参考答案:D.p(1-p)61、设A与B互不相容,且P(A)>0,P(B)>0,则有【】做题结果:A 参考答案:D.P(A∪B)=P(A)+P(B)62、设A,B,C是三个相互独立的事件,且O<P(C)<1,则下列给定的四对事件中,不独立的是【】,,,做题结果:A 参考答案:C.63、设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为e-2,,,做题结果:A 参考答案:B64、(x) ,则Y=-2X+3的密度函数设随机变量X的概率密度函数为fx为【】,,,做题结果:A 参考答案:B 65、设随机事件A与B相互独立,且P(A)>0,P(B)>0,则。
04183概率论与数理统计(经管类)答案
概率论与数理统计(经管类)一、单项选择题1.设A ,B 为随机事件,且B A ⊂,则AB 等于 B A .A B .B C .ABD .A2..将一枚均匀的硬币抛掷三次,恰有二次出现正面的概率为 CA .81B .14 C .38D .12?3..设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21= AA.41B.31 C.214.已知离散型随机变量X !则下列概率计算结果正确的是DA .P (X =3)=B .P (X =0)=0C .P (X>-1)=lD .P (X ≤4)=l5.设二维随机变量(X ,Y)的分布律右表所示:C且X 与Y 相互独立,则下列结论正确的是A .a =,b = B .a =,b = C .a =,b = D .a =, b =6.设二维随机变量(X ,Y )的分布律为D则P{XY=0}= BA. 121B. 61C. 31D.32 7.设随机变量X 服从参数为2的指数分布,则E (X )= BA .41B .21C .2D .48.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为D |A .1B .2C .3D .49.设总体X~N (2,σμ),2σ未知,x 1,x 2,…,x n 为样本,∑=--=n1i 2i2)x x(1n 1s ,检验假设H 0∶2σ=20σ时采用的统计量是 CA.)1n (t ~n/s x t -μ-=B. )n (t ~n/s x t μ-=C. )1n (~s )1n (2222-χσ-=χ D. )n (~s )1n (2222χσ-=χ 10.设x 1,x 2,x 3,x 4为来自总体X 的样本,D (X )=2σ,则样本均值x 的方差D (x )= AA.214σB.213σ C.212σ D.2σ。
11.设A 、B 为两事件,已知P (B )=21,P (B A )=32,若事件A ,B 相互独立,则P (A )C A .91B .61 C .31D .2112.对于事件A ,B ,下列命题正确的是 D A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂ C .如果B A ⊃,则B A ⊃?D .如果A ,B 对立,则B ,A 也对立13.下列函数中可作为随机变量分布函数的是C A .⎩⎨⎧≤≤=.,0;10,1)(1其他x x F 1B .⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x FC .⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x FD .⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;00,0)(4x x x x F14.设随机变量X 的概率密度为f (x )=1,10,20, ,cx x ⎧+-≤≤⎪⎨⎪⎩其他则常数c = B21]15.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有 C (-a)=1-⎰a0dx )x (fB. F(-a)=F(a)C. F(-a)=⎰-adx )x (f 21 (-a)=2F(a)-116.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x则P{0<X <1,0<Y <1}=【 A 】A .41B .21 C .43 D .1~17.已知随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<<, ,0,42,21其他x 则E (X )= D【 】B.21D. 318.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )= B19.设随机变量Z n ~B (n ,p ),n =1,2,…,其中0<p <1,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞→x p np np Z P n n )1(lim B22e21t x-⎰π22e21t x-∞-⎰π`22e21t -∞-⎰π22e21t -∞+∞-⎰π20.设X 1,X 2,X 3,为总体X 的样本,3216121kX X X T ++=,已知T 是E (x )的无偏估计,则k = A A.13B.16C.94 D.21 二、填空题1.设P (A )=,P (B )=,P (A ⋃B )=,则P (B A )=.2.设A ,B 相互独立且都不发生的概率为91,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则P (A )=_____23______. 3.设随机变量X~B (1,)(二项分布),则X的分布函数为______00;(x)0.201;10x F x x <⎧⎪=≤<⎨⎪<⎩_____.)4.已知某地区的人群吸烟的概率是,不吸烟的概率是,若吸烟使人患某种疾病的概率为,不吸烟使人患该种疾病的概率是,则该人群患这种疾病的概率等于 ___.5.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= _x_____.6.设随机变量X ~N (1,32),则P{-2≤ X ≤4}=.(附:)1(Φ= 7.设随机变量(X ,Y )的概率分布为YX0 1}24161 81 141 81 。
最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案
2008年7月高等教育自学考试全国统一命题考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。
错选、1.设随机事件 A . 0 C . 0.4x ::: 0C .-12 0 0 1/6 5/12 1/3 1/12 0 0 11/36.已知 Y 的联合概率分布如题6表所示概率论与数理统计(经管类)试卷课程代码4183多选或未选均无分。
A 与B 互不相=0.2 , P(B)=0.4,贝U P ( B|A )= B . 0.2 D . 12 .设事件A , B 互不相容,已知(A) =0.4, P(B)=0.5,则 P(A B )=(A . 0.1 C . 0.93 .已知事件 A , B 相互独立,且(A) B . D . >0, 0.4 1P (B )>0,则下列等式成立的是A . P(A B)=P(A)+P(B) P(A B)=1-P( A )P(B )C . P(A B)=P(A)P(B)4.某人射击三次, A . 0.002 C . 0.08 其命中率为 0.8,D . 则三次中至多命中一次的概率为(B . D . P(A B)=10.04 0.1045.已知随机变量X 的分布函数为( F(x)=12 23 10 乞 x :::1x _3 斗=题6表1F ( x,y )为其联合分布函数,则 F ( 0,31 121 47.设二维随机变量(X , Y )的联合概率密度为e _(xdy)x >0, y =0f(x,y)=其它2 3 已知随机变量X 服从参数为1 23 4则随机变量 X 的期望为(所满足的切比雪夫不等式为(I —.丿 \ncr 2~2~2 nc~2二2ns 2p { X —n ^>3 h 零A . Z=X 」0匚/ ■ nC. T=X 」0S/J n二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
04183概率论与数理统计(经管类)2015年真题2套及标准答案
全国高等教育自学考试概率论与数理统计(经管类)2015年10月真题(课程代码:04183)一、单项选择题(本大题共10小题,每小题2分,共20分)1.设事件A 与B 互不相容,且P(A)=0.4,P(B)=0.2,则P(A∪B)=( )A.0B.0.2C.0.4D.0.62.设随机变量X ~B(3,0.3),则p={X-2}=( ) A.0.189 B.0.21 C.0.441 D.0.73.设随机变量X 的概率密度为( )=⎩⎨⎧≤≤=a x ax x f ,则常数其他,,0,10,)(2 A.0 B.31 C. D.3214.设随机变量X 的分布律为( ){}==-12.06.02.01012X P P X ,则 A.0.2 B.0.4C.0.6D.0.85.设二维随机变量(x,y)的分布律为( ){}==11.02.01.013.02.01.00210\X P YX 则 A.0.1 B.0.2C.0.3D.0.46.设随机变量X ~N(3,),则E(2X+2)=( )22 A.3 B.6 C.9 D.157.设随机变量X 服从参数为3的泊松分布,Y 服从参数为的指数分布,且X,Y51互相独立,则D(X-2Y+1)=( ) A.23 B.28C.103D.1048.已知X 与Y 的协方差Cov (X,Y )=,则Cov (-2X,Y )=( )21- A. B.021- C. D.1219.设为总体X 的一个样本,且为样本均值,)2(,...,,21>n x x x n ,未知)()(μμ=X E x 则的无偏估计为( )μ A. B.x n xC. D.x n )1(-x n )1(1-10.设a 是假设检验中犯第一类错误的概率,为原假设,以下概率为a 的是( )0H A. B.{}不真接受00|H H P {}真拒绝00|H H P C. D.{}不真拒绝00|H H P {}真接受00|H H P 二、填空题(本大题共15小题,每小题2分,共30分)11.袋中有编号为0,1,2,3,4的5个球,从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_____.12.设A,B 为随机事件,则事件“A,B 至少有一个发生”可由A,B 表示为_____.13.设事件A,B 相互独立,且P(A)=0.3,P(B)=0.4,则=_____.)(B A P 14.设X 表示某射手在一次射击命中目标的次数,该射手的命中率为0.9,则P{x=0}=_____.15.设随机变量X 服从参数为1的指数分布,则P{X >2}=_____.16.设二维随机变量(X,Y)的分布律为则c=_____.cYX 2561256259010\17.设二维随机变量(X,Y)的分布函数为F(x,y),则P{X≤0,Y≤0}用F(x,y)表示为_____.18.设二维随机变量(X,Y)服从区域D:-1≤x≤2,0≤y≤2的均匀分布,则(X,Y)概率密度f(x,y)在D 上的表达式为_____.19.设X 在区间[1,4]上服从均匀分布,则E(X)_____.20.设,则D(X)=_____.⎪⎭⎫⎝⎛515~B ,X 21.设随机变量X 与Y 的协方差Cov(X,Y)=,E(X)=E(Y)=1,则E(XY)=_____.21-22.设二维随机变量(X,Y)服从区域D:0≤x≤4,0≤y≤4上的分布,则____.=+)(22Y X E 23.设总体X ~N(0,1),为来自总体X 的一个样本,且123x x x ,,,则n=______.2222123~()x x x n χ++24.设X ~N(0,1),Y ~(10),且X 与Y 互相独立,则_____.2X =10/Y X25.设某总体X 的样本为_____.=⎪⎭⎫⎝⎛=∑-n i l n x n D X D x x x 12211,)(,,...,,则σ三、计算题(本大题共2小题,每小题8分,共16分)26.已知甲袋中有3个白球、2个红球;乙袋中有1个白球、2个白球,现从甲袋中任取一球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
04183概率论与数理统计(经管类)_第2章课后答案
习题2.11.设随机变量X的分布律为P{X=k}=,k=1, 2,N,求常数a.解:由分布律的性质=1得P(X=1) + P(X=2) +…..+ P(X=N) =1N*=1,即a=12.设随机变量X只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.解:C=3.将一枚骰子连掷两次,以X表示两次所得的点数之和,以Y表示两次出现的最小点数,分别求X,Y的分布律.注: 可知X为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X的分布律投两次最小的点数可以是1到6里任意一个整数,即Y的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X表示取出的次品的个数,求X的分布律.解:X=0,1,2X=0时,P=X=1时,P=X=2时,P=5.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X表示出现正面的次数,求X的分布律.解:P{X=k}=, k=1, 2, 3, 86.设离散型随机变量X的分布律为X -1 2 3P解:7.设事件A在每一次试验中发生的概率分别为0.3.当A发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X为事件A发生的次数,(1)(2)8.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数投中次数相等的概率=9.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.110.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1)(2)习题2.21.求0-1分布的分布函数.解:2.设离散型随机变量X的分布律为:X -1 2 3P 0.25 0.5 0.25求X的分布函数,以及概率,.解:则X的分布函数F(x)为:3.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=a F1(x)-bF2(x)也是某一随机变量的分布函数,证明a-b=1.证:4.如下4个函数,哪个是随机变量的分布函数:(1)(2)(3)(4)5.设随机变量X的分布函数为F(x) =a+b arctanx,求(1)常数a,b;(2)解: (1)由分布函数的基本性质得:解之a=, b=(2)(将x=1带入F(x) =a+b arctanx)注: arctan为反正切函数,值域(), arctan1= 6.设随机变量X的分布函数为求解:注:习题2.31.设随机变量X的概率密度为:求: (1)常数a; (2); (3)X的分布函数F(x).解:(1)由概率密度的性质A=(2)一些常用特殊角的三角函数值正弦余弦正切余切0 0 1 0 不存在π/61/2 √3/2√3/3√3π/4√2/2√2/2 1 1π/3√3/21/2 √3√3/3π/2 1 0 不存在0(3)X的概率分布为:2.设随机变量X的概率密度为求: (1)常数a; (2); (3)X的分布函数.解:(1),即a=(2)(3)X的分布函数3.求下列分布函数所对应的概率密度:(1)解:(柯西分布)(2)解:(指数分布)π0 -1 0 不存在(3)解: (均匀分布) 4.设随机变量X的概率密度为求: (1); (2)解:(1)(2)(2)5.设K在(0,5)上服从均匀分布,求方程(利用二次式的判别式)解: K~U(0,5)方程式有实数根,则故方程有实根的概率为:6.设X ~ U(2,5),现在对X进行3次独立观测,求至少有两次观测值大于3的概率.解:至少有两次观测值大于3的概率为:7.设修理某机器所用的时间X服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解:8.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y表示他未等到服务而离开窗口的次数.写出Y的分布律,并求解:“未等到服务而离开的概率”为Y的分布律:Y 0 1 2 3 4 5P 0.484 0.378 0.118 0.018 0.001 0.000049.设X ~ N(3,),求:(1);(2).解:(1)(2)经查表,即C=310.设X ~ N(0,1),设x满足解:经查表当 1.65时即 1.65时11.X ~ N(10,),求:(1)(2)解:(1)(2)经查表,即d=3.312.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内为合格,求一螺栓不合格的概率.解:螺栓合格的概率为:螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求:(1)至少有一次误差绝对值不超过30m的概率;(2)只有一次误差绝对值不超过30m的概率.解:(1)绝对值不超过30m的概率为:至少有一次误差绝对值不超过30m的概率为:1−(2)只有一次误差绝对值不超过30m的概率为:习题2.41.设X的分布律为X -2 0 2 3P 0.2 0.2 0.3 0.3求(1)的分布律.解: (1)的可能取值为5,1,-3,-5.由于从而的分布律为:X -5 -3 1 50.3 0.3 0.2 0.2(2)的可能取值为0,2,3.由于从而的分布律为:X 0 2 30.2 0.5 0.32.设X的分布律为X -1 0 1 2P 0.2 0.3 0.1 0.4求解:Y的可能取值为0,1,4.由于从而的分布律为:X 0 1 4Y 0.1 0.7 0.23.X~U(0,1),求以下Y的概率密度:(1)解: (1)即(2)即注: 由X~U(0,1),,当X=0时,Y=3*0+1=1; ,当X=1时,Y=3*1+1=4(3)即注: ,当X=0时,; ,当X=1时,4.设随机变量X的概率密度为求以下Y的概率密度:(1)Y=3X; (2) Y=3-X; (3)解: (1) Y=g(x)=3X,即(2)Y=g(x) =3-X, X=h(y) =3-Y,-1即(3), X=h(y)=,, 即5.设X服从参数为λ=1的指数分布,求以下Y的概率密度:(1)Y=2X+1; (2)(3)解: (1) Y=g(x)=2X+1,X的概率密度为:即(2)即(3),注意是绝对值永远大于0.当x>0是,>1即6.X~N(0,1),求以下Y的概率密度:(1)解: (1)当X=+Y时:当X=-Y时:故即自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X表示抽到次品的件数,则P{X=3}= C .A. B. C. D.2.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192 解:P{X>3}= P{X=4}= (二项分布)3.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是 D .A. B.C.D. F(x) 为连续函数4.下列各函数中是随机变量分布函数的为 B . A.B.C.D.5.设随机变量X 的概率密度为则常数a= A .A. -10B.C.D. 10 解: F(x) =6.如果函数是某连续型随机变量X 的概率密度,则区间[a,b]可以是 C A. [0, 1] B. [0, 2] C. D. [1, 2]7.设随机变量X 的取值范围是[-1,1],以下函数可以作为X 的概率密度的是 A A.B.C. D.8.设连续型随机变量X 的概率密度为 则= B .A. 0B. 0.25C. 0.5D. 1 解:9.设随机变量X~U(2,4),则= A . (需在区间2,4内)A. B. C. D.10. 设随机变量X 的概率密度为则X~ A . 不晓得为何课后答案为DA. N (-1, 2)B. N (-1, 4)C. N (-1, 8)D. N (-1, 16)11.已知随机变量X的概率密度为fx(x),令Y=-2X,则Y的概率密度fy(y)为 D .A. B. C. D.二,填空题1.已知随机变量X的分布律为X 1 2 3 4 5P 2a 0.1 0.3 a 0.3则常数a= 0.1 .解:2a+0.1+0.3+a+0.3=12.设随机变量X的分布律为X 1 2 3P记X的分布函数为F(x)则F(2)= . 解:3.抛硬币5次,记其中正面向上的次数为X,则= .解:4.设X服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .解:分别将.5.设随机变量X的分布函数为其中0<a<b,则= 0.4 .解:6.设X为连续型随机变量,c是一个常数,则= 0.7.设连续型随机变量X的分布函数为自己算的结果是则X的概率密度为f(x),则当x<0是f(x)= .8.设连续型随机变量X的分布函数为其中概率密度为f(x),则f(1)= .9.设连续型随机变量X的概率密度为其中a>0.要使,则常数a= 3 .解:10.设随机变量X~N(0,1),为其分布函数,则= 1 .11.设X~N,其分布函数为为标准正态分布函数,则F(x)与之间的关系是= .12.设X~N(2,4),则= 0.5 .13.设X~N(5,9),已知标准正态分布函数值,为使,则常数a< 6.5 . 解:,14.设X~N(0,1),则Y=2X+1的概率密度= .解:三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X表示取到红球的数,求X的分布律.解: X=0,1,2当X=0时,当X=1时,当X=2时,X的分布律为:X 0 1 2P四.设X的概率密度为求: (1)X的分布函数F(x);(2). 解: (1);(2)五.已知某种类型电子组件的寿命X(单位:小时)服从指数分布,它的概率密度为一台仪器装有4个此种类型的电子组件,其中任意一个损坏时仪器便不能正常工作,假设4个电子组件损坏与否相互独立.试求: (1)一个此种类型电子组件能工作2000小时以上的概率;(2)一台仪器能正常工作2000小时以上的概率.解: (1)(2)因4个电子组件损坏与否相互独立,故:。
自考04183《概率论与数理统计(经管类)》历年真题
全国2007年4月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)(=ABD.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( ) A.P (AB ) B.P (A ) C.P (B )D.13.下列各函数可作为随机变量分布函数的是( ) A.⎩⎨⎧≤≤=.,x ,x )x (F 其他01021;B.⎪⎩⎪⎨⎧≥<≤<=.x x ,,x ;x ,)x (F 1101002;C.⎪⎩⎪⎨⎧≥<≤--<-=.x x ,x ;x ,)x (F 1111113;D.⎪⎩⎪⎨⎧≥<≤<=.x x ,x ;x ,)x (F 11022004;4.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=,,;x ,x )x (f 其他0224则P {-1<X <1}=( )A.41B.21C.43D.1 5.,则P {X +Y =0}=( ) A.0.2 B.0.3 C.0.5 D.0.7 6.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<-<<-=,,;y ,x ,c )y ,x (f 其他01111 则常数c=( ) A.41 B.21C.2D.4 7.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4D.E (X )=2,D (X )=28.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则D (Z )=( )A.1B.3C.5D.69.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =()A.0.004B.0.04C.0.4D.410.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s x D.)(10μ--x n二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。
自考04183概率论与数理统计(经管类)总结2-数理统计部分
高等教育自学考试辅导《概率论与数理统计(经管类)》第二部分数理统计部分专题一统计量及抽样的分布I.考点分析近几年试题的考点分布和分数分布II.内容总结一、总体与样本1.总体:所考察对象的全体称为总体;组成总体的每个基本元素称为个体。
2.样本:从总体中随机抽取n个个体x1,x2…,x n称为总体的一个样本,个数n称为样本容量。
3.简单随机样本如果总体X的样本x1,x2…,x n满足:(1)x1与X有相同分布,i=1,2,…,n;(2)x1,x2…,x n相互独立,则称该样本为简单随机样本,简称样本。
得到简单随机样本的方法称为简单随机抽样方法。
4.样本的分布(1)联合分布函数:设总体X的分布函数为F(x),x1,x2…,x n为该总体的一个样本,则联合分布函数为二、统计量及其分布1.统计量、抽样分布:设x1,x2…,x n为取自某总体的样本,若样本函数T=T(x1,x2…,x n)不含任何未知参数,则称T为统计量;统计量的分布称为抽样分布。
2.样本的数字特征及其抽样分布:设x1,x2…,x n为取自某总体X的样本,(2)样本均值的性质:①若称样本的数据与样本均值的差为偏差,则样本偏差之和为零,即②偏差平方和最小,即对任意常数C,函数时取得最小值. (5)样本矩(7)正态分布的抽样分布A.应用于小样本的三种统计量的分布的为自由度为n的X2分布的α分位点.求法:反查X 2分布表.III.典型例题[答疑编号918020101]答案:D[答疑编号918020102]答案:[答疑编号918020103]答案:B[答疑编号918020104]答案:1[答疑编号918020105]答案:B[答疑编号918020106]故填20.[答疑编号918020107]解析:[答疑编号918020108]答案:解析:本题考核正态分布的叠加原理和x2-分布的概念。
根据课本P82,例题3-28的结果,若X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y~N(0+0,1+1)=N(0,2)。
自考02197概率论与数理统计(二)试卷201504
2015年4月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码02197)本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答. 4.合理安排答题空间。
超出答题区域无效。
第一部分选择题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
未涂、错涂或多涂均无分。
1.设A,B为随机事件,且B A,P(A)=0.4,P(B)=0.2,则P(B∣A)=A.O.2 B.0.4 C. 0.5 D.12.设随机变量X~B(3,0.2),则P{x>2}=A.0.008 B.0.488 C.0.512 D.0.9923.设随机变量X的概率密度为,则X~A.N(-2,2) B.N(-2,4) C.N(2,2) D.N(2,4)4.设随机变量X的分布函数为F(x),则下列结论中不一定成立的是A.F(-∞)=0 B.F(+∞)=1 C.0≤F(x)≤1 D.F(x)是连续函数5.设二维随机变量(X,Y)的分布律为则P(X≤Y)=A.O.25 B.0.45 C.O.55 D.0.756.设随机变量X服从参数为的指数分布,则E(2x—1)=A.0 B.1 C.3 D.47.设随机变量X与Y相互独立,且D(X)=D(Y)=4,则D(3X-Y)=A.8 B.16 C.32 D.408.设总体X服从正态分布N(0,1),x l,x2,…,x n是来自X的样本,则x12+x22+…+x n2~9.设x1,x2,x3,x4为来自总体X的样本,且E(X)= .记,,则的无偏估计是10.设总体X~N(),已知,x1,x2,…,x n为来自X的样本,为样本均值.假设H O:,已知,检验统计量u=,给定检验水平a,则拒绝H O的理由是第二部分非选择题二、填空题(本大题共l5小题,每小题2分,共30分)请在答题卡上作答。
历年自考概率论与数理统计(经管类)真题及参考答案(全套)
历年自考概率论与数理统计(经管类)真题及参考答案(全套)xx年4月份全国自考概率论与数理统计真题参考答案一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D 答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0 P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2. 设A,B为两个随机事件,且P>0,则P= A. P B. PC. PD. 1 答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3. 下列各函数可作为随机变量分布函数的是 A. A B. BC. CD. D 答案:B解析:分布函数须满足如下性质:F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选第 1 页项A、C、D中F(x)都不是随机变量的分布函数,排除法知B正确,事实上B满足随机变量分布函数的所有性质.第 2 页4. 设随机变量X的概率密度为A. AB. BC. CD. D答案:A5. 设二维随机变量的分布律为(如下图)则P{X+Y=0}=第 3 页A. B. C. D.答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=+=6. 设二维随机变量的概率密度为A. AB. BC. CD. D 答案:A7. 设随机变量X服从参数为2的泊松分布,则下列结论中正确的是 A. E=,D= B. E=,D= C. E=2,D=4 D. E=2,D=2 答案:D解析:X~P(2),故E=2,D=2.8. 设随机变量X与Y相互独立,且X~N,Y~N,令Z=X-Y,则D= A. 1 B. 3 C. 5 D. 6第 4 页答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.第 5 页9.A. B. C. D. 4二、填空题请在每小题的空格中填上正确答案。
自学考试概率论及数理统计201504月真题和答案解析
技术资料分享绝密★考试结束前全国2014年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题 纸"的相应代码涂黑。
错涂、多涂或未涂均无分。
1.掷一颗骰子,观察出现的点数。
A 表示“出现3点”,B 表示“出现偶数点”,则 A.A B ⊂ B.A B ⊂ C.A B ⊂D.A B ⊂2.设随机变量x 的分布律为 ,F(x)为X 的分布函数,则F(0)= A.0.1 B.0.3 C.0.4D.0.63.设二维随机变量(X ,Y )的概率密度为,11,02,(,)0,≤≤≤≤其它,c x y f x y -⎧=⎨⎩则常数c=A.14B.12C.2D.44.设随机变量X 服从参数为2的泊松分布,则D(9—2X )= A.1 B.4 C.5D.8技术资料分享5.设(X ,Y )为二维随机变量,则与Cov(X ,Y )=0不等价...的是 A.X 与Y 相互独立 B.()()()D X Y D X D Y -=+ C.E(XY)=E(X)E(Y)D.()()()D X Y D X D Y +=+6.设X 为随机变量,E(x)=0.1,D(X )=0.01,则由切比雪夫不等式可得 A.{}0.110.01≥≤P X - B.{}0.110.99≥≥P X - C.{}0.110.99≤P X -<D.{}0.110.01≤P X -<7.设x 1,x 2,…,x n 为来自某总体的样本,x 为样本均值,则1()ni i x x =-∑=A.(1)n x -B.0C.xD.nx8.设总体X 的方差为2σ,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值, 则参数2σ的无偏估计为 A.2111n i i x n =-∑ B.211n i i x n =∑ C.211()1ni i x x n =--∑ D.11()2ni i x x n =-∑ 9.设x 1,x 2,…,x n 为来自正态总体N (μ,1)的样本,x 为样本均值,s 2为样本方差.检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则采用的检验统计量应为x()x μ-0()x μ- 10.设一元线性回归模型为201,(0,),1,2,,,i i i i y x N i n ββεεσ=++=则E (y i )=A.0βB.1i x βC.01i x ββ+D.01i i x ββε++技术资料分享非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
自考04183概率论与数理统计历年真题共14套
全国2010年7月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为两事件,已知P (B )=21,P (B A )=32,若事件A ,B 相互独立,则P (A )= ( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂ C .如果B A ⊃,则B A ⊃D .如果A ,B 对立,则B ,A 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X 的概率分布如下表所示:则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X>-1)=l D .P (X<4)=l5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率=⎭⎬⎫⎩⎨⎧+<32b a X P ( )A .0B .31C .32 D .16.设(X ,Y )的概率分布如下表所示,当X 与Y 相互独立时,(p ,q )=( )A .(51,151)B .(151,51)C .(152101,) D .(101152,) 7.设(X ,Y )的联合概率密度为⎩⎨⎧≤≤≤≤+=,,,y ,x ,y x k y ,x f 其他01020)()(则k =( )A .31B.21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为( ) A .1B .2C .3D .49.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( ) A.91 B.31 C.21 D.110.设X 1,X 2,X 3,为总体X 的样本,3216121kX X X T ++=,已知T 是E (x )的无偏估计,则k =( ) A.61B.31C.94 D.21二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计自考(习题卷1)
概率论与数理统计自考(习题卷1)第1部分:单项选择题,共38题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]将一枚均匀的骰子投掷三次,记事件A表示“第一次出现偶数点”,事件B表示“第二次出现奇数点”,事件C表示“偶数点最多出现一 次”,则()。
A)A,B,C两两独立B)A与BC独立C)B与AC独立D)C与AB独立答案:D解析:D项,2.[单选题]设随机变量X和y同分布,概率密度为且E[n(x+2y)]=0,则a的值为( )。
A)1/2B)1/3C)1/(2θ2)D)2/(3θ)答案:A解析:由题意知,3.[单选题]设随机变量X~B(80,0.3),则X的方差D(X)为( )。
A)56.6B)21C)16.8D)24答案:C解析:已知X~B(80,0.3),这里n=80,p=0.3,q=0.7,因此D(X)=npq=80×0.3×0.7=16.8,因此选C。
4.[单选题]设随机变量X, Y的方差分别是: D(X) = 25, D(Y) = 36, 相关系数,则D(X-Y)=A)85B)61C)37D)24答案:C解析:本题考察方差、协方差、相关系数的计算。
由课本P111,例4-36,,所以,而,,概率密度函数的是( )。
A)f1(x)[1-F2(x)]+f2(x)[1-F1(x)]B)f1(x)[1-F2(x)]+f2(x)[1-f1(x)]C)f1(x)[1-f2(x)]+f2(x)[1-F1(x)]D)f1(x)[1-f2(x)]+f2(x)[1-f1(x)]答案:A解析:由分布函数的性质可得,1-[1-F2(x)][1-F1(x)]还是分布函数,且为连续型随机变量的分布函数,故其导数f1(x)[1-F2(x)]+f2(x)[1-F1(x)]必为概率密度函数。
6.[单选题]已知随机变量X服从二项分布,且E(X)=6,D(X)=4.2,则二项分布的参数p为( )。
全国高等教育自学考试《概率论与数理统计》试题
全国高等教育自学考试《概率论与数理统计》试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)1.掷一颗骰子,观察出现的点数.止表示“出现3点”,召表示“出现偶数点”,则 A. B A ⊂ B.B A ⊂ C. B A ⊂ D. B A ⊂2.设随机变量X 的分布律为,F(x)为X 的分布函数,则F(0)=A . 0.1B .0.3C . 0.4D .0.63.设二维随机变量(X ,y)的概率密度为 则常数c= A .41 B .21 C .2 D .44.设随机变量J 服从参数为2的泊松分布,则D(9-2X)=A . 1B .4C . 5D .85.设(X,Y)为二维随机变量,则与Cov(X ,Y)=0不等价的是 A. X 与Y 相互独立. B. D(X-Y)=D(X)+ D(Y) C. E(XY)=E(X)E(Y) D. D(X + Y) = D(X) + D(Y)6. 设X 为随机变量,E(X)=0.1,D(X)=0.01,由此切比雪夫不等式可得( )7.设X1,X2,…,Xn 为来自某总体的样本,x 万为样本均值,则=-∑=x x ni i 1A . x n )1(-B .0C . xD .x 8.设总体X 的方差为2σ,1x ,2x ,…,nx 为来自该总体的样本,云为样本均值,则参数2σ的无偏估计为A. ∑=-n i x n 1211B. ∑=n i x n 1211 C. 21)(11x x n n i i ∑=-- D. 21)(1x x n n i i ∑=-9.设1x ,2x ,…,nx 为来自正态总体)1,(ηN 的样本,x 为样本均值,2s 为样本方差.检验 假设00:μμ=H ,1:μμ≠H 则采用的检验统计量应为A.n s x /μ- B. n s x /0μ- C.)(μ-x n D.)(0μ-x n10.设一元线性回归模型为ii i i x y εββ++=0,),0(~2σεN i ,n i ,,2,1 =,则=)(i y EA. 0βB. i i x βC. i i x ββ+0D. i i i x εββ++0 二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B 为随机事件,,则P(AB)=12.设随机事件A 与B 相互独立,P(A)=0.3,P(B)=0.4,则P(A-B)= 13.设A,B 为对立事件,则B A =14.设随机变量X 服从区间[1,5]上的均匀分布,F(x)为X 的分布函数,当1≤x ≤5时,F(x)=15.设随机变量X 的概率密度为 16.已知随机变量X —N(4,9),,则常数c=17.设二维随机变量(X ,Y)的分布律为则常数a=18.设随机变量X 与r 相互独立,且X~N(0,1),Y~N(-1,1),记Z=X-Y ,则Z~ 19.设随机变量X 服从参数为2的指数分布,则E (X )2=20.设X,Y 为随机变量,且E (X )= E (Y )=1, D(X)=D(X)=5,P XY =0.8,E (XY )=21.设随机变量X-B (100,0.2),为标准正态分布函数,,应用中心极限定理,可得22.设总体X —N(0,1),1x ,2x ,3x ,4x 为来自总体X 的样本,则统计量21x +22x +23x +24x =23.设样本的频数分布为,则样本均值x =24. 设总体,卢未知,1x ,2x ,…,16x ,为来自该总体的样本,x 为样本均值,为标准正态分布的上侧分位数.当卢的置信区间是时,则置信度为25. 某假设检验的拒绝域为W ,当原假设成立时,样本值(1x ,2x ,…,n x )落入的概率为0.1,则犯第一类错误的概率为 .26.设二维随机变量(X ,Y)的概率密度为求:(1)(X ,Y)关于X 的边缘概率密度27.设二维随机变量(X ,Y)的分布律为四、综合题(本大题共2小题,每小题12分,共24分)28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球.从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率. 29.设随机变量(3) Y 的概率密度.五、应用题(本大题共1小题,每小题10分,共10分)30.某项经济指标,将随机调查的11个地区的该项指标1x ,2x ,…,11x 作为样本,算得样本方差.问可否认为该项指标的方差仍为2?(显著水平)。
2015概率论与数理统计(A)参考答案
2014上学期概率论与数理统计(A)参考答案一、填空题(每小题3 分,共15分) 1. 0.18 2.8273. 54. 17(0.68)255. 0.106 二、单项选择题(每小题3 分,共15分)1. A2. B3. C4. D5. D 三、(12分)解:(1) 设{}{}2A B ==从甲盒中取得一个白球,从乙盒中取得个黑球,41(),(),55P A P A == 1分22322266417()()()()()0.093.5575C C P B P A P B A P A P B A C C =+=⨯+⨯==3分 5分 6分(2) 222644()()5475()()77575C P A P B A C P A B P B ⨯====,9分 11分 12分四、(12分) 解:(1) ()()xF x f x dx -∞=⎰ 1分当1x <时, ()0,F x = 2分 当2x >时, ()1,F x = 3分 当02x ≤≤时, 2112()2(1)24,xF x dx x x x=-=+-⎰ 4分 综上所述, 0,1,2()24,12,1, 2.x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩(2) (法一) 3221.51.512(1.53)()2(1).3P X f x dx dx x <<==-=⎰⎰ 5分 7分 8分或 ( 法二) 22(1.53)(3)(1.5)1(2 1.54).1.53P X F F <<=-=-⨯+-= 6分 7分 8分(3) 2211()()2(1)32l n 2,E X x f x d xx d x x+∞-∞==-=-⎰⎰ 9分22222118()()2(1),3E X x f x dx x dx x +∞-∞==-=⎰⎰ 10分 2222819()()[()](32ln 2)12ln 24(ln 2).33D X E X E X =-=--=-- 12分五、(12分) 解:(1)2分4分(2) 因为1155(0,0)(0)(0)33618P X YP X P Y ===≠=⋅==⨯= 6分所以 ,X Y 不独立. 8分 (3)10分 12分六、(10分) 解: (法一) 设随机变量Z 的分布函数为()Z F z ,000,0,()()(,)6,01,1, 1.zz x Z x y zz F z P X Y z f x y dxdy dx xdy z z -+≤<⎧⎪⎪=+≤==≤≤⎨⎪>⎪⎩⎰⎰⎰⎰3分 7分30,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩8分 故 23,01,()0,.Z z z f z ⎧≤≤=⎨⎩其他 10分 或(法二) ()(,)Z f z f x z x dx +∞-∞=-⎰, 4分当0z < 或 1z > 时,()0,Z f z = 6分 当 01z ≤≤ 时,20()63.zZ f z xdx z ==⎰ 10分七、(12分)解: (1) 因为 (),E X λ= 2分 由 ()X E X λ== 5分得参数λ的矩估计为 ˆ;X λ= 6分 (2) 似然函数为 11=1e ()niii x x nnni i ii e L x x λλλλλ=--=∑==!!∏∏ 8+1分取对数 11ln ()()ln ln n ni i i i L x n x λλλ===--!∑∑ 10分两边对λ求导, 并令其为零1l n ()0nii x d L n d λλλ==-=∑ 11分 解得参数λ的极大似然估计为 ˆ.X λ= 12分 八、(12分)解: (1) 总体均值μ的置信区间为:22((1),(1))x n x n αα-- 3分20.226(1)14.95 2.3114.776,3x n α-=-⨯= 4分20.226(1)14.95 2.3115.124,3x n α-=+⨯= 5分总体均值μ在置信概率为0.95时的置信区间为: (14.776,15.124). 6分 (2) 提出假设 01:0.2,:0.2.H H σσ≤> 8分取检验统计量 2220(1)n S χσ-=, 9分拒绝域为 {}{}22220.05(1)(8)V n αχχχχ=>-=> 10分220.05280.05110.2(8)15.50.2χχ⨯==<= 11分 故接受原假设0H . 12分。
历年自考《概率论与数理统计》试题及答案
历年自考《概率论与数理统计》试题及答案概率论与数理统计自考试题及答案概率论与数理统计作为一门重要的学科,旨在研究事物发生的概率和统计规律。
自考《概率论与数理统计》科目作为自考证书的一部分,对于自考学生来说具有重要的意义。
本文将为大家介绍历年自考《概率论与数理统计》试题及答案,供大家学习参考。
一、选择题试题及答案1. 以下哪种是属于离散型随机变量?A) 考试成绩B) 温度C) 股票价格D) 身高答案:A) 考试成绩2. 下列哪种是连续型随机变量?A) 投硬币的结果B) 抛骰子的结果C) 学生身高D) 班级人数答案:C) 学生身高3. 一批商品中有10%的次品,现在从中随机抽取5件商品,求至少有1件次品的概率。
A) 0.59B) 0.95C) 0.41D) 0.24答案:B) 0.95二、填空题试题及答案1. 对于一个事件的概率,有一个基本性质称为________。
答案:非负性2. 设事件A和事件B相互独立,P(A) = 0.3,P(B) = 0.4,则P(A∪B) = ________。
答案:0.523. 设事件A和事件B互斥,则P(A∪B) = ________。
答案:P(A) + P(B)三、简答题试题及答案1. 什么是条件概率?答案:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。
2. 请解释经验概率和几何概率的概念。
答案:经验概率是通过实验或观察得出的概率值,是频率的极限;而几何概率是指基于数学原理和几何形状计算得出的概率值。
四、计算题试题及答案1. 一批商品中有10%的次品,现在从中随机抽取5件商品,求至少有1件次品的概率。
解答:设事件A为至少有1件次品。
根据题目可知,商品次品的概率为0.1。
则P(没有次品) = 0.9^5 = 0.59049所以,P(A) = 1 - P(没有次品) = 1 - 0.59049 = 0.40951因此,至少有1件次品的概率为0.40951。
04183概率论与数理统计(经管类)(有答案)
04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。
A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
A .21)0(=≤+Y X P B .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。
自考04183 概率论与数理统计(经管类) 练习题07
第七章测试题一、单项选择题1.矩估计必然是()A.无偏估计B.总体矩的函数C.样本矩的函数D.极大似然估计2.设X1、X2…X n是取自正态总体N(μ,σ2)的样本,μ和σ2都未知,则不是()A.σ2的无偏估计B.σ2的极大然估计C.σ2的矩估计D.不是σ2的无偏估计3.设X1,X2,X3是来自总体X的样本,则______不是总体X的均值E(X)的无偏差估计量。
()4.设X1,X2…X20,是来自总体N(μ,σ2)的样本,则统计量_____为σ2的无偏估计量。
()5.设X1,X2…X n是来自总体X的一个样本,X具有期望值μ,那么下列统计量中_____是μ的最有效的无偏估计。
()6.设X1,X2是来自正态总体(μ,1)的容量为2的样本,其中μ为未知参数,下面四个关于μ的估计量中,只有_____才是μ的无偏估计。
()7.对总体X~N(μ,σ2)的均值μ作区间估计,得到置信度为95%的置信区间,其意是指这个区间()A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含μ的值D.有95%的机会含样本的值8.设X1,X2…X n是取值自X~N(μ,σ2)的样本,其中σ2已知,二、填空题。
1.糖厂用自动包装糖果,包得的袋装糖重是一个随机变量,今随机地抽查12袋,称得净重为(单位:克):1001 1004 1003 1000 997 999 1004 1000 996 1002 998 999则总体均值μ的矩估计值为_______,方差σ2的矩估计值为_______,样本方差s2为_______。
2.总体X~N(μ,σ2),则2+μ的极大似然估计值为_______。
3.设4.设总体X~N(μ,1),X1,X2,X3为总体X的一个样本,若为未知参数μ的无偏估计量,则常数C=_______。
5.设总体X的方差为1,根据来自总体X的容量为100的简单随机样本,测得样本均值=5,则数学期望的置信度为0.95的置信区间为_______。
概率论与数理统计试题及答案(自考)
概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。
2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。
A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。
故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。
A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。
6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。
选择A。
7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。
计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。
8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。