乙类单电源互补对称功率放大电路

合集下载

智慧树知到《模拟电子技术》章节测试答案

智慧树知到《模拟电子技术》章节测试答案

智慧树知到《模拟电子技术》章节测试答案第一章1、电子线路是由电子器件和电子元件组成的具有一定功能的电路。

A:对B:错答案: 对2、电子器件又称无源器件,如电阻、电容、电感等.A:对B:错答案: 错3、第一代电子器件为晶体管,晶体管出现后,拉开了人类社会步入信息时代的序幕。

A:对B:错答案: 错4、电子器件是电子线路的核心,电子技术的发展很大程度上反映在电子器件的发展上。

A:对B:错答案: 对5、电子器件发展的第三代是集成电路,具有外接元件少、可靠性高、性能稳定的特点A:对B:错答案: 对6、模拟电路和数字电路处理的信号特性是相同的,只是处理信号的幅度有差别。

A:对B:错答案: 错7、计算机能够直接接收和处理的信号一般为模拟信号A:对B:错答案: 错8、数字信号一般指时间和数值上都连续的信号A:对B:错答案: 错9、含有计算机的电子信息系统一般属于模拟和数字的混合系统A:对B:错答案: 对10、下列信号不属于模拟信号的是( )A:0~5V的电压信号B:20Hz~20kHz的音频信号C:4~20mA的电流信号D:灯的亮灭状态答案: 灯的亮灭状态第二章1、在运算电路中,集成运放的反相输入端均为虚地A:对B:错答案: 错2、凡是运算电路都可利用“虚短”和“虚断”的概念求解运算关系A:对B:错答案: 对3、集成运放在开环情况下一定工作在非线性区A:对B:错答案: 对4、理想运算放大器的两个重要结论是A:虚地与反相B:虚短与虚地C:虚短与虚断D:短路和断路答案: 虚短与虚断5、集成运放的线性和非线性应用电路都存在A:虚短B:虚地C:虚短与虚断D:虚断答案: 虚断6、如图所示电路中,若电阻Rf虚焊,则电路的输出电压为A:+UOMB:-UOMC:无穷大D:0答案:+UOM,-UOM7、反相输入积分电路中的电容接在电路的A:反相输入端B:同相输入端C:反相端与输出端之间D:同相端与输出端之间答案: 反相端与输出端之间8、电路如图所示,若R1=5KΩ,R2=R3=10KΩ,Vi=1V,则VO= A:-1VB:1VC:-2VD:2V答案:2V9、集成运放能处理A:交流信号B:直流信号C:交流和直流信号D:正弦信号答案: 交流和直流信号10、理想运算放大器的输出电阻Ro为A:零B:有限值C:无穷大D:不确定答案: 零第三章1、设稳压管DZ1和DZ2的稳定电压分别为6V和9V,正向压降为0.7V,则图3.2电路中的输出电压VO为A:15VB:6.7VC:9.7VD:3V答案:B2、用万用表的电阻档测量二极管,当时说明二极管的单向导电性好A:正向电阻小反向电阻大B:正向电阻大反向电阻小C:正向电阻反向电阻都小D:正向电阻反向电阻都大答案:A3、如果把一个二极管直接同一个电动势为1.5V、内阻为0的电池正向连接,则该管A:击穿B:电流为0C:电流过大而使管子烧坏D:正常导通答案:C4、二极管稳压电路一般是由稳压二极管(反向接法)和负载并联而得到。

第二节-互补对称式功率放大电路资料

第二节-互补对称式功率放大电路资料

π
RL
4= 78.5% 与OCL一样
25
上页 下页 首页
第二节 互补对称式功率放大电路
(3)功率三极管的极限参数 ▼ 集电极最大允许电流ICM
Icm
VCC
UCES RL
VCC RL
Icm
VCC
/ 2 UCES RL
VCC 2 RL
ICM
VCC 2 RL
▼ 集电极最大允许反向电压U(BR)CEO
3.对于OCL或OTL电路,当负载电阻 减小时,最大输出功率( 增加 ) 。 4.当功率管的饱和压降VCES增大时, 各 指 标 的 变 化 为 Pomax( 减小 ) , ηmax( 减小 )。
ηmax =
pomax = π pVmax 4
V2 om max VCC2
28
第二节 互补对称式功率放大电路
(2)效率
当输出最大功率时,放大电路的效率等于最大输
出功率Pom与直流电源提供的功率PV之比。
PV =
VCC
×
1 π
π
0 Icmsinωtd(ωt) =
2VπCCIcm≈
2V2CC πRL
当忽略饱和管压降UCES 时,OCL乙类和甲乙类互补 对称电路的效率为
η=
Pom PV

π 4= 78.5%
如果考虑三极管的饱和管压降UCES ,则OCL乙类和 甲乙类互补对称电路的效率将低于此值。
则:Vom
=
2 π VCC
0.6VCC
即VOm= 0.6VCC时PT1最大,所以每管的最大管耗为
PT1m
=
1 VCC2 π2 RL
0.2Pom
注:Pom
VCC2 2RL

OCL,OTL,BTL,甲类,乙类,甲乙类各种放大电路的原理详解,优缺点分析,以及应用说明

OCL,OTL,BTL,甲类,乙类,甲乙类各种放大电路的原理详解,优缺点分析,以及应用说明

OCL,OTL,BTL,甲类,乙类,甲乙类各种放大电路的原理详解,优缺点分析,以及应用说明清华大学张小斌(教授)一.OCL电路OCL(output capacitor less)的英文本意是说没有电容的输出级(这样可以使输出在低频时变得平滑),你一定认为这个称谓怪怪的,那是因为OCL不是最早的职业输出级电路而是最终的。

OTL(OCL从它发展而来)电路的标配有上一句所说的奇怪的电容。

OTL在后面谈论。

之所以说OCL是“最终的”是因为它是最迎合集成电路趋势的(集成电路中最容易制造的类型)。

OCL电路的基本形式如下图所示:它的最重要的特点是双电源,注意电源在集成电路中可不是什么难题。

正是这个双电源的结构特点让电容下岗了。

Ui作为输出信号,在正的时候T1管发生作用;在负的时候T2管发生作用。

于是能产生一个连续的输出,信号如右图所示。

但是,当信号的电压在-0.6V 到0.6V之间(以硅管为例),T1和T2管的导通就成了问题了,这种状况会造成信号输出的交越失真。

面对这个问题,我们只能设置合适的静态工作点,目的就是,在没有Ui时,T1和T2就已经微导通了,那么这个时候来一点点Ui就可以自由的让T1或T2导通。

这是个很有逻辑的想法。

见下面的电路:这个旨在消除交越失真的电路在从正电源+VCC经R1、D1、D2、R2到负电源——VCC 形成一个直流电流的旅行中,必然使T1和T2的两个基极之间产生电压,电压的大小等于两个二极管的压降之和。

这样T1和T2管就均处于微导通状态了。

这种结构稍显幼稚,我们在实际中喜欢采用(b)中的形式,学名Ube倍增电路(注意要是I2远大于Ib),意思是说,合理选择R3、R4的阻值,可以使Ub1、b2得到(1+R3/R4)Ube的直流电压。

为了增大T1和T2管的电流放大系数,减小前级的驱动电流,常采用复合管的架构,复合管前面已经由gemfield讨论过了。

现在就该讨论OTL的情况了,电路如下图:很明显的是,和OCL相比,它的特点是输出端多了个电容,而且是单电源供电。

甲乙类单电源互补对称功率放大电路

甲乙类单电源互补对称功率放大电路

模拟电子技术知识点:甲乙类单电源互补对称功率放大电路静态时,V K=V CC/2输出通过电容C与负载耦合,而不用变压器——OTL电路(OutputTransformerless) V CC/21.基本电路2.原理分析v i负半周-+充电+v i 正半周-+放电•只要R L C 足够大,电容C 就能起到电源的作用。

-2.原理分析v i 为负半周最大值时接近饱和CCK V v +≈2.原理分析•理想情况下,负载R L 两端得到的交流输出电压幅值V om ≈V CC /2v i 为正半周最大值时接近饱和≈=CES K V v 2.原理分析•在单电源互补对称电路中,计算输出功率、效率、管耗和电源供给的功率,可借用双电源互补对称电路的计算公式,但要用V CC /2代替原公式中的V CC 。

2.原理分析+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题图(b )所示为某集成功率放大器的简化电路图。

已知输入电压为正弦波;三极管T 6、T 8的饱和管压降=2V ;C 和C 2对交流信号均可视为短路。

填空:+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题2①为了驱动扬声器,将图(b)与图(a)、图(c)合理连接,可以增加一个元件,使电路正常工作;此时引入的交流负反馈的组态为,在深度负反馈条件下的电压放大倍数≈。

电压串联负反馈1+R 6/R=11-+-+++例题+V CC T 4T 7T 6T 1T 2R 2R 5R 3R L R 7u iu o T 5R 6T8D 1D 4T 3R 4R 1D 310k Ω( c )56D 2243R50μF C ( a )50μF C 21k Ω18Ω(+12V)例题2②D 2、D 3和D 4作为输出级偏置电路的一部分,作用是。

掌握内容功率放大电路的计算理解内容甲乙类互补对称功率放大重点

掌握内容功率放大电路的计算理解内容甲乙类互补对称功率放大重点

0.12(P2oUm omVCC 2 RL

U
2 om
2RL
)
5. 选管原则
PCM > 0.2 Pom

U om RL
(VCC
VU14om +) VCC
+
令则:dUdUPomCom1UIC(MB2RVV>)RCCCVCECLOCC>时/2U2管RRVomLLC耗C最0 大,即:uiPC
5.1 互补对称功率放大电路 5.2 集成功率放大器及其应用
模 拟电子技术
5.1 互补对称功率 放大电路
引言
5.1.1 乙类双电源互补对称功率放大电路
5.1.2 甲乙类互补对称功率放大电路
模 拟电子技术
引言
一、
功率放大的 特殊要求
Pomax 大,三极管尽限工作
= Pomax / PDC 要高
1. 典型应用参数: 直流电源: 4 12 V 额定功率: 660 mW 带 宽: 300 kHz 输入阻抗: 50 k
18 27 36 45
引脚图
模 拟电子技术
2. 内部电路
电压串 联负反

1. 8 开路时, Au = 20
(负反馈最强)
1. 8 交流短路 Au = 200
(负反馈最弱)
模 拟电子技术
乙类工作状态失真大,静态电流为零 ,管耗小,效率高。
甲乙类工作状态失真大, 静态电流小 ,管耗小,效率较高。
模 拟电子技术
5.1.1 乙类双电源互补对称功率放大电路(OCL) (OCL — Output Capacitorless)
一、电路组成及工作原理
+VCC V1 iC1
ui = 0 V1 、 V2 截止 ui > 0 V1 导通 V2 截止 io = iE1 = iC1, uO = iC1RL

ch8-4甲乙类互补对称fwt资料

ch8-4甲乙类互补对称fwt资料
电源
功放指标的分析计算 利用乙类双电源互补对 称功放的有关公式近似。
8.4.2 甲乙类单电源互补对称电路
1. 电路组成 2. 工作原理 (1) 当ui=0 时
uA=VCC/2
uC=VCC/2 输出电压uo=0
RE T3 + ui _ D1
D2
RC
+ VCC
T1
uC
A+
+
C
T2
RL uo
_
(2) 当ui为负半周时 uB1信号为正半周 T1导通, T2截止
以忽略不计,完成下列计算
(1)输入信号vi=10sin2000t V;求输出功率PO 、 直流电源供给功率PV 、效率η (2)求最大输出功率以及此时的效率
(10分)
VCC (12V)
C1 R1 1.1k
vi
T1
R2 4.7k
D1
vo
RL
D2

T2
R3 1.1k
-VCC(-12V)
作业 P408
利用二极管提供偏压的电路
1. 静态偏置
设T3已有合适 的静态工作点
二极管提供偏压,使
T1、T2呈微导通状态
可克服交越失真 2. 动态工作情况
二极管等效为恒压模型
理想二极管
8.4.1 甲乙类双电源互补对称电路
利用扩大电路实现偏置
VCE4
R1 R2 R2
VBE4
VBE4可认为是定值
R1、R2不变时,VCE4也 是定值,可看作是一个直流
死区电压,三极管不导通。因此在正、负半周交替 过零处会出现一些非线性失真,称之为交越失真。
小结:改进电路1
利用二极管提供偏压

功率放大电路习题二

功率放大电路习题二

功率放大电路习题二1. 乙类互补对称功率放大电路会产生交越失真的原因是( A )。

A 晶体管输入特性的非线性 B 三极管电流放大倍数太大 C 三极管电流放大倍数太小 D 输入电压信号过大2. OTL 电路中,若三极管的饱和管压降为U CE(sat),则最大输出功率P o(max)≈( B )。

A L2CE(sat)CC 2)(R U V - BL2CE(sat)CC212)(R U V - C L2CE(sat)CC 212)(R U V - 3. 在准互补对称放大电路所采用的复合管,其上下两对管子组合形式为( A )。

A NPN —NPN 和PNP —NPN B NPN —NPN 和NPN —PNP C PNP —PNP 和PNP —NPN4. 关于复合管的构成,下述正确的是( A ) A 复合管的管型取决于第一只三极管 B 复合管的管型取决于最后一只三极管C 只要将任意两个三极管相连,就可构成复合管D 可以用N 沟道场效应管代替NPN 管,用P 沟道场效应管代替PNP 管 5.复合管的优点之一是( B )。

A 电压放大倍数大B 电流放大系数大C 输出电阻增大D 输入电阻减小 6. 图示电路( B )A 等效为PNP 管B 等效为NPN 管C 为复合管,第一只管子的基极是复合管的基极、发射极是复合管的集电极 7. 图示电路( C )A .等效为PNP 管,电流放大系数约为(β1+β2)B .等效为NPN 管,电流放大系数约为(β1+β2)C .等效为PNP 管,电流放大系数约为β1β2D .等效为NPN 管,电流放大系数约为β1β2E .连接错误,不能构成复合管8. 功率放大电路的最大输出功率是在输入功率为正弦波时,输出基本不失真的情况下,负载上可能获得的最大( C )。

A 平均功率B 直流功率C 交流功率9. 一个输出功率为8W 的扩音机,若采用乙类互补对称功放电路,选择功率管时,要求P CM ( A )。

乙类甲乙类互补对称功率放大电路(PPT课件)

乙类甲乙类互补对称功率放大电路(PPT课件)

计划学时:8 基本要求:掌握功率放大电路的一般问题,乙类、甲乙类 互补对称功率放大电路;了解集成功率放大器。 教学重点难点:乙类互补对称功率放大电路的结构和工作 原理 基本内容: 1) 功率放大电路的一般问题 2) 乙类双电源互补对称功率放大电路 3) 甲乙类互补对称功率放大电路 4) 集成功率放大器
Vom
2
8.3.2 分析计算
2. 管耗PT
单个管子在半个周期内的管耗 vo 1 π PT1 = (VCC vo ) d(ω t ) 0 2π RL Vomsint 1 π ( V V sin t ) d( t ) CC om

0
RL
2
V 1 π VCCVom ( sint om sin2t ) d( t ) 2π 0 RL RL 2 1 VCCVom Vom ( ) RL π 4 2 2 VCCVom Vom 两管管耗 PT = PT1 PT2 ( ) RL π 4
图解分析
8.3.2 分析计算
1. 最大不失真输出功率Pomax
( Pomax = VCC VCES 2 RL )2
(VCC VCES ) 2 2 RL
忽略VCES时 实际输出功率
Pomax
V CC 2 RL
2
Po = Vo I o
Vom
Vom 2 2 RL 2 RL
8.2 射极输出器——甲类放大的实例
当 VCC VEE 15V
I BiAS
VBIAS=0.6V 放大器的效率
η Pom ( PVC PVE ) 100 % 24 .7%
效率低 end
8.3 乙类双电源互补对称 功率放大电路
四种工作状态 根据正弦信号整个周期 内三极管的导通情况划分 甲类:一个周期内均导通 乙类:导通角等于180° 甲乙类:导通角大于180° 丙类:导通角小于180°

甲乙类互补对称功率放大电路

甲乙类互补对称功率放大电路

甲乙类互补对称功率放大电路甲乙类互补对称功率放大电路乙类放大电路的失真:前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN 硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。

当输入信号vi 低于这个数值时,T1和T2都截止,ic1和ic2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。

这种现象称为交越失真。

5.3.1 甲乙类双电源互补对称电路一、电路的结构与原理利用图1所示的偏置电路是克服交越失真的一种方法。

由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。

静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。

由于电路对称,静态时iC1= iC2 ,iL= 0, vo =0。

有信号时,由于电路工作在甲乙类,即使vi很小(D1和D2的交流电阻也小),基本上可线性地进行放大。

上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用VBE扩展电路。

二、VBE扩展电路利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用VBE扩展电路来解决,如图1所示。

在图1中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出VCE4=VBE4(R1+R2)/R2因此,利用T4管的VBE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。

这种方法,在集成电路中经常用到。

5.3.2 单电源互补对称电路一、电路结构与原理图1是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。

在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使IC3 、VB2和VB1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位VK=VC=VCC/2 。

模拟电子技术基础甲乙类互补对称功率放大电路

模拟电子技术基础甲乙类互补对称功率放大电路
研究的重点是如何在允许的失真情况下,尽可 能提高输出功率和效率。
2、与甲类功率放大电路相比,乙类互补对称功放 的主要优点是效率高,在理想情况下,其最大效率 约为78.5%。为保证BJT安全工作,双电源互补对称
电路工作在乙类时,器件的极限参数必须满足:PCM >PT1≈0.2Pom,|V(BR)CEO|>2VCC,ICM>VCC/RL。
# 在怎样的条件下,电容C才可充当负电源的角色?
RLC足够大,应满足RLC>(5-10)/2πfL。
4. 带自举电路的单电源功放
静态时
1 VK 2 VCC
VD VCC IC 3 R3
C3充电后,其两端
有一固定电压,不随vi
而改变
VC3
1 2
VCC
I C 3 R3
动态时
自举电路
C3充当一个电源 # 在怎样的条件下,电容C3才能起到电源的作用? R3C3足够大
(电3路)的电特源点供是给:的功率PV PV
A 1,u u ,i u (4)效v率 Voom R 4 VCC
当 iVom
=
Po
PT
i
oVCC
时,
L
2VCCVom
RL
78.5% 4
5.2.2 乙类单电源互补对称功率放大电路
无输出变压器的互补对称功放电路(OTL电路)
(P1O)m最ax 大 不12 失VO真ma输xI出Om功ax率P8VomRCa2CxL
举例
一个功率放大电路如图所示。已知Vcc=20V, -Vcc=-20V, 负载电阻RL=8Ω。设晶体管T1、T2特性一致,死区影响及VCES 忽略不计。
(1)求R=0、vi=10 2 sinωtV时的 Po、Pv、PT及η。 (2)求R=0时电路的最大输出功 率Pom及此时的Pv、PT及η。

知识点:甲乙类互补对称功率放大电路-教学文稿.

知识点:甲乙类互补对称功率放大电路-教学文稿.
R2
VD 1 VD 2 VT2
+UCC
RC1
VT 1 K +
UCL
- +
RL
+C L -
R2取值适当,就可使 IC3、UB1和UB2达到所
需大小,给VT1和VT2提供一个合适的偏置, 从而使K点直流电位为UCC/2。CL两端静态电
ui
C1
VT 3
uo

R1
Rห้องสมุดไป่ตู้2
压也为UCC/2。
11
二、知识准备
(三)单电源互补对称功率放大电路(OTL电路)
18
四、知识深化
(一)甲乙类互补对称功率放大电路的应用
2. 常用集成功率放大电路的主要性能指标
19
四、知识深化
(一)甲乙类互补对称功率放大电路的应用
3. 用LM386组成的OTL功放电路
用LM386组成的OTL功放电路如图。7脚接去 耦电容C,5脚所接10Ω 和0.1μ F串联网络是为防
in
2
U+
8
二、知识准备
(二)甲乙类互补对称功率放大电路
为了克服交越失真,可给两互补管的发射结 设置一个很小的正向偏置电压,使它们在静态 时处于微导通状态。这样既消除了交越失真, 又使功放管工作在接近乙类的甲乙类状态,效 率仍然很高。图12-3所示电路就是按照这种要 求来构成的甲乙类功放电路。
μi
VD 1 VD 2 VT2 VT +
μi
VD 1 VD 2 VT2 VT +
+UCC R C1
VT1
RL
μO

RC2
-UCC
10
二、知识准备
(三)单电源互补对称功率放大电路(OTL电路)

《模拟电子技术》电子教案 任务4-2 甲乙类互补功率放大电路分析

《模拟电子技术》电子教案  任务4-2 甲乙类互补功率放大电路分析
复合管互补功放电路进行小结
教师讲授
课件演示
学生总结
代表发言
7分钟
布置
作业
1、预习集成功率放大电路分析
2、书面作业:题库第5章计算题第4题
教师说明作业要求
课件演示
学生记录
2分钟
教学单元名称:任务4-2甲乙类互补功率放大电路分析
授课教师:
授课班级:
学时数:2
授课日期:年月日
第周周第节
教学地点:




能力目标
知识目标
素质及思政目标
(1)能掌握甲乙类互补对称功率放大电路的分析及特点。
(2)能正确测OTL功率放大电路的特性;
(3)能对OTL功率放大电路进行分析和计算。
(1)理解甲乙类互补功率放大电路的结构、功能及各元器件的作用;
讲授
课件演示
明确本次课教学任务和目的
2分钟
引入1
若OCL双电源结构中,去掉一个负电源,那么功率放大电路若要能正常工作的话,电路结构应该如何设置。
提问
讲授
讨论
课件演示
提问
学生思考
代表发言
3分钟
讲解2
1、乙类OTL电路
1)电路结构的特点
2)输出段电容作用
3)中点电位大小
启发
提问
讲解
课件演示
提问
讨论
代表发言
17分钟
引入2
由问题“ 由于乙类互补对称功率放大电路存在交越失真,那么如何消除交越失真呢?”引入
启发法
课件演示
学生思考
2分钟
讲解2
2、甲乙类互补对称功率放大电路(OCL)(本节课重点)
(1)电路原理:

互补推挽式功率放大电路

互补推挽式功率放大电路

互补推挽式功率放大电路甲类工作状态晶体管存在问题→ 乙类工作状态晶体管管耗小效率高(但存在非线性,即交越失真)→ 甲乙类工作状态晶体管(但存在功率管匹配异型困难)→ 准互补对称放大电路(OCL) → 单电源互补功率放大电路(OTL)→ 变压器耦合功率放大电路1、互补对称式乙类功率放大电路1.结构图9.1(a)所示电路采用两个NPN和PNP管各一只,且特性对称,组成互补对称式射极输出器。

简称OCL电路,意为无输出耦合电容。

2.工作原理静态时:u i =0 → I C2 = I C2 =0 (乙类工作状态)→ u o =0 。

动态时:u i >0 → VT2导通,VT3截止→ i o = i C2 ;u i <0 → VT3导通,VT2截止→ i o =? i C3 。

特点:(1) I BQ 、 I CQ 等于零。

(2)两管均工作半个周期。

3.分析计算(1)输出功率由电路可知,输出电压 U o 变化范围为: 2( U CC ? U ces )=2 ICM × R L若忽略管子饱和压降 U ces ,则:输出电流最大值 I CM = U CC R L输出电压最大值 U CM = U CC输出最大功率P OM = I CM 2 × U CM 2 = U CC 2 R L × U CC 2 = U CC 2 2 R L(2)直流电源供给的功率因为两管各导通半个周期(不考虑失真),每个电源只提供半个周期的电流,且每管电流平均值为I C = 1 2π ∫ 0 π i C2 d(ω?t) = 1 2π ∫ 0 π I CM sin?(ω?t)d(ω?t) = 1 2π U CC R L [ ?cos?ω??t ] 0 π = 1 2π U CC R L ×2= 1 π U CC R L所以,总功率为P V =2 I C U CC = 2 π U CC 2 R L(3)效率η= P OM P V = π 4 =78.5%(4)晶体管耗散功率2 P T = P V ? P OM = 2 π U CC I CM ? 1 2 U CC I CM = 2 U CC U CM π R L ? U CM 2 2 R L将上式对 U CM 求导并令其为零,得:d P T d U CM = 2 U CC π R L ? U CM R L =0即U CM = 2 π U CC ≈0.64 U CC代入上式,可求得最大管耗2 P T = 2 U CC π R L 2 U CC π ? 1 2 R L ( 2 U CC π ) 2 = 4 π 2 U CC 2 2 R L = 4 π 2 P OM ≈0.4 P OM4.缺点电路存在交越失真。

6.3 OTL互补对称功率放大电路

6.3 OTL互补对称功率放大电路

(3)
2020/6/3
6
对称功率放大电路。
2020/6/3
2
OTL互补对称功率放大电路
3. 电路存在的问题 T1 管 输入信号正半周幅值越大 ,T1 导通越充分
A点电位升高,当 A 点电位向VCC 接近时 T1管基 极电位升高受限T1输出波形正半周幅值减小,造成 电压的正负半周不对称。
2020/6/3
3
OTL互补对称功率放大电路
2020/6/3
5
OTL互补对称功率放大电路
解:(1)R、C 组成自举电路,其中R为隔离电阻、 C为自举电容。作用是增大输出波形正半周的幅度。
(2)电阻 R1 通过直流负反馈的方式为 T3 提供偏置 且稳定静态工作点;调节R1使A点直流电位达到VCC/2; R1引入的交流电压负反馈起稳定输出电压的作用。电阻 R4为T1、T2提供偏置电压,以克服交越失真。电容C2使 加在 T1、T2 管基极的交流信号 相等 ,有助于输出波形 正、负半周对称。
模拟电子技术基础
6.3 OTL互补对称功率放大电路
2020/6/3
1
OTL互补对称功率放大电路
1. 电路组成 电容C4 上静态电压为VCC/2,
取代了OCL功放中的负电源-VCC。 2. 工作原理 与OCL电路相似 负载电流最大值为:
此电路的输出通过电容与负载相耦合,故称为OTL 甲乙类互补对称功率放大电路,也称单电源甲乙类互补
乙类功放的计算公式中的VCC全部改为VCC/2即可。
2020/6/3
4
OTL互补对称功率放大电路
例6.3.1 单电源互补功率放大电路如图所示。 (1)电路中R、C的作用是什么? (2)R1、R4、C2的作用是什么? (3)如果VCC=15V,RL=8, |UCES|=1V,试求电路 的输 不变(约为VCC/2),A点电位 升高 B点电位升高,在新增 电阻 R 的隔离下,使 uB > VCC (即自举T1基极电位升高并 充分导通增大了输出波形正 半周幅值。

8.4甲乙类互补对称功率放大电路

8.4甲乙类互补对称功率放大电路

解:
① ② 静态时vi=0, VA=0,VB1 =0.7V, VB2 =-0.7V 由VO =15V,得 152 PO 28.1W 8 R1 Vom 15 2 P 2 26 43.9W V 2VCC RL 8 D
1
VCC T1 iL T2 RL -VCC VO
P W T P V P o 43.9 28.1 15.8 1 P T1 P T2 T 7.9W 每管耗 P 2
R1=1kΩ,故R5至少应取10.3 kΩ。
例:在图所示电路中,已知VCC=15V,T1和T2管的饱和管压 降│UCES│=1V,集成运放的最大输出电压幅值为±13V,二 极管的导通电压为0.7V。
(1)若输入电压幅值足够大,则电路的最大输出功率为多少? (2)为了提高输入电阻,稳定输出电压,且减小非线性失真,应引入 哪种组态的交流负反馈?画出图来。 (3)若Ui=0.1V时,Uo=5V,则反馈网络中电阻的取值约为多少?
思考:若是单电源供电,又如何呢? 互补对称功放的类型
无输出变压器形式 ( OTL电路)
无输出电容形式 ( OCL电路)
OTL: Output TransformerLess
OCL: Output CapacitorLess
二、OTL互补对称功放电路
1、特点
1. 单电源供电; 2. 输出加有大电容。 +VCC
当R 3C3足够大,vC 3 VC 3,即保持不变, VCC 向正方向增加, 2 又vD vC 3 vK VC 3 vK , 则vK vD , vK由 可使T1充分导电,Vom达到 VCC 。 2
C3 D
Rc3
b1 D1 D2 b2
R3
+VCC

乙类互补对称功率放大电路存在的问题

乙类互补对称功率放大电路存在的问题

乙类互补对称功率放大电路存在的问题
乙类互补对称功率放大电路是一种广泛应用于音频放大器中的电路。

然而,尽管它具有许多优点,但它也存在着一些问题。

首先,乙类互补对称功率放大电路存在着非线性失真的问题。

这是由于其工作原理导致的,即在输入信号的两个半周,只有一个晶体管(NPN或PNP)被激活,从而导致输出信号的一侧丢失信号信息并产生失真。

其次,乙类互补对称功率放大电路还存在着跨导偏移的问题。

该问题可能会导致器件的电流不平衡,从而导致失真和功率损失。

此外,这种电路还存在着温度变化时的失真和干扰问题。

在热稳定性方面,如果功率放大器的温度变化过大,可能会导致偏置电流的变化,从而导致输出信号的失真。

而在EMI和RFI方面,乙类互补对称功率放大电路可能会受到其他电子设备的干扰,从而产生噪音和干扰。

总之,乙类互补对称功率放大电路是一种广泛使用的电路,但同时也存在着一些问题,如非线性失真、跨导偏移、温度变化时的失真和干扰等。

因此,在设计和使用乙类互补对称功率放大电路时,需要考虑这些问题,并采取相应的措施来降低其影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 6 章
功率放大电路
二、OCL 电路和 OTL 电路的比较
OCL 电源 信号 频率响应 电路结构
2
OTL 单电源 交流 fL 取决于输出耦合电容 C 较复杂
2
双电源 交、直流 好 较简单
Pomax
1 U om 1 V CC 2 RL 2 RL
1 U om 1 V 2CC 2 RL 8 RL
第 6 章
功率放大电路
6.3 乙类单电源互补 对称功率放大电路
一、电路的组成与工作原理
二、OCL电路与OTL电路的比较
第 6 章
功率放大电路ຫໍສະໝຸດ 一、单电源互补对称放大电路
RB V4
RB1 + + ui RB2 V5 E RE + CE +VCC V1 + C V2 RL
电容 C 的作用:
1)充当 VCC / 2 电源
2
+ 2)耦合交流信号 uo 当 ui = 0 时, U E VCC / 2
U C VCC / 2
当 ui > 0 时: V2 导通,C 放电, V2 的等效电源电压 0.5VCC。 当 ui < 0 时: V1导通,C 充电, V1 的等效电源电压 + 0.5VCC。
应用 OCL 电路有关公式时,要用 VCC / 2 取代 VCC 。
相关文档
最新文档