第四章 气体内的输运过程
热学 (4 第四章 气体内的输运过程)

Q
dT
A
傅立叶定律
dz 若设热流密度为JT,则:
JT
dT dz
20
T2 ( T1 )
B
温度梯度 dT
dz
z0
dS dQ
T T(z)
表示流体中温度沿z
轴方向的空间变化率。
o
T1
Ax
在dt时间内,从温度较高的一侧,通过这一平
面向温度较低的一侧所传递的热量,与这一平面所
在处的温度梯度和面积元成正比
热导率
能量流动方 向与温度梯 度方向相反
恒为正值
dQ κ dT dSdt dz z0
21
三、扩散现象的宏观规律 扩散 (diffusion)
在混合气体内部,当某种气体在各处的密度不均匀时, 这种气体将从密度大的地方向密度小的地方散布,这 种现象叫扩散。
输运过程
扩散:密度 不均匀 m的迁移
热传导:温度T不均均 热的迁移
内摩擦(黏性): 分子定向速度u 不均匀 定向运动动量 p的迁移 22
§ 5-1 气体分子的平均自由程
一、分子的平均自由程和碰撞频率
非平衡态平衡态,碰撞起重要作用。
克劳修斯指出:气体分子的速度虽然很大,但前进中要与其 他分子作频繁的碰撞,每碰一次,分子运动方向就发生改变, 所走的路程非常曲折。
若不均
一种气体
n不均
p不均
生宏 气流
22
我们这里研究的是:纯扩散--仅仅是由于分 子的无规则运动和碰撞引起的扩散过程。
实现纯扩散的条件
4-气体内的输运现象解析

时气体分子可以从容器的一壁出发,无碰撞地飞到
容器的另一壁。这种气体多处的状态称为真空。 真空是一个相对的概念,随着容器线度的减小,
形成真空态的压强值提高。真空容器中所包含的气
体是高度稀薄的气体,通常称为克努森气体,这种
气体流动称为分子流。
13
6) 单位体积内气体分子相互碰撞次数 假设分子是两两相碰的,单位体积内的分子相 互碰撞的总次数为 1 2 2 2 2 4kT Z AA nZ d v n d n
——分子的有效直径
碰撞时两分子质心距离的平均值称为分子的平均有 效直径d
4
ቤተ መጻሕፍቲ ባይዱ
2、分子的有效碰撞截面 当两分子质心之间垂直距离b<d 时,两分子发生碰撞。 d 2 2 d 4 ( ) 2 这里的σ就是弹性刚球的有效碰撞截面,是一个分 子截面的4倍。
5
二、平均自由程和平均碰撞频率
热运动分子之间 频繁碰撞,分子的运 动路径曲折复杂 分子在与其它分 子的相邻两次碰撞之 间所经历路程的平均 值为平均自由程 分子在单位时间内 与其它分子的平均碰 撞次数称为平均碰撞 频率
第4章 气体内的输运现象
4.1 气体分子碰撞和平均自由程 4.2 输运过程的宏观规律 4.3 气体输运现象的微观解释
1
§4.1 气体分子碰撞和平均自由程
气体分子之间的碰撞对于气体中发生的过程有
重要的作用,如在气体中建立分子按速率或速度分 布的麦克斯韦分布律,确立能量按自由度均分定理 等,都是通过气体分子的频繁碰撞加以实现并维持 的。因此,分子间的碰撞时气体中建立并维持平衡
Z 2d
2
kT 8kT p 2 4d p 2 2 d p m kT mkT
11
4-气体内的输运现象

d u n
2
先假设其它分子静止
2
平均碰撞频率为
Z 2d vn 2vn
10
3、分子的平均自由程 v 1 2 Z 2d n 讨论:
1 2n
1) 分子的平均自由程与分子的有效碰撞截面σ和分 子的数密度n成反比,与平均速率无关。 2) 平衡态下,对确定的气体,平均自由程和平均 碰撞频率有确定的值。 3) 用宏观量 p、T表示的平均碰撞频率和平均自由程:
6
一个分子在单位时间内和其他分子碰撞的次数 是偶然的、不可预测的。 平均自由程 和平均碰撞频率 Z : 反映了分子间碰撞的频繁程度,是对大量分子、 多次碰撞的统计平均值。 二者关系:
v Z
7
1、分子间的相对运动速率 u 设分子运动速度满足麦克斯韦分布律,根据统计 规律,假设所有分子均以平均速率 v 运动。则分子
1 7 2.08 10 m 2 2d n
常温常压下,一个分子在一秒内平均要碰撞几十亿次, 可见气体分子之间的碰撞是多么的频繁!
15
三、有效碰撞截面的概率解释
如图所示的气体层。 一个分子以相对速度u沿x方向 入射气体层,层内其他分子看做 相对静止。问:
A
n
x
入射分子与气层内分子发生碰撞的概率有多大?
26
这也是为什么促使系统从非平衡态过渡到平衡
态的过程称为输运过程或内迁移过程的原因。 输运过程的特点:
(1)描述系统状态的宏观参量在空间的分布不随 时间改变的输运过程,称为稳定的输运过程,相 应系统状态为稳定态。 描述系统状态的宏观参量在空间的分布随时 间改变的输运过程,称为非稳定的输运过程,相 应系统状态为非稳定态。
热力学-4.气体内的输运过程

. 输运系数的数量级 若已知气体分子的质量、有效直径(或碰撞
截面σ), 可以计算出在不同压强和温度条件下的 输运系数。
300K时N2的η =4.2×10-5Pa·s(实验:1.78×10-5Pa·s) 273K时Ar的κ =1.47×10-2W·m-1·K-1
(实验值1.67×10-2W·m-1·K-1)。
dz z0
D为扩散系数;(单位是米2/秒)
气体在非平衡态下的三种典型变化过程:
粘滞现象
——动量的传递
传热
——热量的传递
扩散
——质量的传递
三种输运现象宏观规律共同宏观特征:
它们都是由气体中的某一性质的不均匀分 布而引起的;
为了定量描述这不均匀性,分别采用了定 向流动的速率梯度、温度梯度和密度梯度;
第四章 气体内的输运过程
问题的提出
v 1.6 RT 470 m / s
讲台处的某类气体分子约需多长时间能 运动到你处?
t ~ 0.1秒 ??
矛盾
气体分子热运动平均速率高, 但气体扩散过程进行得相当慢。
设想下课后大家闭着眼睛往外走的情形…
分子速率虽高,但分子在运动中还要和 大量的分子碰撞。
2.69 10 25 m 3
(2)v 1.60 RT /
1.60 8.31 273 / 29 103 448 m s1
(3)Z 2 d 2 nv
1.41 3.14 (3.510 10 )2 2.69 10 25 448 6.54 10 9 s1
)
z0
dS
1 nmv
3
df
(
du dz
)
z0
气体内的输运过程

1 du f ( ) z0 dA,其中 nmv 3 dz 称为牛顿黏性定律. η的单位为泊,以P表示
1P 1N s m 0.1kg m s
2
1
1
考虑到相邻两层流体中相对速度较大的流体总是受到阻力, 即速度较大一层流体受到的黏性力的方向总与速度梯度方向相反,故在式中加上负号
1 υ 平均自由程: λ 2 z 2d n 2d 2 n
式中:d为分子的有效直径,n为分子数密度。
由 p nkT n
p kT
kT λ 2 2πd p
思考 在一封闭容器中装有1mol氦气(视作理想气体),这 时分子无规则运动的平均自由程将决定于什么? (A)压强p (B)体积V (C)温度T (D)平均碰撞频率 z
实验发现,流体在流速较小时将作分层平行流动, 流体质点
轨迹是有规则的光滑曲线, 不同质点轨迹线不相互混杂。 这样的流体流动称为层流。 直圆管中流体流速分布如图 流速箭头的包络面为抛物面, 其平均流速箭头的包络面为 平面
稳恒层流中的黏性 牛顿黏性定律
•流 体 作 层 流 时 , 通过任一平行于流 速的截面两侧的相 邻两层流体上作用 有一对阻止它们相 对“滑动”的切向 作用力与反作用力。
二.热传导现象的宏观规律
当系统与外界之间或系统内部各部分之间存在温度 差时就有热量的传输. 热传递有热传导、对流与辐射 三种方式,本节将讨论热传导
1. 傅里叶定律(Fourier law of heat conduction ) •1822法国科学家傅里叶(Fourier)在热质说思想的指导下 发现了傅里叶定律。 该定律认为热流dQ/dt (单位时间内 通过的热量)与温度梯度 dT /dz 及横截面积dA成正比,
热学 (4 第四章 气体内的输运过程)

内摩擦系数。
C 小镜 B A
旋转黏度计
17
18
19
二、热传导现象的宏观规律 热传导 (heat conduction)
当系统内各部分的温度不均匀时,就有热量从 温度较高的地方传递到温度较低的地方,由于温差 而产生的热量传递现象。
傅立叶定律
dN
1
N0ex/ dx
13
§5-2 输运过程的宏观规律
一、黏性现象的宏观规律
当气体各层流速不同时,通过任一平行于流速的截面,相 邻两部分气体将沿平行于截面方向互施作用力,结果使得 流动慢的气层加速,使流动快的气层减速。这种相互作用 力称为内摩檫力,也叫做粘滞力。这种现象称为内摩檫现 象,也叫做黏性现象。
5)、采用不同近似程度的各种推导方法的实质是
相同的。
31
理性气体内部压强的微观解释
从微观的角度看来, 理想气体内部的压强 实质上是由于垂直于截面方向的热运动 动量交换引起的
1 n dSdt
2m
6
dK 1 n dSdt2m
6
p dK 2 n(1 m 2 )
dSdt 3 2
32
二、热传导现象的微观解释
并且单位体积中各有 n 的分子沿 + z, - z
方向运动。
6
27
这样,在dt 时间内,从 dS一侧跑到另一侧 的分子数为
dN 1 n v dt dS 6
z
z0
z0
z0
u u0
pz
dS
pz
x
u0
(2)假设分子越过 dS 面之前都是在离 dS 面距离
第四章 气体内的输运过程补充 大学物理热学部分PPT

1.dt 时间内沿z轴向上和向下穿过ds面的分子数目 dN↑和dN↓
❖气体中处于ds面上方的部分为A,下方的为B,两部
分子的数密度和平均速率分别为nA、nB和 v A 、v B ,于
是
Z
dN
1. 思路与准备
• 模型中的一些假设:
1)把分子看成是彼此无吸引力的刚性小球,都以 平均速率而运动。
2)将系统中的分子等分为三队,各自平行于x轴、 y轴、z轴运动;每一队又等分为两小队,各自 沿坐标轴的正、负方向运动。(输运过程与平衡 态偏离不大 ,平衡态下分子热运动及碰撞的一 些结果都可直接采用)
处的分子热运动平均能量 z0 ;由B部沿z轴向上穿过ds
的分子携带 z0 处的平均能量 z0 。所以,A、B两部
每交换一对分子通过ds沿z轴正方向净输运的热量为:
z0
z0
依据能量按自由度均分定理
z0
i 2kTz0
z0
i
k 2
T
z0
i是分子热运动的自由度。
于是
z0
第四章 气体内的输运过程
补充
输运过程的微观解释
The microscopic explanations of transportation processes
1.思路与准备 2.粘滞现象的微观解释 3. 热传导现象的微观解释 4. 扩散现象的微观解释 5. 输运过程简单微观理论与实验的比较 6. 对简单理论的改进
dkm(u u )
z0 z0
定向流速u的下标表示相应气层的空间位置。利用在z0 处定向流动的速率梯度,可写出
du
热力学第四章气体内的输运过程

2m
du dz
z0
ds vdt
dK 1 nmv du dsdt 1 v du dsdt
3
2019/12/19
dz 崎山z苑0 工作室
3
dz z0 21
二 热传导现象的微观解释
气体动理论认为: a.温度较高的热层分子平均动能大, T1 温度较低的冷层分子平均动能小; b.由于两层分子碰撞和掺和,从热层 到冷层出现热运动能量的净迁移。
2019/12/19
崎山苑工作室
1
第四章 气体内的输运过程
4.1 气体分子的平均自由程 4.2 输运过程的宏观规律 4.3 输运过程的微观解释 *4.4 真空的获得及测量
2019/12/19
崎山苑工作室
2
4.1 气体分子的平均自由程(mean free path)
1. 分子碰撞 分子相互作用的过程。
解:按气体分子算术平均速率公式 算得
v 8RT
v
8RT =
88.31 273 3.14 2 103
m
/
s
1.70
103
m
/
s
按公式 p=nkT 可知单位体积中分子数为
n
p = 1.013105 kT 1.38 1023 273
m
3
2.69 1025 m3
2019/12/19
崎山苑工作室
24
四 理论结果与实验的比较
1.,和D与气体状态参量的关系
mn v 8kT 1
m
2n
1 v 1 4km T1/2
3
3
n p kT
4气体内的输运过程N

所以分子自由程由夹层的间距决定: L
1 1 k v cv v Lcv n P 3 3
19. 将一圆柱体沿轴悬挂在金属丝上,在圆柱体外面 套上一个共轴的圆筒,两者之间充以空气。当圆筒 以一定的角速度转动时,由于空气的粘滞作用,圆 柱体将受到一个力矩G, 由悬丝的扭转程度可测定此 力矩,从而求出空气的粘滞系数。设圆柱体的半径 为R,圆筒的内半径为 R ( R) ,两者的长度 均为L,圆筒的角速度为 ,试证明
而 N 个分子在 dx 的路程上,平均应碰撞 Ndx 次 1 dN 1 dN Ndx dx N
ln N x
C
x
ln N 0 1
N x ln N0
N N 0e
x
dN
N 0 e x dx
§2.输运过程的宏观规律
n: 分子数密度 碰撞次数 n u t nu t u n Z u 2v t
Z 2 v n 2 d 2v n 1 1 与平均速率无关 2 2n 2d n kT kT p nkT 2p 2d 2 p
例: 计算空气分子在标准状态下的平均自由程和碰撞频率,取分子 的有效直径 d 3.5 1010 m,已知空气的平均分子量为29
28 103 m kg 4.6 1026 kg 6.02 1023
T 288K , d 3.8 1010 m , k 1.38 10 23 J K 1
1 4mkT 1 1.1 10 5 N s m 2 3 3 d2
试验值
1.73 10 5 N s m 2
五、低压下的热传导和粘滞现象
热力学气体内的输运过程

最简单的非平衡态问题:不受外界干扰时,系统自发地 从非平衡态向物理性质均匀的平衡态过渡过程 --- 输运过程。
介绍三种输运过程的基本规律:
粘滞(内摩擦) 热传导 扩散
2020/4/27
崎山苑工作室
12
1. 粘滞现象
现象:A 盘自由,B 盘由电机
带动而转动,慢慢 A 盘
也跟着转动起来。
A
解释:B 盘转动因摩擦作用力带
与A相碰。
2020/4/27
崎山苑工作室
6
圆柱体的截面积为 ,叫做分子的碰撞截面。 = d2
在t 内,A所走过的路程为 ut , 相应圆柱体的 体积为 u,t 设气体分子数密度为n。则
中心在此圆柱体内的分子总数,亦即在t时间
内与A相碰的分子数为 nut 。
平均碰撞频率为 Z nut nu
t
u 2v
A,B 为两筒,C 为悬丝,M 为镜面;A 保持恒定转速,B 会 跟着转一定角度,大小可通过 M 来测定,从而知道粘性力大小, 流速梯度及面积可测定,故粘度 可测。
C M B
A
2020/4/27
崎山苑工作室
测定实验
15
2. 热传导现象
物体内各部分温度不均匀时,将有热量由温度较高处 传递到温度较低处,这种现象叫做热传导现象
第四章 气体内的输运过程
前面讨论的都是气体在平衡状态下的性质。实 际上,许多问题都牵涉到气体在非平衡态下的 变化过程。
当气体各处不均匀时发生的扩散过程,温度不 均匀时发生的热传导过程,以及各层流速不同 时发生的粘滞现象等等都是典型的非平衡态趋 向平衡态的变化过程,称为输运过程。
研究输运过程必须考虑到分子间相互作用对运 动情况的影响,即分子间的碰撞机构。
第四章 气体内的输运过程

第四章 气体内的输运过程
du d k m u1 m u 2 m 2 d z z0
2. dt时间内有多少对分子由A通过ds面到B
N 1 6 n vd td s
3. dt时间内总动量输运dK
1 du du dK N dk nm v d td s v d td s 3 3 d z z0 d z z0 1
k 导热系数 ' ' 表示热量沿温度减小的方向传递
第四章 气体内的输运过程
三、 扩散现象的宏观规律
扩散(diffusion) 物体内各部分的密度不均匀时,
由于分子的热运动,从而引起质量从密度大的区域 向密度小的区域迁移的现象。
•(1)产生原因:
密度梯度
d dz
0
(2)迁移量:质量m
d (3)宏观规律—Fick定律 dM D dSdt dz z0 ' ' 表示扩散总沿减小的方向 D 扩散系数
介绍三种输运过程
• 各层流速不同时发生的粘滞现象 • 温度不均匀时发生的热传导过程
• 以及当气体各处密度不均匀时发生的扩散过程
第四章 气体内的输运过程
4-1 气体分子的平均自由程
分子平均碰撞频率: 单位时间内一个分子和其它分子碰撞的平均次数 . 简化模型 1 . 分子为刚性小球 , 2 . 分子有效直径为 d (分子间距平均值), 3 . 其它分子皆静止, 某一分子以平均速率 对其他分子运动 .
第四章 气体内的输运过程
§3. 输运过程的微观解释
首先是气体分子的热运动 另一个重要原因就是分子间的碰撞。 一、粘滞现象的微观解释 气体黏性系数的导出
第四章 气体内的输运过程

导热系数
1 v cV 3
三、扩散现象的微观解释
从分子动理论的观点看来,A部的密度小,单位体积内的分子少; B部的密度大,单位体积内的分子多。因此,在相同的时间内, 由A部转移到B部的分子少,而由B部转移到A部的分子多,这就 形成了宏观上物质的输运,从而引起扩散现象。 气体内的扩散在微观上是分子在热运动中输运质量的过程。
n u t 2 n u 2nv 2 d v n t 1 则平均自由程: v 1 Z 2 n 2 d 2 n 1 T 一定时 kT kT p 2
2 p
2 d p
p 一定时
T
[例] 计算空气分子在标准状态下的平均自由程和碰撞频率。 取分子的有效直径d=3.5×10-10m。已知空气的平均相对分子质 量为29 。
很大,但前进中要与其他分子作频繁的 碰撞,每碰一次,分子运动方向就发生 改变,所走的路程非常曲折。
扩散速率 < 平均速率
A
B
自由程 :分子在相继两次碰撞之间能通过的自由路程。 (具有偶然性)
1
2
5
4
6
7
平均自由程(mean free path) :
——气体分子在连续两次碰撞之间所通过的自由路程的平均值。
x
扩散现象的基本规律:
扩散系数 恒为正值
质量沿密度 减小的方向 输运
d dmg D dSdt dz z0
斐克(Fick)定律
这个定律对任意两种不同气体的相互扩散过程同样适用。
上述三种现象具有共同的宏观特征:
这些现象的发生都是由于气体内部存在着一定的 不均匀性。 从定性的意义上讲:这些现象乃是从各个不同 的方面揭示出气体趋向于各处均匀一致的特性。
李椿热学。第四章气体内的输运过程

u0 A df´
dA
df
u=u(z)
B
u=0
x
25
对于面积为 dA 的相邻流体层来说,作 用在上一层流体的阻力 df´必等于作用于下 一层流体 df 的加速力。
牛顿黏性(viscosity)定律
在相邻两层流体中,相对速度较大的流 体总是受到阻力,即速度较大一层流体受到 的黏性力的方向总与速度梯度方向相反,故
1P= 0.1Pa∙s
黏度与流体的流动性质有关。流动性好的流 体的黏度相对小。气体的黏度小于液体。气体的 黏度随温度升高而增加。液体的黏度随温度的升 高而减小。 在单位时间内,相邻流体层之间所转移的沿 流体层的定向动量为动量流 dp/dt,在单位横截 面积上转移的动量流为动量流密度JP 。
dp du JP dt A dz
x
x ln N / N 0
20
因电子运动速率远大于空气分子的热运 动速率,将空气分子看作是静止的,电子的 有效直径比起气体分子的可忽略不计。 碰撞截面为 碰撞频率为
1 2 d 4
v v 1 z n v n
z nv
p nkT
4kT 4kT ln N / N 0 p 2 d 2 x d
x 0 0 N0 x t N x+ dx t + dt N+dN
假设在 t 时刻,x 处剩下N 个分子,经过d t 时 间,分子束运动到 x + d x 处又被碰撞掉 | dN |个分子。
即自由程为x 到x + d x 的分子数为 dN 。在 x —x +
d x 距离内,减少的分子数 | dN |与 x 处的分子数 N 成正比,与 d x 的大小成正比,其比例系数为K,则
气体内的输运过程优秀课件

一个分子所经过的平均距离为t,而与其它分子
碰撞的平均次数是 zt,由于每碰撞一次都将结束
一段自由程,所以
t
Zt Z
二、 平均自由程公式
将分子看成是直径为d 的 弹性刚球,并假设分子A相对
于其他分子的平均速率为 u。
则平均碰撞频率:
z n d 2u t n u
t
式中:n为分子数密度。 d2 碰 撞 截 面
实验又测出在切向面积相等时,这样的 流体中的速度梯度处处相等. 而且流体层所受到的黏性力的大小是 与流体流动的速度梯度的大小成正比的。
牛顿黏性定律
•黏性力的大小与 du / dz及切向面积S成正比 .
•比例系数以η表示,称为流体的黏度或黏性系数、黏 滞系数(coefficient of viscosity)则
2)由于气体分子无规的(平动)热运动, 在相邻流体层间交换分子对的同时,交换相 邻流体层的定向运动动量。
3)结果使流动较快的一层流体失去了定向 动量,流动较慢的一层流体获得到了定向动 量,黏性力由此而产生的.
二.热传导现象的宏观规律
当系统与外界之间或系统内部各部分之间存在温度 差时就有热量的传输. 热传递有热传导、对流与辐射 三种方式,本节将讨论热传导
三、分子按自由程的分布
• 分子在任意两次连续碰撞之间所通过的自由程不同;分子
在自由程介于任一给定长度区间 x~xdx 内的分布:
设想某个时刻一组分子共N0个,运动中与组外分子相碰, 每碰一次,组内分子减少一个。设这组分子通过路程x时还 剩下N个,在下段路程dx,又减少了dN个。
分子在长度为dx的路程上,每个分子平均碰撞 dx /
气体内的输运过程
4.1 气体分子的平均自由程
第四章气体内的输运过程

教学目的要求和重点难点: 教学目的要求和重点难点: 本章知识的重点是三种输运现象的宏观规律和相应的微观物理图象解释。难点是输运 过程的微观解释。而克服难点的途径在于一开始使学员确切掌握碰撞频率和平均自由程的 概念,以及简化物理图象的叙述。
§4.1气体分子的平衡自由程 一、分子的平均自由程和碰撞频率: (一) 分子碰撞的机制: 1.分子模型———刚球模型 2.分子碰撞的机制: 1)瞄准距离——— A相对运动方向的直线与靶中心的距离。 2)分子碰撞的必要条件 3)碰撞截面 (二)、分子的平均碰撞频率: 1.平均碰撞频率: 2. Z 与 v u 的关系 三、分子的平均自由程: 1.每个分子在任意两次连续碰撞之间所通过的自由路程叫做自由程,大量自由程的平均值 叫做平均自由程。 2.平均自由程与压强、温度的关系
dq =
1 (t + r + 2s )K T z0 − λ − T z0 + λ 2
(
)
= − 2λ
dT dz z
⋅
0
1 (t + r + 2s )K 2
(2).交换的分子对数 同粘滞现象完全类似 dN= (3)沿z轴传输的总热量
1 nυdsdt 6
dQ= −
1 ρυ λ c υ dT dsdt 3 dz z
1
3
T 0.7 成正比,D约与 T 1.75 − T 2 成正比。理论与实验所以有偏差,是因为在理论推导中,把
分子看作刚球,认为λ不随T改变,而这是与实际不尽相同的。
2.η、k和D之间的关系:
k
η
D
= Cv 或
k = 1 但实验表明它不为1,而1.3~2.5 Cvη Dρ
第四章 气体内的输运过程 1、气体分子的平均自由程例题

Z
=170×108 (s-1)
每秒170亿次!
补充例题5 显像管的灯丝到荧光 屏的距离为0.2 m,要使灯丝发射 的电子有90% 在途中不与空气分 子相碰而直接打到荧光屏上,设空
气分子有效直径为3.0×10-10 m,
气体温度为320K 。 问显像管至少要保持怎样的真
空度?
补充例题5 显像管的灯丝到荧光屏的距离为0.2 m,要使灯 丝发射的电子有90% 在途中不与空气分子相碰而直接打到荧 光屏上,问显像管至少要保持怎样的真空度?
1 e 1
0.58
(2)N0个分子N中3 自N由0e程 xλ大于N30λe的3 分子数
故所求之比为
N1 N3 N0 (e1 e3 ) e2 1 0.32
N0
N0
e3
补充例题3由电子枪发出一束电子,射入压 强为P 的气体中,在电子枪前与其相距x 处 放置一收集电极,用来测定能够自由通过 这段距离(即不与分子相碰)的电子数。
又 n / n0 ex/ 故
x
ln( n / n0 )
x
0.1
0.1m
ln( I / I0 ) ln( 37 /100)
补充例题3 由电子枪发出一束电子,射入压强为P 的气体中,在电子枪前与 其相距x 处放置一收集电极,用来测定能够自由通过这段距离(即不与分子 相碰)的电子数。
(2)自由程介于λ到 3λ之间的分子数与总分 子数之比。
解:N0个分子中自由程大 x于 x 的分子数为
N N0e λ
(1)N0个分子中自由程大于λ的分子数
N1 N0e1
自由程小于λ的分子数
N2 N0 N1 N0 (1 e1)
第四章 气体内的输送过程

du dK - dSdt dz z0
用微观理论导出 了宏观规律!
2,热传导现象的微观解释
(1) 每换一对分子, 1 dT 1 (t + r + 2s)k dq (t + r + 2 s )k (Tz0 -l - Tz0 + l ) -2l 沿z轴传输的热量 dz Z 2 2 1 dN nv dSdt (2) 交换的分子对数 6
例如,混和气体先隔开,两边的P、T相同(n也 相同),但是 =mn不同而引起的扩散就是单纯 的扩散。将隔板抽开,密度梯度就形成了。
12CO 14CO
2 2
3,密度梯度:密度 是位置 z 的函数,其空间变化率 d/dz 叫做密度梯 度。若密度均匀一致,则d/dz =0,若密度随空间位置作线性变化,则为 一常数,该常数很小,称线性平衡过程。若密度的变化是非线性的,则 不同点处有不同的值,z0点处的密度梯度 记为(d/dz) z0
作业提示:19,1)粘滞定律采用力的形式;2)速度梯度可具体表示为 du = wR;3)dS=2RL.
21,1)通过各柱面层的热流量没有吸收和增加,总的热量就是基本 流量与时间的乘积,且时间为1秒,dQ~Q;dS=2rL;3)积分
§3 输运过程的微观解释
一,三个不同的过程有相似的宏观规律 (1)某个物理量的空间不均匀性是形成输运过程的原因,而输运的结果就是 消除这些不均匀性,当梯度为0时,输运过程就结束了,系统重新达到新的平 衡态;(2)梯度既反映了输运的起因,负号表示输运沿梯度的负反向进行, 也反映了输运的趋势和最终结果;(3)输运系数则反映了输运进行的快慢程 度,它是由气体系统本身的性质和外界提供的条件所决定的。三个系数和三 个梯度一起表现了三种过程的物理本质。 名称 不均匀性X dX u dY - dSdt 粘滞 统一表示为 dz z0 热传导 T 扩散 这种相似性意味着什么?—— 源于共同的微观机制 输运的量Y dK dQ dM 输运系数
第四章 气体内的输送过程

第四章气体内的输送过程教学目的和要求:1、掌握钢球模型下的平均自由程和碰撞频率的概念,深刻理解其物理意义。
2、深刻理解和掌握三种输送过程的微观机制、原因和结果,掌握相应的宏观规律。
3、理解描述三种输送过程的系数的统计含义和统计方法,将理论和实践相比较,了解理论的正确性和近似性。
重点和难点: 、z是重点,输送过程的微观机制和统计方法是重点和难点,物理性质不均匀的描述是难点,三个输送系数和宏观规律是重点。
前面三章,我们详细分析讨论了有关理想气体系统平衡态的若干问题,可以说我们平衡态的统计特性已有了较全面的了解了,但是我们早就知道,平衡态是一种理想状态,因为有能量的变换,受到力的作用有动量变换,有热的传递有热量的变换,甚至系统开放直接变换物质,这样一来,系统要实现早期平衡就不太容易了,当然我们可以这样设想,例如热量变换,损失了多少热量就补充多少能量,岂不仍能维持平衡吗?我们姑且不论这是否近与平衡态的概念相等,首先损失热量的地方和补充热量的地方不会在同一位置,这就有一个热量输送的过程问题,这时显然不能作平衡态处理,而是平衡态被打破,属于非平衡的问题了,所以只要稍作仔细考虑,只要有动量、热量和质量等的转换,平衡态就不成立。
就是非平衡态问题,那么非平衡态就是一个过程,最终可以在新的条件下达到新的平衡。
因此,实际有价值的问题,是系统在外界的作用下,出现了不平衡,从而成为从一个平衡态转变成一个平衡态的过程,即输送过程,此时我们应当树立第一个观念。
输送过程的问题是非平衡态的问题,这类问题无非有两种情况,其一,过程进行得非常剧烈和迅速,例如氢氧混合而发生爆炸,内燃机气缸内气体得爆炸膨胀,这些过程种每时每刻得状态都极大地偏离了平衡态,称为远离平衡态问题,人们对这类问题地研究无论是在方法上还是理论上都是不成熟的,七十年的比利时科学家普里高律发明了耗散结构理论以及西德激光专家哈肯的协同学对解决这些问题取得了一些建设性的突破,但是由于涉及较深的物理机制和深奥的数学理论,我们重点是放在第二种情况,即过程行进得相对缓慢和微弱,这时每时每刻仍不是平衡态,但可认为大系统内的各局部区域近似为平衡态,从而可以把平衡态中的一些理论加以推广应用,所以称近平衡态问题或近平衡态过程,有时又叫非线性平衡过程,那么解决这类问题就不难了,物理意义明确,定律形式简单,但由于用到了平衡态的一些知识来解决不是平衡态的问题,所以其结果也不是很准确的。
大学热学第八讲 输运过程的微观解释

ρ ds
ds ⋅ dt Z0
§4.3 输运过程的微观解释
一.黏性现象微观机理 二.热传导的微观机理 三.气体扩散的微观机理
四.理论结果与实验的比较
1 η = ρv λ 3
1 κ = ρ v ⋅ λ ⋅ cV 3
1 D = vλ 3
§4.3 输运过程的微观解释
刚球弹性碰撞下的平均自由程理论 以平均速率运动 分子运动的无规则性假设 分子一次碰撞同化理论
第四章 气体内的输运过程
√
§4.ቤተ መጻሕፍቲ ባይዱ 气体分子的平均自由程 §4.2 输运过程的宏观规律 §4.3 输运过程的微观解释
B
§4.1 气体分子的平均自由程
一. 分子的平均自由程 λ 和平均碰撞频率 z
v λ = z
Z = 2nv σ
λ =
1 2π d 2 n =
kT 2π d 2 P
d :10−10m λ :10−7 ~ 10−8m v :102m/s
Z0
ds A
T A − TB d T = d z z0 −2λ
i dT dq = − k ⋅ 2 λ 2 d z z0
2.计算 dQ:
dQ =dN对 dq
1 dN对 = n ⋅ v d t ⋅ d s 6
i dq = − k ⋅ 2 λ q 2 dT dz z0
u = f (z)
dk = m ( u z 0 − λ − u z 0 + λ )
2. 计算dK: 计算d dK =dN对 dk =d
1 η = ρ vλ 3
1 dN对 = n ⋅ v d t ⋅ d s 6
dk = m ( u z 0 − λ − u z 0 + λ )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
v
448 6.9 10
8
6.5 10 s
9
1
12
12
二 . 分子按自由程的分布
y P(x) 1/λ
x
z
0 0 N0
x t N
x+dx t+dt N+dN
0
x x+dx
x
经过dx路程分子数的减少量
N x exp( ), N0
dN
1
Ndx
分子行进到 x 出的残存概率。 以 表示的自由程分布。
氮
0.599 10 3.10 10
7
氧
0.647 10
7
空气
7.0 10
8
2.30 10
10
10
例 计算空气分子在标准状态下的平均自由程和平 均碰撞频率。取分子的有效直径d=3.510-10m。已知
空气的平均分子量为29。
解: 已知 T 273K , p 1.0atm 1.013 105 Pa,
0
22
22
三.扩散现象的宏观定律
扩散(diffusion) 在混合气体内部,当某种气体
在各处的密度不均匀时,这种气体将从密度大的地 方向密度小的地方散布,这种现象叫扩散。
若 不 均 匀 则 n不 均 匀 mn 一种气体 p n kT 则 p不 均 匀 则 产 生 宏 观 气 流
v z
v 2 π d vn
1
2
1 2 πd n
2
2 πd n
2
因为P = nkT 所以也可以写成
kT 2 πd P
9
2
9
kT 2 πd P
2
当温度一定时, 压强越小,平均自由程越大。
例. 空气 , t = 0oC,
d 3.510-10m,
在不同压强时对应的 平均自由程 :
π d2
u
n
6
6 — 碰撞截面 (collision cross-section)
中心在 扫过的柱体内的分子都能碰撞
A 2d d
π d2
u
n
u
2
— 碰撞截面 (collision cross-section)
单位时间内扫过的体积
21
若设热流密度为JT,则:
21
T2 ( T1 )
B
温度梯度
dT dz
z0
dS
dQ
T T (z)
表示流体中温度沿z 轴方向的空间变化率。
x
o
T1
A
在dt时间内,从温度较高的一侧,通过这一平 面向温度较低的一侧所传递的热量,与这一平面所 在处的温度梯度和面积元成正比 热导率 恒为正值 能量流动方 dT dQ κ 向与温度梯 dSdt dz z 度方向相反
u0
B
流体沿x 方向作定向流动, 并且流动速率u沿z方向递 增 。 u是z的函数 u u ( z ) 流速梯度
du dz
u u( z )
o
u0
A x
沿z方向所出现的流速空间 变化率。 15
15
z
黏性力的大小与两部分 的接触面dS和截面所在 处的流速梯度成正比。
u0
df dS
L
z0
df
B
u u( z )
o
u0
A x
f (
du dz
) z0 dS
——牛顿黏性定律
——是流体的黏性系数,单位:NSM-2,表示单
位时间、单位面积、单位速度梯度上输运的动量。
( du dz ) z ——是流体定向流动速率梯度在z0处之值
0
16
ds——是在z0处两流体层接触面的面积。
z
2 > 1 2
z0 O x
dM
ΔS
1
y
d dM D dSdt dz z0
——菲克定律
D 为扩散系数,单位m 2s-1,表示单位时间、 26 单位面积、单位密度梯度上所输运的质量。26
§ 4.3 输运过程的微观解释
一 . 黏性现象的微观解释
从分子运动角度看内摩擦现象:
4
4
在相同的t时间内,分子由A到 B的位移大小比它的路程小得多 扩散速率
A
B
(位移量/时间)
(路程/时间)
平均速率
平均碰撞频率(mean collision frequency) z : 单位时间内一个气体分子与其它分子碰撞的 平均次数。 平均自由程(mean free path) :气体分子 在相邻两次碰撞间飞行的平均路程 —
热 学
1
第4章 气体内的输运过程
4.1 气体分子的平均自由程
4.2 输运过程的宏观规律 4.3 输运过程的微观过程
2
2
输运过程(transport process)
非平衡态下气体各部分性质不均匀。
热运动+碰撞 、p、m 的迁移
气体系统由非平衡态向平衡态转变的过程,就 称为输运过程。扩散过程、热传导过程和黏性 性现象都是典型的输运过程。 扩散:密度 不均匀 m的迁移 输运过程 热传导:温度T不均均 热 的迁移 分子定向速度u 不均匀 内摩擦(黏性): 定向运动动量 p的迁移 3
13
dN 1 x exp( )dx, N0
13
§ 4.2 输运过程的宏观规律
(Macroscopic Law of Transport Process )
当气体处于非平衡状态下,气体内部或者各 部分的温度不相等,或者各部分的压强不相 等,或者各气层之间有相对运动,或者这三 者同时存在。在这些非平衡状态下,气体内 部将有能量、质量或动量从一个部分向另一 个部分定向迁移,这种由非平衡态向平衡态 的变化过程就是气体的输运过程。 黏性现象、热传导现象、扩散现象
28
这样,在dt 时间内,从 dS一侧跑到另一侧 的分子数为
dN 1 6 n v dt dS
z
z0
u u0
z0
z0
pz
dS
pz
x
u0
(2)假设分子越过 dS 面之前都是在离 dS 面距离 约为平均自由程处发生最后一次碰撞的, 而且它们带过来的定向动量,就是在那里 的定向动量…… “一次同化论”假设。
u0
因此,在 dt 时间内, 在 dS 下方的流体层 净增加的定向动量为
20
20
二. 热传导现象的宏观定律
热传导(heat conduction)
当系统内各部分的温度不均匀时,就有热量从 温度较高的地方传递到温度较低的地方,由于温差 而产生的热量传递现象。
傅立叶定律
设 Q 为单位时间内通过的热量简称为热流,则
Q
dT dz
A
傅立叶定律
J T dT dz
z u n π d nu
v
v
碰撞夹角 有各种可能(0 — 180)
90 u
u
2v
7
z
2 π d nv
2
7
例.数量级的概念: 氧气O2 ,标准状态下,以 d 310-10m估计
v
n
8 RT πM
P kT
8 8 . 31 273 π 32 10
3
§ 4.1 气体分子的平均自由程
一 . 分子的平均自由程和碰撞频率
气体分子 平均速率
矛盾
v 1.60 RT M mol
氮气分子在270C时的 平均速率为476m.s-1.
气体分子热运动平均速率高, 但气体扩散过程进行得相当慢。
克劳修斯指出:气体分子的速度虽然很大,但前 进中要与其他分子作频繁的碰撞,每碰一次,分 子运动方向就发生改变,所走的路程非常曲折。
分子由上到下携带 的动量是 p z 0 ;
分子由下到上携带 的动量是 p z 0 .
29
29
分子由上到下携带 的动量是 p z ;
0
z
z0
u u0
z0
z0
pz
dS
分子由下到上携带 的动量是 p z .
0
pz
x
14
14
一 . 黏性现象的宏观定律
当气体各层流速不同时,通过任一平行于流速的截 面,相邻两部分气体将沿平行于截面方向互施作用 力,结果使得流动慢的气层加速,使流动快的气层 减速。这种相互作用力称为内摩擦力,也叫做黏性 力。这种现象称为内摩擦现象,也叫做黏性现象。
z
L
z0
df dS df
提示:因δ<<R ,可认为夹层内的 速度梯度处处相等
19
19
解: 外桶的线速度
M
u R u 0
R
2 R L
3
内桶的线速度 夹层流体的速度梯度
A
B
L
R R+δ ω
黏性力对扭丝作用的合力矩:
G 2 RL
R
R
3
所以,气体的黏度为:
G 2 R L
27
27
内摩擦现象的微观本质是: 分子在无序的热运动中输运定向动量的过程。 下面近似地推导关系式:
气体黏性系数
1 3