初二数学数学八下证明思考题

合集下载

北师大版八年级数学下册7.1为什么要证明同步练习2(含答案)

北师大版八年级数学下册7.1为什么要证明同步练习2(含答案)

为什么要证明1.在可以不同年的条件下,下列结论叙述正确的是()A.400个人中至少有两人生日相同B.300个人至少有两人生日相同C.300个人一定没有两人生日相同D.300个人一定有两人生日相同2.某公园计划砌一形状如图1所示的喷水池,后来有人建议改为图2的形状,且外圆直径不变,喷水池边缘的高度、宽度不变,你认为砌喷水池的边缘()图1 图2A.图1需要材料多B.图2需要材料多C.图1、图2需要的材料一样多D.无法确定3.在一次1500米的比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A.甲 B.乙 C.丙 D.丁4.下列说法正确的是()A.经验、观察或试验完全可以判断一个数学结论的正确与否B.推理是科学家的事,与我们没有多大的关系C.对于自然数n,n2+n+37一定是质数D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个5.下列结论你能肯定的是()A.今天下雨,明天一定不下雨B.三个连续整数的积一定能被6整除C.小明在数学竞赛中一定能获奖D.两张相片看起来不一样,则肯定照的不是同一个人6.下列问题用到推理的是()A.根据x=1,y=1,得x=yB.观察得到的四边形有四个内角C.老师告诉了我们关于金字塔的许多奥秘D.由公理知道过两点有且只有一条直线7.下列推理正确的是()A.如果a>b,b>c,则a>cB.若a>b,则ac>bcC.若∠AOB=∠BOC,则这两个角是对顶角D.如果两角的和等于180°,那么这两个角互为邻补角8. 下列推理正确的是()A.弟弟今年13岁,哥哥比弟弟大6岁,到了明年,哥哥比弟弟只大5岁,因为弟弟明年比今年长大了1岁B.如果a∥b,b∥c,则a∥cC.∠A与∠B相等,原因是它们看起来大小也差不多D.因为对顶角必然相等,所以相等角也必是对顶角9.若n是整数,2n+5(n是整数)是_______,2n-8是______.(填“奇数”或“偶数”)10.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+98+…+3+2+1=___________.11.把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况列表如下:现将和上述大小相同,花朵颜色分布完全一样的四个立方体,拼成一个水平放置的长方体,如图所示,那么此长方体的下底面有多少朵花?试写出你的结论并说出推理过程.参考答案1. A2. C3. B4. D5. B6. A7. A8. B9. 奇数偶数10. 1002或1000011. 解:从图中观察得知,红色与蓝、黄、白、紫相邻,必与绿相对;黄与蓝、红、绿、白相邻,必与紫相对;那么蓝与白相对.长方体的下底面共有(5+2+6+4)朵花,即共17朵花.。

初二几何证明题的解题思路

初二几何证明题的解题思路

初二几何证明题的解题思路一、题目11. 题目- 已知:在平行四边形ABCD中,E、F分别是AB、CD的中点,连接DE、BF。

求证:四边形DEBF是平行四边形。

2. 解析- 思路:要证明四边形DEBF是平行四边形,根据平行四边形的判定定理,可以从对边平行且相等入手。

- 证明:因为四边形ABCD是平行四边形,所以AB = CD,AB∥ CD。

- 又因为E、F分别是AB、CD的中点,所以BE=(1)/(2)AB,DF=(1)/(2)CD。

- 所以BE = DF。

- 且BE∥ DF(因为AB∥ CD)。

- 根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,所以四边形DEBF是平行四边形。

二、题目21. 题目- 已知:在 ABC中,AD是BC边上的中线,E是AD的中点,连接BE并延长交AC于F。

求证:AF=(1)/(2)FC。

2. 解析- 思路:过点D作DG∥ BF交AC于G,利用中位线定理和平行线分线段成比例定理来证明。

- 证明:过点D作DG∥ BF交AC于G。

- 因为AD是BC边上的中线,所以D是BC中点。

- 又因为DG∥ BF,根据中位线定理,可得G是FC中点,即FG = GC。

- 因为E是AD的中点,DG∥ BF,根据平行线分线段成比例定理,可得AF = FG。

- 所以AF=(1)/(2)FC。

三、题目31. 题目- 已知:在矩形ABCD中,AC、BD相交于点O,AE平分∠ BAD交BC于E,∠ CAE = 15^∘。

求∠ BOE的度数。

2. 解析- 思路:先求出∠ BAE的度数,进而得出 ABE的形状,再求出∠ ACB的度数,最后根据三角形的内角和求出∠ BOE的度数。

- 证明:- 因为四边形ABCD是矩形,AE平分∠ BAD,所以∠ BAE = 45^∘。

- 又因为∠ CAE=15^∘,所以∠ BAC=∠ BAE +∠ CAE = 45^∘+15^∘=60^∘。

- 在矩形ABCD中,AC = BD,OA=OC=(1)/(2)AC,OB =OD=(1)/(2)BD,所以OA = OB。

八下数学证明题解题思路

八下数学证明题解题思路

八下数学证明题解题思路数学证明题一直是让很多人头疼的问题,但实际上,只要我们掌握了一些解题方法和思路,就能够轻松应对。

本文将结合具体例子,说明八年级数学证明题的解题思路。

首先,解题思路要清晰。

当我们面对一道证明题时,最重要的是确定题目中给出的已知条件和要证明的结论。

只有明确了这两点,我们才能在证明过程中有所依据。

因此,在解题之前,先仔细阅读题目,将所给条件和结论写下来,作为我们解题的基础。

其次,利用已知条件进行推理。

在解决证明题时,已知条件扮演着重要的角色。

我们可以运用常见的几何性质和定理,结合给出的已知条件,通过推理和演绎,找到与要证明结论有关的等式、比例关系或者角度关系。

这样,我们就可以从已知条件出发,逐步推导出所需的结论。

举个例子来说明。

假设我们要证明一个等边三角形的高和底边相等。

已知条件是等边三角形ABC,其中AB = AC。

我们可以运用等边三角形的性质,知道三角形ABC的三条边都相等,于是可以得到AB = AC = BC。

进一步,我们可以利用三角形ABC的底边BC,以及高从顶点A到底边BC的垂线,得到了高和底边相等的结论。

此外,利用反证法也是解决证明题的常用策略。

当我们无法直接证明一个结论时,可以反设这个结论不成立,然后推导出与已知条件矛盾的情况,从而证明原结论的正确性。

反证法能够提供一种间接的证明路径,使得证明题更加灵活多样。

最后,需要注重论证的严谨性。

在解题过程中,我们要注意逻辑的连贯和推理的严密性。

每一步的推导都需要有合理的依据,不能出现矛盾或者错误的推断。

同时,在解答过程中,可以适当地加入一些关键的中间步骤或者证明思路,使得论证过程更加清晰和完整。

综上所述,八年级数学证明题的解题思路可以归纳为:明确已知条件和要证明的结论,利用已知条件进行推理,运用几何性质和定理,使用反证法途径,注重论证的严谨性。

只要我们掌握了这些解题方法和思路,相信解决数学证明题将不再是难题。

在实际解题过程中,我们可以学会灵活运用不同的策略,尝试不同的思路,提高解题的效率和准确性。

初中数学北师大八年级下册三角形的证明-一题多问解题方法探究PPT

初中数学北师大八年级下册三角形的证明-一题多问解题方法探究PPT
步骤:一证∠ PDC= ∠ FDB 二证△CDP ≌ △BDF得BF=PC 三利用第一问的结论代换BF=PB+BC中的BC完成解答
由(2)可知CD=BD,PD=FD
∠ CDB= ∠ PDF ∴ ∠ CDP= ∠ BDF ∴ △CDP ≌ △BDF ∴ BF=PC ∵ PC=BC+BP
步骤:一证∠ PDC= ∠ FDB 二证△CDP ≌ △BDF得BF=PC 三利用第一问的结论代换 BF=PB+BC中的BC完成解答
证:∵D是Rt△ABC斜边的中 一证△BCD是等边三角形

二证△CDP ≌ △BDF得BF=PC
∴CD=BD=AD ∵在Rt△ABC 中∠A=30°
三利用第一问的结论得到 BF+BP与DE的关系
∴ ∠ B=60
∴ △BCD是等边三角形
∴ CD=BD
∠ CDB= ∠ 60
∵ PD=FD,PDF=60
∴∠BAQ=∠PCA
∴∠QMC=∠1 +∠PCA
又∵∠1 +∠PCA+ ∠ BAC=180 °
∠ QMC= ∠1 +∠PCA
=180 ° - ∠ BAC=180-60 °
∴∠QMC =180 ° -60 ° =120 °
1
∴∠ QMC不变,它的度数是120 °
小结:通过上面三个问题的分析发现:
(1)这种有多个小问的大题是由易到难
∴ ∠ PDF= ∠ CDB
∴ ∠ CDP= ∠ BDF ∴△ CDP ≌ △ BDF ∴ CP=BF
∴ BF+BP=CP+BP=BC 又∵ BC=(2 √ 3/3)DE ∴ BF+BP= (2 √ 3/3)DE
第二问的结论△BCD是等边三角形得∠BDC=60 ° ∠BDC +∠ PDB= ∠ PDF+ ∠ PDB 即∠ PDC= ∠ FDB 进一步得△CDP ≌ △BDF后BF=PC BF=PC=PB+BC 最后利用第一问的结论代换BF=PB+BC中的BC 完成解答

八年级数学思考题

八年级数学思考题
八年级思考题
1已知直线y=2x+4与x轴交于点A,与y轴交于点B,
点P在坐标轴上,且PO=2AO.
求△ABP的面积.
2如图,已知一次函数 的图象经过点A(解析式;
(2)设点P为直线 上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若S△POQ= S△AOB,求点P的坐标.
(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;
(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.
3图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长。
为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.
人均住房面积(平方米)
单价(万元/平方米)
不超过30(平方米)
0.3
超过30平方米不超过m(平方米)部分
(45≤m≤60)
0.5
超过m平方米部分
0.7
根据这个购房方案:
(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;

八、初二数学教案:一次函数的计算题与思考题

八、初二数学教案:一次函数的计算题与思考题

八、初二数学教案:一次函数的计算题与思考题一次函数的计算题与思考题一次函数是初中数学中比较重要和基础的一个概念,也是后续学习中必须要掌握的内容之一。

一次函数在现实生活中的应用非常广泛,例如销售利润、汽车行驶里程消耗油耗的关系、物品价格随着时间的变化等等。

掌握一次函数的基础概念和计算方法是同学们学好后续数学知识的必要条件。

本篇教案将从计算题和思考题两个层面来训练同学们对于一次函数的理解和掌握。

一、一次函数的基础概念回顾在让同学们开始解一次函数的计算题和思考题之前,我们需要先回顾和了解一次函数这个概念。

一次函数指的是形如 y=kx+b 的函数,其中 y 和 x 是两个自变量,k 是线性系数,称为斜率,b 是纵截距。

在二维坐标系中,一次函数是一条直线,表示了 y 和 x 之间的线性关系。

在计算一次函数时,我们需要知道直线的斜率和截距。

斜率的计算公式是Δy/Δx,其中Δy 表示 y 坐标的变化量,Δx 表示 y 坐标的变化量。

通常情况下,我们会利用两个已知点的坐标来计算斜率。

截距的计算公式是 b=y-kx,在已知斜率和一个点坐标的情况下,我们就可以计算出截距的值。

这些计算方法都是初二学生必须掌握的基础知识。

二、计算题我们将从几个小题开始,逐步加深难度,让同学们掌握一次函数计算的小技巧。

1、某商店三个月的营业额分别为 10 万元、12 万元和 9 万元,分别对应三个月的销售额为 8 万元、10 万元和 7 万元。

尝试回答以下问题:(1)计算这三个月该商店的平均销售单价和平均利润率。

(2)排除售价高低不同的影响,计算这家商店总的利润率是多少?答案:(1)平均销售单价=(8+10+7)万元÷(10+12+9)万元=0.815万元/件平均利润率=总利润÷总销售额÷100% =[(10-8)+(12-10)+(9-7)]万元÷[10+12+9]万元×100%=22.22%(2)毛利率=[(10-8÷0.815)+(12-10)÷0.815+(9-7)÷0.815]万元÷[10+12+9]万元×100%=27.81%2、有一条直线在坐标系中经过点 (1,2) 和 (3,4),试求这条直线的方程。

北师大版八年级下 数学证明题和应用题练习题(含答案)

北师大版八年级下 数学证明题和应用题练习题(含答案)

1、如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.2、某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.中商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,什么情况下到甲商场购买更优惠?3、在梯形ABCD中,AD∥BC,BC=3AD。

(1)如图甲,连接AC,如果△ADC的面积为6,求梯形ABCD的面积;(2)如图乙,E是腰AB上一点,连接CE,设△BCE和四边形AECD的面积分别为S1和S2,且2S1=3S2,求的值;4、某市火车货运站现有苹果1530吨,梨1150吨,安排一列货车将这批苹果和梨运往深圳市。

这列货车可以挂A、B两种不同规格的货箱50节,已知用一节A型货箱的运费是0.5万元,用一节B型货箱的运费是0.8万元.1、设运输这批苹果和梨的总运费为y(万元),用A型货箱的节数为x(节),试写出y与x的函数关系式。

2、已知苹果35吨和梨15吨可装满一节A型车厢,苹果25吨和梨35吨可装满一节B型车厢,按此要求安排A、B两种货箱的节数。

有哪几种运输方案,请你设计出来。

3、利用函数的性质说明,在这些方案中,哪种方案的总运费最少?最少运费是多少?FEDCBA 5、成都市对某校九年级学生进行了“综合素质”评价,评价的结果为A (优)、B (良好)、C (合格)、D (不合格)四个等级.现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个矩形的高之比为14∶9∶6∶1,评价结果为D 等级的有2人,请你回答以下问题: (1)共抽测了多少人?(2)样本中B 等级、C 等级的频率各是多少?(3)若该校九年级的毕业生共300人,假如“综合素质”等级为A 或B 的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?6、已知关于x 、y 的方程组⎩⎨⎧+=---=+a y x ay x 317的解都是非正数,求a 的取值范围.7、成都市为治理污水,需要铺设一段全长为3000米的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务,求实际每天铺设多长管道?8、已知:如图,△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,且BD=CE ,AD 与BE 相交于点F.(1)求证:△AB D ≌△BCE (2)求证:EF BE AE ⋅=29、在金融危机的影响下,国家采取扩大内需的政策,基建投资成为拉动内需最强有力的引擎.现金强公司中标一项工程,在甲、乙两地施工,其中甲地需推土机30台,乙地需推土机26台,公司在A、B两地分别库存推土机32台和24台,现从A地运一台到甲、乙两地的费用分别是400元和300元,从B地运一台到甲、乙两地的费用分别为200元和500元.若设从A地运往甲地x台推土机,运甲、乙两地所需的这批推土机的总费用为y元.(1)求y与x的函数关系式;(2)公司应设计怎样的方案,能使运送这批推土机的总费用最少?10、某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.⑴求中巴车和大客车各有多少个座位?⑵客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?11、如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;(3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标.1、(1)∠1=∠2=60° (2)S=332、解:设学校购买12张餐桌和x 把餐椅,到购买甲商场的费用为y 1元,到乙商场购买的费用为y 2元,则有y 1=200×12+50(x-12)=50x+1800 y 2=85%×(200×12+50x)=42.5x+2040 y 1-y 2=7.5x-240当7.5x-240<0,即x<32时,y 1<y 2答:当学校购买的餐椅少于32把时,到甲商场购买更优惠。

初二下册数学证明题及答案

初二下册数学证明题及答案

初二下册数学证明题及答案下文是关于初二下册数学证明题及答案相关内容,希望对你有一定的帮助:篇一:《初二数学下册证明题(中等难题含答案)》一:已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE AC.DA (1)求证:BG FG;(2)若AD DC2,求AB的长.BGCE二:如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF ⊥DF。

三:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.(第23题)四、(本题7分)如图,△ABC中,M是BC的中点,AD是∠A 的平分线,BD⊥AD于D,AB=12,AC=18,求DM的长。

五、(本题8分)如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC。

⑴求证:DH=1(AD+BC) 2⑵若AC=6,求梯形ABCD的面积。

六、(6分) 、如图,P是正方形ABCD对角线BD上一点,PE ⊥DC,PF⊥BC,E、F分别为垂足,若CF=3,CE=4,求AP的长.七、(8分)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论;(2)判断并证明四边形MENF是何种特殊的四边形?(3)当等腰梯形ABCD的高h与底边BC满足怎样的数量关系时?四边形MENF是正方形(直接写出结论,不需要证明).AMD选择题:15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为。

……第一个图第二个图第三个图16、如图,矩形ABCD对角线AC经过原点O,B点坐标为(―1,―3),若一反比例函数y解析式为。

初二数学下册证明练习题

初二数学下册证明练习题

初二数学下册证明练习题在初二数学的学习中,我们经常会遇到一些需要证明的问题。

证明问题不仅能够帮助我们巩固所学的知识,还能够培养我们的逻辑思维和问题解决能力。

本文将给大家提供一些初二数学下册证明练习题,帮助大家提升自己的数学证明能力。

1. 证明勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

解答:假设直角三角形的两条直角边分别为a和b,斜边为c。

根据勾股定理的定义,我们需要证明以下等式成立:a^2 + b^2 = c^2利用代数运算,我们可以进行如下推导:( a + b )^2 = a^2 + b^2 + 2ab由于直角三角形中斜边的长度为a和b的和,可以得到:( a + b )^2 = c^2 + 2ab根据上述两个等式可得:a^2 + b^2 = ( a + b )^2 - 2ab= c^2 + 2ab - 2ab= c^2因此,我们证明了勾股定理成立。

2. 证明等腰三角形底边上的两个角相等。

解答:假设等腰三角形的底边为AB,两个等腰边分别为AC和BC。

我们需要证明∠ABC = ∠ACB。

根据等腰三角形的定义,我们知道等腰三角形的两个底角相等,即∠BAC = ∠BCA。

由于三角形的内角和为180度,我们可以得到以下等式:∠BAC + ∠BCA + ∠ABC = 180度将已知条件代入上式,可以得到:∠BCA + ∠BCA + ∠ABC = 180度2∠BCA + ∠ABC = 180度再根据等腰三角形的定义,我们知道∠BCA = ∠BAC,代入上式可以得到:2∠BAC + ∠ABC = 180度将等腰三角形的定义代入上式,可以得到:∠ABC + ∠ABC = 180度2∠ABC = 180度根据等式可得:∠ABC = 90度因此,我们证明了等腰三角形底边上的两个角相等。

3. 证明相邻角互补定理:两个相邻角的度数之和等于180度。

解答:假设两个相邻角分别为∠ABC和∠CBD,我们需要证明∠ABC + ∠CBD = 180度。

北师大版八年级下册数学第一章《证明(二)》知识点及习题(K12教育文档)

北师大版八年级下册数学第一章《证明(二)》知识点及习题(K12教育文档)

(完整word)北师大版八年级下册数学第一章《证明(二)》知识点及习题(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)北师大版八年级下册数学第一章《证明(二)》知识点及习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)北师大版八年级下册数学第一章《证明(二)》知识点及习题(word版可编辑修改)的全部内容。

1等腰三角形 知识点1 等腰三角形的性质定理 等腰三角形的性质定理:等腰三角形的两个底角相等(简述为等边对等角).用符号语言表示为:如图1-1所示,在△ABC 中,∵AB =AC ,∴∠B =∠C .定理的证明:取BC 的中点D ,连接AD .∵(),()()AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩已知中点定义,公共边,∴△ABD ≌△ACD (SSS).∴∠B =∠C (全等三角形的对应角相等).定理的作用:证明同一个三角形中的两个内角相等.拓展 等腰三角形还具有其他性质.(1)等腰直角三角形的两个底角相等,都等于45°.(2)等腰三角形的底角只能是锐角,不能是钝角或直角,但顶角可以是锐角、钝角或直角.(3)等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a . (4)等腰三角形的三角关系:设顶角为∠A ,底角为∠B ,∠C ,则∠A =180°-∠B -∠C =180°-2∠B =180°-2∠C .知识点2 等腰三角形的性质定理的推论推论1:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).(1)用符号语言表示为:如图1-3所示,①在△ABC 中,∵AB =AC ,∠1=∠2,∴AD ⊥BC .BD =DC ;②在△ABC 中,∵AB =AC ,AD ⊥BC ,∴∠1=∠2,BD =DC ;③在△ABC中,∵AB=AC,BD=DC,∴∠1=∠2,AD⊥BC.(2)推论1的证明.①在△ABC中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS).∴BD=DC,∠ADB=∠ADC=90°.∴AD⊥BC.②在△ABC中,∵AD⊥BC,∴∠ADB=∠ADC=90°.∵AB=AC,∴∠B=∠C.又AD=AD,∴Rt△ADB≌Rt△ADC(AAS).∴∠1=∠2,BD=CD.③在△ABC中,∵AB=AC,AD=AD,BD=CD,∴△ABD≌△ACD(SSS)∴∠1=∠2,∠ADB=∠ADC=90°,∴AD⊥BC.(3)推论1的作用:证明角相等、线段相等或垂直。

【八年级】北师大版八年级下册数学第一章三角形的证明及详细答案

【八年级】北师大版八年级下册数学第一章三角形的证明及详细答案

【关键字】八年级北师大版八年级下册数学第一章三角形的证明一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.52.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.(2014•甘井子区一模)如图,△ABC中,DE是AC的笔直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()A.18cm B.22cm C.24cm D.26cm6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的笔直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的笔直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的笔直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE笔直平分AC,∠A=50°,则∠DCB的度数是_________.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的笔直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的笔直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.北师大版八年级下册数学第一章三角形的证明参考答案与试题解析一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD 列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持. 点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36考点:线段垂直平分线的性质.分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.专题:几何图形问题.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.(2014•甘井子区一模)如图,△ABC中,DE是AC的笔直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持. A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.考点:角平分线的性质;含30度角的直角三角形.分析:首先过点D作DE⊥AB于点E,解直角三角形即可求得BC的长,进而求得DC的长,然后由角平分线的性质,即可求得点D到AB的距离.解答:解:过点D作DE⊥AB于点E,∵∠C=90°,∠A=30°,∴∠ABC=60°,BC=tanA•AC=×6=2,∴∠A=∠ABD,∴AD=BD,∴DE是AB的垂直平分线,∴CD=DE,∵CD=tan∠DBC•BC=×2=2,∴DE=2.∴点D到AB的距离为2.点评:此题考查了直角三角形的性质,角平分线的性质以及解直角三角形.此题难度不大,注意角的平分线上的点到角的两边的距离相等.注意数形结合思想的应用.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.考点:角平分线的性质;勾股定理.专题:几何图形问题.分析:过C作CM∥AD,交BA延长线于M,求,AM=AC=4,根据平行线的性质得出=,即可求出答案.解答:解:由勾股定理得:AB==5,过C作CM∥AD,交BA延长线于M,则∠M=∠DAB,∠ACM=∠CAD,∵AD平分∠CAB,∴∠DAB=∠CAD,∴∠M=∠MCA,∴AM=AC=4,∵AB=3,CM∥AD,∴==,∴BD=BC=.点评:本题考查了平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理的应用,解此题的关键是求出=.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.考点:角平分线的性质;等腰三角形的性质.专题:几何图形问题;证明题.分析:根据等腰三角形性质和平行线的性质求出∠DCA=∠BCA,根据三角形内角和定理求出∠DAC=∠EAC,根据角平分线性质求出即可.解答:证明:∵AB∥CD,∴∠DCA=∠CAB,∵AB=BC,∴∠BCA=∠CAB,∴∠DCA=∠BCA,∵∠D=90°,AE⊥BC,∴∠D=∠AEC=90°,∵∠DAC+∠D+∠ACD=180°,∠BCA+∠AEC+∠CAE=180°,∴∠DAC=∠EAC,∵∠D=90°,AE⊥BC,∴CD=CE.点评:本题考查了三角形内角和定理,平行线的性质,等腰三角形的性质,角平分线性质的应用,关键是求出∠DAC=∠EAC.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

[初二数学]数学八下证明思考题

[初二数学]数学八下证明思考题

证明(一)测试题一、选择题1、下列语言是命题的是( )A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO 到C ,使OC =OAD.两直线平行,内错角相等.2、下列命题:①一个外角小于内角的三角形是钝角三角形;②一个外角大于内角的三角形是锐角三角形;③菱形的四边都相等;④等腰三角形的底角都是锐角;⑤等腰三角形一边上的高就是这边上的中线。

其真命题的个数是( )A 、1个B 、2个C 、3个D 、4个3、在△ABC 中,高BD ,CE 所在直线交于O 点,若△ABC 不是直角三角形,且 n A =∠,则∠BOC= ( )A 、 nB 、() n -180C 、() n -90D 、 n 或() n -1804、如图,AB∥EF∥CD,EG∥DB,则图中与∠1相等的角(∠1除外)共有( )A 、6个B 、5个C 、4个D 、3个二、填空题5、命题“任意两个直角都相等”的条件是________,结论是___________,它是________(真或假)命题.6、三角形的一个外角等于和它相邻的内角的一半,则此三角形是 ;7、如图,已知AB∥CD =∠=∠=∠α则, 12021001 ;8、如图,设αα∠∠∠∠∠=∠与,,,则C B A BDC 的关系是 ;9、如图,已知 ABCD 中BE 平分=∠=∠∠AEB A ABC ,则, 110 。

三、解答题10、如图,ABC ∆中,DE A AC AB ,, 40=∠=是腰AB 的垂直平分线,求DBC ∠的度数。

11.举例说明“两个锐角的和是锐角”是假命题.12、如图,已知∠1与∠3互为余角,∠2与∠3的余角互补, 1154=∠,CP 平分∠ACM ,求∠PCM 。

13、如图,ABC ∆中,AF AB CE BC AC ,,⊥⊥平分CAB ∠,过F 作FD∥BC,交AB 于D ,求证:AC=AD14.已知,如图,AD ⊥BC ,EF ⊥BC ,∠4=∠C.求证:∠1=∠2图。

八年级数学下册数学证明与解答练习题

八年级数学下册数学证明与解答练习题

八年级数学下册数学证明与解答练习题在数学学科中,证明和解答练习题是提高学生逻辑思维和问题解决能力的重要环节。

本文将为您介绍八年级数学下册数学证明与解答练习题。

在下面的正文中,将分为三个部分:数学证明、数学解答和综合应用。

一、数学证明1. 直角三角形的斜边平方等于两直角边平方之和的证明:我们设直角三角形的两直角边分别为a和b,斜边为c。

根据勾股定理,我们知道a²+b²=c²。

接下来,我们利用代数证明来验证这个定理。

2. 三角形内角和为180°的证明:我们设三角形的三个内角分别为A、B和C。

利用平行线和同位角的性质,我们可以构造一个平行于BC的直线,将三角形分成两个小三角形。

根据小三角形内角和为180°的性质,我们可以得出A+D=180°和B+E=180°。

而D和E都是直角,所以D+E=90°。

将前两个等式相加可得A+B+D+E=360°,即A+B+90°=360°,进一步化简可得A+B=180°。

二、数学解答1. 代数方程求解的解答方法:当我们遇到一个代数方程时,我们可以通过几个步骤来求解。

首先,将方程分类,确定它是一元一次方程、二次方程还是其他类型的方程。

然后,我们可以运用各种求解方法,如因式分解、配方法、根的性质等来求解方程。

最后,验证我们得到的解是否满足原方程。

2. 三角形面积求解的解答方法:对于给定的三角形,我们可以利用其底边和高的关系来求解面积。

根据面积公式 S = 1/2 * 底边长度 * 高的长度,我们可以通过测量底边和高的长度来求得三角形的面积。

而对于无法直接测量的情况,我们可以应用三角形相似的原理,通过已知边长和高的比例来求解面积。

三、综合应用1. 题目:小明每天放学后,沿着某一条直路步行回家。

第一天,他走了3千米;第二天,他走了前一天路程的一半加2千米;第三天,他走了前一天路程的一半加2千米;依此类推。

2021-2022学年度北师大版八年级数学下册第一章三角形的证明必考点解析试题(含答案解析)

2021-2022学年度北师大版八年级数学下册第一章三角形的证明必考点解析试题(含答案解析)

北师大版八年级数学下册第一章三角形的证明必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是()A.4、6、8 B.3、4、5C.5、12、13 D.1、32、等腰三角形一边长是2,一边长是5,则此三角形的周长是()A.9 B.12 C.15 D.9或123、等腰三角形的顶角是50︒,则这个三角形的一个底角的大小是()A.65︒B.40︒C.50︒D.80︒AC=米,在点C正上方找一点4、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得5D(即DC BC⊥),测得60∠=︒,30CDB∠=︒,则景观池的长AB为()ADCA .5米B .6米C .8米D .10米5、一个三角形三个内角的度数分别是x ,y ,z .若2||()0x y x y z -++-=,则这个三角形是( )A .等腰三角形B .等边三角形C .等腰直角三角形D .不存在6、如图,在△ABC 中,∠B =62°,∠C =24°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M 、N ,连接MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A .70ºB .60ºC .50ºD .40°7、△AAA 中,A ∠,B ,C ∠的对边分别为a ,b ,c ,下列条件能判断△AAA 是直角三角形的是( )A .ABC ∠=∠=∠B .6a =,7b =,8c =C .::3:4:5A B C ∠∠∠=D .222+=a b c8、如图,在△AAA 中,∠AAA =90°,∠AAA =30°,AA =6√3,D 为AB 上一动点(不与点A 重合),△AAA 为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( )A .2√3B .6C .3√3D .99、下列命题是真命题的是( )A .等腰三角形的角平分线、中线、高线互相重合B .一个三角形被截成两个三角形,每个三角形的内角和是90度C .有两个角是60°的三角形是等边三角形D .在△ABC 中,2A B C ∠=∠=∠,则ABC 为直角三角形10、如图,在△ABC 中,AB =AC ,D 是BC 的中点,∠B =35°,则∠BAD =( )A .110°B .70°C .55°D .35°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD 是ABC ∠的平分线,DE AB ⊥于点E ,DF BC ⊥于点F ,12AB =,15BC =,△AAA 的面积是36,则DE 的长是______.2、如图,△ABC 中,∠A =68°,点D 是BC 上一点,BD 、CD 的垂直平分线分别交AB 、AC 于点E 、F ,则∠EDF =_____度.3、如图,已知△ABC 中,AB =AC ,将△ABC 沿DF 折叠,点A 落在BC 边上的点E 处,且DE ⊥BC 于E ,若∠A =56°,则∠AFD 的度数为________.4、如图,在等边三角形ABC 中,AB =M 为边BC 的中点,点N 为边AB 上的任意一点(不与点A ,B 重合),将△BMN 沿直线MN 折叠,若点B 的对应点B '恰好落在等边三角形ABC 的边上,则BN 的长为______.5、如图,42AOB ∠=︒,C 为OB 上的定点,P 、Q 分别为OA 、OB 上两个动点,当CP PQ +的值最小时,OCP ∠的度数为______.三、解答题(5小题,每小题10分,共计50分)1、(情景呈现)画∠AAA =90°,并画∠AAA 的平分线AA .(I )把三角尺的直角顶点落在OC 的任意一点A 上,使三角尺的两条直角边分别与∠AAA 的两边AA ,AA 垂直,垂足为A ,A (如图1).则AA =AA ;若把三角尺绕点A 旋转(如图2),则AA ________AA.(选填:“<”、“>”或“=”)(理解应用)(2)在(1)的条件下,过点A作直线AA⊥AA,分别交AA,AA于点A,H,如图3.①图中全等三角形有________对.(不添加辅助线)②猜想GE,AA,AA之间的关系为________.(拓展延伸)(3)如图4,画∠AAA=60°,并画∠AAA的平分线AA,在AA上任取一点A,作∠AAA=120°,∠AAA的两边分别与AA,AA相交于A,A两点,AA与AA相等吗?请说明理由.2、如图,在平面直角坐标系中,点A为坐标原点,点A(0,A),点A在A轴的负半轴上,点A(A,0),连接AA、AA,且√A+2+|A−2|=0,(1)求∠AAA的度数;(2)点A从A点出发沿射线AA以每秒2个单位长度的速度运动,同时,点A从A点出发沿射线AA以每秒1个单位长度的速度运动,连接AA、AA,设△AAA的面积为A,点A运动的时间为t,求用t表示A的代数式(直接写出t的取值范围);(3)在(2)的条件下,当点A 在A 轴的正半轴上,点A 在A 轴的负半轴上时,连接AA 、BP 、AA ,∠AAA =2∠AAA =2∠AAA ,且四边形AAAA 的面积为25,求AA 的长.3、ABC 中,CD 平分ACB ∠,点E 是BC 上一动点,连接AE 交CD 于点D .(1)如图1,若110ADC ∠=︒,AE 平分BAC ∠,则B 的度数为______;(2)如图2,若100ADC ∠=︒,53DCE ∠=︒,27B BAE ∠-∠=︒,则BAE ∠的度数为______;(3)如图3,在BC 的右侧过点C 作CF CD ⊥,交AE 延长线于点F ,且AC CF =,2B F ∠=∠.试判断AB 与CF 的位置关系,并证明你的结论.4、如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,FE 是AC 的垂直平分线,交AD 于点F ,连接BF .求证:AF =BF .5、如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,AM 平分∠BAC ,AM 的长为15cm ,求BC 的长.-参考答案-一、单选题1、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A、42+62≠82,不符合勾股定理的逆定理,故本选项符合题意;B、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D、12+32=2,符合勾股定理的逆定理,故本选项符合题意.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、B【分析】分两种情况考虑:当5为等腰三角形的腰长时和底边时,分别求出周长即可.【详解】解:当5为等腰三角形的腰长时,2为底边,此时等腰三角形三边长分别为5,5,2,周长为5+5+2=12;当5为等腰三角形的底边时,腰长为2,此时等腰三角形三边长分别为5,2,2,∵5>2+2,∴不能组成三角形,综上这个等腰三角形的周长为12.故选B.【点睛】此题考查了等腰三角形的性质,以及三角形的三边关系,熟练掌握等腰三角形的性质是解本题的关键.3、A【分析】根据等腰三角形的两底角相等,即可求解.【详解】解:∵等腰三角形的顶角是50︒, ∴这个三角形的一个底角的大小是()118050652︒-︒=︒ . 故选:A【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两底角相等是解题的关键.4、D【分析】利用勾股定理求出CD 的长,进而求出BC 的长,AB BC AC =- 即可求解.【详解】解:∵DC BC ⊥,∴90DCB ∠=︒ ,∵30ADC ∠=︒,5AC =,∴210AD AC == ,∴CD =,∵60CDB ∠=︒,∴30B ∠=︒ ,∴2BD CD ==,∴15BC = ,∴15510m AB BC AC =-=-= ,故选:D .【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理.5、C【分析】根据绝对值及平方的非负性可得x y =,x y z +=,再由三角形内角和定理将两个式子代入求解可得45x =︒,290x =︒,即可确定三角形的形状.【详解】 解:()20x y x y z -++-=,∴0x y -=且0x y z +-=,∴x y =,x y z +=,∴2z x =,∵180x y z ++=︒,∴2180x x x ++=︒,解得:45x =︒,290x =︒,∴三角形为等腰直角三角形,故选:C .【点睛】题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.6、A【分析】根据∠BAD =∠BAC −∠DAC ,想办法求出∠BAC ,∠DAC 即可解决问题.【详解】解:∵∠B =62°,∠C =24°,∴∠BAC =180°−86°=94°,由作图可知:MN 垂直平分线段AC ,∴DA =DC ,∴∠DAC =∠C =24°,∴∠BAD =94°−24°=70°,故选:A .【点睛】本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、D【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【详解】解:A 、∵A B C ∠=∠=∠,且∠A +∠B +∠C =180°,∴A B C ∠=∠=∠=60°,故△ABC 不是直角三角形;B 、∵6a =,7b =,8c =,∴a 2+b 2≠c 2,故△ABC 不是直角三角形;C 、∵∠A :∠B :∠C =3:4:5,且∠A +∠B +∠C =180°,∴最大角∠C =75°≠90°,故△ABC 不是直角三角形;D 、∵222+=a b c ,故△ABC 是直角三角形;故选:D .【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8、B【分析】连接DG ,AG ,设AG 交DE 于点H ,先判定AG 为线段DE 的垂直平分线,再判定()BAC BAG AAS '≅,然后由全等三角形的性质可得答案.【详解】解:如图,连接DG ,AG ,设AG 交DE 于点H ,DE DF ⊥,G 为EF 的中点,DG GE ∴=,∴点G 在线段DE 的垂直平分线上, AED 为等边三角形,AD AE ∴=,∴点A 在线段DE 的垂直平分线上,AG ∴为线段DE 的垂直平分线,AG DE ∴⊥,1302DAG DAE ∠=∠=︒, ∴点G 在射线AH 上,当BG AH ⊥时,BG 的值最小,如图所示,设点G '为垂足,90ACB ∠=︒,30CAB ∠=︒,ACB AG B '∴∠=∠,CAB BAG '∠=∠,则在BAC 和BAG '△中,ACB AG B CAB BAG AB AB ∠=∠⎧⎪∠=∠='⎨'⎪⎩, ()BAC BAG AAS '∴≅.BG BC '∴=,∵90ACB ∠=︒,30CAB ∠=︒,=AC ∴12BC AB =,222BC AB +=,∴222(2)BC BC +=,解得:6BC =,∴6BG BC '==故选:B .【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的判定与性质,数形结合并明确相关性质及定理是解题的关键.9、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为180606060︒-︒-︒=︒,所以三角形是等边三角形,故此选项正确;D.设C x ∠=,则2A B x ∠=∠=,故22180x x x ++=︒,解得36x =︒,所以72A B ∠=∠=︒,36C ∠=︒,此三角形不是直角三角形,故此选项错误.故选:C .【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.10、C【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,然后利用直角三角形两锐角互余的性质解答.【详解】解:∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,∵∠B =35°,∴∠BAD =90°−35°=55°.故选:C .【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.二、填空题1、83##【分析】根据角平分线性质,得出DE =DF ,利用S △ABC =S △ABD +S △BCD 得出()11215362DE +⋅=,求解即可. 【详解】解:∵BD 是ABC ∠的平分线,DE AB ⊥,DF BC ⊥,∴DE =DF , S △ABC =S △ABD +S △BCD =()()11111215362222AB DE BC DF AB BC DE DE ⋅+⋅=+⋅=+⋅=, 解得728273DE ==. 故答案为83.【点睛】本题考查角平分线性质,三角形面积,一元一次方程,掌握角平分线性质,三角形面积,一元一次方程,关键是利用S △ABC =S △ABD +S △BCD 列出方程.2、68【分析】根据线段垂直平分线的性质得到EB =ED ,FD =FC ,则∠EDB =∠B ,∠FDC =∠C ,从而可以得到∠EDB +∠FDC =∠B +∠C ,再由∠EDF =180°﹣(∠EDB +∠FDC ),∠A =180°﹣(∠B +∠C ),即可得到∠EDF =∠A =68°.【详解】解:∵BD 、CD 的垂直平分线分别交AB 、AC 于点E 、F ,∴EB =ED ,FD =FC ,∴∠EDB =∠B ,∠FDC =∠C ,∴∠EDB +∠FDC =∠B +∠C ,∵∠EDF =180°﹣(∠EDB +∠FDC ),∠A =180°﹣(∠B +∠C ),∴∠EDF =∠A =68°.故答案为:68.【点睛】本题主要考查了线段垂直平分线的性质,三角形内角和定理,等腰三角形的性质与判定,熟知线段垂直平分线的性质是解题的关键.3、48°48度【分析】先求出∠ABC 和∠ACB 的度数,再利用直角三角形的性质得出∠BDE 的度数,根据由翻折的性质可得:ADF EDF ∠=∠,最后利用三角形的内角和定理得出结论.【详解】解:∵AB =AC ,∠A =56° ∴18056622ABC ACB ︒-︒∠=∠==︒, ∵DE ⊥BC ,∴90906228BDE ABC ∠=︒-∠=︒-︒=︒,由折叠的性质可得:ADF EDF ∠=∠,∵180BDE ADF EDF ∠+∠+∠=︒, ∴18028762ADF EDF ︒-︒∠=∠==︒, ∴∠AFD =180°-∠A -∠ADF =180°-56°-76°=48°,故答案为:48°.【点睛】本题考查了等腰三角形的性质,轴对称的性质,直角三角形的性质及三角形的内角和定理,解题的关键是熟练掌握这些性质.4【分析】如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时,于是得到MN ⊥AB ,BN =B ′N ,根据等边三角形的性质得到AC =BC ,∠ABC =60°,根据线段中点的定义和30°角直角三角形的性质得到BN =12BM 2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AC 上时,则MN ⊥BB ′,四边形BMB ′N 是菱形,根据线段中点的定义即可得到结论.【详解】解:如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时,则MN ⊥AB ,BN =B ′N ,∵△ABC 是等边三角形,∴AB =AC =BC ,∠ABC =60°,∴906030BMN ∠=︒-︒=︒,∵点M 为边BC 的中点,∴BM =12BC =12AB∵在直角三角形BMN 中,30∠=︒BMN ,∴BN =12BM 如图2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AC 上时,则MN ⊥BB ′,BM B M '=,∵BM CM =,∴B M CM '=,∵60C ∠=°,∴三角形B MC '是等边三角形,∴60B MC ABC '∠=︒=∠,∴AB B M '∥∵60ABC NB M '∠=∠=︒∴NB M B MC ''∠=∠∴NB BC '∥∴四边形BMB ′N 是平行四边形,又∵BM B M '=,∴平行四边形BMB ′N 是菱形,∵∠ABC =60°,点M 为边BC 的中点,∴BN =BM =12BC =12AB【点睛】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键. 5、6°【分析】作点C 关于直线OA 的对称点C ',连接CC ',交OA 于点D ,过点C '作C M OB '⊥,交OA 于点N ,根据CP PQ C P PQ C Q ''+=+≥,且当C Q BO '⊥时最小,所以当CP PQ +的值最小时,当点P 与点N 重合,点Q 与点M 重合时,此时OCP ∠等于OCN ∠,进而根据直角三角形的两锐角互余,以及角度的和差关系求得OCN ∠即可【详解】解:如图,作点C 关于直线OA 的对称点C ',连接CC ',交OA 于点D ,过点C '作C M OB '⊥,交OA 于点N ,∴='CP C P ,CP PQ C P PQ C Q '+∴'=+≥,且当C Q BO '⊥时最小,所以当CP PQ +的值最小时,当点P 与点N 重合,点Q 与点M 重合时,此时OCP ∠等于OCN ∠, CC OA '⊥又42AOB ∠=︒90,90DC N C ND AOC ONM ''∠+∠=︒∠+∠=︒,ONM C NA '∠=∠42CC M AOB '∴∠=∠=︒9048DCO AOC ∴∠=︒-∠=︒根据对称性可得42NC D DCD '∠=∠=︒48426NCO DCM DCM ∴∠=∠-∠=︒-︒=︒∴当CP PQ +的值最小时,OCP ∠的度数为6︒故答案为:6︒【点睛】本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.三、解答题1、(1)=;(2)①3;②222+=;(3)相等,理由见解析GE FH EF【分析】(1)PE=PF,利用条件证明△PEM≌△PFN即可得出结论;(2)①根据等腰直角三角形的性质得到OP=PG=PH,证明△GPE≌△OPF(ASA),△EPO≌△FPH,△GPO≌△OPH,得到答案;②根据勾股定理,全等三角形的性质解答;(3)作PG⊥OA于G,PH⊥OB于H,证明△PGE≌△PHF,根据全等三角形的性质证明结论.【详解】(1)如图2,过点P作PM⊥OA,PN⊥OB,垂足是M,N,∴∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵OC是∠AOB的平分线,∴PM=PN,∵∠EPF =90°,∴∠MPE =∠FPN ,在△PEM 和△PFN 中, PME PNF PM PNMPE NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PEM ≌△PFN (ASA ), ∴PE =PF ,故答案为:=;(2)①∵OC 平分∠AOB , ∴∠AOC =∠BOC =45°, ∵GH ⊥OC ,∴∠OGH =∠OHG =45°, ∴OP =PG =PH ,∵∠GPO =90°,∠EPF =90°, ∴∠GPE =∠OPF ,在△GPE 和△OPF 中, PGE POF PG POGPE OPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△GPE ≌△OPF (ASA ), 同理可证明△EPO ≌△FPH ,∵GP PHGPO OPHOP OP=⎧⎪∠=∠⎨⎪=⎩,∴△GPO≌△OPH(SAS),∴全等三角形有3对,故答案为:3;②GE2+FH2=EF2,理由如下:∵△GPE≌△OPF,∴GE=OF,∵△EPO≌△FPH,∴FH=OE,在Rt△EOF中,OF2+OE2=EF2,∴GE2+FH2=EF2,故答案为:GE2+FH2=EF2;(4)如图,作PG⊥OA于G,PH⊥OB于H,在△OPG和△OPH中,PGO PHO POG POH OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OPG ≌△OPH ,∴PG =PH ,∵∠AOB =60°,∠PGO =∠PHO =90°,∴∠GPH =120°,∵∠EPF =120°,∴∠GPH =∠EPF ,∴∠GPE =∠FPH ,在△PGE 和△PHF 中,PGE PHF PG PHGPE FPH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGE ≌△PHF ,∴PE =PF .【点睛】本题考查几何变换综合题,全等三角形的判定和性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2、(1)45︒;(2)()()2220222t t t S t t t ⎧-+<<⎪=⎨->⎪⎩;(3)5 【分析】(1)根据非负数的性质求得,m n 的值,进而求得OB OC =,即可证明OBC 是等腰直角三角形,即可求得BCO ∠的度数;(2)分Q 点在y 轴正半轴,原点,y 轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点B 作BD AQ ⊥,连接EQ ,根据四边形的面积求得5t =,进而求得10,5AP BQ ==,由22BQP ABC OAQ ∠=∠=∠,设ABC OAQ α∠=∠=,BAC β∠=,则BQP ∠=2α,证明ADE BDQ ≌,进而可得,5BQ AE ==1055PE AP AE =-=-=,进一步导角可得PEQ PQE ∠=∠,根据等角对等边即可求得PQ【详解】(1)20n -=2,2m n ∴=-=()(0,2),2,0B C ∴-2,2BO CO ∴==90BOC ∠=︒∴OBC 是等腰直角三角形,∴45BCO ∠=︒(2)①当Q 点在y 轴正半轴时,如图,,2BQ t AP t ==,2OB =,∴2QO t =-0OQ >,0t >∴02t << ∴()21122222S AP OQ t t t t =⨯=⨯⨯-=-+ ②当Q 点在原点时,,,A P Q 都在x 轴上,不能构成三角形,则2t =时,S 不存在③当Q 点在y 轴负半轴时,如图,,2BQ t AP t ==,2OB =,∴2QO t =-0OQ >,0t >∴2t > ∴()21122222S AP OQ t t t t =⨯=⨯⨯-=- 综上所述:()()2220222t t t S t t t ⎧-+<<⎪=⎨->⎪⎩(3)如图,过点B 作BD AQ ⊥,连接EQ,2BQ t AP t ==(0)t >211=22522ABPQ S AP PQ t t t ∴⨯=⨯⨯==四边形 5t ∴=5BQ ∴=,10AP =22BQP ABC OAQ ∠=∠=∠设ABC OAQ α∠=∠=,BAC β∠=,则BQP ∠=2α,∴45BCO ABC BAC αβ∠=∠+∠=+=︒45BAD C CAD βα∴∠=∠+∠=+=︒ADB ∴是等腰直角三角形BD AD ∴=90AOQ BDQ ∠=∠=︒OAQ AQO DBQ AQO ∴∠+∠=∠+∠∴OAQ DBQ ∠=∠α=在ADE 和BDQ △中ADE BDQ DAE DBQ AD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩ADE BDQ ∴≌DE DQ ∴=,5BQ AE ==10AP =1055PE AP AE ∴=-=-=90DEQ BDQ ∠=∠=︒DEQ ∴是等腰直角三角形45EQD ∴∠=︒Rt AOQ 中,OAQ α∠=90AQO α∴∠=︒-904545OQE AQO EQD ααβ∴∠=∠-∠=︒--︒=︒-=BQP ∠=2α,2PQE BQP OQE αβ∴∠=∠+∠=+又452PEQ OAQ EQD ααβ∠=∠+∠=︒+=+PEQ PQE ∴∠=∠PQ PE ∴=5=【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.3、则该直线的解析式为:y =x +令x =0,则y =5,即B (0,5);(2)由(1)知,C (-3,2).如图1,设Q(a,-23 a).∵S△QAC=2S△AOC,∴S△QAO=3S△AOC,或S△Q′AO=S△AOC,①当Q在第二象限即S△QAO=3S△AOC时,1 2OA•y Q=3×12OA•y C,∴y Q=3y C,即-23a=3×2=6,解得a=-9,∴Q(-9,6);②当Q在第四象限S△Q′AO=S△AOC时,1 2OA•y Q=12OA•y C,∴y Q=2y C,即23a=2,解得a=3(舍去负值),∴Q′(3,-2);综上,点Q的坐标为(-9,6)或(3,-2);(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(-3,2),A(-5,0),∴AC∵P2H=P2G,P2H⊥CD,P2G⊥OC,∴CP2是∠OCD的平分线,∴∠OCP2=∠DCP2,∴∠AP2C=∠AOC+∠OCP2,∵∠ACP2=∠ACD+∠DCP2,∴∠ACP2=∠AP2C,∴AP2=AC,∵A(-5,0),∴P2(0).同理:P1(,0).综上,点P的坐标为(0)或(0).【点睛】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强.5.(1)40°;(2)10°;(3)AB∥CF,理由见解析【分析】(1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;(2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.【详解】解:(1)∵∠ADC=110°,∴∠DAC+∠DCA=180°-110°=70°,∵AE平分∠BAC,CD平分∠ACB,∴∠BAC=2∠DAC,∠ACB=2∠DCA,∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,故答案为:40°;(2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,∴∠DEC=100°-53°=47°,∴∠B+∠BAE=∠DEC=47°,∵∠B-∠BAE=27°,∴∠BAE=10°,故答案为:10°;(3)AB∥CF,理由为:如图,延长AC到G,∵AC=CF,∴∠F=∠FAC,∴∠FCG=∠F+∠FAC=2∠F,∵CF⊥CD,∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,∵CD平分∠ACB,∴∠BCD=∠ACD,∴∠BCF=∠FCG=2∠F,∵∠B=2∠F,∴∠B=∠BCF,∴AB∥CF.【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.4、见解析【分析】连接FC,由等腰三角形的性质可得BF=FC;再由AF=FC,即可得AF=BF.【详解】连接FC,如图∵AB=AC,AD平分∠BAC∴AD⊥BC,BD=CD∴AD是BC的垂直平分线∴BF=FC∵FE是AC的垂直平分线∴AF=FC∴AF=BF【点睛】本题考查了等腰三角形的性质,线段垂直平分线的判定与性质,由FE是AC的垂直平分线想到连接FC是关键.5、45 2【分析】根据角平分线定义和直角三角形的两锐角互余求得∠MAC=30°,∠ABC=30°,再根据直角三角形中30°所对的直角边是斜边的一半和勾股定理分别求得MC、AC、AB、BC即可.【详解】解:∵AM是∠BAC的平分线,∠BAC=60°,∠C=90°,∴∠MAC=30°,∠ABC=30°,∴MC=12AM=7.5cm,∴AC=(cm),∴AB=2AC=cm),∴BC452=(cm).【点睛】本题考查角平分线的定义、含30°角的直角三角形的性质、勾股定理,熟知含30°角的直角三角形的性质是解答的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明(一)测试题
一、选择题
1、下列语言是命题的是( )
A.画两条相等的线段
B.等于同一个角的两个角相等吗?
C.延长线段AO 到C ,使OC =OA
D.两直线平行,内错角相等.
2、下列命题:①一个外角小于内角的三角形是钝角三角形;②一个外角大于内角的三角形是锐角三角形;③菱形的四边都相等;④等腰三角形的底角都是锐角;⑤等腰三角形一边上的高就是这边上的中线。

其真命题的个数是( )
A 、1个
B 、2个
C 、3个
D 、4个
3、在△ABC 中,高BD ,CE 所在直线交于O 点,若△ABC 不是直角三角形,且 n A =∠,则∠BOC= ( )
A 、 n
B 、() n -180
C 、() n -90
D 、 n 或() n -180
4、如图,AB∥EF∥CD,EG∥DB,则图中与∠1相等的
角(∠1除外)共有( )
A 、6个
B 、5个
C 、4个
D 、3个
二、填空题
5、命题“任意两个直角都相等”的条件是________,结论是___________,它是________(真或假)命题.
6、三角形的一个外角等于和它相邻的内角的一半,则此三角形是 ;
7、如图,已知AB∥CD =∠=∠=∠α则, 12021001 ;
8、如图,设αα∠∠∠∠∠=∠与,,,则C B A BDC 的关系是 ;
9、如图,已知 ABCD 中BE 平分=∠=∠∠AEB A ABC ,则, 110 。

三、解答题
10、如图,ABC ∆中,DE A AC AB ,, 40=∠=是腰AB 的垂直平分线,求DBC ∠的度数。

11.举例说明“两个锐角的和是锐角”是假命题.
12、如图,已知∠1与∠3互为余角,∠2与∠3的余角互补, 1154=∠,CP 平分∠ACM ,求∠PCM 。

13、如图,ABC ∆中,AF AB CE BC AC ,,⊥⊥平分CAB ∠,过F 作FD∥BC,交AB 于D ,求证:AC=AD
14.已知,如图,AD ⊥BC ,EF ⊥BC ,∠4=
∠C.求证:∠1=∠2
图。

相关文档
最新文档