有限元软件ANSYS飞机机翼的模态案例

合集下载

基于ANSYS的飞机发动机压气机叶片模态分析

基于ANSYS的飞机发动机压气机叶片模态分析

】【 】 『c =
(-) 1 7
中 国 民 航 飞 行 学 院 学 报
J u n l o Ci i Ava i n Fl h Un v ri o C ma o r a f vl it o i t g i est y f h
J .2OI u1 O
VO . . I I 4 2 No
J .2Ol uI O
中 国 民 航 飞 行 学 院 学 报
J u a o Cii Avain Fl h Unv ri o Chn or l f n vl it i t o g iest y f ia
VO _ 1 . l No 4 2
基 于 A YS的 飞机 发 动机 压 气机 叶 片 模 态 分析 NS
忽 略一些 对结 果影 响不 大 的结构 。
这样,相互耦合 的Ⅳ 自由度系统的方程组经 正交变换,成为在模态坐标下相互独立的 N 自由
度系统的方程组,解耦后的第 i 个方程为:

Mlj C f ∑ , =,… 以 + ( l = F( 1, , o , 2 )
=1
(-) 19 式中 , , 别 为模 态 刚度 、模 态 质 C分
( ^ 】 s 】 【 ) () ={ ( ) 【 + i + 】 ) F c { )
(-) 1 2
令 S= ,则( 2变为: 1) -
( 一 【 】 【 】 } F } I 』 + C ) ( )={ ( ) X】 {
(—) 13
重。常见故障现象有 :外物损伤 、强度不足和高
】 『
】 =
(- I 0 若阻尼矩阵也近似被对角化 ,即有:
模态 K分析方法就是以无阻尼的各阶主振型所对
应 的模 态 坐 标 来 代 替 物 理 坐 标 , 使 微 分 方 程 解 耦 ,变 成 各 个 独 立 的微 分 方 程 p。对 式 (一) J 11两边 进行 拉式 变换 ,得 :

ansys有限元分析案例

ansys有限元分析案例

ansys有限元分析案例ANSYS有限元分析案例。

在工程设计和分析领域,有限元分析是一种常用的数值模拟方法,它可以有效地预测结构在受力作用下的变形和应力分布。

而ANSYS作为目前应用最为广泛的有限元分析软件之一,具有强大的建模和仿真功能,被广泛用于航空航天、汽车、船舶、建筑等领域。

本文将通过一个实际案例,介绍如何使用ANSYS进行有限元分析。

案例背景:某工程结构在实际使用过程中出现了裂纹现象,为了找出裂纹的成因并进行有效的修复措施,我们决定利用ANSYS进行有限元分析。

首先,我们需要建立结构的有限元模型,然后施加相应的载荷和边界条件,最终得出结构的应力分布和变形情况,从而找出裂纹的位置和原因。

建立有限元模型:首先,我们需要将结构进行几何建模,并进行网格划分,将结构划分为有限元单元。

在建立模型的过程中,需要考虑到结构的几何形状、材料属性以及实际工况下的载荷和边界条件。

在ANSYS中,可以通过几何建模模块进行结构建模,然后选择合适的单元类型和网格划分方法,对结构进行离散化处理。

施加载荷和边界条件:在建立完有限元模型之后,我们需要定义结构的加载情况,包括静载荷、动载荷、温度载荷等。

同时,还需要定义结构的边界条件,如约束条件、支撑条件等。

这些载荷和边界条件的设置需要符合实际工况,并且需要考虑到结构的非线性、材料的非均质性等因素。

进行仿真分析:一切准备就绪后,我们可以进行仿真分析,通过ANSYS求解器对结构进行有限元分析。

在仿真分析过程中,ANSYS会根据定义的载荷和边界条件,对结构进行求解,并得出结构的应力分布、位移和变形情况。

通过对仿真结果的分析,可以找出结构中的弱点和故障部位,为后续的修复工作提供参考依据。

结果分析与修复措施:最后,我们需要对仿真结果进行深入分析,找出裂纹的具体位置和成因。

根据分析结果,可以制定针对性的修复措施,如增加加强筋、更换材料、改变结构设计等。

通过对仿真结果的分析,可以有效地指导后续的结构修复工作,并提高结构的安全性和可靠性。

ansys有限元法解题实例

ansys有限元法解题实例

Ansys有限元课程设计问题一:飞机机翼振动模态分析机翼模型沿着长度方向具有不规则形状,而且其横截面是由直线和曲线构成(如图所示)。

机翼一端固定于机身上,另一端则自由悬挂。

机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3一、操作步骤:1.选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;2.B(2,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;3.D(1.9,0.45,0)为样曲线上一点;4.C(2.3,0.2,0)为样条曲线曲率最大点,样条曲线的顶点;5.E(1,0.25,0)与点A构成直线,斜率为0.25;6.通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状。

沿Z 方向拉伸,就得到机翼的实体模型;7.创建截面如图:机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3 8.定义网格密度并进行网格划分:选择面单元PLANE42和体单元SOLID45进行划分网格求解。

面网格选择单元尺寸为0.00625,体网格划分时按单元数目控制网格划分,选择单元数目为109.对模型施加约束,由于机翼一端固定在机身上所以在机翼截面的一端所有节点施加位移和旋转约束二、有限元处理结果及分析:机翼的各阶模态及相应的变形:一阶振动模态图:二阶振动模态图:三阶振动模态图:四阶振动模态图:五阶振动模态图:命令流:/FILNAM,MODAL/TITLE,Modal analysis of a modal airplane wing /PMETH,OFF,0KEYW,PR_STRUC,1/UIS,MSGPOP,3/PREP7ET,1,PLANE42ET,2,SOLID45MP,EX,1,380012MP,PRXY,1,0.3MP,DENS,1,1.033E-3K,1,K,2,2K,3,2.3,0.2K,4,1.9,0.45K,5,1,0.25/TRIAD,OFF/PNUM,KP,1LSTR,1,2LSTR,5,1BSPLIN,2,3,4,5,,,-1,0,,-1,-0.25,, AL,1,2,3ESIZE,0.25MSHKEY,0MSHAPE,0,2DAMESH,1SAVEESIZE,,10TYPE,2VEXT,1,,,0,0,10/SOLUANTYPE,MODAL MODOPT,SUBSP,5,,,,OFF EQSLV,SPARMXPAND,5,,,,0.001 LUMPM,0PSTRES,0ESEL,U,TYPE,,1NSEL,S,LOC,Z,0D,ALL,ALLALLSEL,ALLSOLVE/POST1SET,LISTSET,FIRSTPLDI,,ANMODE,10,0.5,,0FINISH13/EXIT,ALL问题二:内六角扳手静力分析内六角扳手在日常生产生活当中运用广泛,先受1000N的力产生的扭矩作用,然后在加上200N力的弯曲,分析算出在这两种外载作用下扳手的应力分布。

基于ANSYS Workbench飞机有限元仿真分析

基于ANSYS Workbench飞机有限元仿真分析

基于ANSYS Workbench飞机有限元仿真分析
伍丹霞;马英成
【期刊名称】《机械管理开发》
【年(卷),期】2024(39)2
【摘要】飞机在空中的飞行状态对于航空飞行的安全有着不可忽视的影响。

根据曲面梯形机翼飞机的特点,运用UG NX软件对其进行了三维建模,并导入至ANSYS Workbench中,从而进行有限元静力学仿真研究。

探讨了不同材料的曲面梯形机翼形状的飞机在飞行过程中的总变形图和应力分布图。

结合总变形图和应力分布图,仿真结果表明,机翼的部分有较大的变形,最危险的地方存在于机翼的连接处和机翼边缘,故此需要对其材料进行调整或者优化飞机的结构,优化后的结构能够满足飞机飞行的要求。

并进一步对结构钢材料和铝合金材料的模型进行了对比,发现采用结构钢的飞机机翼应变分布的更合理,满足飞行的作业要求。

【总页数】4页(P5-7)
【作者】伍丹霞;马英成
【作者单位】赣东学院机械与电子工程系;鞍钢集团工程技术有限公司
【正文语种】中文
【中图分类】V223
【相关文献】
1.基于ANSYS Workbench的FSC赛车车架有限元仿真
2.塑料材料基于ANSYS Workbench有限元静力结构仿真时本构关系选取的研究
3.基于ANSYS
Workbench的型材拉弯有限元仿真模块开发4.基于ANSYS Workbench的柔性底座有限元仿真模块开发5.基于ANSYS Workbench的锥形密封圈有限元仿真分析
因版权原因,仅展示原文概要,查看原文内容请购买。

ANSYS在飞机设计中的应用

ANSYS在飞机设计中的应用

ANSYS 在飞机设计中的应用 飞机一般由机翼起落架和飞机操作系统组成用以往的经典工程分析进行应力分析已满足不了现代飞机型号设计的要求分析的部位具有局限性使得复杂的工程问题得以用有限元法进行分析使用有限元对飞机结构进行分析具有极大的优越性它可以对飞机的各大部件如机身舵面气密舱热分析电磁分析固体耦合结构耦合结构耦合以及电流体完全能满足飞机设计中对有限元分析的需求设计军用飞机在高振动条件下工作的马达控制器装有PCB 板为了在实验前揭露潜在的设计问题采用ANSYS 进行了随机振动分析穆格公司的工程师杰拉德.米耶尔兹说我们发现ANSYS是一个极有价值的工具识别潜在的许多问题图3-2 为变形 1. 总体 在飞机总体设计分析中要考虑的问题有l 飞机12 飞机用ANSYS 进行了动力响应分析 ANSYS 强大的动力响应分析功能可以快速地进行模态和振型计算可以准确地计算出飞机在各种条件下的模态和振型ANSYS 共有九十九层的复合材料壳单元和实体单元这些单元允许叠加各向同性或各向异性材料层ANSYS 提供的失效准则有最大应变失效准则Wu 失效准则ANSYS 的复合材料功能特别适合于有大量复合材料的飞机系统ANSYS/LS-DYNA 为机身在振动一方面软件自身提供了铆接焊缝另一方面显示求解方法在振动等瞬态分析中容易处理联接  解决动态撞击问题也是ANSYS 的优势所在但要想通过实验来获得这样的效果是不现实的而且设计周期也会很长还特有安全带单元图3-5 图3-5 飞机事故模拟 1 6 8ANSYS 能方便地进行失稳分析从稳态到瞬态的各种气动力学问题所以对计算的结构形式没有任何限制ANSYS 在航空航天器空气动力学分析中的应用ANSYS 在航空航天器电子产品热设计中的应用 ANSYS 具有强大的电磁场分析功能可以很方便地计算军用飞机的雷达和红外隐身特性ANSYS 在航空航天器电磁兼容直径为2 毫米的水滴会使后者发生塑性变形一只重约250 克的飞鸟足以使飞机的挡风玻璃发动机叶片或外罩等严重变形或破碎因此鸟撞问题一直是航空航天领域倍受关注的难题一般为50 毫秒左右结构亦将产生大变形例如挡风玻璃破碎发动机叶片断裂等结构的动态响应将在较长时间内持续发生 由于鸟撞整个过程在较短的时间内完成因此采取方法是以应用有限元技术模拟鸟撞为主 有限元程序在模拟鸟撞时 l 飞鸟物理材料的描述 l 飞鸟流动变形的描述 l 飞鸟与飞行器接触的描述 l 飞行器结构大变形和破坏过程的描述 当前该程序是著名高度非线性有限元显式求解程序爆炸等动载荷下的动态响应可进行流体 飞鸟在高速撞击时将产生强大压力在这样的变形条件下ANSYS/LS-DYNA 中的飞鸟材料采用流体动力材料粘度外如可压缩性 以前飞行器对飞鸟变形过程不够重视还与其流动过程以及破碎的时间密切相关正确描述飞鸟的流动和破碎过程对整个分析至关重要ANSYS/LS-DYNA 提供两种方式描述飞鸟的流动和破碎或ALEEULER 单元或ALE足以描述与结构分离前的变形在图3-6 的鸟撞过程模拟中 图3-6 叶片的鸟撞过程模拟 ANSYS/LS-DYNA 在处理飞鸟与飞行器的接触过程中亦提供两种方式或ALE使用结构/结构接触算法采用流体/结构耦合算法飞行器可使用ANSYS/LS-DYNA 附加破坏算法的结构材料挡风玻璃弹塑性破坏材料发动机外罩机体等smooth-particle-hydrodynamics (SPH)这种方法的特点是以一组质点定义相应物质更易于描述飞鸟的变形和破碎过程图3-7 的叶片鸟撞过程即采用的这种方法最初的机翼结构设计造成内部横梁断裂图3-8 为鸟撞过程已经是相当成熟的技术关于鸟撞的研w w w . i t 1 6 8 . c o m究文章每年都占一定比例发动机叶片 图3-8 GV 型湾流豪华公务机机翼前缘鸟撞模拟 3. 机翼 机翼大致由蒙皮翼梁和墙机翼主体受到气动载荷可以运用ANSYS 提供的梁单元壳单元各向异性单元对机翼进行静力分析模态抖振等失稳分析结构优化设计然后将计算结果作为气动激励进一步计算分析机翼的动力响应图3-9 机翼动力响应分析机翼的固定件还可以运用ANSYS 的非线性功能进行塑性和接触等非线性分析都是典型的薄壁结构隔框承受的主要载荷有l 惯性载荷 l 地面载荷 l 动力装置载荷 l 其他载荷 机身骨架由梁组成梁单元的断面参数定义结果表示非常不方便并允许用户自定义不规则断面形状库方便使模型表示及检查更加容易按拉正压负的工程习惯绘制彩色弯矩图 ANSYS 强大而方便的建模及载荷处理功能杆单元三维实体单元可方便动力响应分析颤振等失稳分析结构优化设计结构耦合分析功能可以对机身进行温度场计算以及热应力和热变形计算移动壁面的功能可以方便地模拟机身的飞行状态利用ANSYS 的流图3-10 对机身的固定件还可以运用ANSYS 的非线性功能进行塑性和接触等非线性分析以确定过渡圆角半径和销钉厚度蓝色单元表示轴承 5. 起落架 在飞机设计里为了保证飞机的安全起飞要求起落架具有足够的强度为了使飞行器离地后具有良好的性能 1 6 8图3-11 轮胎与地面碰撞的仿真分析 可以运用ANSYS 提供的多种单元对起落架进行静力分析飞机着陆过程是典型的冲击类问题可对着陆过程进行冲击分析损伤容限分析 起落架在载荷上要承受强冲击载荷因此起落架的分析是高度非线性分析滑动间隙弹簧组合矩阵单元可方便地模拟多种阻尼缓冲件的静因此在起落架的分析中可以考虑进所有的主要因素同样可以运用ANSYS 的分析计算功能进行各种分析可以模拟在紧急状况下安全部件对乘员的保护过程提高了安全性图3-13 为坐椅的应力云图锻件这些加工过程涉及冲击类载荷接触非线性的塑性大变形过程应力场为提高工件的加工质量制定合理的工艺过程提供依据热接触类型热塑性材料本构模式ALE 及Euler 三种描述方式  w w w . i t 1 6 8 . c o mLS-DYNA 时间积分器采用中心差分格式由于质量矩阵进行对角化处理一般的冲压铸造等问题合理控制有限元规模这样的效率是其它程序难以相比的可良好地完成冲压模拟拉延切边翻边分析板料的减薄拉裂回弹板料通过给定材料的FLD判断板料在拉延过程中局部开裂现象用于板料成形的材料模式是各种弹塑性材料强化特征随动强化混合强化以及应变率对材料强化的影响适于板成形分析的有12种penalty在接触计算过程中考虑壳单元厚度及其变化可在计算过程中对板料网格进行局部加密材料在多数情况下经历较大的温度变化ANSYS/LS-DYNA 中热塑性材料模型很适于描述锻压过程中的材料行为ANSYS/LS-DYNA 特有的单点积分良好地解决了大变形体积锁死问题应力更新中采用Jaumann 应力率在剪切变形较大时 在多数锻压分析中则随着金属件成形过程的继续将导致单元精度降低甚至发生畸变ANSYS/LS-DYNA 可以自动进行网格重划分ANSYS/LS-DYNA 早已采用一种更为先进的网格ALEALE 网格进行Rezoning 的目的和过程与Remeshing 基本相同后者是拉格朗日网格ALE 结合拉格朗日和欧拉网格各自的优点除此之外此方法的最大特点是物质与网格相互独立同时时间步长不会因变形的增大而降低此外如冷却水耦合分析欧拉构形主要有三种二阶精度的Van Leer多物质流体的单元构形主要有二种多种材料的混合单元(压力平衡)shell不需要滑移界面此类求解器的加入可求解如自由界面流动流体混合金属构件浇注成型图3-16 浇注过程模拟 ANSYS/LS-DYNA 在进行浇注模拟时并将其材料定义成空或任何物质Euler ambient即物质由此进入Euler 区或 ANSYS/LS-DYNA 的流体介质定义为流体动力材料即压力方程随着物质由浇口流入Euler 区最终达到平衡LS-DYNA 中可方便施加温度边界条件和热生成 浇注过程模拟完成后ANSYS 的相变分析及热变形应力分析功能考察不同的落沙条件PCC 叶片制造公司输入熵与温度关系取得了很好的结果图3-17 中红色部分表示仍然处在熔化状态 图3-17w w w . i t 1 6 8 .。

基于有限元的机翼结构模态分析

基于有限元的机翼结构模态分析
(2)桁条:弯矩产生的轴向应力,同时还承受 由局部空气产生的剪力,桁条上由 机翼弯矩产生的轴向应力决定了桁 条的强度。
(3)翼梁:腹板和缘条共同 组成飞机的翼梁,与机身直接固 接。当承受弯矩时,缘条承受压缩 或者拉伸;当承受剪力时,腹板承 受剪力;梁腹板和蒙皮所形成的闭 室可以承受扭矩。
R 研发设计 esearch design
摘要:从有限单元法出发,通过ANSYS软件对机翼简化模型进行模态分析,求解得到各个阶次振动条件下 的相应情况,首先对机翼的原理、结构划分、有限元方法进行简要介绍,然后在ANSYS软件的基础上借助 有限元法求解机翼在一到五阶模态下的响应,完整经历有限元分析流程,给出了有限元方法在要解决的问 题中的具体应用。 关键词:机翼;模态分析;有限元仿真 文章编号:2096-4137(2019)05-064-03 DOI:10.13535/ki.10-1507/n.2019.05.17
(1)具有清晰的物理模型和 物理概念。有限元模型从几何模型 入手,在其基础上建立了基于数值 运算的求解过程,一开始就基于力 学的角度进行转化,使得这一方法 便于入手,方便实践。
(2)求解的方法多种多样。 有限元既可以通过结构力学的二力 杆件原理进行系统分析,也可以通 过虚功原理进行理论推导,变分法 也对这一方法做出了严密的数学逻 辑解释。通过多样的理论方法解决 同一个问题,不仅探索验证了有限 元理论,还使得计算精度增大,控 制误差在可接受范围内。
■ 文/朱秩成
基于有限元的机翼结构模态分析
1 机翼及其基本结构
1.1 机翼 在飞机飞行升空的过程中,
飞机机翼具有极其重要的作用。由 机翼产生的升力允许飞机在空中飞 行。飞机仰角为飞机提供了升力, 机翼的弧形产生前进的阻力和向下 的力,也就是牛顿第三定律相互作 用力。在现实生活中,机翼产生升 力时,在后缘处会产生气流交汇, 否则将会产生一个气流速度非常大 的点在机翼的后缘。 1.2 机翼基本结构

Ansys实例-飞机机翼模态分析

Ansys实例-飞机机翼模态分析

实例二:飞机机翼模态分析如图为飞机一支机翼,已知密度ρ=0.38e3kg/m³,弹性模量E=3.8e5Mpa,泊松比ε=0.35,L7=10m,点1(0,0,0),点2(2,0,0),点3(2.3,0.2,0),点4(1.9,0.45,0),点5(1,0.25,0)。

分析其振动情况。

1.设置工作路径:File> Change Directory>Close2.定义工作名作名称和模拟标题:File>ChangeJobname,输入Half of Wings;File>ChangeTittle,输入The Vibrational Analysis on Half of Wings,Close 3.定义对象类型:Preferences>Structural>Close.如图1所示。

图14.刷新显示:鼠标右键点击Replot5.Apply,再选Brick 8node 185,OK,Close.如图2,3所示。

图2图36.设置材料参数:Material Props>MaterialModels>Favorites>Linear Static >Density,弹框内输入DENS=8.3e2。

如图4所示。

图47.Preprocessor >Material Props>Material Models >Favorites>Linear Static>Linear Isotropic,在弹框内输入EX=3.8e5,PRXY=0.35。

如图5所示。

图58.建立关键点模型:Preprocessor>Modeling>Create>Keypoints>In Active CS,在弹框内依次输入点1:0,0,0;点2:2,0,0;点3:2.3,0.2,0;点4:1.9,0.45,0;点5:1,0.25,0。

ansys飞机机翼的模态分析

ansys飞机机翼的模态分析

求解
后处理—显示模态频率
动态显示模态振型
定义单元尺寸并划分网格
注:此时单元类型为1,可不指定
定义单元属性:单元类型为2
定义单元尺寸
将面沿Z轴拉伸10
有限元模型
定义求解类型—模态分析
设置模态求解方法和扩展模态阶数
可以设置频率范围
设置实体---面和节点:目的是为方约束
显示所有实体
1.定义单元类型、材料属性 2.建立几何模型 关键点 K1,(0,0,0) K2(2,0,0) K3(2.3,0.2,0) K4(1.9,0.45,0) K5(1,0.25,0)
Line:连线1和2;1和5
Spline→with options
2、3、4、5
→ spline
with Kps
由线形成面
飞机机翼的模态分析
如图所示,为一模型飞机的机翼。机翼沿长度方 向轮廓一致,其他的横截面由直线和样条曲线定 义。机翼的一端固定在机体上,另一端为悬空的 自由端。机翼由低密度聚乙烯制成,有关性质参 数为:EX,=38e3 PRXY=0.3 DENS=1.033e-3
飞机机翼的模态分析
单元类型:ET,1,PLANE42 ET,2,SOLID45 EX,=38e3 PRXY=0.3 DENS=1.033e-3

ansys有限元法解题实例

ansys有限元法解题实例

Ansys有限元课程设计问题一:飞机机翼振动模态分析机翼模型沿着长度方向具有不规则形状,而且其横截面是由直线和曲线构成(如图所示)。

机翼一端固定于机身上,另一端则自由悬挂。

机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3一、操作步骤:1.选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;2.B(2,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;3.D(1.9,0.45,0)为样曲线上一点;4.C(2.3,0.2,0)为样条曲线曲率最大点,样条曲线的顶点;5.E(1,0.25,0)与点A构成直线,斜率为0.25;6.通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状。

沿Z 方向拉伸,就得到机翼的实体模型;7.创建截面如图:机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r=886kg/m^3 8.定义网格密度并进行网格划分:选择面单元PLANE42和体单元SOLID45进行划分网格求解。

面网格选择单元尺寸为0.00625,体网格划分时按单元数目控制网格划分,选择单元数目为109.对模型施加约束,由于机翼一端固定在机身上所以在机翼截面的一端所有节点施加位移和旋转约束二、有限元处理结果及分析:机翼的各阶模态及相应的变形:一阶振动模态图:二阶振动模态图:三阶振动模态图:四阶振动模态图:五阶振动模态图:命令流:/FILNAM,MODAL/TITLE,Modal analysis of a modal airplane wing /PMETH,OFF,0KEYW,PR_STRUC,1/UIS,MSGPOP,3/PREP7ET,1,PLANE42ET,2,SOLID45MP,EX,1,380012MP,PRXY,1,0.3MP,DENS,1,1.033E-3K,1,K,2,2K,3,2.3,0.2K,4,1.9,0.45K,5,1,0.25/TRIAD,OFF/PNUM,KP,1LSTR,1,2LSTR,5,1BSPLIN,2,3,4,5,,,-1,0,,-1,-0.25,, AL,1,2,3ESIZE,0.25MSHKEY,0MSHAPE,0,2DAMESH,1SAVEESIZE,,10TYPE,2VEXT,1,,,0,0,10/SOLUANTYPE,MODAL MODOPT,SUBSP,5,,,,OFF EQSLV,SPARMXPAND,5,,,,0.001 LUMPM,0PSTRES,0ESEL,U,TYPE,,1NSEL,S,LOC,Z,0D,ALL,ALLALLSEL,ALLSOLVE/POST1SET,LISTSET,FIRSTPLDI,,ANMODE,10,0.5,,0FINISH13/EXIT,ALL问题二:内六角扳手静力分析内六角扳手在日常生产生活当中运用广泛,先受1000N的力产生的扭矩作用,然后在加上200N力的弯曲,分析算出在这两种外载作用下扳手的应力分布。

ansys机械工程应用精华30例

ansys机械工程应用精华30例

ANSYS机械工程应用精华30例本文将介绍30个关于ANSYS机械工程应用的精华案例,包括结构分析、流体动力学、传热分析等多个方面。

结构分析1.案例1:汽车车身的弯曲性能分析使用ANSYS进行车身的有限元分析,确定车身在道路上行驶过程中的弯曲程度和扭曲情况。

2.案例2:飞机机翼的应力和变形分析使用ANSYS对飞机机翼进行有限元分析,以评估其在不同飞行条件下的应力和变形情况。

3.案例3:建筑结构的地震响应分析使用ANSYS进行地震响应分析,预测建筑结构在地震中的位移、速度和加速度等动态响应。

4.案例4:管道支架的疲劳寿命分析使用ANSYS进行管道支架的疲劳寿命分析,以确定其可靠性和寿命。

5.案例5:导轨系统的刚度和振动分析使用ANSYS对导轨系统进行刚度和振动分析,以提高导轨系统的性能和稳定性。

流体动力学6.案例6:风力发电机叶片的气动性能分析使用ANSYS进行风力发电机叶片的流动分析,以确定其气动性能和发电效率。

7.案例7:涡轮机的流动特性分析使用ANSYS对涡轮机的流动特性进行数值模拟,以改进其效率和性能。

8.案例8:水泵系统的压力分布和流量分析使用ANSYS对水泵系统进行压力和流量分析,以优化其设计和性能。

9.案例9:船舶的航行阻力和流场分析使用ANSYS对船舶进行流体动力学分析,研究其航行阻力和流场特性。

10.案例10:油气管道的流量和压力损失分析使用ANSYS对油气管道进行流体分析,以评估管道系统中的压力损失和流量分布。

传热分析11.案例11:电子器件的热管理分析使用ANSYS进行电子器件的传热分析,以提高散热效率并防止温度过高。

12.案例12:热交换器的传热性能分析使用ANSYS对热交换器进行传热分析,以评估其传热性能和热效率。

13.案例13:混凝土结构的温度变化分析使用ANSYS对混凝土结构进行传热分析,以预测其温度变化情况。

14.案例14:玻璃窗的热传导和辐射分析使用ANSYS对玻璃窗进行热传导和辐射分析,以改善建筑的保温性能。

ANSYS实例分析-飞机机翼分解

ANSYS实例分析-飞机机翼分解

ANSYS实例分析——模型飞机机翼模态分析一,问题讲述。

如图所示为一模型飞机机翼,其长度方向横截面形状一致,机翼的一端固定在机体上,另一端为悬空自由端,试对机翼进行模态分析并显示机翼的模态自由度。

是根据一下的参数求解。

机翼材料参数:弹性模量EX=7GPa;泊松比PRXY=0.26;密度DENS=1500kg/m3。

机翼几何参数:A(0,0);B(2,0);C(2.5,0.2);D(1.8,0.45);E (1.1,0.3)。

问题分析该问题属于动力学中的模态分析问题。

在分析过程分别用直线段和样条曲线描述机翼的横截面形状,选择PLANE42和SOLID45单元进行求解。

求解步骤:第1 步:指定分析标题并设置分析范畴1.选取菜单途径Utility Menu>File>Change Title2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。

3.选取菜单途径Main Menu>Preferences.4.单击Structure选项使之为ON,单击OK。

主要为其命名的作用。

第2 步:定义单元类型1.选取菜单途径:MainMenu>Preprocessor>Element Type>Add/Edit/Delete。

2.Element Types对话框将出现。

3.单击Add。

Library ofElement Types对话框将出现。

4.在左边的滚动框中单击“Structural Solid”。

5.在右边的滚动框中单击“Quad 4node 42”。

6.单击Apply。

7.在右边的滚动框中单击“Brick 8node 45”。

8.单击OK。

9.单击Element Types对话框中的Close按钮。

第3 步:指定材料性能1.选取菜单途径Main Menu>Preprocessor>MaterialProps>-Constant-Isot ropic。

Ansys求解机翼流场实例+-+Zhjberry

Ansys求解机翼流场实例+-+Zhjberry

Ansys求解机翼流场实例Zhjberry1 设置软件环境打开Main menu下的Preference对话框,进行如图1所示的设置(设置的目的是让后面只显示与Flotran有关的菜单和命令,使得工作更方便):图1 设置软件环境2 建模使用第三方CAD软件(如本例)或用Ansys自带的前处理器生成如图2所示的几何模型。

方形盒子表示要求解的流场域,机翼有一定后掠角。

本例近似模拟风洞中的吹风模型。

图2 几何模型3 设置网格单元类型选择单元类型,如图3所示:图3 设置单元类型4 划分网格首先进行网格设置,如图4所示。

设置完成以后,单击Mesh按钮,选择实体准备网格划分。

如图5所示:单击OK按钮进行网格划分。

划分的结果如图6所示:图6 网格划分结果5 施加载荷(边界条件)首先添加速度载荷,如图7所示:来流速度VY=100m/s,VX和VZ都为0,(本例中所用单位都为国际单位)如图8所示:图8 设置来流速度如图9所示,面1、3、4、5和机翼表面VX、VY和VZ都为0,面2压力设置为0。

图9 设置其他边界条件(载荷)6 设置流体属性如图10所示:图10 设置流体属性本例中流体为空气,使用国际单位,所以选择AIR-SI。

7 设置流体参考环境。

如图11所示:图11 设置流体参考环境这里使用默认值。

8 设置求解控制如图12所示:图12 设置全局求解控制把全局迭代循环次数设置为60次,其他使用默认值。

9 求解准备工作结束,保存数据库。

单击菜单Run FLOTRAN进行求解。

求解的结果如图13所示:图13 求解结果10 进行后处理,显示计算结果读入结果文件。

如图14所示:图15和图16分别设置和显示流场速度:图15 设置速度场图16 显示速度场图17和图18分别设置和显示流场压强:图17 设置流场压强图18 显示流场压强下面显示粒子迹线。

首先定义粒子(需要把工作平面移动到相应平面上),如图19所示:通过菜单显示通过粒子的迹线动画,如图20所示:图20 使用菜单显示迹线动画进一步设置显示内容,我们这里设置为显示速度VY,如图21所示:图21 设置显示的内容单击OK按钮以后生成的动画如图22所示:图22 生成的迹线动画本例中可以看出空气速度在机翼前沿逐渐下降,驻点处减为零,而静压在驻点达到最大值,绕机翼上下表面以后速度上升,静压减小的过程。

ANSYS实例分析-飞机机翼

ANSYS实例分析-飞机机翼

ANSYS实例分析——模型飞机机翼模态分析一,问题讲述。

如图所示为一模型飞机机翼,其长度方向横截面形状一致,机翼的一端固定在机体上,另一端为悬空自由端,试对机翼进行模态分析并显示机翼的模态自由度。

是根据一下的参数求解。

机翼材料参数:弹性模量EX=7GPa;泊松比PRXY=0.26;密度DENS=1500kg/m3。

机翼几何参数:A(0,0);B(2,0);C(2.5,0.2);D(1.8,0.45);E (1.1,0.3)。

问题分析该问题属于动力学中的模态分析问题。

在分析过程分别用直线段和样条曲线描述机翼的横截面形状,选择PLANE42和SOLID45单元进行求解。

求解步骤:第1 步:指定分析标题并设置分析范畴1.选取菜单途径Utility Menu>File>Change Title2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。

3.选取菜单途径Main Menu>Preferences.4.单击Structure选项使之为ON,单击OK。

主要为其命名的作用。

第2 步:定义单元类型1.选取菜单途径:MainMenu>Preprocessor>Element Type>Add/Edit/Delete。

2.Element Types对话框将出现。

3.单击Add。

Library ofElement Types对话框将出现。

4.在左边的滚动框中单击“Structural Solid”。

5.在右边的滚动框中单击“Quad 4node 42”。

6.单击Apply。

7.在右边的滚动框中单击“Brick 8node 45”。

8.单击OK。

9.单击Element Types对话框中的Close按钮。

第3 步:指定材料性能1.选取菜单途径Main Menu>Preprocessor>MaterialProps>-Constant-Isot ropic。

机翼模型的模态分析

机翼模型的模态分析

教程6:机翼模型的模态分析问题阐述这是一个机翼的简单模态分析。

该机翼模型沿着长度方向具有不规则形状,而且其横截面是由直线和曲线构成(如图所示)。

机翼一端固定于机身上,另一端则自由悬挂。

问题研究的目的是计算机翼的固有频率和振型。

所给条件机翼的尺寸见上图所示,材料是低密度的聚乙烯,其杨氏模量为38×103 psi,泊松比为0.3,密度为1.033×10-3 slugs/in3。

近似与假设假设机翼与机身相连的一端所有自由度完全固定。

机翼材料特性为常数并是各向同性。

使用一个体模型来构造机翼横截面的2-D模型,创建一个合理的网格并将横截面拉伸成3-D的体模型,系统会自动对体模型进行网格划分。

为了以最少的时间来创建体模型,要简化翼面2-D模型的创建操作。

为了更好地模拟翼面的形状,需要建立更多的数据点。

此外,本例中所做的离散化是相当粗糙的,即单元网格太大,因此计算结果误差也非常大。

故该练习只作为一种方法练习,其计算精度不必考虑。

交互式的求解过程1. 建立几何模型1.1 创建给定位置的关键点1.Main Menu :Preprocessor-Modeling-CreateKeypointIn Active CS 。

2.输入关键点号1。

3.分别输入0,0,0作为关键点1的坐标值。

4.按下Apply 按钮完成第一个点的创建。

5.输入关键点号2。

6.分别输入2,0,0作为关键点2的坐标值。

7.按下Apply 按钮完成第二个点的创建。

8.输入关键点号3。

39.输入2.3,0.2,0作为关键点3的坐标值。

10.按下Apply 按钮完成第三个点的创建。

11.输入关键点号4。

12.输入1.9,0.45,0作为关键点4的坐标值。

13.按下Apply 按钮完成第四个点的创建。

14.输入关键点号5。

15.分别输入1,0.25,0作为关键点5的坐标值。

16.按下OK 按钮完成所有点的创建。

1.2 创建关键点之间的直线和曲线1.Main Menu :PreprocessorModeling-Create4 3 2Lines-LinesStraight Line2.依次选择关键点1,2,5,1(点1在原点处)。

ANSYS用于机翼有限元分析的建模研究

ANSYS用于机翼有限元分析的建模研究
影响求解精度 , 划分网格后需在 A s 中检查、 ns y 修正网 格单元质量 .
蒙皮 、 长桁的受压稳定性 , 部分加 强翼 肋还可传递扭
矩. 蒙皮用来 构成机翼 外形和 承受局部空气 动力 , 部
* 收稿 日 : 0 — 3 2 期 2 6 0 —1 0
基金项目: 中国人民解放军总装备部预研管理中心十五装备预先研究项 目(12000) 43711 2 第一作者: 黄旌(95 )男 , 17 一 , 河南信阳人 , 讲师, 主要从事力学、 航空测试的教学与科研工作 .
中图分 类号 : 131 32 文献标识码 : A 文章编号 : 10 —92 (0 60 一O0 —0 08 i8 20 )2 O 8 4
A ss ny 是融结构 、 、 热 流体、 电磁、 声学于一体的大 型通用有限元分析软件 , 己广泛应用于机械 、 交通 、 军
分蒙皮还要承受较大的弯矩和扭矩 . 在一般对机翼整
根据轻型飞 机机翼 的结构 特点可 以采 用 “ 一 杆 板” 机翼模型 . 翼梁、 翼墙 、 长桁、 翼肋一般为工字型结 构或类工字型结构 , 由上缘、 下缘 和之间的腹板组成 .
上缘 、 下缘主要承担 由弯曲引起的拉、 压轴力 , 腹板主 要承担由弯 曲和扭转引起 的剪力 . 建立模 型时 , 针对 结构受力特点可将上缘、 下缘 和腹板分开采用不 同的 元素 建 模 . 缘、 缘 结 构可 采 用 A s 空 间杆件 上 下 ny s
黄 旌, 高 涛
( 空军第一航 空学院机械工程 系, 河南 信 阳 4 40 ) 600
摘 要: 以某型轻型飞机机翼为例, 讨论了在 a y 中如何根据复杂结构的结构特点 , ms 应用 A D 语言, PL 建立合理

ANSYS模态分析实例和详细过程

ANSYS模态分析实例和详细过程

ANSYS模态分析实例和详细过程ANSYS是一款被广泛应用于工程领域的有限元分析软件,可以进行多种不同类型的分析,包括模态分析。

模态分析是通过对结构进行振动分析,计算得到结构的固有频率、振型和阻尼比等参数,对结构的动力响应进行预测和分析。

本文将介绍ANSYS模态分析的实例和详细过程。

一、模态分析实例假设我们有一个简单的悬臂梁结构,长度为L,横截面面积为A,杨氏模量为E,密度为ρ。

我们想要计算该梁结构的固有频率、振型和阻尼比等参数,以评估其动力特性。

二、模态分析过程1.准备工作在进行模态分析之前,我们需要先准备好结构的有限元模型。

假设我们已经完成了悬臂梁结构的几何建模和网格划分,并且已经定义好了材料属性和约束条件。

2.设置分析类型和求解器打开ANSYS软件,并选择“Structural”工作台。

在“Analysis Settings”对话框中,选择“Modal”作为分析类型。

然后,在“Analysis Type”对话框中选择“Modes”作为解决方案类型。

3.定义求解控制参数在“Analysis Settings”对话框中,点击“Solution”选项卡。

在该选项卡中,我们可以定义求解控制参数,例如计算模态频率的数量、频率范围和频率间隔等。

4.添加约束条件在模态分析中,我们需要定义结构的边界条件。

假设我们对悬臂梁的一端施加固定边界条件,使其不能在该位置发生位移。

我们可以在“Model”工作区中选择相应的表面,然后右键点击并选择“Fixed”。

5.添加载荷在模态分析中,我们通常可以不添加外部载荷。

因为模态分析着重于结构的固有特性,而不是外部激励。

6.定义材料属性在模态分析中,我们需要定义材料的弹性性质。

假设我们已经在材料库中定义了结构所使用的材料,并在“Model”工作区中选择了适当的材料。

7.运行分析完成以上设置后,我们可以点击“Run”按钮开始运行分析。

ANSYS将计算结构的固有频率、振型和阻尼比等参数。

ANSYS_新技术助力大飞机总体_气动设计

ANSYS_新技术助力大飞机总体_气动设计

ANSYS 新技术助力大飞机总体/ 气动设计针对大飞机总体布局和气动力设计中的关键技术以及目前遇到的种种问题,ANSYS 公司凭借优秀的多物理场协同仿真技术、航空领域广泛应用的CFD 求解技术、领先的CFD 湍流计算模型和高效的气动噪声模型及完善的技术服务体系,对解决上述问题将起到有效的推动作用。

大飞机研发总体布局和气动力设计关键技术目前存在的问题大飞机研发需要的关键技术很多,但总体布局和气动力技术是设计的重中之重。

比如总体技术方案与气动布局选型、总体外形参数优化、超临界机翼与高效增升装置研究、气动控制与减阻技术、大展弦比机翼气动弹性分析计算技术、高效的气动降噪与发动机降噪技术、超临界机翼颤振分析和空投与空降时飞机稳定性分析等[1]。

下面就上述重点问题进行详细阐述:(1)总体技术方案与气动布局选型。

由于速势、欧拉方程的局限性,使得在高雷诺数下可以获得较高精度,但是无法适应超临界机翼设计、飞机低速气动布局评估、飞机失速特性预测等和粘性流动密切相关工作。

随着CFD 软件并行效率的提高和高性能计算机日新月异的发展,N-S 方程应用于总体方案与气动布局选型成为大势所趋。

(2)超临界机翼与高效增升装置研究。

超临界机翼和增升装置气流流动都具备层流区和湍流区共存的特点,流动转捩是CFD 气动计算的难点。

目前CFD 代码普遍有基于低雷诺数修正模型或基于二维的eN 准则来模拟过渡流动,但是上面这2 种方法有很大的局限性,无法适应超临界机翼和复杂增升装置的转捩流动精确气动力评估。

近些年,基于传输方程的Gamma_Theta 模型在航空领域获得了成功的应用。

西北工业大学陈奕等发表了《Gamma_Theta 转捩模型在绕翼型流动问题中的应用》,作者采Gam ma_Theta 模型成功预测了S809 翼型的气动力系数、前缘分离泡和不同迎角下的转捩点位置。

由于转捩计算对网格要求较高,比如近壁面网格密度和流向网格密度的要求会导致三维增升装置计算网格量达到千万量级,这大大限制了转捩计算在国内航空单位的广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS提供了强大的动力分析工具,可以很方便地进行各类动力分析 问题:模态分析、谐响应分析、瞬态动力分析和谱分析。
一、动力分析简介
动力学分析根据载荷形式的不同和所有求解的内容的不同我们可 以将其分为:
模态分析 谐响应分析 瞬态动力分析 谱分析
二、动力学分析分类_模态分析
模态分析在动力学分析过程中是必不可少的一个步骤。 在谐响应分析、瞬态动力分析动分析过程中均要求先进行 模态分析才能进行其他步骤。
模态提取方法
Damped (阻尼)法 Damped法用于阻尼不可忽略的问题,例如轴承问题。
QR Damped (QR阻尼)法 QR Damped (QR阻尼)法最关键的思想是,以线性合并无阻尼系统少量数目
的特征向量近似表示前几阶复阻尼特征值。采用实特征值求解无阻尼振型之后, 运动方程将转化到模态坐标系。然后,采用QR阻尼法,一个相对较小的特征值 问题就可以在特征子空间中求解出来了。 该方法能够很好地求解大阻尼系统模 态解。由于该方法的计算精度取决于提取的模态数目,所以建议提取足够多的 基频模态,这样才能保证得到好的计算结果。
CAE技术及其应用
刘玲 机械工程学院
第二章 有限元分析软件ANSYS
第二章 有限元析软件ANSYS
§2.1 ANSYS软件介绍 §2.2 ANSYS程序的结构 §2.3 ANSYS图形用户界面 §2.4 ANSYS分析基本步骤 §2.5 ANSYS实例分析
§2.5 ANSYS实例分析
§2.5.1 六方孔螺钉头用扳手的静力分析 §2.5.2 飞机机翼的模态分析
在大多数分析过程中将选用Subspace法、Reduced法、Block Lanczos法或 PowerDynamics法。Unsymmetric法和Damped法只在特殊情形下会用到。在指 定某种模态提取方法后,ANSYS会自动选择合适的方程求解器。在 ANSYS/Linear Plus中Unsymmetric法和Damped法不可用。
模态提取方法
典型的无阻尼模态分析求解的基本方程是经典的特征值 问题:
其中: [K]=刚度矩阵, {Φi} =第i 阶模态的振型向量(特征向量), ωi=第i 阶模态的固有频率, [M]=质量矩阵
有许多数值方法可用于求解上面的方程。ANSYS提供了 7种模态提取方法。
二、动力学分析分类_模态分析
模态提取方法
ANSYS的模态分析可以对有预应力的结构进行模态分析和循环 对称结构模态分析。前者有旋转的涡轮叶片等模态分析,后者则允 许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS中的模态分析是一个线性分析。任何非线性特性,如塑性和 接触(间隙)单元,即使定义了也将被忽略。
二、动力学分析分类_模态分析
Subspace (子空间)法 Subspace(子空间)法使用子空间迭代技术,它内部使用广义的Jacobi迭代
算法,主要适用于大型对称特征值求解问题。可以用几种求解控制选项来控制 子空间迭代过程。
二、动力学分析分类_模态分析
模态提取方法
Powerdynamics法 PowerDynamics法适用于非常大的模型(100,000个自由度以上)。此法特
模态分析的定义 模态提取方法
二、动力学分析分类_模态分析
模态分析的定义
模态分析用于确定设计机构或机器部件的振动特性(固有频率和 振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中 的重要参数。同时,也可以作为其他动力学分析问题的起点,例如 瞬态动力学分析、谐响应分析和谱分析。其中模态分析也是进行谱 分析或模态叠加法谱响应分析或瞬态动力学分析所必需的前期分析 过程。
Block Lanczos (分块兰索斯)法 分块兰索斯(Block Lanczos)法特征值求解器采用Lanczos算法,Lanczos算法
是用一组向量来实现Lanczos递归计算。当计算某系统特征值谱所包含一定范围 的固有频率时,采用分块兰索斯(Block Lanczos)法提取模态特别有效。计算时, 求解从频率谱中间位置到高频端范围内的固有频率时的求解收敛速度和求解低 阶频率时基本上一样快。其特别适用于大型对称特征值求解问题。
Reduced (缩减)法 Reduced法比Subspace法快,因为它使用了缩减的系统矩阵采计算解。但是
由于缩减质量矩阵是近似矩阵,此法的精度较低。 Unsymmetric (非对称)法 Unsymmetric法用于系统矩阵为非对称矩阵的问题,例如流体—结构相互作
用问题。
二、动力学分析分类_模态分析
一、动力分析简介
通常动力分析的工作主要有系统的动力特性分析(即求解结构的固有频 率和振型),和系统在受到一定载荷时的动力响应分析两部分构成。根据系 统的特性可分为线性动力分析和非线性动力分析两类。根据载荷随时间变化 的关系可以分为稳态动力分析和瞬态动力分析。谐响应分析是用于确定线性 结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。可 以用瞬态动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合 作用下的随时间变化的位移,应变,应力及力。而谱分析主要用于确定结构 对随机载荷或随时间变化载荷的动力响应情况。
§2.5.2 飞机机翼的模态分析
一、问题描述 二、建立模型 三、定义边界条件并求解 四、查看结果 五、命令流输入
一、问题描述
对一个飞机机翼进行模态分析。机翼沿长度方向的轮廓是一致的,横截 面由直线的样条曲线定义。机翼的一端固定在机体上,另一端悬空。要求分 析得到机翼的模态自由度。有关的几何尺寸见图1,机翼材料的常数为:弹 性模量取3.8e3Pa ,泊松比 0.3,密度8.3e-5Kg/m3 。
别适合于只求解结构前几阶模态以了解结构将如何响应的情形,接着可以选择 合适的提取方法(Subspace或Block Lanczos)求得最终的解。这种方法自动采 用集中质量矩阵(LUMPM,ON)。当在批处理或命令方式中使用 PowerDynamics方法时,首先应该用命令MODOPT,SUBSPACE,接着再用命令 EQSLV,PCG。
相关文档
最新文档