人教版初中数学八年级下册 第16章达标测试卷

合集下载

人教版八年级数学下册第16章达标检测卷及答案

人教版八年级数学下册第16章达标检测卷及答案

第十六章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.要使二次根式x -3有意义,x 必须满足( ) A .x ≤3 B .x ≥3 C .x >3 D .x <3 2.下列二次根式中,不能与2合并的是( ) A .12B .8C .12D .18 3.下列二次根式中,最简二次根式是( ) A .25a B .a 2+b 2 C .a2D .0.5 4.下列计算正确的是( )A .53-23=2B .22×32=6 2C .3+23=3D .33÷3=3 5.下列各式中,一定成立的是( ) A .(-2.5)2=( 2.5)2 B .a 2=(a)2C .x 2-2x +1=x -1D .x 2-9=x -3·x +36.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n 7.计算912÷5412×36的结果为( ) A .312 B .36 C .33 D .3348.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c|=0,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形9.已知x ,y 为实数,且3x +4+y 2-6y +9=0.若axy -3x =y ,则实数a 的值为( ) A .14 B .-14 C .74 D .-7410.已知实数x ,y 满足:y =x 2-16+16-x 2+24x -4,则xy +13的值为( )A .0B .37C .13D .5二、填空题(每题3分,共30分) 11.计算:24-323=________. 12.若最简二次根式3a -1与2a +3可以合并,则a 的值为________. 13.已知x -1x =6,则x 2+1x2=________.14.当x =5-1时,代数式x 2+2x +3的值是________.15.有一个密码系统,其原理如图所示,当输出的值为3时,则输入的x =________.输入x →x +26→ 输出 (第15题)16.设一个三角形的一边长为a ,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a =________.17.实数a 在数轴上的位置如图,化简|a -1|+(a -2)2=________.(第17题)18.若实数m 满足(m -2)2=m +1,且0<m <3,则m 的值为________. 19.若xy >0,则二次根式x-yx2化简的结果为________. 20.若x +y =5+3,xy =15-3,则x +y =________.三、解答题(21题12分,26,27题每题10分,其余每题7分,共60分) 21.计算:(1)312-248+8; (2)⎝⎛⎭⎫13+27×3;(3)48÷3-215×30+(22+3)2;(4)(2-3)2 017(2+3)2 018-|-3|-(-2)0.22.先化简,再求值:a 2-b 2a ÷⎝⎛⎭⎫a -2ab -b 2a ,其中a =5+2,b =5-2.23.已知a ,b ,c 是△ABC 的三边长,化简:(a +b +c )2-(b +c -a )2+(c -b -a )2.24.已知a +b =-2,ab =12,求b a +ab的值.25.已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.26.观察下列各式: ①2-25=85=225;②3-310=2710=3310;③4-417=6417=4417. (1)根据你发现的规律填空:5-526=________=________; (2)猜想n -nn 2+1(n ≥2,n 为自然数)等于什么?并通过计算证实你的猜想.27.(1)已知|2 017-x|+x -2 018=x ,求x -2 0182的值;(2)已知a >0,b >0且a(a +b)=3b(a +5b),求2a +3b +aba -b +ab 的值.答案一、1.B 2.C 3.B 4.D 5.A 6.D 7.B 点拨:原式=912×1254×36=36×6=36. 8.B 点拨:原等式可化为|a -b|+|b -c|=0,∴a -b =0且b -c =0,∴a =b =c ,即△ABC 是等边三角形.9.A 10.D 二、11. 612.4 点拨:∵最简二次根式3a -1与2a +3可以合并,∴它们的被开方数相同,即3a -1=2a +3,解得a =4.13.8 点拨:x 2+1x 2=x 2+1x2-2+2=⎝⎛⎭⎫x -1x 2+2=(6)2+2=6+2=8.14.7 15.22 16.23 17.1 18.1219.--y 点拨:由题意知x <0,y <0,所以x -yx2=--y.解此类题要注意二次根式的隐含条件:被开方数是非负数.20.8+2 3三、21.解:(1)原式=-23+2 2. (2)原式=10. (3)原式=15+2 6. (4)原式=1.22.解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a(a -b )2=a +b a -b ,当a =5+2,b =5-2时,原式=5+2+5-25+2-5+2=254=52.23.解:∵a ,b ,c 是△ABC 的三边长,∴a +b +c >0,b +c -a >0,c -b -a <0,∴原式=a +b +c -(b +c -a)+(a +b -c)=3a +b -c.24.解:由题意,知a <0,b <0,所以原式=ab a 2+ab b 2=ab a 2+ab b 2=ab -a +ab-b=-(a +b )ab ab =-(-2)×1212=2 2.点拨:此题易出现以下错误:原式=b a +a b =a +b ab=-212=-2 2.出错的原因在于忽视了隐含条件,进而导致在解答过程中进行了非等价变形.事实上,由a +b =-2,ab =12,可知a <0,b <0,所以将b a+a b 变形成b a +ab是不成立的. 25.解:(1)2(a +b)=2×⎝⎛⎭⎫1232+1318=2×(22+2)=6 2.故长方形的周长为6 2. (2)4ab =41232×1318=422×2=4×2=8.因为62>8,所以长方形的周长大.26.解:(1)12526;5526(2)猜想:n -nn 2+1=n nn 2+1.验证如下:当n ≥2,n 为自然数时,n -n n 2+1=n 3+n n 2+1-nn 2+1=n 3n 2+1=n n n 2+1. 27.解:(1)∵x -2 018≥0,∴x ≥2 018, ∴原等式可化为x -2 017+x -2 018=x , ∴x -2 018=2 017. ∴x -2 018=2 0172. ∴x =2 0172+2 018.∴x -2 0182=2 0172-2 0182+2 018=(2 017-2 018)×(2 017+2 018)+2 018=-(2 017+2 018)+2 018=-2 017.(2)∵a(a +b)=3b(a +5b), ∴a +ab =3ab +15b , ∴a -2ab -15b =0, ∴(a -5b)(a +3b)=0. ∵a >0,b >0, ∴a +3b >0, ∴a -5b =0, ∴a =25b.∴原式=2×25b +3b +25b 225b -b +25b 2=58b29b =2.。

第十六章 二次根式 单元测试 人教版八年级数学下册

第十六章   二次根式    单元测试  人教版八年级数学下册

2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a4-a 1a;(2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .19.(本题满分10分 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x 2+2的有理化因式是1+x 2+2. (2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如: 11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2.【知识理解】(1)填空:2x 的有理化因式是________; (2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n .参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是(D)A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( C)A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( C) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022【解析】先求出a 1,a 2,a 3,…,a n 的值,代入原式利用公式1n (n +1)=1n -1n +1进行化简与计算,即可求解. 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-52__. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3; 解:原式=⎝⎛⎭⎪⎫33-233÷3=73. (2)20.75+12-|3-2|; 解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224; 解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a 1a ; 解:原式=2a +12a - a =32a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a . 解:原式=⎝⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a =-1623. 19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a +2a 2-6a +9a =-2 022.解:(1)小亮. (2)∵a =-2 022,∴a +2a 2-6a +9=a +2(a -3)2=a +2|a -3| =a +2(3-a)=-a +6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm3).22.(本题满分10分)先化简,再求值.⎝ ⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3. 解:原式=6xy +3xy -4xy -6xy=-xy , 当x =32,y =3时,原式=-32×3=-322. 23.(本题满分12分) 已知x =3+2,y =3-2,求:(1)x 2-y 2的值;(2)x y +y x的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22, ∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1, 则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10.24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h 5(不考虑风速的影响). (1)求从40 m 高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x 的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________. 【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n. 解:(1)∵2x ×x =2x ,∴2x 的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6. ②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n +1-n (n +1+n )(n +1-n ), =2-1+3-2+2-3+…+n +1-n ,=n +1-1.。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

人教版初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)试题及答案

人教版初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)试题及答案

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义?(1);1x - (2);2x - (3);12+x(4)⋅+-xx21 10.计算下列各式:(1);)23(2(2);)1(22+a (3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3C .-3D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯-(3);8223⨯(4);1252735⨯ (5);131aab ⋅ (6);5252acc b b a ⋅⋅ (7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与的被开方数相同的有______,与的被开方数相同的有______,与的被开方数相同的有______. 2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .与80可以合并C .只有根指数为2的根式才能合并D .与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412( 10..1878523x x x +- 11.⋅-+xx x x 1246932 综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与bab 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+--16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba b ab a -+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+ 11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等 D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+ 四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值. 21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:与,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1) (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2)测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1); (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______.3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+-12.).32)(23(--13..25341122÷⋅14.).94(323ab ab ab a aba b +-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;211111*********2=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B .11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。

新人教版初中数学八年级下册同步练习试题及答案第16章二次根式(19页)

新人教版初中数学八年级下册同步练习试题及答案第16章二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义 ,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时 ,12--x 有意义 ,当x ______时 ,31+x 有意义. 3.假设无意义2+x ,那么x 的取值范围是______. 4.直接写出以下各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.以下计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.以下各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时 ,以下各式中 ,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时 ,以下式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算以下各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.411+=-+-y x x ,那么x y 的平方根为______. 14.当x =-2时 ,2244121x x x x ++-+-=________. 二、选择题15.以下各式中 ,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.假设022|5|=++-y x ,那么x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算以下各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2 ,b =-1 ,c =-1时 ,求代数式aacb b 242-±-的值.拓广、探究、思考19.数a ,b ,c 在数轴上的位置如下列图:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.△ABC 的三边长a ,b ,c 均为整数 ,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算 ,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立 ,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.以下计算正确的选项是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时 ,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.三角形一边长为cm 2 ,这条边上的高为cm 12 ,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算 "@〞的运算法那么为:,4@+=xy y x 那么(2@6)@6 =______.10.矩形的长为cm 52 ,宽为cm 10 ,那么面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.假设b a b a -=2成立 ,那么a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内 ,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.假设(x -y +2)2与2-+y x 互为相反数 ,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算 ,能把二次根式化成最||简二次根式.课堂学习检测一、填空题1.把以下各式化成最||简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最||简单的因式 ,使得它与所给二次根式相乘的结果为有理式 ,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.以下计算不正确的选项是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最||简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算以下各式 ,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.,732.13≈那么≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.13+=a ,132-=b ,那么a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.以下各式中 ,最||简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时 ,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征 ,会进行二次根式的加、减运算.课堂学习检测一、填空题1.以下二次根式15,12,18,82,454,125,27,32化简后 ,与2的被开方数相同的有______ ,与3的被开方数相同的有______ ,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后 ,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.以下说法正确的选项是( ). A .被开方数相同的二次根式可以合并 B .8与80可以合并 C .只有根指数为2的根式才能合并 D .2与50不能合并5.以下计算 ,正确的选项是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.二次根式b a b +4与b a +3是同类二次根式 ,(a +b )a 的值是______.13.3832ab 与ba b 26无法合并 ,这种说法是______的.(填 "正确〞或 "错误〞) 二、选择题14.在以下二次根式中 ,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+ ,其中4=x ,91=y .20.当321-=x 时 ,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断以下各式是否成立?你认为成立的 ,在括号内画 "√〞 ,否那么画 "×〞.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后 ,发现了什么规律?请用含有n 的式子将规律表示出来 ,并写出n的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算 ,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时 ,最||简二次根式12-a 与73--a 可以合并. 2.假设27+=a ,27-=b ,那么a +b =______ ,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.以下各组二次根式化成最||简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.以下计算正确的选项是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b ) =|a -b | ,其中a ,b 为实数 ,那么=+7)3*7(_______.(2)设5=a ,且b 是a 的小数局部 ,那么=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.以下计算正确的选项是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘 ,如果它们的积不含有二次根式 ,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写以下各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1 , >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2 ,b =3 ,于是1<c <5 ,所以c =2 ,3 ,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577 ,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时 ,a a a ==22)(;当a <0时 ,a a -=2 ,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画 "√〞;(2)1122-=-+n n nn n n (n ≥2 ,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法 ,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.mnm 1+-有意义 ,那么在平面直角坐标系中 ,点P (m ,n )位于第______象限. 2.322-的相反数是______ ,绝||对值是______.3.假设3:2:=y x ,那么=-xy y x 2)(______.4.直角三角形的两条直角边长分别为5和52 ,那么这个三角形的周长为______. 5.当32-=x 时 ,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时 ,式子2)2(,2,2,2-+--a a a a 中 ,有意义的有( ). A .1个 B .2个 C .3个 D .4个7.以下各式的计算中 ,正确的选项是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.假设(x +2)2=2 ,那么x 等于( ). A .42+B .42-C .22-±D .22± 9.a ,b 两数满足b <0<a 且|b |>|a | ,那么以下各式中 ,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.A 点坐标为),0,2(A 点B 在直线y =-x 上运动 ,当线段AB 最||短时 ,B 点坐标( ).A .(0 ,0)B .)22,22(- C .(1 ,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.a 是2的算术平方根 ,求222<-a x 的正整数解.18.:如图 ,直角梯形ABCD 中 ,AD ∥BC ,∠A =90° ,△BCD 为等边三角形 ,且AD 2= ,求梯形ABCD 的周长.附加题19.先观察以下等式 ,再答复以下问题.①;211111*********2=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息 ,猜想2251411++的结果; (2)请按照上面各等式反映的规律 ,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形 ,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1 ,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1 ,对角线);cm (0.733712721222≈=+(2)拼成2×3 ,对角线3.431312362422≈=+(cm).。

初中八年级数学下册第十六章综合测试卷3套及答案

初中八年级数学下册第十六章综合测试卷3套及答案
【解析】原式 = 5 2 2 2 2 3 2 2 3.
15.【答案】(1) 5 = 5 3 = 15 . 3 3 3 3
(2)由二次根式有意义的条件及分母不为 0,得 3 x>0 ,即 x 3<0 .
所以 x 3 1 3 x 1 = 3 x2 1 3 x .
3 x
A. a>b>c
B. c>b>a
C. b>a>c
D. 5 2x )
D. a>c>b
8.若 a b 2 , a b 32 , a c 5 ,则 a c 的值是( )
A. 5 2 5
B. 5 22 5
C. 5 22 5
9.(2
x)
x
1
2
的根号外的(2
x)移入根号内得(

A. 2 x
B. x 2
C. 2 x
D. 5 2 5 D. x 2
10.已知 △ABC 的三边 a 、b 、c 满足 a2 | 50 c | 10a 25 5 b ,则对 △ABC 的形状描述最准确的
是( ) A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
二、填空题(每小题 3 分,共 18 分) 11.当 a __________时, 3a 2 无意义。
【解析】要使 x 3 在实数范围内有意义,则需 x 3≥0 ,所以 x 的取值范围是 x≥3 .答案选 D.
2.【答案】A
【解析】 a2b5 | a | b2 b , 18=3 2 , 1 的被开方数含有分母,故都不是最简二次根式. x2 1 符合 3
最简二次根式的条件.故选 A.
3.【答案】B
D. (3)2 3 D.1<x≤3
5.若 2x 1 | y 3 | 0 ,则 xy 的值为()

新人教版初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

新人教版初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______.2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______.4.直接写出下列各式的结果:(1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______.二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ).A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ).A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ). A .21>a B .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义?(1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______.12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______.14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-x C .x-21 D .121-x16.若022|5|=++-y x ,则x -y 的值是( ).A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______.二、选择题4.下列计算正确的是( ).A .532=⋅B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3B .3C .-3D .9三、解答题7.计算:(1);26⨯ (2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅ (6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11-B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1 C .0<x ≤1 D .0<x <14.下列计算不正确的是( ).A .471613= B .xy xx y 63132=C .201)51()41(22=-D .x xx3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281 D .241 三、计算题6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷ (7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式:(1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =bB .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ).A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ).A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与bab 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a 124118..21233ab bb a aba b ab a -+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ).A .ab 与2abB mn 与nm 11+ C .22n m +与22n m -D .2398b a 与4329b a5.下列计算正确的是( ).A .b a b a b a -=-+2))(2(B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ).A .7B .223366-+-C .1D .22336-+三、计算题(能简算的要简算)7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________. 二、选择题14.b a -与a b -的关系是( ).A .互为倒数B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式:(1)25与______; (2)y x 2-与______; (3)mn 与______;(4)32+与______; (5)223+与______; (6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅8279..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题1.已知m nm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______.3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______.二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ).A .1个B .2个C .3个D .4个7.下列各式的计算中,正确的是( ).A .6)9(4)9()4(=-⨯-=-⨯-B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ).A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ).A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B .11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。

第16章 二次根式-人教版数学八年级下册达标检测(含答案)

第16章 二次根式-人教版数学八年级下册达标检测(含答案)

人教版初中数学八年级下册第十六章二次根式达标检测一、单选题:1.在中,是最简二次根式的有()A.2个B.3个C.4个D.5个【答案】B【分析】根据最简二次根式的两个特点“(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式”进行解答即可得.【详解】解:不是二次根式,不符合题意,是最简二次根式,符合题意,是最简二次根式,符合题意,是最简二次根式,符合题意,不是最简二次根式,不符合题意,不是最简二次根式,不符合题意,综上,是最简二次根式的有3个,故选B.【点睛】本题考查了最简二次根式,解题的关键是熟记二次根式的两个特点.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.【答案】C【分析】各项化简后,利用同类二次根式定义判断即可.【详解】A选项:,与的被开方数不同,故不是同类二次根式,故A错误;B选项:与的被开方数不同,故不是同类二次根式,故B错误;C选项:与的被开方数相同,是同类二次根式,故C正确;D选项:与的被开方数不相同,故不是同类二次根式,故D错误.故选C.【点睛】此题考查了同类二次根式,以及最简二次根式,熟练掌握各自的性质是解本题的关键.3.下列各式中,一定能成立的有()①②③④A.①B.①④C.①③④D.①②③④【答案】A【分析】根据开算术平方和平方的概念对4个等式逐一判断.【详解】A.,则A成立;B.当a<0时,不存在,则B等式不成立;C.当x<1时,不存在,则C等式不成立;D.当x<-3时,不存在,则D等式不成立.故选A.【点睛】本题考查开算术平方根和平方之间的等量关系,注意算术平方根下的式子不能小于零的情况,掌握这一点是本题解题关键.4.计算的结果估计在( )A.与之间B.与之间C.与之间D.与之间【答案】C【分析】先根据二次根式的混合运算计算得到,进而估算即可.【详解】解:===,∵∴,故选:C.【点睛】此题考查了二次根式的混合运算和无理数的估算,熟练掌握二次根式混合运算的法则是解题的关键.5.若,则()A.B.C.D.【答案】D【分析】直接利用二次根式的性质求解即可.【详解】解:∵,,∴解得,,故选:D.【点睛】本题主要考查了二次根式的性质,熟练掌握是解答本题的关键.6.若是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】B【分析】先将45写成平方数乘以非平方数的形式,再根据二次根式的基本性质即可确定出n的最小整数值.【详解】解:.由是整数,得,故选:B.【点睛】本题考查了二次根式的基本性质,利用二次根式的基本性质是解题关键.7.如图,在长方形ABCD中无重叠放入面积分别为和的两张正方形纸片,则图中空白部分的面积为().A.B.C.D.【答案】B【分析】先求得大正方形的边长和小正方形的边长,进而得出空白的长和宽,再计算面积即可.【详解】解:∵大正方形的面积为,∴大正方形的边长=,∵小正方形的面积为,∴小正方形的边长=,∴空白的长为:,空白的高为:,∴空白面积=故选:B.【点睛】本题考查了二次根式及其应用,掌握二次根式的性质是解题关键.8.已知,,则代数式的值为()A.9B.C.3D.5【答案】C【分析】计算出m−n及mn的值,再运用完全平方公式可把根号内的算式用m−n及mn的代数式表示,整体代入即可完成求值.【详解】∵,,∴,mn=-1,∴=3.故选:C.【点睛】本题考查了求代数式的值,二次根式的混合运算,完全平方公式的应用,对被开方数进行变形并运用整体代入法求值是关键.9.已知,,,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【答案】A【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.【详解】解:∵,,,又,∴.故选:A.【点睛】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关键.10.设S=,则不大于S的最大整数[S]等于( ) A.98B.99C.100D.101【答案】B【分析】由,代入数值,求出S=+++ …+ =99+1-,由此能求出不大于S的最大整数为99.【详解】∵==,∴S=+++ …+===100-,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道是解答本题的基础.二、填空题:11.如果分式有意义,那么x的取值范围是_______.【答案】且x≠4【分析】根据分式的分母不等于零和二次根式的被开方数是非负数进行解答.【详解】∵二次根式的被开方数是非负数,∴2x+3≥0,解得x≥-,又分母不等于零,∴x≠4,∴x≥-且x≠4.故答案为x≥-且x≠4.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,该题属于易错题,同学们往往忽略了分母不等于零这一条件,错解为x≥-.12.计算:______.【答案】##【分析】利用二次根式的混合运算法则计算即可.【详解】解:==.故答案为:.【点睛】本题考查二次根式的混合运算法则,解题的关键是熟练掌握二次根式的混合运算法则.13.若的整数部分是a,小数部分是b,则的值是___________.【答案】【分析】首先根据的取值范围得出a,b的值进而求出即可.【详解】解:∵,的整数部分是a,小数部分是b,∴a=1,b=∴故答案为:【点睛】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.14.若,则的值是_________.【答案】4【分析】根据被开方数大于等于0列式求x,再求出y,然后相加计算即可得解.【详解】解:由题意得,﹣2﹣x≥0且3x+6≥0,解得x≤﹣2且x≥﹣2,∴x=﹣2,∴y=6,∴x+y=﹣2+6=4.故答案为:4.【点睛】本题考查的知识点为:二次根式的被开方数是非负数,熟练掌握二次根式有意义的条件是解决本题的关键.15.若最简二次根式与是同类根式,则2a﹣b=___.【答案】9【分析】结合同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行求解即可.【详解】解:∵最简二次根式与是同类根式,∴2a﹣4=2,3a+b=a﹣b,解得:a=3,b=﹣3.∴2a﹣b=2×3﹣(﹣3)=9.故答案为:9.【点睛】此题考查了同类二次根式的定义,熟记定义是解题的关键.16.计算的值为__________.【答案】2【分析】先根据积的乘方的逆运算,再合并同类二次根式即可;【详解】解:原式==;故答案为:2【点睛】本题考查了积的乘方的逆运算、二次根式的混合运算,熟练掌握运算法则是解题的关键17.把的根号外因式移到根号内得____________.【答案】【分析】根据二次根式被开方数是非负数且分式分母不为零,将根号外的因式转化成正数形式,然后进行计算,化简求值即可.【详解】解:,;故答案为:【点睛】本题考查二次根式的性质和二次根式计算,灵活运用二次根式的性质是解题关键.18.设、、是的三边的长,化简的结果是________.【答案】【分析】根据三角形的三边关系:两边之和大于第三边,依此对原式进行去根号和去绝对值.【详解】解:∵a,b,c是△ABC的三边的长,∴a<b+c,a+c>b,∴a-b-c<0,a-b+c>0,∴故答案为:.【点睛】本题考查了二次根式的化简和三角形的三边关系定理,关键是根据三角形的性质:两边之和大于第三边去根号和去绝对值解答.19.观察下列各式:,,,……请你将发现的规律用含自然数n (n≥1)的等式表示出来_________.【答案】【分析】根据等式的左边根号内整数部分为自然数加上,右边为,据此即可求解.【详解】解:∵第1个式子为:,第2个式子为:,第3个式子为:,……∴第个式子为:.故答案为:.【点睛】本题考查了二次根式的规律题,找到规律是解题的关键.20.已知,化简得____________.【答案】【分析】根据完全平方公式结合二次根式的性质进行化简即可求得答案.【详解】∵0<a<1∴>1∴===故答案为【点睛】本题考查了二次根式的性质与化简,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题:21.当x是怎样的实数时,下列各式在实数范围内有意义?(1);(2);(3);(4).【答案】(1);(2);(3);(4)【分析】(1)根据二次根式有意义的条件可得不等式3+x≥0,再解不等式即可;(2)根据二次根式有意义及分式有意义的条件可得不等式2x-1>0,再解不等式即可;(3)根据二次根式有意义及分式有意义的条件可得不等式2-3x>0,再解不等式即可;(4)根据二次根式有意义及分式有意义的条件可得不等式x≠0.【详解】解:(1)根据题意,3+x≥0,解得:x≥-3;(2)根据题意,2x-1>0,解得:x>;(3)根据题意,≥0且2-3x≠0,即2-3x>0,解得:x<;(4)根据题意,≥0且x-1≠0,即x≠1.【点睛】本题主要考查了二次根式有意义及分式有意义的条件,关键是掌握二次根式中的被开方数是非负数和分式的分母不为0.22.化简:(1);(2);(3);(4);(5);(6).【答案】(1);(2);(3);(4);(5);(6)【分析】(1)把500因数分解为5×102即可;(2)把12分解为3×22即可;(3)先把被开方数中带分数化为假分数,利用分数的基本性质将分母变平方即可(4)将被开方式中即可;(5)将被开方式即可;(6)将被开方式即可.【详解】解:(1);(2);(3);(4);(5);(6).【点睛】本题考查二次根式化为最简二次根式,掌握最简二次根式定义与化简方法是关键.23.计算:(1);(2);(3);(4);(5);(6).【答案】(1);(2);(3)6;(4);(5);(6)【分析】(1)先化简二次根式,再根据二次根式加减运算法则计算即可;(2)先化简二次根式,再根据二次根式乘除运算法则计算即可;(3)利用平方差公式计算即可;(4)先化简二次根式,再合并后计算乘除运算即可;(5)利用完全平方公式进行计算即可;(6)利用完全平方公式进行计算即可;【详解】(1)原式;(2)原式;(3)原式;(4)原式;(5)原式;(6)原式【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.24.先化筒.再求值:,其中,.【答案】,【分析】按照异分母分式运算法则计算即可.【详解】解:原式当,时,原式.【点睛】此题考查了分式的化简求值,掌握异分母分式运算法则是解题的关键.25.已知实数a,b,c在数轴上的位置如图所示,化简:.【答案】【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得,,,.则原式.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.26.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【答案】(1)16;(2)﹣8【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【详解】(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.【点睛】本题考查了二次根式的化简求值、完全平方公式、平方差公式,熟记完全平方公式和平方差公式,利用整体思想方法解决问题是解答的关键.27.已知等式|a-2 018|+=a成立,求a-2 0182的值.【答案】2019【分析】由二次根式的意义得到a的范围,再将原等式化简变形.【详解】由题意,得a-2 019≥0.∴a≥2 019.原等式变形为a-2 018+=a.整理,得=2 018.两边平方,得a-2 019=2 0182.∴a-2 0182=2 019.【点睛】本题考查了非负数的性质,代数式求值,二次根式有意义的条件,得到=2 018是解题的关键.28.观察下列等式:①;②;③…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:.【答案】(1);(2)【详解】试题分析:根据分母有理化的性质,由各式的特点,结合平方差公式化简计算即可.试题解析:(1)==;(2)=+…+=.。

人教版八年级下册数学第16章测试题(附答案)

人教版八年级下册数学第16章测试题(附答案)

人教版八年级下册数学第16章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.下列各式中,是二次根式的有()① ;② ;③ ;④ ;⑤ (x≤3);⑥(x>0);⑦ ;⑧ ;⑨ ;⑩ .A. 4个B. 5个C. 6个D. 7个2.下列计算正确的是()A. + =B. ﹣=C. × =6D. ÷ =43.下列式子中正确的是()A. B.C. D.4.下列计算中正确的是()A. B. C. D.5.化简二次根式得()A. ﹣5B. 5C. ±5D. 306.下列二次根式中属于最简二次根式的是()A. B. C. D.7.下列计算正确的是()A. =xB. =C. =2D. =x8.如果=1﹣2a,则()A. a<B. a≤C. a>D. a≥9.下列二次根式中最简根式是()A. B. C. D.10.下列各式计算正确的是()A. +=B. 3+=3C. 3﹣=2D. =-11.要使二次根式有意义,则x的取值范围是()A. xB. xC. xD. x12.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A. x≤10B. x≥10C. x<10D. x>10二、填空题(共8题;共16分)13.若一个数与是同类二次根式,则这个数可以是________.14.函数y= 中,自变量x的取值范是________ .15.在△ABC中,BC边上的高h= cm,它的面积恰好等于边长为cm的正方形的面积,则BC的长为________.16.当a________时,在实数范围内一有意义.17.计算的结果是________18.计算=________.19.等式中的括号应填入________20.若实数x,y,m满足等式,则m+4的算术平方根为________.三、解答题(共3题;共15分)21.站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符号公式为。

数学八年级下册 全册 第16-20章 检测题 新人教版

数学八年级下册 全册 第16-20章 检测题 新人教版

第十六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.(2019·云南)要使x +12有意义,则x 的取值范围为BA .x ≤0B .x ≥-1C .x ≥0D .x ≤-1 2.(2019·河池)下列式子中,为最简二次根式的是B A .12B .2C .4D .12 3.(2019·益阳)下列运算正确的是DA .(-2)2=-2 B .(23 )2=6 C .2 +3 =5 D .2 ×3 =64.等式(4-x )2(6-x ) =(x -4)6-x 成立的条件是B A .x ≥4 B .4≤x ≤6 C .x ≥6 D .x ≤4或x ≥6 5.设n 为正整数,且n <65 <n +1,则n 的值为D A .5 B .6 C .7 D .86.已知k ,m ,n 为三个整数,若135 =k 15 ,450 =15m ,180 =6n ,则下列有关于k ,m ,n 大小关系,何者正确?DA .k <m =nB .m =n <kC .m <n <kD .m <k <n7.计算27 -1318 -12 的结果是CA .1B .-1C .3 -2D .2 -3 8.若x =3-22 ,y =3+22,则x 2+y 2的值是A A .52 B .32 C .3 D .14 9.若a +b <0,ab >0,则化简a 2b 2的结果是A A .ab B .-a b C .-ab D .a b10.(2019·随州)“分母有理化”是我们常用的一种化简的方法,如:2+32-3=(2+3)(2+3)(2-3)(2+3)=7+43 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3+5 -3-5 ,设x =3+5 -3-5 ,易知3+5 >3-5 ,故x >0,由x 2=(3+5 -3-5 )2=3+5 +3-5 -2(3+5)(3-5) =2,解得x =2 ,即3+5 -3-5 =2 .根据以上方法,化简3-23+2+6-33 -6+33 后的结果为DA .5+36B .5+6C .5-6D .5-36 二、填空题(每小题3分,共15分) 11.已知a <2,则(a -2)2=2-a . 12.(2019·滨州)计算:(-12)-2-|3 -2|+32÷118=2+43 . 13.(2019·天津)计算(3 +1)(3 -1)的结果等于2. 14.若已知一个梯形的上底长为(7 -2 ) cm ,下底长为(7 +2 ) cm ,高为27cm ,则这个梯形的面积为14cm 2.15.如图,数轴上表示1,3 的对应点分别为点A ,B ,点B 关于点A 的对称点为点C ,设点C 所表示的数为x ,则x +3x的值为8+23 .三、解答题(共75分) 16.(8分)计算: (1)22(212 +418-348 ); 解:原式=46 +2-126 =2-86(2)(2019·南充)计算:(1-π)0+|2 -3 |-12 +(12)-1.解:原式=1+3 -2 -23 +2 =1-317.(9分)如果最简二次根式2m +n 与m -n -1m +7 是可以合并的,求正整数m ,n的值.解:m =5,n =218.(9分)若a ,b ,c 是△ABC 的三边,化简:(a -b -c )2-|b -c -a |+(c -a -b )2. 解:化简得原式=|a -b -c |-|b -c -a |+|c -a -b |=-a +b +c +b -c -a -c +a +b =-a +3b -c19.(9分)已知实数a ,b 满足(4a -b +11)2+13b -4a -3 =0,求a · a ·( b ÷1a)的值.解:由题意得⎩⎪⎨⎪⎧4a -b +11=0,13b -4a -3=0, 解得⎩⎪⎨⎪⎧a =14,b =12. 则a · a ·( b ÷1a )=a ·a ·b =14 ×14 ×23 =3820.(9分)先化简,再求值:(1)(2019·襄阳)先化简,再求值:(xx -1 -1)÷x 2+2x +1x 2-1,其中x =2 -1.解:原式=(xx -1 -x -1x -1 )÷x 2+2x +1x 2-1 =1x -1 ×(x +1)(x -1)(x +1)2=1x +1,当x =2 -1时,原式=12-1+1=22(2)(2019·桂林)先化简,再求值:(1y -1x )÷x 2-2xy +y 22xy -1y -x,其中x =2+2 ,y =2.解:原式=x -y xy ·2xy (x -y )2 +1x -y =2x -y +1x -y =3x -y,当x =2+2 ,y =2时,原式=32+2-2=32221.(10分)在△ABC 中,BC 边上的高h =63 cm ,它的面积恰好等于边长为32 cm 的正方形的面积,求BC 的长.解:∵12 BC ·h =(32 )2=18,∴BC =36h =3663=23 (cm),答:BC 的长为23 cm22.(10分)已知9+11与9-11的小数部分分别为a,b,求ab-3a+4b-7的值.解:∵3<11<4,∴9+11的小数部分为11-3,即a=11-3,9-11的小数部分为4-11,即b=4-11,∴ab-3a+4b-7=(11-3)(4-11)-3(11-3)+4(4-11)-7=-523.(11分)在进行二次根式化简时,我们有时会碰上如35,23,23+1一样的式子,其实我们还可以将其进一步化简:3 5=3×55×5=355;(一)23=2×33×3=63;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-12=3-1;(三)以上这种化简的步骤叫做分母有理化.23+1还可以用以下方法化简:23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.(四)请用不同的方法化简25+3.(1)①参照(三)式得25+3=2(5-3)(5+3)(5-3)=2(5-3)(5)2-(3)2=5-3;②参照(四)式得25+3=5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3;(2)化简:13+1+15+3+17+5+…+12n +1+2n -1 .解:原式=3-12 +5-32 +…+2n +1-2n -12=3-1+5-3+…+2n +1-2n -12 =-1+2n +12第十七章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知Rt △ABC 的三边长分别为a ,b ,c ,且∠C =90°,c =37,a =12,则b 的值为BA .50B .35C .34D .262.由下列线段a ,b ,c 不能组成直角三角形的是DA .a =1,b =2,c =3B .a =1,b =2,c =5C .a =3,b =4,c =5D .a =2,b =23 ,c =33.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是A A .365 B .1225 C .94 D .3344.已知三角形三边长为a ,b ,c ,如果a -6 +|b -8|+(c -10)2=0,则△ABC 是C A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形 C .以c 为斜边的直角三角形 D .不是直角三角形5.(2019·咸宁)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是B6.设a ,b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是DA .1.5B .2C .2.5D .37.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分斜边AC 交AB 于点D ,E 是垂足,连接CD ,若BD =1,则AC 的长是AA .23B .2C .43D .4第7题图第9题图第10题图8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是CA .13,12,12B .12,12,8C .13,10,12D .5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度为(滑轮上方的部分忽略不计)DA .12 mB .13 mC .16 mD .17 m10.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3 ),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为BA .132 B .312 C .3+192D .27 二、填空题(每小题3分,共15分) 11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:如果两个角相等,那么它们是对顶角.12.(2019·常州)平面直角坐标系中,点P (-3,4)到原点的距离是5.13.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为64.14.(2019·东营)已知等腰三角形的底角是30°,腰长为23 ,则它的周长是6+43 .15.(2019·鄂州)如图,已知线段AB =4,O 是AB 的中点,直线l 经过点O ,∠1=60°,P 点是直线l 上一点,当△APB 为直角三角形时,则BP =2或23 或27 .三、解答题(共75分)16.(8分)如图,在△ABC 中,AD ⊥BC ,AD =12,BD =16,CD =5. (1)求△ABC 的周长;(2)判断△ABC 是否是直角三角形.解:(1)可求得AB =20,AC =13,所以△ABC 的周长为20+13+21=54(2)∵AB 2+AC 2=202+132=569,BC 2=212=441,∴AB 2+AC 2≠BC 2, ∴△ABC 不是直角三角形17.(9分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:18.(9分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22219.(9分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC220.(9分)(2019·河北)已知:整式A=(n2-1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-12n B勾股数组Ⅰ/8勾股数组Ⅱ35/解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B =n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2-1=35时,n2+1=37.故答案为:17;3721.(10分)如图,已知某学校A与直线公路BD的距离AB为3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD 中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米22.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A 处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B 处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D 是棱的中点,蜘蛛沿“AD →DB ”路线爬行,它从A 点爬到B 点所走的路程为多少?(2)你认为“AD →DB ”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A 爬到点B 所走的路程为AD +BD =42+32 +22+32=(5+13 )cm (2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB =(4+6)2+22=104 =226 (cm);②将前面与右面展到一个平面内,AB =(4+2)2+62=72 =62 (cm);③将前面与上面展到一个平面内,AB =(6+2)2+42 =80 =45 (cm),∵62 <45 <226 ,∴蜘蛛从A 点爬到B 点所走的最短路程为62 cm23.(11分)如图,已知正方形OABC 的边长为2,顶点A ,C 分别在x 轴的负半轴和y 轴的正半轴上,M 是BC 的中点,P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是以AP 为腰的等腰三角形时,求m 的值;解:(1)先证△DBM ≌△PCM ,从中可得BD =PC =2-m ,则AD =2-m +2=4-m ,∴点D的坐标为(-2,4-m ) (2)分两种情况:①当AP =AD 时,AP 2=AD 2,∴22+m 2=(4-m )2,解得m =32 ;②当AP =PD 时,过点P 作PH ⊥AD 于点H ,∴AH =12 AD ,∵AH =OP ,∴OP =12 AD ,∴m =12 (4-m ),∴m =43 ,综上可得,m 的值为32 或43第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2019·十堰)矩形具有而平行四边形不一定具有的性质是CA .对边相等B .对角相等C .对角线相等D .对角线互相平分2.(株洲中考)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是DA .OE =12DC B .OA =OC C .∠BOE =∠OBA D .∠OBE =∠OCE第2题图第3题图第6题图3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为DA .3 cmB .2 cmC .23 cmD .4 cm4.(2019·泸州)四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是BA .AD ∥BCB .OA =OC ,OB =OD C .AD ∥BC ,AB =DC D .AC ⊥BD 5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是C A .矩形 B .一组对边相等,另一组对边平行的四边形 C .对角线相等的四边形 D .对角线互相垂直的四边形6.(2019·赤峰)如图,菱形ABCD 周长为20,对角线AC ,BD 相交于点O ,E 是CD 的中点,则OE 的长是AA .2.5B .3C .4D .57.(2019·泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为CA .8B .12C .16D .328.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是DA .12B .24C .123D .163第8题图第9题图第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为CA .1B .2C .4-22D .32 -410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是BA .①②③B .①②④C .②③④D .①②③④二、填空题(每小题3分,共15分)11.(2019·长沙)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50 m ,则AB 的长是100m.第11题图 第12题图 第13题图第14题图12.(江西中考)如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为50°.13.(2019·湘潭)如图,在四边形ABCD 中,若AB =CD ,则添加一个条件AD =BC ,能得到平行四边形ABCD .(不添加辅助线,任意添加一个符合题意的条件即可)14.如图,菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是5.15.(2019·内江)如图,点A ,B ,C 在同一直线上,且AB =23AC ,点D ,E 分别是AB ,BC 的中点,分别以AB ,DE ,BC 为边,在AC 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作S 1,S 2,S 3,若S 1=5 ,则S 2+S 3=354. 三、解答题(共75分)16.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF .(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm17.(9分)(2019·柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD 中,AB =CD ,AD =BC .求证:四边形ABCD 是平行四边形.证明:连接AC ,如图,在△ABC 和△CDA 中,⎩⎪⎨⎪⎧AB =CD CB =AD AC =CA,∴△ABC ≌△CDA (SSS),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形18.(9分)(2019·新疆)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 中点,连接OE .过点C 作CF ∥BD 交OE 的延长线于点F ,连接DF .求证:(1)△ODE ≌△FCE ;(2)四边形OCFD 是矩形.证明:(1)∵CF ∥BD ,∴∠ODE =∠FCE ,∵E 是CD 中点,∴CE =DE ,在△ODE 和△FCE 中,⎩⎪⎨⎪⎧∠ODE =∠FCE ,DE =CE ,∠DEO =∠CEF ,∴△ODE ≌△FCE (ASA)(2)∵△ODE ≌△FCE ,∴OD =FC ,∵CF ∥BD ,∴四边形OCFD 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°,∴四边形OCFD 是矩形19.(9分)(2019·大庆)如图,在矩形ABCD 中,AB =3,BC =4.点M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM ≌△CDN ;(2)点G 是对角线AC 上的点,∠EGF =90°,求AG 的长.(1)证明∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠MAB =∠NCD .在△ABM 和△CDN 中,⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD ,AM =CN ,∴△ABM ≌△CDN (SAS) (2)解:如图,连接EF ,交AC 于点O .在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA =∠FOC ,∠EAO =∠FCO ,AE =CF ,∴△AEO≌△CFO (AAS),∴EO =FO ,AO =CO ,∴O 为EF ,AC 中点.∵∠EGF =90°,OG =12 EF =32,∴AG =OA -OG =1或AG =OA +OG =4,∴AG 的长为1或420.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF .(1)求证:AE =CF ;(2)当四边形AECF 为矩形时,请求出BD -AC BE 的值. 解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC .∵四边形AECF 是矩形,∴AC =EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BE BE=221.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =1∶2时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12 AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形22.(10分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q .(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ .证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ .证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ23.(11分)(2019·重庆)如图,在平行四边形ABCD 中,点E 在边BC 上,连接AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若DP =2AP =4,CP =17 ,CD =5,求△ACD 的面积.(2)若AE =BN ,AN =CE ,求证:AD =2 CM +2CE .解:(1)作CG ⊥AD 于G ,如图①所示:设PG =x ,则DG =4-x ,在Rt △PGC 中,GC 2=CP2-PG 2=17-x 2,在Rt △DGC 中,GC 2=CD 2-GD 2=52-(4-x )2=9+8x -x 2,∴17-x 2=9+8x-x 2,解得:x =1,即PG =1,∴GC =4,∵DP =2AP =4,∴AD =6,∴S △ACD =12 ×AD ×CG =12×6×4=12(2)证明:连接NE ,如图②所示:∵BH ⊥AE ,AF ⊥BC ,AE ⊥EM ,∴∠AEB +∠NBF =∠AEB +∠EAF =∠AEB +∠MEC =90°,∴∠NBF =∠EAF =∠MEC ,在△NBF 和△EAF 中,⎩⎪⎨⎪⎧∠NBF =∠EAF ,∠BFN =∠AFE ,BN =AE ,∴△NBF ≌△EAF (AAS),∴BF =AF ,NF =EF ,∴∠ABC =45°,∠ENF =45°,∵∠ANB =90°+∠EAF ,∠CEA =90°+∠MEC ,∴∠ANB =∠CEA ,在△ANB 和△CEA 中,⎩⎪⎨⎪⎧AN =CE ,∠ANB =∠CEA ,BN =AE ,∴△ANB ≌△CEA (SAS),∴∠CAE =∠ABN ,∵∠NBF =∠EAF ,∴∠ABF =∠FAC =45°∴FC =AF =BF ,∴∠ANE =∠BCD =135°,AD =BC =2AF ,在△ANE 和△ECM 中,⎩⎪⎨⎪⎧∠EAF =∠MEC ,AN =EC ,∠ANE =∠ECM ,∴△ANE ≌△ECM (ASA),∴CM =NE ,又∵NF =22 NE =22 MC ,∴AF =22 MC +EC ,∴AD =2 MC +2EC第十九章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2019·广元)函数y =x -1 的自变量x 的取值范围是DA .x >1B .x <1C .x ≤1D .x ≥12.若函数y =kx 的图象经过点(1,-2),那么它一定经过点BA .(2,-1)B .(-12 ,1)C .(-2,1)D .(-1,12) 3.(2019·齐齐哈尔)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S 与时间t 之间函数关系的是B4.(2019·娄底)如图,直线y =x +b 和y =kx +2与x 轴分别交于点A (-2,0),点B (3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0 解集为D A .x <-2 B .x >3 C .x <-2或x >3 D .-2<x <3第4题图 第9题图第10题图5.(2019·大庆)正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是A6.已知一次函数y =(2m -1)x +1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是BA .m <12B .m >12C .m <2D .m >0 7.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为AA .(0,-1)B .(-1,0)C .(0,2)D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是AA .1<m <7B .3<m <4C .m >1D .m <49.在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km/h ,b km/h 匀速骑行,他们骑行的时间t (h)与骑行的路程s (km)之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a =26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km.其中正确的说法有CA .1个B .2个C .3个D .4个10.(2019·鄂州)如图,在平面直角坐标系中,点A 1,A 2,A 3…A n 在x 轴上,B 1,B 2,B 3…B n 在直线y =33x 上,若A 1(1,0),且△A 1B 1A 2,△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1,S 2,S 3…S n .则S n 可表示为DA .22n 3B .22n -13C .22n -23D .22n -33二、填空题(每小题3分,共15分)11.(2019·本溪)函数y =5x 的图象经过的象限是一、三.12.(2019·哈尔滨)在函数y =3x 2x -3 中,自变量x 的取值范围是x ≠32. 13.(2019·无锡)已知一次函数y =kx +b 的图象如图所示,则关于x 的不等式3kx -b >0的解集为x <2.第13题图 第14题图第15题图14.(2019·金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是(32,4800).15.(2019·重庆)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54倍快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为2080米.三、解答题(共75分)16.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5.(1)求x 与y 之间的函数关系,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 的值.解:(1)y =32x +2,是一次函数 (2)a =017.(9分)(2019·南京)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x -3.(1)当k =-2时,若y 1>y 2,求x 的取值范围;(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.解:(1)k =-2时,y 1=-2x +2,根据题意得-2x +2>x -3,解得x <53(2)当x =1时,y =x -3=-2,把(1,-2)代入y 1=kx +2得k +2=-2,解得k =-4,当-4≤k <0时,y 1>y 2;当0<k ≤1时,y 1>y 218.(9分)已知一次函数y =(a +8)x +(6-b ).(1)a ,b 为何值时,y 随x 的增大而增大?(2)a ,b 为何值时,图象过第一、二、四象限?(3)a ,b 为何值时,图象与y 轴的交点在x 轴上方?(4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =619.(9分)(2019·深圳)有A ,B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发电多少度?(2)A ,B 两个发电厂共焚烧90吨的垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾两倍,求A 厂和B 厂总发电量的最大值.解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,根据题意得:⎩⎪⎨⎪⎧a -b =40,30b -20a =1800, 解得⎩⎪⎨⎪⎧a =300,b =260, 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨垃圾,总发电量为y 度,则y =300x +260(90-x )=40x +23400,∵x ≤2(90-x ),∴x ≤60,∵y 随x 的增大而增大,∴当x =60时,y 有最大值为:40×60+23400=25800(度).答:A 厂和B 厂总发电量的最大值是25800度20.(9分)(2019·绥化)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y (个)与甲加工时间x (h)之间的函数图象为折线OA -AB -BC ,如图所示.(1)这批零件一共有270个,甲机器每小时加工20个零件,乙机器排除故障后每小时加工40个零件;(2)当3≤x ≤6时,求y 与x 之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?解:(1)这批零件一共有270个,甲机器每小时加工零件:(90-50)÷(3-1)=20(个),乙机器排除故障后每小时加工零件:(270-90-20×3)÷3=40(个);故答案为:270;20;40 (2)设当3≤x ≤6时,y 与x 之间的函数关系式为y =kx +b ,把B (3,90),C (6,270)代入解析式,得⎩⎪⎨⎪⎧3k +b =90,6k +b =270, 解得⎩⎪⎨⎪⎧k =60,b =-90, ∴y =60x -90(3≤x ≤6) (3)设甲加工x小时时,甲乙加工的零件个数相等,①20x =30,解得x =1.5;②50-20=30,20x =30+40(x -3),解得x =4.5,答:甲加工1.5 h 或4.5 h 时,甲与乙加工的零件个数相等21.(10分)(2019·重庆)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如图所示.x …-3-2-10123…y …-6-4-20-2-4-6…(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴;(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的方向和距离;(3)拓展应用:在所给的平面直角坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.解:(1)A(0,2),B(-2,0),函数y=-2|x+2|的对称轴为x=-2 (2)将函数y=-2|x|的图象向上平移2个单位得到函数y=-2|x|+2的图象;将函数y=-2|x|的图象向左平移2个单位得到函数y=-2|x+2|的图象(3)将函数y=-2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=-2|x-3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y222.(10分)(2019·内江)某商店准备购进A,B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A,B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x -20)元,由题意得:3000x =1800x -20,解得:x =50,经检验,x =50是原方程的解,且符合题意,50-20=30,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元 (2)设购买A 种商品a 件,则购买B 商品(40-a )件,由题意得⎩⎨⎧50a +30(40-a )≤1560,a ≥40-a 2, 解得403 ≤a ≤18,∵a 为正整数,∴a =14,15,16,17,18,∴商店共有5种进货方案 (3)设销售A ,B 两种商品共获利y 元,由题意得:y =(80-50-m )a +(45-30)(40-a )=(15-m )a +600,①当10<m <15时,15-m >0,y 随a 的增大而增大,∴当a =18时,获利最大,即买18件A 商品,22件B 商品;②当m =15时,15-m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同;③当15<m <20时,15-m <0,y 随a 的增大而减小,∴当a =14时,获利最大,即买14件A 商品,26件B 商品23.(11分)(2019·襄阳)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:(1)该超市购进甲种蔬菜10 kg 和乙种蔬菜5 kg 需要170元;购进甲种蔬菜6 kg 和乙种蔬菜10 kg 需要200元.求m ,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100 kg 进行销售,其中甲种蔬菜的数量不少于20 kg ,且不大于70 kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60 kg 的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y (元)与购进甲种蔬菜的数量x (kg)之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.解:(1)由题意可得,⎩⎪⎨⎪⎧10m +5n =170,6m +10n =200, 解得⎩⎪⎨⎪⎧m =10,n =14, 答:m 的值是10,n 的值是14 (2)当20≤x ≤60时,y =(16-10)x +(18-14)(100-x )=2x +400,当60<x ≤70时,y =(16-10)×60+(16-10)×0.5×(x -60)+(18-14)(100-x )=-x +580,由上可得,y =⎩⎪⎨⎪⎧2x +400(20≤x ≤60)-x +580(60<x ≤70) (3)当20≤x ≤60时,y =2x +400,则当x =60时,y 取得最大值,此时y =520,当60<x ≤70时,y =-x +580,则y <-60+580=520,由上可得,当x =60时,y 取得最大值,此时y =520,∵在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,且要保证捐款后的盈利率不低于20%,∴520-2a ×60-40a 60×10+40×14≥20%,解得a ≤1.8,即a 的最大值是1.8第二十章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(2019·宜昌)李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收货一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是CA.120 B.110 C.100 D.902.(2019·临沂)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)121 3最高气温(℃)22262829则这周最高气温的平均值是A.26.25 ℃ B.27 ℃ C.28 ℃ D.29 ℃3.(2019·湘西州)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s甲2=0.25,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适AA.甲 B.乙 C.丙 D.丁4.(2019·宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.70.9 1.1 1.3 1.5及以上人数29654 4 则本次调查中阅读时间的中位数和众数分别是A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.15.(2019·眉山)某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是CA.6 B.6.5 C.7 D.86.(2019·大庆)某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是DA.1-6月份利润的众数是130万元 B.1-6月份利润的中位数是130万元C.1-6月份利润的平均数是130万元 D.1-6月份利润的极差是40万元第6题图第10题图7.在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是CA .甲、乙得分的平均数都是8B .甲得分的众数是8,乙得分的众数是9C .甲得分的中位数是9,乙得分的中位数是6D .甲得分的方差比乙得分的方差小 8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为BA .0B .1C .2D .49.(2019·宜宾)如表记录了两位射击运动员的八次训练成绩:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲 10 7 7 8 8 8 9 7 乙1055899810甲乙甲乙则下列结论正确的是AA .x 甲=x 乙,s 甲2<s 乙2B .x 甲=x 乙,s 甲2>s 乙2C .x 甲>x 乙,s 甲2<s 乙2D .x甲<x 乙,s 甲2<s 乙210.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是CA .2.25B .2.5C .2.95D .3 二、填空题(每小题3分,共15分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是88分.12.(2019·玉林)样本数据-2,0,3,4,-1的中位数是0. 13.(2019·包头)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:班级 参赛人数 平均数 中位数 方差 甲 45 83 86 82 乙458384135②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀);③甲班成绩的波动性比乙班小.上述结论中正确的是①②③.(填写所有正确结论的序号)14.(2019·菏泽)一组数据4,5,6,x 的众数与中位数相等,则这组数据的方差是12.。

23人教版八年级下数学《第16章二次根式》单元测试35

23人教版八年级下数学《第16章二次根式》单元测试35

人教版八年级下数学《第16章二次根式》单元测试一、选择题1. 若10404102 =,则10.2x =中的x 等于( ) A.1040.4 B.10.404 C.104.04 D.1.04042. 下列计算正确的是( )A .0(2)0-=B .239-=-C .93=D .235+= 3. 下列各式是二次根式的是( ) A 、8- B 、35 C 、2x D 、2x x --4. 在15,61,211,40中最简二次根式的个数是( )A .1个B .2个C .3个D .4个5. 下列运算正确的式子是( )A.1052=+B.x x x x 245==-C.a a a 33363=+ D.b b b b b b b -=-+--=+-1)1)(1()1)(1(11 6. 下列二次根式中,是最简二次根式的是( )A 、8xB 、x 2-3 C 、x -y x D 、3a 2b7. 下列各式12;b a 245;x 30;x3xy;是最简二次根式个数是( ) A 、0个 B 、1个 C 、2个 D 、3个二、填空题1. 当2<x 时,(2-x)2=____。

2. 已知a=3+22,b=3-22,则a 2b-ab 2=_________.3. 方程12=x 的解是_____________。

4. 如下图,直径为1个单位的圆,沿数轴向右滚动一周,圆上的一点从原点O 到达点O ',则点O '对应的实数是_____________.5. 如图,字母b 的取值如图所示,化简251022+-+-b b b =__________.6. 实数a 、b 在数轴上对应点的位置如图所示: 则3a -2)43(b a -=______________.7. 若 5 的整数部分是a ,小数部分是b ,则a -1b =__________。

8. 若x=-3,则2)1(1x +-等于__________三、解答题1. 计算:))((36163--⋅-;63312⋅⋅; )(102132531-⋅⋅; z y x 10010101⋅⋅-. 20245-;14425081010⨯⨯..;521312321⨯÷;)(ba b b a 1223÷⋅. 27121352722-; ba c abc4322-.2. 求下列二次根式中字母的取值范围 (1)xx --+315;(2)22)-(x ;3. 一个长方体的长、宽、高的和为19,其表面积为192,求长方体的外接球面积。

初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)

初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)

章节测试题1.【答题】若与互为相反数,则x+y的值=______。

【答案】27【分析】互为相反数的两个数之和等于0.【解答】根据题意得+=0,∵≥0 且≥0∴=0 且=0∴且解得∴x+y=15+12=272.【答题】实数a在数轴上的位置如图,化简+a=______.【答案】1【分析】根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.【解答】解:+a=1﹣a+a=1,3.【答题】函数中自变量的取值范围______.【答案】x≥2【分析】根据被开方数非负来解.【解答】根据被开方数非负,得到关于x的不等式,x-2≥0求解即可.4.【答题】若在实数范围内有意义,则x的取值范围是______.【答案】x≥3【分析】被开方数或被开方式是非负数【解答】由于被开方数或被开方式是非负数得x﹣3≥0,即x≥35.【答题】要使有意义,则x的取值范围是______.【答案】x≥4【分析】根据算术平方根的意义,可知其被开方数为非负数.【解答】根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为:x≥4.方法总结:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.6.【题文】想一想:将等式=3和=7反过来的等式3=和7=还成立吗?式子:9==和4==成立吗?仿照上面的方法,化简下列各式:(1)2(2)11(3)6【答案】成立,、、【分析】当a≥0时,a=,所以对于有理数与二次根式相乘的形式的化简,可以将根号外的非负数通过这样的变形后,再用二次根式的乘法法则化简.【解答】解:等式3=和7=成立,9==和4==成立.(1);(2);(3).方法总结:本题主要考查了二次根式的非负性,二次根式有双重非负性,即二次根式的被开方数是非负数,二次根式的值是非负数,所以每一个非负数都可以根据二次根式的双重非负性写成二次根式的形式.7.【题文】若y=++3,求xy的值。

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

人教版初中数学八年级下册十六至二十章全册检测题测试卷期末考试附答案

人教版初中数学八年级下册十六至二十章全册检测题测试卷期末考试附答案

第十六章测试题一、选择题(每题3分,共30分)1.代数式x -3在实数范围内有意义,则x 的取值范围是( )A .x ≥3B .x >3C .x ≤3D .x <32.当x >2时,(2-x )2=( )A .2-xB .x -2C .2+xD .±(x -2)3.下列二次根式中,最简二次根式是( ) A.30 B.12 C.8 D.12 4.下列运算正确的是( )A.2+3= 5 B .30=0 C .(-2a )3=-8a 3 D .a 6÷a 3=a 2 5.化简二次根式(-5)2×3的结果为( )A .-5 3B .5 3C .±5 3 D.306.估计⎝ ⎛⎭⎪⎫10+43×3的值在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 7.若实数a ,b 满足ab >0,则化简a-b a 2的结果为( ) A .--b B.b C.-b D .-b8.若x 为实数,在“(3+1) x ”的“ ”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是( ) A.3+1 B.3-1 C .2 3 D .1-39.【教材P 19复习题T 5改编】若x =2+1,则代数式x 2-2x +2的值为( )A .7B .4C .3D .3-2210.一块长为7 dm 、宽为5 dm 的木板,采用如图的方式在这块木板上截出两块面积分别是8 dm 2和18 dm 2的小正方形木板,甲同学说:想要截出来的两块小正方形木板的边长均小于木板的宽,所以可以截出;乙同学说:想要截出来的两块小正方形木板的边长之和大于木板的长,所以不能截出.下面对于甲、乙两名同学说法判断正确的是()A.甲同学说的对B.乙同学说的对C.甲、乙同学说的都对D.无法判断二、填空题(每题3分,共24分)11.计算:2×8=________.12.如果两个最简二次根式3a-1与2a+3能合并,那么a=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a在数轴上对应的点的位置如图所示,则(a-4)2+(a-11)2化简后为________.15.若实数m,n满足|m-n-5|+2m+n-4=0,则3m+n=________.16.【教材P10练习T3变式】△ABC的面积S=12 cm2,底边a=2 3 cm,则底边上的高为________cm.17.【数学建模】某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n,k的代数式表示).18.【规律探索题】观察下列二次根式化简:12+1=2-1,13+2=3-2,….从中找出规律并计算:(12+1+13+2+…+12 023+ 2 022+12 024+ 2 023)×( 2 024+1)=________. 三、解答题(19题16分,20题8分,24题12分,其余每题10分,共66分)19.计算下列各式:(1)(3.14-π)0+|2-1|+⎝ ⎛⎭⎪⎫12-1-8; (2)20+5(2+5);(3)(3+3)(3-3)+8+62; (4)(3+2-6)2-(2-3+6)2.20.【教材P 19复习题T 5改编】若a =3-10,求代数式a 2-6a -2的值.21.阅读下面的解题过程,并回答问题.化简:(1-3x )2-|1-x |.解:由1-3x≥0,得x≤13,∴1-x>0,∴原式=(1-3x)-(1-x)=1-3x-1+x=-2x.按照上面的解法,试化简:(x-3)2-(2-x)2.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地的时间.(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.【数学抽象】(1)用“=”“>”“<”填空:4+3________24×3,1+1 6________21×16,5+5________25×5.(2)由(1)中各式猜想m+n与2mn(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成长方形的花圃,如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少为多少米?答案一、1.A 2.B 3.A 4.C 5.B 6.D7.A8.C9.C10.B点拨:∵两块小正方形木板的面积分别是8 dm2和18 dm2,∴边长分别为8=22(dm),18=32(dm).∴两块小正方形木板的边长之和为22+32=52(dm)>7 dm.∴不能截出.二、11.412.413.>14.715.716.4317.kn点拨:设装有大象的铁笼重力为a N,将弹簧秤移动到B′的位置时,弹簧秤读数为k′N.由题意可得BP·k=P A·a,B′P·k′=P A·a,∴BP·k=B′P·k′.又∵B′P=nBP,∴k′=BP·kB′P=BP·knBP=kn.18.2 023点思路:先将第一个括号内的各项分母有理化,此时发现,除第二项和倒数第二项外,其他各项的和为0,由此可计算出第一个括号内式子的值,然后再计算其与第二个括号内式子的乘积.三、19.解:(1)原式=1+2-1+2-22=2-2;(2)原式=25+25+(5)2=45+5;(3)原式=32-(3)2+(2+3)=9-3+2+3=8+3;(4)原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.将a=3-10代入上式,得原式=(a-3)2-11=(3-10-3)2-11=10-11=-1.21.解:∵2-x≥0,∴x≤2.∴x-3<0.∴(x-3)2-(2-x)2=|x-3|-(2-x)=3-x-2+x=1. 22.解:长方形花坛的面积为140π×35π=70π(m2),∴圆形花坛的面积为70πm2.设圆形花坛的面积为S m2,半径为r m,则S=πr2,即70π=πr2,∴r=70ππ=70.故这个圆形花坛的半径为70 m. 23.解:(1)由题意知h=40 m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80 m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,∴h=180 m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)>;>;=(2)m+n≥2mn.理由如下:当m≥0,n≥0时,(m-n)2≥0,∴(m)2-2mn+(n)2≥0.∴m-2mn+n≥0.∴m+n≥2mn.(3)设花圃平行于墙的一边长为a m,垂直于墙的一边长为b m,则a>0,b>0,ab=200.根据(2)中的结论可得a+2b≥2a·2b=22ab=22×200=2×20=40,∴所用的篱笆至少为40 m.第十七章综合素质评价一、选择题(每题3分,共30分)1.设直角三角形的两条直角边长分别为a和b,斜边长为c,已知b=12,c=13,则a=()A.1 B.5 C.10 D.252.在三边分别为下列长度的三角形中,不是直角三角形的为() A.1,2, 3 B.2,3, 5 C.6,8,10 D.4,7,53.在Rt△ABC中,∠ACB=90°,AB=3,则AB2+BC2+AC2=() A.9 B.18 C.20 D.244.把命题“如果x=y,那么x=y”作为原命题,下列对原命题和它的逆命题真假判断正确的是()A.原命题和逆命题都是真命题B.原命题和逆命题都是假命题C.原命题是真命题,逆命题是假命题D.原命题是假命题,逆命题是真命题5.在三边分别为4、4、6的等腰三角形中,底边上的高是() A.5 B.3 C.4 D.76.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为()A. 3 B.2 3 C.3 3 D.4 3(第6题)(第7题)(第8题)(第9题)7.【教材P27图17.1­10变式】如图,A(8,0),C(-2,0),以点A为圆心,AC 长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5) B.(5,0)C.(6,0) D.(0,6)8.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为()A.90米B.120米C.140米D.150米9.如图,小巷左右两侧都是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左端墙脚的距离为0.7 m,顶端距离地面2.4 m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2 m,则小巷的宽度为()A.0.7 m B.1.5 m C.2.2 m D.2.4 m10.【直观想象】如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是()A.20 B.25 C.30 D.32二、填空题(每题3分,共24分)11.勾股数为一组连续自然数的是__________.12.【数学运算】已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°,c=10,a b=34,则a=________.13.已知正方形的面积为8,则其对角线的长为________.14.已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则△ABC的形状为______________.15.《九章算术》是我国古代数学名著,书中有下列问题:今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为____________________.(第15题)(第16题)(第17题)(第18题) 16.如图,已知△ABO为等腰三角形,且OA=AB=5,B(-6,0),则点A的坐标为__________.17.【传统文化】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为________.18.如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE,BC于点H,G,则BG=________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在△ABC中,CD⊥AB于D,AB=AC=13,BD=1.求:(1)CD的长;(2)BC的长.20.【教材P39复习题T9变式】如图,在边长为1的小正方形组成的网格中,点A,B,C都在格点上,请按要求完成下列各题.(1)线段AB的长为________;(2)若三角形ABC是直角三角形,且边BC的长度为5,请在图中确定点C的位置,并补全三角形ABC.21.【教材P38复习题T8变式】如图,已知AD是△ABC的中线,DE⊥AC于点E,CE=1,DE=2,AE=4.(1)求AD的长;(2)求证:AD垂直平分线段BC.22.【数学建模】小渝和小川是一对好朋友.如图,小渝家住在A处,小川家住在B处,两家相距10千米,小渝家A在一条笔直的公路AC边上,小川家到这条公路的距离BC为6千米,两人相约在公路D处见面,且两家到见面地点D的距离相等.求小渝家A到见面地点D的距离.23.【数学抽象】阅读下面一段文字,然后回答问题.已知在平面内两点P1(x1,y1),P2(x2,y2),其两点间的距离P1P2=(x1-x2)2+(y1-y2)2,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离.(2)已知M,N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M,N两点之间的距离.(3)已知一个三角形各顶点坐标为D(1,6),E(-2,2),F(4,2),你能判定此三角形的形状吗?说明理由.24.【阅读理解题】在学习完《勾股定理》这一章后,小力和小美进行了如下对话:根据对话回答问题:(1)判断:等腰直角三角形________“类勾股三角形”(填“是”或“不是”).(2)已知△ABC其中两边长分别为1,7,若△ABC为“类勾股三角形”,则另一边长为________.(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为a,b,c(a,b为直角边长且a<b,c为斜边长),用只含有a的式子表示其周长和面积.答案一、1.B 2.D 3.B 4.D 5.D 6.D7.D8.C9.C10.B二、11.3,4,512.613.414.等腰直角三角形15.(x-6.8)2+x2=10216.(-3,4)17.318.1点思路:连接AG,EG.设CG=x,则BG=8-x,易得AG=EG,根据勾股定理可得AB2+BG2=AG2=EG2=CE2+CG2,可求得x的值,进而求出BG 的长.三、19.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD=AC2-AD2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.20.解:(1)5(2)当AC为斜边时,AC=AB2+BC2=5+52=30,即AC2=30.∵30无法表示成两个整数的平方和,∴此时无法满足C点在格点上,故舍去.当BC为斜边时,AC=BC2-AB2=52-5=25,即AC2=20=42+22,此时C点可以在格点上.作图如下:21.(1)解:∵DE⊥AC于点E,∴∠AED=90°.在Rt△ADE中,AD2=AE2+DE2=42+22=20,∴AD=2 5.(2)证明:由(1)知AD2=20.同理可得CD2=5,∴AD2+CD2=25.∵AC=AE+CE=4+1=5,∴AC2=25.∴AD2+CD2=AC2.∴△ADC是直角三角形.∴∠ADC=90°.∵AD是△ABC的中线,∴AD垂直平分线段BC.22.解:由题意得AB=10千米,BC=6千米,AD=BD,BC⊥AC,∴AC=AB2-BC2=102-62=8(千米).设AD=BD=x千米,则CD=AC-AD=(8-x)千米,在Rt△BCD中,BC2+CD2=BD2,即62+(8-x)2=x2,解得x=25 4.答:小渝家A到见面地点D的距离为254千米.点方法:运用勾股定理解决实际问题的一般步骤:1.从实际问题中抽象出几何图形;2.确定要求的线段所在的直角三角形;3.找准直角边和斜边,根据勾股定理建立等量关系;4.求得结果.23.解:(1)由题意可知A,B两点间的距离为(2+3)2+(4+8)2=13.(2)由题意可知,直线MN平行于y轴,∴M,N两点之间的距离为4-(-1)=5.(3)△DEF是等腰三角形.理由如下:DE=(-2-1)2+(2-6)2=5,EF=(4+2)2+(2-2)2=6,DF=(4-1)2+(2-6)2=5,∴DE=DF. ∴△DEF是等腰三角形.24.解:(1)不是(2)2或13(3)∵a<b<c,∴c2+b2>2a2,a2+b2<2c2.∵Rt△ABC是“类勾股三角形”,∴c2+a2=2b2.又∵c2=b2+a2,∴b2+a2+a2=2b2,解得b=2a.∴c=a2+b2=a2+2a2=3a.∴S=12ab=12a·2a=22a2,C=a+b+c=a+2a+3a=(1+2+3)a.第十八章综合素质评价一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为() A.100°B.160°C.80°D.60°2.如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14 B.12C.1 D.2(第2题)(第4题)(第5题)(第8题) 3.依据所标数据,下列一定为平行四边形的是()4.【教材P44例2改编】如图,在▱ABCD中,AB=13,AD=5,AC⊥BC,则▱ABCD 的面积为()A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB=60°,AB=5,则BD的长为()A.20 B.15 C.10 D.56.关于菱形的性质,以下说法不正确...的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形7.下列命题中,是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16 3 B.16 C.8 3 D.89.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB =2,则OE的长度为()A.62 B. 6 C.2 2 D.23(第9题)(第10题)(第11题)(第13题)10.如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题)(第15题)(第16题)(第17题)15.如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠F AC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC=10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t秒(t>0).(1)若点N的速度为每秒1个单位长度,①如图,当0<t<8时,求证:四边形AMCN是平行四边形;②点M,N运动的过程中,四边形AMCN可能出现的形状是________.A.矩形B.菱形C.正方形(2)若点N的速度为每秒2个单位长度,运动过程中,t为何值时,四边形AMCN是平行四边形?答案一、1.A 2.D 3.D 4.B 5.C 6.B7.D8.C9.B10.D点拨:根据题意,可得DP=t cm,BM=t cm.∵AD=10 cm,BC=8 cm,∴AP=(10-t)cm,CM=(8-t)cm.当四边形ABMP为矩形时,AP=BM,即10-t=t,解得t=5.故A选项错误.当四边形CDPM为平行四边形时,DP=CM,即t=8-t,解得t=4.故B选项错误.当CD=PM时,分两种情况:(1)四边形CDPM是平行四边形,此时CM=PD,即8-t=t,解得t=4.(2)四边形CDPM是等腰梯形,如图,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,则∠MGP=∠CHD=90°,易得GM=HC.又∵PM=CD,∴Rt△MGP≌Rt△CHD(H L).∴GP=HD.易得GP=t-(8-t)2cm.∴AG=AP+GP=[10-t+t-(8-t)2]cm.又∵BM=t cm,易得AG=BM,∴10-t+t-(8-t)2=t,解得t=6.综上,当CD=PM时,t=4或6.故C选项错误,D选项正确.二、11.1512.13 213.①14.4;215.2516.317.10点思路:根据勾股定理得到BC=AB2+AC2=5,由作图可知,MN是线段AC的垂直平分线,所以EC=EA, AF=CF.易证AE=CE=12BC=2.5.根据平行四边形的性质得到AD=BC=5,CD=AB=3,∠ACD=∠BAC=90°,同理证得AF=CF=2.5,于是得到结论.18.30°或150°点拨:分两种情况.(1)如图,等边三角形ADE在正方形ABCD的内部,则∠CDE=∠CDA-∠ADE=90°-60°=30°.又∵CD=AD=DE,∴∠DCE=75°.∴∠ECB=15°.同理,∠EBC=15°.∴∠BEC=150°.(2)如图,等边三角形ADE在正方形ABCD的外部,则∠CDE=∠CDA+∠ADE=90°+60°=150°.又∵CD=AD=DE,∴∠CED=15°.同理,∠AEB=15°.∴∠BEC=∠AED-∠CED-∠AEB=60°-15°-15°=30°.三、19.证明:(1)∵BF =DE ,∴BF -EF =DE -EF ,即BE =DF . (2)∵四边形ABCD 为平行四边形, ∴AB =CD ,且AB ∥CD . ∴∠ABE =∠CDF . 在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ).20.证明:在△BEA 和△DFC 中,⎩⎨⎧AB =CD ,AE =CF ,BE =DF ,∴△BEA ≌△DFC (SSS ). ∴∠EAB =∠FCD . ∴∠BAC =∠DCA . ∴AB ∥DC .∵AB =DC ,∴四边形ABCD 是平行四边形. 21.(1)证明:∵△AOB 是等边三角形,∴OA =OB .∵四边形ABCD 是平行四边形, ∴OB =OD =12BD ,OA =OC =12AC . ∴BD =AC . ∴▱ABCD 是矩形. (2)解:∵▱ABCD 是矩形, ∴∠BAD =90°. 又易知∠ABO =60°,∴∠ADB =90°-60°=30°.∴BD =2AB =8.∴AD =BD 2-AB 2=82-42=4 3.22.(1)证明:在△ABC 中,点D 是AC 的中点,∴AD=DC.∵AF∥BC,∴∠F AD=∠ECD,∠AFD=∠CED.∴△AFD≌△CED(AAS).∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G.由(1)知四边形AECF是菱形,又CF=2,∠F AC=30°,∴AE=CF=2,∠F AE=2∠F AC=60°.∵AF∥BC,∴∠AEB=∠F AE=60°.∴∠GAE=30°.∴GE=12AE=1.∴AG=AE2-GE2= 3.∵∠B=45°,∴AG=BG= 3.∴AB=AG2+BG2= 6.23.(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=∠D=90°.∴∠BAE+∠AEB=90°.∵BH⊥AE,∴∠BHE=90°.∴∠AEB+∠EBH=90°.∴∠BAE=∠EBH.在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA ). ∴AE =BF .(2)解:由(1)得△ABE ≌△BCF , ∴BE =CF .∵正方形的边长是5,BE =2, ∴DF =CD -CF =CD -BE =5-2=3.在Rt △ADF 中,由勾股定理得AF =AD 2+DF 2=52+32=34. 24.(1)①证明:当0<t <8时,根据题意,得BM =DN =t .∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD . ∴OB -BM =OD -DN . ∴OM =ON .∴四边形AMCN 是平行四边形. ②A(2)解:若点N 的速度为每秒2个单位长度,则0<t ≤8时,点N 从点D 向点B 运动,点M 在线段OB 上;当8<t ≤16时,点N 从点B 向点D 运动,点M 在线段OD 上.若四边形AMCN 是平行四边形,则OM =ON 且点M ,N 在点O 的两侧,当0<t ≤4时,ON =8-2t ,OM =8-t ,OM 与ON 不可能相等,不存在四边形AMCN 是平行四边形;当4<t ≤8时,点M ,N 在点O 的同侧,不存在四边形AMCN 是平行四边形; 当8<t ≤12时,点M ,N 在点O 的两侧,OM =t -8,ON =24-2t ,此时存在OM =ON ,即t -8=24-2t ,解得t =323;当12<t ≤16时,点M ,N 都在线段OD 上,点M ,N 在点O 的同侧,不存在四边形AMCN 是平行四边形.综上,当t =323时,四边形AMCN 是平行四边形.点思路:(1)② ∵AB ≠AD ,∴四边形ABCD 不可能是菱形或正方形. ∴AC 与MN 不能垂直.∴四边形AMCN 不可能是正方形或菱形. ∴当MN =AC 时,四边形AMCN 可以是矩形.第十九章综合素质评价一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间 2.函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3D .x ≥-13.下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝ ⎛⎭⎪⎫72,n 是直线y =kx +b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是()8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是()9.某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为()A.23 cm B.24 cm C.25 cm D.26 cm10.北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是()A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________.12.已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题)(第17题)(第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t. 18.日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.23.如图,在平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,便得到射线CD,其中C(c,0),当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.答案一、1.C 2.C 3.D 4.C 5.D 6.A 7.B 8.A 9.B 10.B二、11.-2 12.y =-x +1(答案不唯一) 13.-2 14.x ≤1 15.0<m <2 16.y =2x +330 17.1 50018.198 点拨:设y =kx +b ,由题意得⎩⎨⎧b =28,-56k +b =0,解得⎩⎪⎨⎪⎧b =28,k =12.∴y =12x +28.∵黑白两色小正方形个数的和是400, ∴7×7×3+x +12x +28=400,解得x =150.∵三个7×7格式的正方形中白色小正方形的个数为16×3=48, ∴该20×20格式的二维码中共有白色小正方形150+48=198(个). 三、19.解:(1)设一次函数的解析式为y =kx +b .将点(-2,1)和(1,4)的坐标代入解析式,得 ⎩⎨⎧-2k +b =1,k +b =4,解得⎩⎨⎧k =1,b =3. ∴一次函数的解析式为y =x +3. (2)当x =3时,y =3+3=6.20.解:(1)当y 1=y 2时,有2x +1=-x -2,解得x =-1,∴y =-1.∴P (-1,-1). (2)令x =0,得y 1=1,y 2=-2, ∴A (0,1),B (0,-2).∴AB =3. ∴S △APB =12×1×3=32.(3)由图象可知:当y 1>y 2时,x 的取值范围是x >-1.21.解:(1)s 与t 之间的函数解析式为s =⎩⎨⎧15t (0≤t ≤0.2),20t -1(t >0.2).(2)设a h 后乙骑行在甲的前面. 根据题意,得20a -1>18a , 解得a >0.5.答:0.5 h 后乙骑行在甲的前面.22.解:(1)设每桶甲消毒液的价格是x 元,每桶乙消毒液的价格是y 元.根据题意,得⎩⎨⎧9x +6y =615,8x +12y =780,解得⎩⎨⎧x =45,y =35.答:每桶甲消毒液的价格是45元,每桶乙消毒液的价格是35元. (2)根据题意,得W =45a +35(30-a )=10a +1 050. ∵10>0,∴W 随a 的增大而增大.∵甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,∴⎩⎨⎧a ≥30-a +5,a ≤2(30-a ), 解得17.5≤a ≤20. ∵a 为整数,∴当a =18时,W 取得最小值,此时W =1 230,30-a =12.答:购买甲消毒液18桶、乙消毒液12桶,才能使总费用W 最少,最少费用是1 230元.23.解:(1)设AB 所在直线的解析式为y =kx +b .把点A (-8,19),B (6,5)的坐标分别代入y =kx +b ,得⎩⎨⎧-8k +b =19,6k +b =5,解得⎩⎨⎧k =-1,b =11.∴AB 所在直线的解析式为y =-x +11.(2)①由题意知,直线y =mx +n 经过点C (2,0),∴2m+n=0;②设线段AB上的整点为(t,-t+11),则tm+n=-t+11.∵2m+n=0,∴(t-2)m=-t+11.易知t-2≠0,∴m=-t+11t-2=-1+9t-2.∵-8≤t≤6,且t为整数,m也是整数,∴t-2=±1,±3或±9,解得t=1,3,5,-1,-7或11.∵当t=1时,m=-10;当t=3时,m=8;当t=5时,m=2;当t=-1时,m=-4;当t=-7时,m=-2;当t=11时,m=0(不符合题意,舍去).∴符合题意的整数m的个数为5.第二十章综合素质评价一、选择题(每题3分,共30分)1.某班5名同学参加学校“感党恩,跟党走”主题演讲比赛,他们的成绩(单位:分)分别是8,6,8,7,9,这组数据的中位数是()A.6 B.7 C.8 D.92.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示.所售30双女鞋尺码的众数是()A.25 cm B.24 cm C.23.5 cm D.23 cm3.某校健美操队共有10名队员,统计队员的年龄情况,结果如下:13岁3人,14岁5人,15岁2人,该健美操队队员的平均年龄为()A.14.2岁B.14.1岁C.13.9岁D.13.7岁4.在学校举行的“庆祝百周年,赞歌献给党”合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分).这五个有效评分的平均数和众数分别是()A.9.0分,8.9分B.8.9分,8.9分C.9.0分,9.0分D.8.9分,9.0分5.甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一..定.正确的是()A.甲、乙的总环数相同B.甲的成绩比乙的成绩稳定C.乙的成绩比甲的成绩波动大D.甲、乙成绩的众数相同6.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图(如图),则所调查学生睡眠时间的众数、中位数分别为()A.7 h,7 h B.8 h,7.5 hC.7 h,7.5 h D.8 h,8 h7.甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙第三次的成绩是()A.6环B.7环C.8环D.9环8.从小到大的一组数据-1,1,2,x,6,8的中位数为2,则这组数据的众数和平均数分别是()A.2,4 B.2,3 C.1,4 D.1,39.学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差10.【数据分析】为了解某小区居民的用水情况,随机抽查了若干户家庭的某月用水量,统计结果如下表所示.关于这若干户家庭的该月用水量的数据统计分析,下列说法正确的是() A.众数是5 B.平均数是7C.中位数是5 D.方差是1二、填空题(每题3分,共24分)11.学校为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,对学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取.甲、乙、丙三位应聘者的测试成绩(10分制)如表所记,如果四项得分按照“1:1:1:1”的比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课”项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中________将被淘汰(填:甲、乙或丙).12.今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演。

10人教版八年级数学下册第16章《二次根式》单元测试22

10人教版八年级数学下册第16章《二次根式》单元测试22

人教版八年级数学下册第16章《二次根式》单元测试一、选择题1. 化简二次根式2(3)6-⨯得( ) A 、36- B 、36 C 、18 D 、62. 当-1<a <1时,化简22)1()1(-++a a 得( )。

A 、2B 、-2C 、2aD 、-2a3. 若m -3为二次根式,则m 的取值为( )A .m≤3 B.m <3 C .m≥3 D .m >34. 在5a ,8b ,m 4,a 2+b 2 ,a 3 中,是最简二次根式的有( )A 、1个B 、2个C 、3个D 、4个5. 下列二次根式中,是最简二次根式的是( )A 、a 4B 、4a C 、4a D 、33a 6. 使代数式8a a -+有意义的a 的范围是( )A 、0>aB 、0<aC 、0=aD 、不存在7. 在二次根式1x -中,x 的取值范围是( )。

A 、x <1B 、x >1C 、x ≥1D 、x ≠18. 面积为6cm 2的正方形的边长为( )A .6cmB .2cmC .3cmD .36cm9. 若x <y <0,则222y xy x +-+222y xy x ++=( )A 、2xB 、2yC 、-2xD 、-2y10. 若方程(y-2)2=144,则y 的值是( )A .10B .-10C .-10或14D .12二、填空题1. 25-的绝对值是______________.2. 计算123-=________;3. 比较大小:-721_________-341.4. 计算34482123-+=____________。

5. 在实数范围内分解因式2233a a -+=______________.6. 判断下列代数式中哪些是二次根式?⑴21,⑵16-,⑶9+a ,⑷12+x , ⑸222++a a ,⑹x -(0≤x ),⑺()23-m 。

答:_____________________7. 已知x+1x =4,则x -1x=____________. 8. 若x 3+3x 2 =-x x+3 ,则x 的取值范围是_____________。

24人教版八年级数学下《第16章二次根式》单元测试80

24人教版八年级数学下《第16章二次根式》单元测试80

人教版八年级数学下《第16章二次根式》单元测试一、选择题1. 若3x -在实数范围内有意义,则x 的取值范围是( ) A.3x < B.3x ≤ C.3x > D.3x ≥2. a •a1=-1,则化简22)4(a a +-的结果是( ) A.2a-4 B.-4 C.4 D.4-2a3. 若x<0,则xx x 2-的结果是( )A .0B .—2C .0或—2D .2 4. 二次根式a a -=2的条件是( )A .0 aB .0 aC .0≤aD .a 是任意实数 5. 下列各式中,计算正确的是( ) A 、()()()()416416248--=-⨯-=-⨯-= B 、()0482≥=a a a C 、7434322=+=+ D 、91940414041404122=⨯=-•+=-6. 函数2y x =+中,自变量x 的取值范围是( ) A .2x >- B .2x -≥ C .2x ≠- D .2x -≤7. 计算:abab b a 1⋅÷等于( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b8. 当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( ) A .2 B .22 C .55D .5 9. 下列各式计算正确的是( )A.83236-=B.5352105+=C.432286⨯=D.422222÷=10. 下列各组中互为有理化因式的是( )。

A 、b a +与a b -- B 、a -2与2-a C 、32+a 与a 23- D 、a 与a 211. 若x y ,为实数,且220x y +-=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .1-C .2D .2-12. 若式子3-x 有意义,在实数范围内有意义,则x 的取值范围是( )A 、3≥xB 、3≤xC 、 3>xD 、3<x二、填空题1. 观察下列各式:1+13=213,2+14=314,3+15=415,……请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是__________________________。

36人教版八年级数学下《第16章二次根式》单元测试37

36人教版八年级数学下《第16章二次根式》单元测试37

人教版八年级数学下《第16章二次根式》单元测试一、选择题1. 如果a 是任意实数,下列各式中一定有意义的是( )A 、 aB 、1a 2C 、3-aD 、-a 2 2. 把m m 1-根号外的因式移到根号内,得( ) A .m B .m - C .m -- D .m -3. 下列判断中正确的是( )A 、m -n 的有理化因式是m+nB 、3-2 2 的倒数是2 2 -3C 、 2 - 5 的绝对值是 5 - 2D 、 3 不是方程x+1x -1-3x=2的解4. x 取什么值时,45x +有意义( )A 、x > 45B 、x <54C 、x ≥54-D 、x ≤54- 5. 二次根式a a -=2的条件是( )A .0 aB .0 aC .0≤aD .a 是任意实数6. 下列各式中①a ;②1+b ;③2a ;④32+a ;⑤12-x ; ⑥122++x x 一定是二次根式的有( )个。

A. 1个B.2个C.3个D.4个7. 如果4x +有意义,那么x 的取值范围是( ) A .x ≥-4 B .x ≠—12 C .x ≥-4且x ≠—12D .x>-4且x ≠—128. 下面算式中,错误的是( )A .0.0009=±0.03 B.±0.0049=±0.07C .0.0225=0.15D .-0.0169 =-0.139. 甲、乙两人在当a=5时计算a a a ++-44的值,得到不同的答案,计算过程如下所示,那么( )甲的答案是:()222442=+-=+-=++-a a a a a a a 乙答案是()82222442=-=+-=+-=++-a a a a a a a aA 、甲的答案对B 、乙的答案对C 、两人都不对D 、两人的都对10. 如果112-=-x x )(,那么X 的取值范围是( ) A 、X ≥1 B 、X >1 C 、、X ≤1 D 、、X <111. 使2x -有意义的x 的取值范围是 ( )A 、x ≥2B 、x >2C 、x ≤2D 、x 取一切实数12. 下列各式计算正确的是( )A. B. C.D.二、填空题1. 若(-2a )2=2a ,则a=___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章达标测试卷
一、选择题(每题3分,共30分)
1.若x+2在实数范围内有意义,则x的取值范围在数轴上表示正确的是()
2.下列等式正确的是()
A.(7)2=7 B.(-7)2=-7
C.73=7 D.(-7)2=-7
3.下列二次根式中,最简二次根式是()
A.30
B.12
C.8
D.1 2
4.下列运算中,错误的是()
A.2+3= 5 B.2×3= 6
C.8÷2=2 D.|1-2|=2-1
5.∵23=22×3=12,①
-23=(-2)2×3=12,②
∴23=-23,③
∴2=-2.④
以上推导中的错误出在第几步?()
A.①B.②C.③D.④6.下列计算正确的是()
A.a+b=ab B.(-a2)2=-a4
C.1
a
=a D.a÷b=
a
b(a≥0,b>0)
7.估计5+2×10的值应在() A.5和6之间B.6和7之间
C.7和8之间D.8和9之间
8.若x<0,则x-x2
x的结果是()
A.0B.-2 C.0或2 D.2
9.已知a,b,c为△ABC的三边长,且a2-2ab+b2+|b-c|=0,则△ABC的形状是()
A.等腰三角形B.等边三角形
C.直角三角形D.等腰直角三角形
10.已知m=1+2,n=1-2,则代数式m2+n2-3mn的值为() A.9 B.±3 C.3 D.5
二、填空题(每题3分,共24分)
11.计算:12×3=________.
12.如果两个最简二次根式3a-1与2a+3能合并,那么a=________.
13.比较:5-1
2________
1
2(填“>”“=”或“<”).
14.实数a在数轴上对应的点的位置如图所示,则(a-4)2+(a-11)2化简后为________.
(第14题)
15.实数a,b满足a+1+4a2+4ab+b2=0,则b a的值为________.
16.△ABC的面积S=12 cm2,底边a=2 3 cm,则底边上的高为__________.17.已知a≠0,b≠0且a<b,化简-a3b的结果是__________.
18.已知三角形的三边长分别为a,b,c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S=
p(p-a)(p-b)(p-c),其中p=a+b+c
2;我国南宋时期数学家秦
九韶曾提出利用三角形的三边求其面积的秦九韶公式S=1 2
a 2
b 2
-⎝
⎛⎭
⎪⎫a 2+b 2-c 222
,若一个三角形的三边长分别为2,3,4,则其面积是________.
三、解答题(19题16分,20题8分,24题12分,其余每题10分,共66分) 19.计算下列各式:
(1)20+5(2+5); (2)(46-32)÷22;
(3)218-41
8+332;
(4)⎝ ⎛

⎪⎫
a 3
b -a b +2b a +ab
÷b
a (a >0,
b >0).
20.比较5+2与3+2的大小关系.
21.已知(2a-b)2+|a|-5
a+5
=0,求(a+2b)(a-2b)的值.
22.据报道某天有一个孩子把34楼的啤酒瓶拿到28楼然后扔下去,所幸并没有人员伤亡,据研究从高空抛物到落地所需时间t(单位:s)和高度h(单位:m)
近似地满足公式t=2h
10(不考虑风速的影响).
(1)从50 m高空抛物到落地所需时间t1的值是多少?
(2)从100 m高空抛物到落地所需时间t2的值是多少?
(3)t2是t1的多少倍?
23.阅读理解:我们把⎪⎪
⎪⎪⎪⎪a b c d 称为二阶行列式,规定其运算法则为⎪⎪⎪⎪
⎪⎪
a b c d =ad -bc .如⎪⎪⎪⎪
⎪⎪
2345=2×5-3×4=-2.
(1)计算:⎪

⎪⎪
⎪⎪226
12
24; (2)如果⎪⎪
⎪⎪⎪⎪
3x +12x =0,求x 的值.
24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3
=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1. (1)化简3+2 2. (2)化简4+2 3. (3)化简4-12.
(4)若a±2 b=m±n,则m,n与a,b的关系是什么?并说明理由.
答案
一、1.D 2.A 3.A 4.A 5.B 6.D 7.B 8.D 9.B
10.C 点拨:∵m -n =(1+2)-(1-2)=22,mn =(1+2)(1-2)=-1,
∴m 2+n 2-3mn =(m -n )2-mn =(22)2-(-1)=9=3. 二、11.6 12.4 13.> 14.7 15.12 16.43cm
17.-a -ab 点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.
∴a ,b 异号. 又∵a <b ,∴a <0,b >0. ∴-a 3b =-a -ab . 18.3154
三、19.解:(1)原式=25+25+(5)2=45+5;
(2)原式=46÷22-32÷22=23-3
2;
(3)原式=62-2+122=172; (4)原式=(a 3
b -a b +2b a +ab )·a b =a 3
b ·a b -a b ·a b +
2
b a ·a b +ab ·a b
=a 4-⎝ ⎛⎭
⎪⎫a b 2
+2+a 2=a 2+a -a b +2.
20.解:∵5+2>0,3+2>0,(5+2)2=7+210=7+40,(3+2)2
=7+43=7+48, ∴(5+2)2<(3+2)2. ∴5+2<3+2.
21.解:由题意得⎩⎨⎧2a -b =0,|a |=5,a +5>0,
解得⎩
⎨⎧a =5,
b =10.
∴(a +2b )(a -2b )=(a )2-(2b )2=a -4b =5-4×10=-35.
22.解:(1)当h =50时,t 1=
2h
10=100
10=10. (2)当h =100时,t 2=2h 10=
200
10=20=2 5.
(3)∵t 2t 1=2510=2,
∴t 2是t 1的2倍.
23.解:(1)⎪
⎪⎪

⎪⎪
226
12
24=2×24-
1

26=43-23=2 3. (2)因为⎪⎪
⎪⎪⎪⎪
3x +12x =0, 所以3x -2(x +1)=0, 即(3-2)x =2. 则x =
2
3-2
=-2(3+2)=-23-4. 24.解:(1)3+22=(2+1)2=2+1.
(2)4+23=(3+1)2=3+1.
(3)4-12=4-23=(3-1)2=3-1. (4)⎩⎨⎧m +n =a ,mn =b .
理由:把a ±2b =m ±n 两边平方,得a ±2b =m +n ±2mn , ∴⎩⎨⎧m +n =a ,mn =b .。

相关文档
最新文档