北师大七年级上册三视图与展开练习.doc
北师大版七年级上册数学之图形的展开与折叠
图形的展开与折叠【揭秘课堂】【走进课堂】模块一三视图【知识梳理】1.从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.【经典例题】1.如图所示是由一个长方体和一个圆锥组成的几何体,它的俯视图是()A.B.C.D.2.一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示.则此圆柱体钢块的主视图可能是下列选项中的()A.B.C.D.3.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.4.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?5.一个几何体是由若干个棱长为3cm的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示:(1)该几何体最少由个小立方体组成,最多由个小立方体组成.(2)将该几何体的形状固定好,①求该几何体体积的最大值;②若要给体积最小时的几何体表面涂上油漆,求所涂油漆的面积.模块二几何体的截面【知识梳理】1.圆柱体的横截面:圆,长方形,椭圆,特殊图形.2.正方体的横截面:三角形,四边形,五边形,六边形.【经典例题】1.用一个平面去截一个几何体,其截面形状是圆,则原几何体可能为()①圆柱②圆锥③球④正方体⑤长方体.A .①②B .①②③C .①②③④D .①②③④⑤2.如图,用平面去截圆锥,所得截面的形状是()A .B .C .D .3.用一个平面去截下列的几何体,可以得到三角形截面的有()A .4个B .3个C .2个D .1个4.用一个平面去截正方体1111ABCD A B C D (如图),所截得的截面不可能的是()A .正三角形B .正方形C .正五边形D .正六边形5.如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A.6,11B.7,11C.7,12D.6,12模块三展开与折叠【知识梳理】正方体的展开图(11种)小口诀:中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见,中间没有面,三三连一线.一线不过四,田凹应弃之。
数学北师大版七年级上册三视图
不 识 庐 山 真 面 目 ︐
远 近 高 低 各 不 同 ︒
横 看 成 岭 侧 成 峰 ︐
题 西 林 壁
苏 轼
这是两幅意大利比萨斜塔的照片, 你知道第二幅照片中的斜塔为什么 不斜了吗?
如图:桌上放着一摞书和一个 茶杯。下面A、B、C、D、E这五 幅图分别是从什么方向看到的。
(课件:由三视图确定立体图形.swf)
由三视图想象实物现状:
实 物
实 物 使用帮助
实 物
实 物
下面所给的三视图表示什么几何体?
四棱柱
下面所给的三视图表示什么几何体?
根据下面三视图说出立体图形的名称.
课件:确定物体的形状.swf
例题:某工厂要加工一批密封罐,设计者给出了密 封罐的三视图,请你按照三视图确定制作每个密封 罐所需钢板的面积.
2
根据几何体的三视图画出它的表面展开图:
实 物
展 开 图
实 物
展 开 图
这节课我们主要学习了什么知识?
作业:
(1)请同学们寻找生活中三视图 的 例子 ; (2) 课本P101-103页第1-8题.
探索知识犹如登山 凭借你的聪明才智和顽强的毅力 你一定会获得一览众山小的喜悦!
感谢同学们努力学习, 再见!
密封罐的高为50mm,店面正六边形的直径为100mm,边长为 50mm,图是它的展开图. 由展开图可知,制作一个密封罐所需钢板的面积为
1 6 50 50 2 6 50 50 sin 60 2
3 6 50 1 2 27990 (mm2)
你能说出这三个图分别是从哪些方向观察到的吗?
分别从正面、左面、上面观察这些 立体图形,各能得到什么平面图形。Fra bibliotek立体 图形
2022七年级数学图形展开及折叠与三视图(北师大版专题)
七年级数学图形展开及折叠与三视图(北师大版专题)一、选择题1. 下列几何体中可以由平面图形绕某条直线旋转一周得到的是()A.B.C.D.2. 用一平面截一个正方体,不能得到的截面形状是()A.等边三角形B.长方形C.六边形D.七边形3. 某个几何体的展开图如图所示,该几何体是()A.三棱柱B.三棱锥C.长方体D.圆柱4. 用一个平面去截下列几何体,截得的平面图形可能是三角形的有()A.0个B.1个C.2个D.3个5. 如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A.236πB.136πC.132πD.120π6. 如图所示的正方体的展开图是()A.B.C.D.7. 下列说法不正确的是()A.长方体是四棱柱B.八棱柱有8个面C.六棱柱有12个顶点D.经过棱柱的每个顶点有3条棱8. 有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A.白B.红C.黄D.黑9. 用小立方块搭成的几何体,从左面看和从上面看如下,这样的几何体最多要x个小立方等于()块,最少要y个小立方块,则x yA.12B.13C.14D.1510. 如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是().A.B.C.D.11.长方形纸板绕它的一条边旋转1周形成的几何体为()A. 圆柱B. 棱柱C. 圆锥D. 球12. 一个正方体,六个面上分别写着六个连续的整数,且每两个相对面上的两个数之和相等,如图你能看到的数为7、10、11,则这六个整数的和可能为().A.51 B.53 C.55 D.57二、填空题13. 如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是_____.14.随着我国的发展与强大,中国文化与世界各国文化的交流和融合进一步加强,各国学校之间的交流活动逐年增加,在与国际友好学校交流活动中,小敏打算制作一个正方体礼盒送给外国朋友,每个面上分别书写一种屮华传统美德,一共有“仁义礼智信孝”六个字,如图是她设计的礼盒平面展开图,那么“礼”字对面的字是________.15. 如图所示的是从不同方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留π)从正面看从左面看从上面看16. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为_______.17.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.18.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置水平桌面上,如图1.在图2中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是__________.三、解答题19.如图,这是一个小正方体所搭几何体的俯视图,正方形中的数字表示在该位置小正方体的个数.请你画出它的主视图和左视图.20.一个几何体是由若干个棱长为1的小正方体堆积而成的,从不同方向看到的几何体的形状图如下.(1)在从上面看得到的形状图中标出相应位置小正方体的个数;(2)这个几何体的表面积是.21.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.22.在平整的地面上,有一个由若干个相同的小立方块搭成的几何体,如图所示.(1)请依次画出从正面、左面、上面看这个几何体得到的图形;(2)现在还有一些相同的小立方块,如果要保持从上面和左面看到的图形不变,那么最多可以添加几个这样的小立方块?23. 如图是一个上下底密封纸盒的三视图,请回答下列问题:()1说出该几何体的形状.()2你根据图中数据,计算这个密封纸盒的侧面积为多少?24.如图是由7个同样大小棱长为1的小正方体搭成的几何体(1)请分别画出它的主视图、左视图和俯视图.(2)这个组合几何体的表面积为________个平方单位(包括底面积);(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则搭这样的几何体最多要________个小立方体.。
北师大版七年级上册数学期中常考题《三视图》专项复习
北师大版七年级上册数学期中常考题《三视图》专项复习一、选择题(共7小题)1.(2020秋•沈北新区期中)如图,是由4个大小相同的正方体组合的几何体,则从正面看到的图形是()A.B.C.D.2.(2020•雁塔区校级模拟)如图所示几何体的主视图是()A.B.C.D.3.(2020•宝安区三模)如图是一根空心方管,它的俯视图是()A.B.C.D.4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.下列四个几何体中,从正面看到的图形与从左面的图形相同的几何体有()A.1个B.2个C.3个D.4个6.如图是一个空心圆柱体,它的左视图是()A.B.C.D.7.如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是()A.B.C.D.二、填空题(共3小题)8.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉个小正方体.9.如图,从一个棱长为4cm的正方体的一个顶点挖去一个棱长为1cm的正方体后,从任何角度所能看到的所有面的面积为.10.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.三、解答题(共9小题)11.已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.12.(2020秋•会宁县期中)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.13.某几何体从三个方向看到的图形分别如图:(1)该几何体是(2)求该几何体的体积?(结果保留π)14.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.15.(2017秋•郓城县期末)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)16.一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.17.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.18.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)19.由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个向何体的主视图和左视图.(2)根据三视图;这个组合几何体的表面积为个平方单位.(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为个平方单位.(包括底面积)参考答案一、选择题(共7小题)1.(2020秋•沈北新区期中)如图,是由4个大小相同的正方体组合的几何体,则从正面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【答案】C【分析】找到从正面看所得到的图形即可,所有的看到的棱都应表现在主视图中.【解答】解:从正面看,第一层有3个正方形,第二层左侧有1个正方形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.(2020•雁塔区校级模拟)如图所示几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形.【答案】B【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为.故选:B.【点评】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.3.(2020•宝安区三模)如图是一根空心方管,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形.【答案】B【分析】俯视图是从物体的上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.【解答】解:如图所示:俯视图应该是.故选:B.【点评】本题考查了作图﹣三视图,注意看到的用实线表示,看不到的用虚线表示.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图.【答案】A【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.下列四个几何体中,从正面看到的图形与从左面的图形相同的几何体有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【答案】D【分析】主视图、左视图是分别从物体正面、左面看所得到的图形.根据主视图与左视图相同,可得答案.【解答】解:①正方体的主视图与左视图都是边长相等的正方形,符合题意;②圆柱的主视图与左视图都是长方形,且长与宽分别相等,符合题意;③圆锥的主视图与左视图都是等腰三角形,且腰与底边分别相等,符合题意;④球的主视图与左视图都是半径相等的圆,符合题意;故选:D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象力和抽象思维能力.6.如图是一个空心圆柱体,它的左视图是()A.B.C.D.【考点】简单几何体的三视图.【答案】B【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.7.如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图;由三视图判断几何体.【答案】D【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有2列,从左到右分别是3,2个正方形.【解答】解:由俯视图中的数字可得:左视图有2列,从左到右分别是3,2个正方形.故选:D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.二、填空题(共3小题)8.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要10个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉1个小正方体.【考点】简单组合体的三视图.【专题】线段、角、相交线与平行线.【答案】见试题解答内容【分析】(1)由已知条件可知这个几何体由10小正方体组成;(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.(3)底层第二列第一行加1个,第三列第一、二分别加1个;第二层第三列第二行加1个,共4共4个.【解答】解:这个几何体由10小正方体组成,最多可以拿掉1个小正方体,故答案为:10,1.【点评】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.9.如图,从一个棱长为4cm的正方体的一个顶点挖去一个棱长为1cm的正方体后,从任何角度所能看到的所有面的面积为96cm2.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【答案】见试题解答内容【分析】观察图发现:挖去小正方体后,减少了三个面,又增加了三个面,剩下物体的表面积和原来的表面积相等.【解答】解:挖去小正方体后,剩下物体的表面积与原来的表面积相比较没变化,即从任何角度所能看到的所有面的面积为16×6=96cm2,故答案为:96cm2.【点评】本题考查了几何体的表面积,挖正方体的相对面的面积是相等的.10.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为4cm.【考点】由三视图判断几何体.【专题】常规题型;投影与视图.【答案】见试题解答内容【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.三、解答题(共9小题)11.(2020秋•双流区校级期中)已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.【考点】几何体的表面积;简单几何体的三视图;由三视图判断几何体.【专题】线段、角、相交线与平行线.【答案】见试题解答内容【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【解答】解:(1)这个几何体是三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长即C=4×3=12cm,根据题意可知主视图的长方形的长是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=12×10=120cm2.答:这个几何体的侧面面积为120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.12.(2020秋•会宁县期中)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.【考点】简单组合体的三视图.【答案】见试题解答内容【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为3,2,3,左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【解答】解:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.13.某几何体从三个方向看到的图形分别如图:(1)该几何体是圆柱(2)求该几何体的体积?(结果保留π)【考点】由三视图判断几何体.【专题】几何图形.【答案】见试题解答内容【分析】(1)根据几何体的三视图即可判断;(2)圆柱体的体积公式=底面积•高;【解答】解:(1)这个几何体是圆柱,故答案为圆柱;(2)圆柱底面积=π•()2=π圆柱体积V=π•3=3π.【点评】本题考查几何体的三视图,解题的关键是理解三视图的定义,灵活运用所学知识解决问题,属于中考常考题型.14.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.【考点】由三视图判断几何体.【专题】投影与视图;几何直观.【答案】见试题解答内容【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而得出答案.【解答】解:根据题意,构成几何体所需正方体最多情况如图(1)所示,构成几何体所需正方体最少情况如图(2)所示:所以最多需要11个,最少需要9个小正方体.【点评】本题考查了对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)【考点】由三视图判断几何体.【专题】计算题;投影与视图.【答案】见试题解答内容【分析】由几何体的三视图,得到它是一个六棱柱,求出其侧面积与表面积即可.【解答】解:根据该密封纸盒的三视图知道它是一个六棱柱,∵其高为12cm,底面边长为5cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5××5×=75(cm2),∴其表面积为(75+360)cm2.【点评】此题考查了由三视图判断几何体,弄清三视图的概念是解本题的关键.16.一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.【考点】由三视图判断几何体.【专题】常规题型;投影与视图.【答案】见试题解答内容【分析】(1)根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答即可得;(2)根据每个正方体的体积乘以正方体的个数即可得.【解答】解:(1)如图所示:(2)该几何体的体积为33×(2+3+2+1+1+1)=27×10=270(cm3).【点评】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.17.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.【考点】简单组合体的三视图.【答案】见试题解答内容【分析】主视图有3列,每列小正方形数目分别为3,1,2;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方形数目分别为2,2,1.【解答】解:【点评】本题主要考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.18.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)【考点】几何体的表面积;简单组合体的三视图.【答案】见试题解答内容【分析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据题目所给尺寸,计算出下面长方体表面积+上面圆柱的侧面积.【解答】解:(1)如图所示:;(2)表面积=2(8×5+8×2+5×2)+4×π×6=2(8×5+8×2+5×2)+4×3.14×6=207.36(cm2).【点评】此题主要考查了简单几何体的三视图,以及几何体的表面积,关键是掌握三视图所看的位置.19.由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个向何体的主视图和左视图.(2)根据三视图;这个组合几何体的表面积为24个平方单位.(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为26个平方单位.(包括底面积)【考点】几何体的表面积;简单组合体的三视图.【专题】计算题.【答案】见试题解答内容【分析】(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.(3)要使表面积最大,则需满足两正方体重合的最少,画出俯视图,计算表面积即可.【解答】解:(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1,图形分别如下:(2)由题意可得:上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,故可得表面积为:1×(3+3+4+4+5+5)=24.(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:这样上面共有3个小正方形,下面共有3个小正方形;左面共有5个小正方形,右面共有5个正方形;前面共有5个小正方形,后面共有5个正方形,表面积为:1×(3+3+5+5+5+5)=26.故答案为:24、26.【点评】此题考查了简单几何体的三视图及几何体的表面积的计算,解答本题的关键是掌握三视图的观察方法,在计算表面积时容易出错,要一个面一个面的进行查找,避免遗漏,有一定难度.。
北师大版七年级上册数学 1.2展开与三视图学案
展开与三视图知识点一:常见几何体的表面展开图 立体图形沿棱或面与面的交线剪开可以展开为一个平面图形,而平面图形沿某些线折叠又可以围成一定形状的立体图形. 1.棱柱的表面展开图:由两个相同的多边形和一些长方形组成,沿棱柱表面不同的棱剪开,可得到不同组合方式的表面展开图,如: 2.圆柱的表面展开图:由两个相同的圆形和一个长方形组成:3.圆锥的表面展开图:由一个圆形和一个扇形组成:例 l 下列平面图形经过折叠可以围成棱柱的有( ).A.①②④ B.①②④⑤C.④⑤ D.②④ 解:C例 2 下列图形中,不是正方体平面展开图的是( ).解:D 例 3 如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆.现用剪刀沿着它的棱剪开成一个平面图形,则展开图可以是( ).解:C1点拨:解此题的关键是要对正方体的各类展开图非常熟悉,其次还要动手操作,探索规律,及时归纳. 拓展知识 正方体的表面展开图:正方体是特殊的棱柱,它的六个面都是大小相同的正方形,正方体的表面展开图有以下十一 种情况:变式训练 1.如图是某个几何体的表面展开图,那么这个几何体是2.下列展开图中,不能围成三棱柱的是( ).3.(内蒙古包头)将一个正方体沿某些棱展开后,能得到的平面图形是( ).知识点二:由平面图形折叠成立体图形 把平面图形折叠成立体图形,与立体图形展开成平面图形是一个互逆的过程,在折叠时,应根据图形的特点,在头脑中进行空间想象. 例 4 如图所示,下图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( ).A.①与② B.①与③C.②与④ D.③与④ 变式训练4.一个正方体的平面展开图如图所示,将它折成正方体后,“建”字对面是( ).A.和 B.谐 C.凉 D.山 5.一个正方体的平面展开图如图所示,折叠后的立体图形是( ).题型一:圆柱的表面展开问题 例 1 小明用如图所示的胶滚从左到右将图案滚涂到墙上,右面四幅图中,符合胶滚涂出的图案是( ).2解:A 变式训练6.亮亮用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的 4 个图案中,符合胶滚涂出的图 案是( ).题型二:立体图形的侧面展开图与计算 例 2 如图所示,沿图中虚线把圆柱的侧面展开,会得到什么图形?若圆柱的底面半径为 4cm,高为 5cm.求侧面展开图的面积.(结果保留π )分析:圆柱的侧面展开图是一个长方形,其长为圆柱底面圆的周长,宽为圆柱的高. 解:圆柱的侧面展开图是一个长方形,其面积为: S=2π rh=2π x4x5=40π (cm2). 答:侧面展开图的面积是 40π cm2.例 3.如下图的一张硬纸片,它能否折叠成一个长方体盒子?若能,请说明理由,并画出它的几何图形,计算出它 的体积.解:能折叠成一个长方体盒子,如下图.由上图可知,长方体的长为 Sm,宽为 2m,高为 3m,所以它的体积是 5x2x3=30(m3). 变式训练 7.将一个长为 4cm,宽为 3cm 的长方形分别绕它的长、宽所在直线旋转一周,得到两个圆柱体,则它们的侧面展开 图的面积分别是多少?(结果保留π )8.下图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的体积为( ).3A. 1B. 6C. 12常见几何体的平面展开图D. 15易错点:由立体图形确定平面展开图相邻面、相对面时,位置关系易判断错误 例小红制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个礼品盒的展开图是( ).正解:B 点拨:①用排除法,相对面在展开图中不会相邻,没有公共边,所以排除 A、C、D;②剪纸操作法:先把平面图画在纸片上,剪下折叠、一一验证. 达标测试: 1.如下左图能折叠成的长方体是( ).2.(湖北潜江)下列图形中,不能折叠成正方体的是( ).3.一个几何体的展开图如图所示,则该几何体的顶点有( ). A.10 个 B.8 个 C.6 个 D.4 个4.下面是四棱柱的侧面展开图的是( ).5.(四川眉山)下列四个图形中,是三棱锥的表面展开图的是( ).6.当以下图案被折成一个正方体时,数字会在与数字 2 所在的面相对的面上.47.如下图,将上面的正方体展开能得到的图形是( ).8.下图是某个几何体的展开图.(1)这个几何体的名称是____, (2)求这个几何体的体积.(保留π ) 9.(北京中考)已知 0 为圆锥的顶点,M 为圆锥底面上一点,点 P 在 OM 上.一只蜗牛从 P 点出发,绕圆锥侧面爬行, 回到 P 点时所爬过的最短路线的痕迹如下图所示.若沿 OM 将圆锥侧面剪开,所得侧面展开图是( ).课后作业:1、用一个平面截正方体,若所截得的截面是一个三角形,则留下的较大的一块几何体一定有( )A.7个面B.15条棱C.7个顶点D.10个顶点2、用一个平面截圆柱,则截面形状不可能是( )A.圆B.正方形C.长方形D.梯形3、用一个平面去截一个几何体,如果得到的截面是四边形,那么这个几何体可能是( )A.圆锥B.圆柱C.球体D.以上都有可能4、用小立方体搭成的几何体的一个视图如图所示,则这个视图一定是( )A.左视图B.主视图C.俯视图D.非俯视图5、一个几何体俯视图和主视图是两个相同的正方形,则这个几何体( )A.一定是正方形B.一定是圆柱C.一定是三棱柱D.形状不能确定6、有下列四种说法:(1)正方体的三个视图都是正方形;(2)三个视图都是相同正方形的几何体是正方体;(3)有两个视图是相等的圆的几何体是球;5(4)球的三个视图都是圆. 其中正确的个数有( )A.1B.2C.3D.47、下列说法中不正确的是( )A.在棱柱中,只有上、下底面才是相同的图形B.圆柱的侧面展开图是长方形C.球的主视图、左视图和俯视图都是相同的圆D.围成正方体的六个面都是相同的正方形8、如图所示是由几个小立方体堆成的几何体的俯视图,则它的左视图是( )A.B.C.D.9、如图所示,图中三角形的个数为( )A.2B.18C.19D.2010、将两个完全相同的三角形(如图所示)拼在一起为四边形,使它们有一条相等的边完全重合,则能拼出不同的平面图形种 数为( )A.2B.4C.6D.8ADBCD BABDC11、用一个平面去截一个正方体,截面的形状可能是①正方形;②长方形;③正三角形;④直角三角形;⑤五边形;⑥六边形;⑦七边形;⑧八边形当中的__________种,它们是__________.11、答案:五;①②③⑤⑥ 提示:正方体共有六个面,平面与正方体的一个面至少交出一条交线,这条交线是截面图形的 一条边,所以不可能截出七边形、八边形,同时,也不能截出直角三角形.12、用小立方块搭成的几何体的主视图和左视图都是 块.,这个几何体中小立方块最少有_________块,最多有________12、答案:4;1613、平面内三条直线把平面分割成最少__________块,最多__________块.13、答案:4;714、用一平面去截一正方体,得一矩形截面,而把立方体截成两部分,问这两部分各是由几个面围成的?614、解析:分多种情况考虑,如图所示:(1)一个5面体,一个7面体;(2)一个5面体,一个 6面体;(3)两个都是6面体;(4)两个都是5面体.15、请画出图中几何体的主视图、左视图和俯视图.15、解析:画几何体三视图的关键是分别观察清楚从正面看、左面看、上面看所看到的列数及每列的方块数,该几何体的三视图如图所示.16、如图所示是由几个小方块所搭几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,请画出几何体的主视图和 左视图.16、解析:从正面看、它有三列,第一列有3块,第二列有4块,第三列有2块;从左面看,有 两列,第一列有4块,第二列有2块,该几何体的主视图、左视图如图所示.17、用小立方体搭成的几何体,它的左视图和主视图如图所示,则这个几何体至少要多少个小立方体?最多要多少个小立方体?17、解析:通过观察想象出原几何体可能的形状,这个几何体最少要5个小立方体,最多有9+ 4=13个小立方体.718、请将如图所示中的图形分成四个形状相同、大小相等的图形. 8。
北师七上数专题辅导2三视图31
__相___同___的.
知识点二 组合体的三视图的画法
从不同的方向观察物体,可能看到 不同的图形. 在实际生活中,我们经 常从正面、左面(或右面)和上面三个 不同的方向看同一个物体,分别画出 它们的平面图形.
探究问题一 从不同的方向看物体
最少5个
主
最多6个
视 图
俯 视 图
三视图相同,立体物体的形状是否唯一确定?
主视图
左视图
俯视图
2019/7/15
[归纳1.4总从结三个]方由向看三物体个的方形状向看到的形状描 述几何体的一般步骤:
(1)确定形状:根据各个方向看到的 形状想象从各个方向看到的几何体(或 实物原型)的大致形状,初步确定该几 何体(或实物原型)的形状;
(2)确定大小:确定轮廓线的位置以 及各个方向的具体尺寸;
(3)综合成型:综合上述两步得到的 形状与大小,最后得出几何体(或实物 原型)的名称.
解 :1.4这从个三个几方向何看物体体的从形状正 面 和 左 面 看 到 的形状如图
图1-4-4
2.图1,2给出了一个由小立方体组
成的几何体的正面看,左面看,其中
小正方形中的数字表示该位置上小立
方体的个数,则它从上面看不能看到
的图形是( A) 图1
图2
A
B
C
D
3、如图,这是一个从上面看由小立方块搭成的 几何体的图形,小正方形中的数字表示该位置的 小立方块的个数.请你画出从正面看与从左面看 到的图形.
第二讲 三视图
知识要点 1、主要的几何体的三视图;
2、组合体的三视图的画法;
3、已知俯视图的条件确定另外两个视 图的画法;
七年级上册三视图与展开练习
三视图取展启图之阳早格格创做一、采用题:1、底下左边的图形是由8个棱少为1个单位的小坐圆体组成的坐体图形,那个坐体图形的左视图是 ( )2、 左图中几许体的无视图是( )3、某工艺品由一个少圆体战球组成(左图),则其俯视图是( )A .B .C .D .4、 某几许体的三视图如左图所示,则此几许体是( )A .正三棱柱B .圆柱C .少圆体D .圆锥 5、图所示的物体,从左里瞅得到的图是( ) 6、小明从正里瞅察下图所示的物体,瞅到的是( )7、 某共教把下图所示的几许体的三种视图绘出如下(没有思量尺寸);正在那三种视图中,其精确的是:()A 、①②,B 、①③ ,C 、②③ ,D 、②8、 由若搞个共样大小的正圆体聚集成一个真物,分歧正里瞅察到如图8所示的投影图,则形成该真物的小正圆体个数为 ( ) A. 6 B. 7 C. 8D. 99、 某超市货架上晃搁着“康师傅”白烧肉里,如图1是它们的三视图,则货架上的“康师傅”白烧肉里起码有 ( )A.8桶 B.9桶 C.10桶 D.11桶10、图2中几许体的无视图是( )A. B. C. D.正里A .B .C .D .主视图 左视图 俯视图 图1ABCD11、由一些真足相共的小坐圆块拆成的几许体的三种视图,那么拆成那个几许体所用的小坐圆块的个数 ( ) A 、6个 B 、7个 C 、8个 D 、9个主视图 左视图 俯视图 (第12题)12、如图是一些相共的小正圆体形成的几许体的无视图战左视图,正在那个几许体中,小正圆体的个数没有成能是( ) A 、7 B 、8 C 、9 D 、1013、如图是正圆体的展启图,则本正圆体相对于二个里上的数字战最小的是( ).14、左图所示是一个三棱柱纸盒,正在底下四个图中,惟有一个是那个纸盒的展启图,那么那个展启图是( )15、 如图所示,左里火杯的俯视图是()16、下列几许体,正(主)视图是三角形的是( ) A . B . C . D .17、有一真物如图所示,它的主视图是( )18、骰子是一种特别的数字坐圆体,它切合准则:相对于二里的面数之战经常7.底下四幅图中不妨合成切合准则的骰子的是19、一个绘家有14个边少为1m 的正圆体,他正在大天上把它们晃成如图所示的形式,而后他把暴露的表面皆涂上颜色,那么被涂上颜色的总里积为1 42 5 36第13题图AB C D C()A. 19m 2B. 21m 2C. 33m 2D. 34m 220、如图,以Rt △ABC 为曲角边AC 天圆曲线为轴,将△ABC 转动一周所产生的几许体的俯视图是( )21、底下的图形是由8个棱少为1个单位的小坐圆体组成的坐体图形,那个坐体图形的左视图是( )22、有6个大小相共的正圆体拆成的几许体如图所示,则闭于它的视图道法精确的是( )A 主视图的里积最大B 左视图的里积最大C 俯视图的里积最大D 三个视图的里积一般大 23、念一念:将左边的图形合成一个坐圆体,左边的四个坐圆体哪一个是由左边的图形合成的() 24、如图所示的坐圆体,如果把它展启,不妨是下列图形中的( )25、下列四个图形中,每个小正圆形皆标上了颜色. 若央供一个正圆体二个相对于里上的颜色皆一般,那么没有成能是那一个正圆体的展启图的是( )26、下列展启图中,没有是正圆体是A 、B 、C 、D 、-27、一个由若搞个相共的正圆体拆成的物体的主视图取左视图皆是左边的图黄 白黄 白 绿 绿黄 白 绿 白 绿 黄绿白 白 绿 黄 黄绿白黄白黄 绿A .B .C .D .主视图左视图 形,那个物体有( )种分歧的拆修办法. A 、2 B 、3 C 、4 D 、5二、挖空题:1.如图是一个几许体的三视图,根据图中提供的数据(单位:cm)可供得那个几许体的体积为.2、如图所示,用字母M 表示取A 相对于的里,请正在底下的正圆体展启图中挖写相映的字母.3、如图是一个由若搞个正圆体拆修而成的几许体的主视图取左视图,那么下列图形中不妨动做该几许体的俯视图的序号是:4、 如图,是由若搞个相共正圆体组成的几许体的主视图战左视图,则组成那个几许体最少的正圆体的个数是 -个.5、 桌上晃着一个由若搞个相共正圆体组成的几许体,其主视图战左视图如图所示,那个几许体最多不妨由个那样的正圆体组成.6、如图,左图是左图表面的展启图,左图已有二个里标出是少圆体的底下战左里,请您正在左图中把少圆体的其余里标出去.7、如图是由大小相共的小正圆体组成的简朴几许体的主视图战左视图,那么组成那个几许体的小正圆体的个数最多为.6、 如图是一个由若搞个棱少相等的正圆体形成的几许体的三视图.a主视图左视图俯视图主视图 左视图 1 2俯视图13 23(1)请写出形成那个几许体的正圆体个数;(2)请根据图中所目标尺寸,估计那个几许体的表面积.7、 下图是由几个小坐圆块所拆几许体的俯视图,小正圆形中的数字表示该位子小坐圆块的个数,请绘出那个几许体的无视图战左视图.8、 用小坐圆块拆成一个几许体,使它的无视图战俯视图如下图所示,那样的几许体惟有一种吗?它最多需要几个小坐圆体?最少需要几个坐圆体?怎么样晃搁?3、如图所示的是一个物体的三视图,试回问下列问题: (1)该物体有几层下? (2)该物体的少度是几? (3)该物体的最下部分位于哪里正在?4、二面之间,线段最短取勾股定理相分离. (1)台阶问题 如图,是一个三级台阶,它的每一级的少、宽战下分别等于5cm ,3cm 战1cm ,A 战B 是那个台阶的二个相对于的端面,A 面上有一只蚂蚁,料到B 面去吃美味的食物.请您念一念,那只蚂蚁从A 面出收,沿着台阶里爬到B 面,最短线路是几?析:展启图如图所示,AB=1312522=+cm(2)圆柱问题 有一圆形油罐底里圆的周少为24m ,下为6m ,一只老鼠从距底里1m 的A 处爬止到对于角B 处吃食物,它爬止的最短门路少为几? 析:展启图如图所示,AB=1312522=+m变式1:有一圆柱形油罐,已知油罐周少是12m ,下AB 是5m ,要从面A 处启初绕油罐一周修制梯子,正佳到达A 面的正上圆B 处,问梯子最短有多少?主视图ABA Bc。
北师大七年级上册三视图与展开练习
北师大七年级上册三视图与展开练习Prepared on 24 November 2020三视图与展开图一、选择题:1.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是 ( )2.某工艺品由一个长方体和球组成(右图),则其俯视图是 ( )A. B. C. D.3.如图,在一本书上放置一个乒乓球,则此几何体的俯视图是( )4.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是( )5.某几何体的三视图如左图所示,则此几何体是 ( )A.正三棱柱B.圆柱 C.长方体 D.圆锥A. B. C.A. B.C.D.6.正方体的表面上画有如图⑴中所示的粗线,图⑵是其展开图的示意图,但只在A面上画有粗线,那么将图⑴中剩余两个面中的粗线画入图⑵中,画法正确的是( ) 7.小明从正面观察下图所示的物体,看到的是( )8.某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);在这三种视图中,其正确的是:( )A、①②,B、①③,C、②③,D、②9.由若干个同样大小的正方体堆积成一个实物,不同侧面观察到如图8所示的投影图,则构成该实物的小正方体个数为 ( )A. 6B. 7C. 8D. 9正A.B.C.D.10.某超市货架上摆放着“康师傅”红烧肉面,如图1是它们的三视图,则货架上的“康师傅”红烧肉面至少有 ( ) A.8桶B.9桶C.10桶D.1111.右图中几何体的正视图是()12.下面简单几何体的左视图是( ).A.B.C.D.正面13.如图所示是由几个小立方块所搭成的几何体,那么这个几何体的主视图是( )14.图2中几何体的正视图是( )主视图左视图俯视图图1A B C DA B C DA BCD15.由几个小立方体搭成的一个几何体如图1所示,它的主(正)视图见图2,那么它的俯视图为( )16.如图是一些相同的小正方体构成的几何体的正视图和左视图,在这个几何体中,小正方体的个数不可能是( )A、7B、8C、9D、1017.右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )18.如图所示,右面水杯的俯视图是( )A B C D19.如图一个扇形铁皮OAB.已知OA=60cm,∠AOB=120°,小华将OA、OB合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为A. 10cmB. 20cmC. 24cmD. 30cm20.下列几何体,正(主)视图是三角形的是( )A. B. C. D.21.有一实物如图所示,它的主视图是()22.左图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm)。
北师大版-数学-七年级上册-三视图情系中考
三视图情系中考 为了体现数学课程标准“由实物的形状想象出立体图形,由立体图形想象出实物的形状,进行立体图形与其三视图、展开图之间的转化”这一理念,在课改实验区的中考试卷上,五彩缤纷的视图题目令人应接不暇。
现分类采撷数例,供学习参考.一.由立体图形选三视图1、选主视图例1.(台州)下图几何体的主视图是( )例2.(连云港)如图,水平放置的下列几何体,主视图不是..长方形的是( )【解析】:从正面看物体所得到的图形叫正视图,也叫主视图.例1选C , 例2选B2、选俯视图例3.(龙岩)如图,一桶未启封的方便面摆放在桌面上,则它的俯视图是( )例4(德州).如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是( )A. B. C. D.(第1题)A .B .C .D .【解析】:从上面往下看物体所得到的图形叫俯视图.例3选C, 例4 选D3、选左视图例5(江西)桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )【解析】:从左边看物体所得到的图形叫左视图. 例5选C.4、比较物体三视图的面积大小例6(湖州).说法正确的是( )A .正视图的面积最小B .左视图的面积最小C .俯视图的面积最小D .三个视图的面积一样大 【解析】:首先由该几何体想象出三视图,再比较其面积的大小. 显然主视图有四个小正方形;俯视图也有四个小正方形,左视图只有3个小正方形,因此左视图的面积最小.故选B.二.由俯视图选择主视图例7(成都)右图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )【解析】:首先由物体的俯视图中小正方形位置上小立方块的个数想象出问题的形状,再想象出该问题的主视图.从正面看,从左到右,三列小正方形的个数依次应是4、3、2.故选C.三.由三视图判断小正方体的个数(第5题) A . B . C. D.第6题A .B .C .D .例8(荆门)如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A .2个B .3个C .4个D .6个例9(怀化).一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个 【解析】:由三视图判断组成原几何体的小正方体的块数与由相同的小正方体构成的几何体画三视图正好相反,其一般解法是:(1)数出 主视图各列(竖为列)上正方形的个数,将数字分别填在俯视图所对应的列中;(2)再数出左视图各列上正方形的个数,将数字分别填在俯视图所对应的行(横为行)中;(3)在俯视图中的同一个小正方形中, 前后两次数字相同的只取一个数,前后两次数字不同的取较小的数,最后将俯视图中各小正方形上的数字相加所得结果就是组成原几何体的小正方形的总块数。
展开与折叠同步练习含试卷分析详解北师大版数学七年级上
北师大版数学七年级上册第一章第2节展开与折叠课时练习一、单选题(共15小题)1、如图是一个长方体包装盒,则它的平面展开图是()A、B、C、D、2、下列四个图形中是正方体的平面展开图的是()A、B、C、D、3、如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A、B、C、D、4、下列图形中可以作为一个三棱柱的展开图的是()A、B、C、D、5、一个几何体的表面展开图如图所示,则这个几何体是()A、四棱锥B、四棱柱C、三棱锥D、三棱柱6、下列图形中,能通过折叠围成一个三棱柱的是()A、B、C、D、7、下面图形经过折叠不能围成棱柱的是()A、B、C、D、8、如图是一个正方体纸巾盒,它的平面展开图是()A、B、C、D、9、骰子可以看做是一个小立方体(如图),它相对两面之和的点数之和是7,下面展开图中符合规则的是()A、B、C、10、如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形()A、B、C、D、11、下列图形经过折叠不能围成棱柱的是()A、B、C、D、12、下面四个图形中,经过折叠能围成如图所示的几何图形的是()B、C、D、13、如图是一个立方体图形的展开图,则这个立体图形是()A、四棱柱B、四棱锥C、三棱柱D、三棱锥14、一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A、记B、观C、心D、间15、如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A、的B、中C、国D、梦二、填空题(共5小题)16、如图是正方体的一种展开图,其中每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是________.17、“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________.18、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第次后,骰子朝下一面的点数是________.19、如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是________.20、有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么a+b的值为________.三、解答题(共5小题)21、一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?22、如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的整式的值相等,求整式(x+y)a的值.23、如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?24、解答题(1)如图:是有一些相同小正方体搭建而成的几何体的俯视图,其中小正方形中的数字表示在这个位置小立方体的个数,请画出该几何体的主视图与左视图.(2)已知、b互为相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,求:p ﹣cd+ 的值.25、回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f ,顶点个数为v ,棱数为e ,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.答案解析部分一、单选题(共15小题)1、【答案】A【考点】几何体的展开图【解析】【解答】由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B.C.D.不符合长方体的展开图的特征,故不是长方体的展开图.【分析】考查了几何体的展开图,牢记长方体展开图的各种情形是解题关键.2、【答案】B【考点】几何体的展开图【解析】【解答】A.不是正方体的平面展开图;B.是正方体的平面展开图;C.不是正方体的平面展开图;D.不是正方体的平面展开图.【分析】考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.3、【答案】D【考点】几何体的展开图【解析】【解答】根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件.【分析】考查了几何体的展开图,注意从相对面入手.4、【答案】A【考点】几何体的展开图【解析】【解答】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.【分析】查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.5、【答案】A【考点】几何体的展开图【解析】【解答】如图所示:这个几何体是四棱锥.【分析】考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决问题的关键.6、【答案】C【考点】几何体的展开图【解析】【解答】A.折叠后少一面,故错误;B.折叠后两侧面重叠,不能围成三棱柱,故错误;C.折叠后能围成三棱柱,故正确;D.折叠后两侧面重叠,不能围成三棱柱,故错误.【分析】三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,.7、【答案】D【考点】几何体的展开图【解析】【解答】A.能围成四棱柱;B.能围成五棱柱;C.能围成三棱柱;D.经过折叠不能围成棱柱.【分析】常见立体图形的平面展开图的特征,是解决此题的关键.8、【答案】B【考点】几何体的展开图【解析】【解答】根据正方体的展开图可得【分析】根据正方体的展开图,训练了学生空间想象能力.9、【答案】C【考点】几何体的展开图【解析】【解答】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是相对面,4点与6点是相对面,2点与5点是相对面,所以不可以折成符合规则的骰子,故错误;B.3点与4点是相对面,1点与5点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故错误;C.4点与3点是相对面,5点与2点是相对面,1点与6点是相对面,所以可以折成符合规则的骰子,故正确;D.1点与5点是相对面,3点与4点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故错误.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形用排除法求解.10、【答案】B【考点】几何体的展开图【解析】【解答】圆面的相邻面是长方形,长方形不指向圆,【分析】根据相邻面、对面的关系,可得答案.11、【答案】B【考点】几何体的展开图【解析】【解答】A可以围成四棱柱,C可以围成五棱柱,D可以围成三棱柱,B选项侧面上多出一个长方形,故不能围成一个三棱柱.【分析】由平面图形的折叠及棱柱的展开图解题,熟记常见立体图形的表面展开图的特征是解决此题的关键.12、【答案】B【考点】几何体的展开图【解析】【解答】根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.【分析】根据图中三角形,圆,正方形所处的位置关系可选出答案,考查了空间想象力.13、【答案】C【考点】几何体的展开图【解析】【解答】∵三棱柱的展开图侧面是长方形,上下面是三角形,∴上图应是三棱柱的展开图.【分析】根据立体图形的展开图是平面图形以及三棱柱的侧面展开图是长方形,上下面是三角形,可解此题.14、【答案】A【考点】几何体的展开图【解析】【解答】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.15、【答案】D【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.【分析】考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手作答.二、填空题(共5小题)16、【答案】4【考点】几何体的展开图【解析】【解答】这是一个正方体的平面展开图,共有六个面,其中面“2”与面“4”相对,面“3”与面“5”相对,“1”与面“6”相对.【分析】利用正方体及其表面展开图的特点解题.17、【答案】义【考点】几何体的展开图【解析】【解答】结合展开图可知,与“孝”相对的字是“义”.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“孝”相对的字.18、【答案】3【考点】几何体的展开图,探索图形规律【解析】【解答】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵÷4=503…2,∴滚动第次后与第二次相同,∴朝下的点数为3.【分析】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,解题的关键是发现规律.19、【答案】的【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“大”与“中”是相对面,“的”与“梦”是相对面.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形.20、【答案】7【考点】几何体的展开图【解析】【解答】由图可知,∵与1相邻的面的数字有2、3、4、6,∴1的对面数字是5,∵与4相邻的面的数字有1、3、5、6,∴4的对面数字是2,∴3的对面数字是6,∵标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,∴a=3,b=4,∴a+b=3+4=7.【分析】本题考查了正方体相对两个面上的文字,,由相邻面上的数字确定出相对面上的数字是解题的关键.三、解答题(共5小题)21、【答案】1对4,2对5,3对6.解答:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6.【考点】几何体的展开图【解析】【分析】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对22、【答案】81解答:根据题意得:y=3,x=6,a=2,故(x+y)a=(x+y)2=92=81.【考点】代数式求值,几何体的展开图,简单几何体的三视图【解析】【分析】由正方体的展开图的相对面和已知“相对两个面上的代数式的值相等”,可求得x、y、a 的值,再根据完全平方公式求解.23、【答案】(1)2点在前面,可知5点在后面解答:正方体的平面展开图,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,(1)如果1点在上面,3点在左面,2点在前面,可知5点在后面;(2)如果5点在下面,那么2点在上面【考点】几何体的展开图【解析】【分析】本题考查了正方体的表面展开图,注意正方体的空间图形,从相对面入手,分析及解答.24、【答案】(1)解答:根据俯视图上小正方形的个数,主视图、左视图,(2)答案:0或-2解答:a、b互=相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,得a+b=0,cd=1,m=±2,p=±1,p=1时,p﹣cd+=1﹣1+0=0,当p=﹣1时,p﹣cd+=﹣1﹣1+0=﹣2,综上所述:p﹣cd+=0,或p﹣cd+=﹣2.【考点】几何体的展开图【解析】【分析】(1)根据俯视图上小正方形的个数,可的主视图、左视图;(2)根据相反数的和为零,根据倒数的积为1,根据绝对值的意义,可得答案.25、【答案】(1)长方体和五棱锥解答:图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x ,则x+x+8﹣50=2解得x=22.【考点】认识平面图形,几何体的展开图【解析】【分析】(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)考查了欧拉公式,展开图折叠成几何体.。
北师大版版数学七年级上册同步练习: 从三个方向看物体的
2019-2019学年度北师大版版数学七年级上册同步练习1、4 从三个方向看物体的(word解析版)学校:___________姓名:___________班级:___________一、选择题(共12小题)1、下列图形中,主视图为①的是()A。
ﻩB。
C、 D。
2。
下列立体图形中,主视图是三角形的是()A。
ﻩB。
ﻩC、ﻩD、3、下列几何体中,主视图与俯视图不相同的是()A、正方体B、四棱锥C、圆柱D、球4。
如图所示的几何体的主视图是( )A、B。
ﻩC、D、5、把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为( )A。
ﻩB、C、ﻩD、6、如图所示的几何体的主视图是( )A、ﻩB、C、ﻩD、7、如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A、ﻩB、C。
D。
8。
如图,该几何体的俯视图是()A。
B、 C、 D。
9、如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A、B、C、ﻩD、10、如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是() A、 B、C。
ﻩD、11、某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A、4个B、5个 C、6个 D、7个12、一个几何体的三视图如图所示,则这个几何体是()A、 B。
C。
D、二、填空题(共11小题)13、一个篮球的左视图是,俯视图是、14、一矩形纸片绕其一边旋转180度后,所得的几何体的主视图和俯视图分别为、15、如图所示的几何体中,俯视图相同的是(填序号)。
16、将图所示的Rt△ABC绕AB旋转一周所得的几何体的主视图是图中的(只填序号)、17、已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为、18、如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是,面积是、19、一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=、20、如图是由若干个大小相同的小正方体摆成的几何体、那么,其三种视图中,面积最小的是、21。
数学北师大版七年级上册1.4《从三个方向看物体的形状》同步训练(含解析)
数学北师大版七年级上册1一、选择题1.如图,是由三个相反的小正方体组成的几何体,该几何体的左视图是( )A. B. C. D.2.如图,下面的几何体是由一个圆柱和一个长方体组成的,那么它的仰望图是( )A. B. C. D.3.圆锥的三视图是〔〕A. 主视图和仰望图是三角形,侧视图是圆。
B. 主视图和侧视图是三角形,仰望图是圆。
C. 主视图和侧视图是三角形,仰望图是圆和圆心。
D. 主视图和仰望图是三角形,侧视图是圆和圆心。
4.如图是某几何题的三视图,以下判别正确的选项是〔〕A. 几何体是圆柱体,高为2B. 几何体是圆锥体,高为2C. 几何体是圆柱体,半径为2D. 几何体是圆锥体,半径为25.一个几何体是由假定干个相反的立方体组成,其主视图和左视图如下图,那么组成这个几何体的立方体个数不能够的是〔〕A. 15个B. 13个C. 11个D. 5个二、填空题6.观察图1中的几何体,指出图2的三幅图区分是从哪个方向看到的.甲是从________ 看到的,乙是从________ 看到的,丙是从________ 看到的.7.某个平面图形的三视图的外形都相反,请你写出一种这样的几何体________.8.如图是一个几何体的三视图,假定这个几何体的体积是36,那么它的外表积是________.9.如图两个图形区分是某个几何体的仰望图和主视图,那么该几何体是________.10.如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他异样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰恰可以和张明所搭几何体拼成一个无缝隙的大长方体〔不改动张明所搭几何体的外形〕,那么王亮至少还需求________个小立方体,王亮所搭几何体的外表积为________.三、解答题11.如图是一个由假定干个小正方体搭成的几何体从下面看到的外形图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的外形图.12.如图是一个几何体的三视图.〔1〕写出这个几何体的称号;〔2〕求此几何体外表展开图的面积.13.如图是用几个小正方体搭成的几何体,画出它的三视图。
北师大版七年级数学上1.4 从三个方向看物体的形状.docx
初中数学试卷马鸣风萧萧1.4 从三个方向看物体的形状练习卷(一).一、观察下图1、2、3分别得它的主视图、左视图和俯视图,请写在对应图的下边1图2图3二、桌上放着一个长方体和一个圆柱体,说出下面三幅图分别是从哪个方向看到的?_________ _________ ________ 三、如图是由一些相同的小正方体构成的主体,图形的三种视图构成这个立体图形的小正方体的个数是()A.3; B.4; C.5; D.6四、如果对一个长方体观察所得的左视图、主视图、俯视图的面积都相同,那么这个长方体是正方体吗?*自我陶醉编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、图1 俯视图主视图左视图图2 左视图俯视图主视图图3 俯视图左视图主视图二、左视图俯视图主视图三、C四、是从不同方向看练习卷(2)一、填空题1.用一个平面去截一个球体所得的截面图形是__________.2.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.3.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.4.一座大楼,小明只看到了楼顶,则小明的看到的图叫__________.5.现有一张长52cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不曲能粘贴),则最多能剪出__________张.6.一个正方体的主视图、左视图及俯视图都是__________.二、选择题7.用一个平面去截一个正方体,截面图形不可能是()A.长方形; B.梯形; C.三角形; D.圆8.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱; B.圆锥; C.正方体; D.球9.小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图; B.左视图; C.主视图; D.都有可能10.截去四边形的一个角,剩余图形不可能是()A.三角形; B.四边形; C.五边形; D.圆三、解答题11.如图2,将等腰三角形对折沿着中间的折痕剪开,得到两个形状和大小都相同的直角三角形,将这两个直角三角形拼在一起,使得它有一条相等的边是公有的,你能拼出多少种不同的几何图形?并请你分别说出所拼的图形的名称.12.用火柴棒拼搭等边三角形(1)用火柴棒拼搭出两个边长等于棒长的等边三角形,你有几种拼法,最少需要几根火柴棒?(2)拼6个边长等于棒长的等边三角形,看谁用的棒最少?(3)用6根火柴棒拼搭等边三角形,若允许搭成的等边三角形不在同一平面内,那么可以搭多少个?13.选择你所熟悉的实物模型作出它的俯视图、主视图及左视图.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.参考答案一、1.圆2.矩形3.三角形4.俯视图5.7 6.正方形二、7.D 8.C 9.C 10.D三、11.共可以拼出以下六种图形((1)~(6))(1)、(3)是等腰三角形;(2)、(4)是平行四边形;(5)是长方形;(6)可以称它为筝形.12.(1)2、5 (2)12 (3)4(1)有两种情况,至少要用5根火柴棒,如图(2);而图(1)则用6根火柴棒.(2)最少要12根火柴棒,如图(4);图(3)用了13根.(3)若可以不在同一个平面内拼搭,可以搭4个等边三角形,如图(5).13.略14.略。
北师大版七年级上册知识点和典型例题
第一章:丰富的图形世界考点1:三视图例题1:如图是某几何体的从正面、左面、上面看,所得到的图形,它对应的几何体是下图中的( )A. B. C. D.例题2:下面的正六棱柱从正方向看的图形是( )A. B. C. D.例题3:如图是由小立方块构成的立体图形的从正面、左面、上面看,所得到的图形,构成这个立体图形的小立方块有_____个练习题1:如图是下列一个立体图形的从正面、左面、上面看,所得到的图形,则这个立体图形是( )A.圆锥B.球C.圆柱D.正方体练习题2:在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的物体从正面、左面、上面看,所得到的图形画了出来,如图,你能根据从正面、左面、上面看,所得到的图形,帮他清点一下箱子的数量吗?这些正方体箱的个数是_____箱.练习题3:下列几何体中,同一个几何体的从上面图形看的图形与从正面看的图形不同的是______.①正方体②圆锥③球考点2:正方体对面对应的文字例题1:将右边正方体的平面展开图重新折成正方体后,“董”字对面的字是( )例题2:如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值是______.例题3:在立方体六个面上,分别标上“勤、奋、成、就、未、来”,如图是立体的三种不同摆法,则三种摆法的底面上三个字分别是______.练习题1:如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是______.练习题2:如图.正方体的每一个面上都有一个正整数,并且相对面所写的两个数的和都相等,若10的对面是数a,16的数的对面是b,21的对面是数c,则代数式 (a−b)2+(b−c)2+(c−a)2的值是___1___.一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是_____.考点1:有理数的概念例题1:如果m是一个有理数,那么﹣m是()A.正数B.0C.负数D.以上三者情况都有可能例题2:π不是有理数,那么___1___有理数(填“是”或“不是”)例题3:在12.3、-0.5、-100、-8、88、4.01、中,分数有______, 负有理数有______.(按从大到小的顺序填写)练习题1:有理数2,7.5,-0.03,-0.4,0,1313中,非负数是______.(按从大到小的顺序填写,用逗号隔开)练习题2:有理数1.7,-17,0,,-0.001,,2003和-1中,负整数有_____个,负分数有______个练习题3:______, 正分数是_____.(按从大到小的顺序填写)例题1:若x>1.5,化简=______例题2:若|x+4|+|2﹣y|=0,则xy=_____.例题3:化简:|π−4|+|π−3.14|=_____(用小数表示)练习题1:当x>3时化简:|x+2|−|1−x|=_____练习题2:已知||a|+1|=2,则a =______练习题3:若|a+1|与|b﹣2|互为相反数,则ab=______.考点3:有理数加减混合运算例题1:计算:|−2/2|−(−2.5)+1−|1−2/2|=_____例题2:1﹣2+3﹣4+5﹣6+7﹣8+…+2015﹣2016的结果是______例题3:已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=______练习题1:规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=______(直接写出答案).练习题2:若m、n互为相反数,则|m﹣3+n|=()练习题3: −3.5+|−5/2|−(−2) =______.考点3:有理数的乘除例题1:-2013×2014×0=_____例题2:(+15)×(−8.234)×0×(−23/3)= =______.例题3:在数﹣5,﹣3,﹣2,2,6中,任意两个数相乘,所得的积中最小的数是______ 练习题1: 两个有理数的乘积为负数,在这两个有理数中,有______个负数.练习题2:数a、b在数轴上的位置如图所示,则ab______0.(用“>”或“<”号连接)练习题3:(−2)×(−3/2)=___1___.例题1: 把(−2)×(−2)×(−2)×(−2)×(−2)写成幂的形式是_____.例题2:计算(−1)^2017=______.例题3:计算(−2)^1000×(1/2)^999的结果是_____.练习题1: 计算:(−2013)^2013×(−2014)^2014×(−2015)^2015的结果可能是( ). 练习题2:下列判断正确的有_____(请依次填写正确答案的序号).3^4<4^3 −3^4<(−4)^3 −3^2>(−3)^2 (−3×2)^2<−3×2^2练习题3:(−2)^3的底数是______,结果为______;−2^3的底数是_____,结果为_____.考点5:有理数偶次方的非负性例题1:若(a+3)^2+(3b−1)^2=0,则a^2003⋅b^2004=______.例题2:已知(x−1)^2+ |y−1|^2=0,则x^y的值为______.例题3:式子(x−1)^2+2的最小值是( ).练习题1:当xx=___1___时,式子(x+3)^2+2012有最小值,这个最小值是______;当y=______ 时,式子2013−(y−1)^2有最大值,这个最大值是_____.练习题2:若x是有理数,则x^2+1一定是( ).A.等于1B.大于1C.不小于1D.不大于1练习题3:下列说法,其中正确的有( ).1、a为任意有理数,a^2+1总是正数;2、如果a+|a|=0,则a是负数;3、当a<b时,a^2<b^2;4、x、y为任意有理数, 5−(x+y)^2的最大值是5;考点6:科学计数法例题1:全球每年大约有577000000000000m^3的水从海洋和陆地转化为大气中的水汽,将数577000000000000用科学记数法表示为( ).A.5.77×10^14B.0.577×10^15C.577×10^12D.5.77×10^13练习1:2016年10月16日上午7:45南京马拉松正式开跑,约21000名中外运动爱好者参加了此次活动.21000用科学记数法可表示为( ) A.0.21×10^5 B.0.21×10^4 C.2.1×10^4 D.2.1×10^3考点7:有理数的混合运算例题1:已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|−|a −b|+|a+c|=______.例题2: 计算2×(−3)^3+4×(−3)的结果______.例题3:计算(−8)×3÷(−2)^2得( ).练习题1:−1^2016+16÷(−2)^3×|−3|=______.练习题2:现定义一种新运算“∗∗”,规定a ∗b=ab+a −b ,如1∗3=1×3+1−3,则(2∗5)∗5等于______.练习题3:算式[−5−(−11)]÷(32×4)之值为______.第三章:整式及其加减考点一:代数式例题1:长为a ,宽为b 的长方形周长是 。
北师大版七年级数学上截面与三视图.docx
马鸣风萧萧初中数学试卷马鸣风萧萧截面与三视图课前预习1. 点动成____,线动成_____,面动成_____.面和面相交得到_____,线和线相交得到_____.2. 正方体有_____个面,每个面都是_______;圆锥有____个面,底面形状是____,侧面是_______(填“平面”或“曲面”);球有____个面,是_______.3. 制作一个长方体的土豆块,试着切一刀,观察切出的面是什么形状.再换一种切法,看能否切出不同形状的面.下面是几种不同的切法,请你观察切出的面形状分别是什么,并填在下面对应的横线上._________ _______ ________ ________4. 我们知道从不同的角度观察同一个物体时,可能会看到不同形状的图形,如图:桌面上放着一个三棱锥和一个圆柱体,请说出下面的三幅图分别是从“上面”、“正面”、“左面”中哪个方向看到的?________ ________ ________马鸣风萧萧知识点睛1. 正方体截面有_______________________________________.2. 从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成____________个三角形. 3. n 边形的内角和为________________.4. 观察一个几何体的形状通常从三个方向看,从正面看(主视图),从左面看(左视图),从上面看(俯视图).精讲精练1. 圆柱体截面的形状可能是____________(至少写出两个).2. 用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的几何体是( )A .①②④B .①②③C .②③④D .①③④3. 如图所示,用一个平面去截一个圆柱,则截得的形状应为( )A .B .C .D .4. 圆锥的截面不可能为( )A .三角形B .四边形C .圆D .椭圆5. 如图所示,用一个平面沿与棱平行的方向去截一个棱柱,则截面的形状是_______________.6. 正方体的截面不可能是( )A .四边形B .五边形C .六边形D .七边形7. 从多边形的一个顶点出发,分别连接这个顶点与其余各个顶点,可以把五边形分割成3个三角形,把六边形分割成4个三角形,…,如果是十二边形,可以分割成_____个三角形.8. 一个多边形的内角和为1 800°,则它是_____________边形.网址: 或 咨询电话:400-811-66889.从一个多边形的某个顶点出发,分别连接这个顶点和其余各顶点,可以把这个多边形分割成5个三角形,则这个多边形的边数为_________,这个多边形的内角和为___________.10.写出两个三视图形状都一样的几何体:________________.11.一个直立在水平面上的圆柱的主视图、俯视图、左视图分别是()A.长方形、圆、长方形B.长方形、长方形、圆C.圆、长方形、长方形D.正方形、长方形、圆12.如图,该物体的俯视图是()A.B.C.D.13.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A.B.C.D.14.下图是由五块积木搭成的几何体,这几块积木都是相同的立方块,请画出这个几何体的主视图、左视图和俯视图.15.下图是由五块积木搭成的几何体,这几块积木都是相同的立方块,请画出它的三视图.16.如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.4213217. 如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.31121118. 如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有( ) A .4个 B .5个 C .6个D .7个19. 如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有( ) A .4个 B .5个 C .6个 D .7个20. 用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最多要_____个立方块,最少要_____个立方块.俯视图主视图21.如图是一个由若干个相同的小立方块组成的几何体的主视图和俯视图,则能组成这个几俯视图左视图主视图俯视图主视图左视图何体的小立方块的个数最多是________个,最少是________个.主视图俯视图22.用小立方块搭成的几何体,主视图和俯视图如下.它最多需要多少个小立方块?最少需要多少个小立方块?请画出最多和最少时的左视图.主视图俯视图23.用小立方块搭成的几何体,主视图和俯视图如下.它最多需要多少个小立方块?最少需要多少个小立方块?请画出最多和最少时的左视图.主视图俯视图24.如图是由大小相同的小立方块组成的简单几何体的主视图和左视图,那么组成这个几何体的小立方块最多为________个.主视图左视图25.一个几何体是由一些大小相同的小立方块摆成的,其主视图和左视图如图所示,则组成这个几何体的小立方块最多是________块.主视图左视图26.一个几何体是由若干个相同的小立方块组成的,其主视图和左视图如图所示,则组成这个几何体需要的小立方块的个数最多是________块.主视图左视图27.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为8 cm ,俯视图中圆的半径为3 cm ,求这 个几何体的表面积和体积.(结果保留π)俯视图:圆左视图:长方形主视图:长方形【参考答案】课前预习1.线面体线点2.6,正方形;2,圆,曲面;1,曲面3.长方形平行四边形梯形三角形4.左面上面正面知识点睛1.三角形、四边形、五边形、六边形2.(n-2)3.(n-2)·180°精讲精练1.圆、长方形(答案不唯一,圆、长方形、椭圆任选两个即可)2. B3. B4. B5.长方形6. D7.108.十二9.7 900°10.球体、正方体11.A12.C13.A14.略15.略16.略17.略18.B19.B20.13 921.13 922.最多需要8个立方块,最少需要7个立方块,图略.23.最多需要14个立方块,最少需要10个立方块,图略.24.725.1026.1327.(1)圆柱;(2)略;(3)表面积为(66π) cm2,体积为(72π) cm3.28.。
北师大版初一数学上册三视图
科目
数学
课题
从三个方向看
设计
徐彬强
执行
吴晓丹
学习
目标
1.能描述简单立体图形的视图,并能画出草图。
2.逐步培养学生的空间想象能力。
3.有意培养学生良好的思维方式,科学的创新精神和团结协作的精神,以及超越自我的意识。
重点
通过看图可以画出草图。
难点
会根据条件展开空间想象。
学生自主学习案
课堂同步导案
合体,描述从不同的方向看到的平面图形,
并分别指出多媒体显示的图形是从哪个方向
看到的。
当只考虑形状和大小时,多媒体显示去掉颜色的效果图。
(给出六幅图片,让学生感到从前面、后面看到的平面图形都是一样的。从左面、右面看到的平面图形都是一样的。从上面、下面看到的平面图形都是一样的。从而说明了解一个物体的形状一般只要从三个方向看)
教师引导学生完成如下活动:
1、规定:车模每次运动的初始位置为0,向东为“正”,向西为“负”,
教师请学生按教师的指令表演车模行驶的六种情况,并在数轴上表示出来。
2、明确求两次运动的结果用加法,让学生根据数轴上车模两次运动的示意图,确定运动结果。
3、把运动过程和运动结果用有理数表示出来。
4、用加法算式表示每次运动的结果(共有6个算式)
(一)情境创设
1、视频录象:郭晶晶跳板跳水
2、看一看:出示下图
提问:这是两幅意大利比萨斜塔的照片,你知道为什么第二幅照片中的斜塔不斜呢?
3、观察下列一组新海实验中学教学楼图片;
4、看一看,想一想:
提问:图甲和图乙是从不同角度观察到的一个物体,你知道这是什么吗?
【设计意图】:以图片与录象引入,激发学生的兴趣
七年级数学上册 第一章 丰富的图形世界 4 从三个方向看物体的形状 三视图情系中考素材 (新版)北师大版
三视图情系中考为了体现数学课程标准“由实物的形状想象出立体图形,由立体图形想象出实物的形状,进行立体图形与其三视图、展开图之间的转化”这一理念,在课改实验区的中考试卷上,五彩缤纷的视图题目令人应接不暇。
现分类采撷数例,供学习参考.一.由立体图形选三视图1、选主视图例1.(台州)下图几何体的主视图是()例2.(连云港)如图,水平放置的下列几何体,主视图不是..长方形的是()【解析】:从正面看物体所得到的图形叫正视图,也叫主视图.例1选C,例2选B2、选俯视图例3.(龙岩)如图,一桶未启封的方便面摆放在桌面上,则它的俯视图是()例4(德州).如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()A.B.C.D.(第1题)A.B.C.D.【解析】:从上面往下看物体所得到的图形叫俯视图.例3选C, 例4 选D3、选左视图例5(江西)桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )【解析】:从左边看物体所得到的图形叫左视图. 例5选C.4、比较物体三视图的面积大小例6(湖州).说法正确的是( )A .正视图的面积最小B .左视图的面积最小C .俯视图的面积最小D .三个视图的面积一样大 【解析】:首先由该几何体想象出三视图,再比较其面积的大小. 显然主视图有四个小正方形;俯视图也有四个小正方形,左视图只有3个小正方形,因此左视图的面积最小.故选B.二.由俯视图选择主视图例7(成都)右图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )【解析】:首先由物体的俯视图中小正方形位置上小立方块的个数想象出问题的形状,再想象出该问题的主视图.从正面看,从左到右,三列小正方形的个数依次应是4、3、2.故选C.三.由三视图判断小正方体的个数(第5题) A . B . C. D. 第6题A .B .C .D .例8(荆门)如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A .2个B .3个C .4个D .6个例9(怀化).一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个 【解析】:由三视图判断组成原几何体的小正方体的块数与由相同的小正方体构成的几何体画三视图正好相反,其一般解法是:(1)数出 主视图各列(竖为列)上正方形的个数,将数字分别填在俯视图所对应的列中;(2)再数出左视图各列上正方形的个数,将数字分别填在俯视图所对应的行(横为行)中;(3)在俯视图中的同一个小正方形中, 前后两次数字相同的只取一个数,前后两次数字不同的取较小的数,最后将俯视图中各小正方形上的数字相加所得结果就是组成原几何体的小正方形的总块数。
北师大版七年级数学上册北师大版七年级数学上册从三个方向看物体的形状典型例题2
《从三个方向看物体的形状》典型例题例1 画出如图所示立体图形的三视图(相当于在平放着的一块砖的中间靠后又立放着一块砖).例2召集几个同伴到一起,共同回忆《盲人摸象》的故事,然后,大家一起交流这个故事给予的启示,并就正在学习的《画立体图形》知识,说一说这个故事对学习数学知识有何帮助.例3 如图所示的圆锥的三视图是__________.A.正视图与侧视图是三角形,俯视图是圆B.正视图与侧视图是三角形,俯视图是圆和圆心C.正视图是圆和圆心,俯视图和侧视图是三角形D.正视图和俯视图是三角形,侧视图是圆和圆心例4 如图是由6块积木搭成的,这几块积都是相同的小正方体.指出下图中三个平面图形是它的哪个视图.例5一个物体的正视图是三角形,试说出该物体的形状.例6 如图是由几个小正方体所搭几何体的俯视图.小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的左视图.参考答案例1 解:三视图如下:说明:上列中的正视图能表示物体的上、下、左、右四个面:俯视图能表示物体的左、右、前、后;左视图能够表示物体的上、下、前、后.上、下、左、右四个面易于判断,关键在于判断前、后.画图时应特别注意俯视图和左视图的前、后对应关系,俯视图的下边和左视图的右边都是表示物体前面.如果把左视图画成如图所示的那样就错了.例2分析熟悉故事情节,才能悟透其中的含意,能从语文知识中找到对学数学的启示,这正是综合素质的体现,而这种综合素质正是每一个学生所应具备的.答案本题没有固定答案.《盲人摸象》传达了从不同角度感受同一个事物会得到不同结果的内涵,正如同从不同方向看同一个几何体的结果不一样是异曲同工.这也启示我们,若要解决同一个数学问题,思考角度不同,去找到不同的解决方案.例3 分析本题考查画立体图形的三视图的能力,由物体摆放的方式、位置可知:正视图和侧视图都是等腰三角形,俯视图为圆.答案:A说明:物体摆放的方式位置不同,视图也会有所区别,千万不能因为物体形状相同,就认为它的视图也一样了.例4 分析这个立体图形不像圆锥的形状那样规则.这就需要我们注意该图在各层、各侧的形状特征上有什么不同之处,然后根据这些形状特征来画出或辨认三视图,注意到:从正面看共有3层,最下层有3块积木.故选第二个平面图形;从左侧看,有2列,其中一列有3层,另一列只有1层,故选第一个平面图形;从上面俯视,整个积木摆放呈“”形,其中横摆着的有3块积木,竖摆着的有2块积木,而横摆、竖摆的积木中有1块重复了,故选第三个平面图形.答案从前至后依次填入左视图,正视图,俯视图.例5 分析只给出一个视图的条件来判定物体的形状,根据常见的立体图形分类,正视图不可能是球或圆柱,那么可能是圆锥、棱锥或三棱柱,显然,答案不唯一,这是一个开放题.说明:由视图描述物体的形状要借助于三个视图综合分析、想象,仅仅一个方向的视图只能了解物体的部分信息.同时,合理猜想,结合生活经验估测也非常重要.例6 分析本题是个作图题,如果按照常见的解法,必须要提供物体的原型,但是本题却没有,它只给出了俯视图,显然,只根据俯视图是无法判定物体原型的,但是,它在相应的小正方形中给出了表示该位置的小正方体的个数,由此我们可以确定该立体图形的原型.既然能够确定立体图形,那么就可画出它的左视图.答案如图,说明:本题由正视图判定出立体图形的原型,再由立体图形的原型来作它的左视图,体现了由特殊——一般一特殊的解题规律.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图与展开图
一、选择题:
1.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立
体图形的左视图是 ( )
2.某工艺品由一个长方体和球组成(右图),则其俯视图是( )
A. B. C. D.
3.如图,在一本书上放置一个乒乓球,则此几何体的俯视图是( )
4.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立
体图形的左视图是( )
5.某几何体的三视图如左图所示,则此几何体是( )
A.正三棱柱B.圆柱C.长方体D.圆锥
A. B. C. D.
A. B.C.D.
6.正方体的表面上画有如图⑴中所示的粗线,图⑵是其展开图的示意图,但只在
A面上画有粗线,那么将图⑴中剩余两个面中的粗线画入图⑵中,画法正确的是( )
7.小明从正面观察下图所示的物体,看到的是( )
8.某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);在这三种视图
中,其正确的是:( )
A、①②,
B、①③,
C、②③,
D、②
9.由若干个同样大小的正方体堆积成一个实物,不同侧面观察到如图8所示的投
影图,则构成该实物的小正方体个数为( )
A. 6
B. 7
C. 8
D. 9
正面A.B.C.D.
10.某超市货架上摆放着“康师傅”红烧肉面,如图1是
它们的三视图,则货架上的“康师傅”红烧肉面至少有( ) A.8桶B.9
C.10桶D.
11.右图中几何体的正视图是( )
12.( ).
A.B.C.D.
正面
13.如图所示是由几个小立方块所搭成的几何体,那么这个几何体的主视图是(
)
14.图2中几何体的正视图是
( )
主视图左视图俯视图
图1
A B C D
A B C D
15.由几个小立方体搭成的一个几何体如图1所示,它的主(正)视图见图2,那么它
的俯视图为( )
16.如图是一些相同的小正方体构成的几何体的正视图和左视图,在这个几何体中,
小正方体的个数不可能是( )
A、7
B、8
C、9
D、10
17.右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,
那么这个展开图是( )
18.如图所示,右面水杯的俯视图是(
)
A B C D
A B
C
D
19. 如图一个扇形铁皮OAB. 已知OA =60cm ,∠AOB =120°,小华将OA 、OB 合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为 A. 10cm B. 20cm C. 24cm D. 30cm
20. 下列几何体,正(主)视图是三角形的是 ( )
A .
B .
C .
D .
21.有一实物如图所示,它的主视图是( )
22. 左图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm)。
将它们拼成如右图的新几何体,则该新几何体的体积为( )
120°
O A
B
6
6
6
A.48πcm3 B.60πcm3 C.72πcm3 D.84πcm3
23.已知圆锥的底面直径为18㎝,母线长为30㎝,则圆锥的侧面积为( )2
cm
A.270π
B.360π
C.450π
D.540π
24.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36º,则该圆锥的母线长
为( )
A.100cm B.10cm C.10cm D
.10
10
25.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、
长方形、圆,则该几何体是()
A.球体B.长方体C.圆锥体D.圆柱体
26.如图,以Rt△ABC为直角边AC所在直线为轴,将△ABC旋转一周所形成的几何体
的俯视图是( )
27.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图
形的左视图是( )
右图
D
C
B
A
28.如图是由5个大小相同的正方体摆成的立方体图形,它的左视图是( )
A B C D
29.
一个由若干个相同的正方体搭成的物体的主视图与左视图都是右边的图形,这个物体有( )种不同的搭建办法.
A 、2
B 、3 C
、4 D 、5
30.有6是(
)
A 主视图的面积最大
B 左视图的面积最大 C
俯视图的面积最大 D 三个视图的面积一样大
31. 某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不.可以是( ) A.正三角形 B.矩形 C.正六边形 .正八边形
32. 下列展开图中,不是正方体是。