流体阻力测定实验
流体流动阻力测定实验报告

实验名称:液体流动阻力的测定实验 一、 实验目的① 掌握测定流体流动阻力实验的一般实验方法。
② 测定直管摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ ③ 验证湍流区摩擦阻力系数λ为雷诺数Re 和相对粗糙度的函数。
④ 将所得光滑管的Re -λ方程和Blasius 方程相比较。
二、 实验器材流体流动阻力实验装置三、 实验原理1、直管摩擦阻力不可压缩流体(如水),在圆形直管中做稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等官件时,由于流体运动的速度和方向突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上通过采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。
流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为),,,,,(εμρu l d f p =∆引入下列无量纲数群。
雷诺数 μρdu =Re相对粗糙度d ε管子长径比 dl从而得到)l,,(2d d du up εμρρψ=∆ 令)(Re,dεΦ=λ2)(Re,l 2u d d pεΦ=∆ρ 可得摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。
2l 2u d ph f ⨯=∆=λρ式中 f h ——直管阻力,J/kg ;l ——被测管长,m ;d ——被测管内径,m ; u ——平均流速,m / s ; λ——摩擦阻力系数。
当流体在一管径外d 的圆形管中流动时,选取两个截面,用U 形压差计测出这两个截面的静压强差,即为流体流过两截面的流动阻力。
根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。
改变流速可测不同Re 下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的Re -λ关系。
(1) 湍流区的摩擦阻力系数在湍流区内)(Re,μεf =λ。
对于光滑管,大量实验证明,当Re 在5310~103⨯范围内,λ与Re 的关系Blasius 关系,即25.0Re /3163.0=λ对于粗糙管,λ与Re 的关系均以图来表示。
流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。
2、了解摩擦系数λ与雷诺数 Re 之间的关系。
3、学习压强差的测量方法和数据处理方法。
二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。
阻力损失包括直管阻力损失和局部阻力损失。
1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。
摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。
当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。
2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。
三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。
2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。
通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。
四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。
2、检查实验装置的密封性,确保无泄漏。
3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。
4、逐步改变流量,重复上述步骤,测量多组数据。
5、实验结束后,关闭离心泵,整理实验仪器。
流体流动阻力的测定实验

流体流动阻力的测定实验一、实验内容1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ, 并确定λ和Re 之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1. 解测定流体流动阻力摩擦系数的工程定义, 掌握测定流体阻力的实验组织方法。
2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力, 确定直管阻力摩擦系数与雷诺数之间的关系。
3. 熟悉压差计和流量计的使用方法。
4. 认识组成管路系统的各部件、阀门并了解其作用。
三、实验原理流体通过由直管和阀门组成的管路系统时, 由于粘性剪应力和涡流应力的存在, 要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力 流体流动过程是一个多参数过程, 。
由因次分析法, 从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示:⎥⎦⎤⎢⎣⎡ξμρ=ρ∆d ,du ,d l F u P 2 λ=Ψ(Re, ε/d ) 雷诺准数μρdue =R ;22u d l Ph f ⋅⋅=∆=λρ只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。
g P Hg )R(ρρ-=∆易知, 直管摩擦系数λ仅与Re 和 有关。
因此, 只要在实验室规模的装置上, 用水做实验物系, 进行试验, 确定λ与Re 和 的关系, 然后计算画图即可。
2.局部阻力局部阻力可以用当量长度法或局部阻力系数法来表示, 本实验用局部阻力系数法来表示, 即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示, 用公式表示:一般情况下, 由于管件和阀门的材料及加工精度不完全相同, 每一制造厂及每一批产品的阻力系数是不尽相同的。
四、实验设计由和知, 当实验装置确定后, 只要改变管路中流体流速u及流量V, 测定相应的直管阻力压差ΔP1和局部阻力压差ΔP2, 就能通过计算得到一系列的λ和ξ的值以及相应的Re的值,【原始数据】在实验中, 我们要测的原始数据有流量V, 用来计算直管阻力压差ΔP1和局部阻力压差ΔP2的U型压差计的左右两边水银柱高度, 流体的温度t(据此确定ρ和μ), 还有管路的直径d和直管长度l。
实验一 流体流动阻力的测定

实验一 流体流动阻力的测定一、实验目的1、了解流体在管道内摩擦阻力的测定方法;2、确定摩擦系数λ与雷诺数Re 的关系。
二、基本原理由于流体具有粘性,在管内流动时必须克服内摩擦力。
当流体呈湍流流动时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。
流体的粘性和流体的涡流产生了流体流动的阻力。
在被侧直管段的两取压口之间列出柏努力方程式,可得:ΔP f =ΔPL —两侧压点间直管长度(m)d —直管内径(m)λ—摩擦阻力系数u —流体流速(m/s )ΔP f —直管阻力引起的压降(N/m 2)µ—流体粘度(Pa.s )ρ—流体密度(kg/m 3)本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分别求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。
三、实验装置与仪器1、实验装置水泵将储水糟中的水抽出,送入实验系统,首先经玻璃转子流量计测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。
被测直管段流体流动阻力△P 可根据其数值大小分别采用变压器或空气—水倒置U 型管来测量。
实验系统流程图见图一压差传感器与直流数字电压表连接方法见图二2、设备的主要技术参数(1)被测直管段:管径d —0.0080(m) 管长L —1.6(m) 材料:紫铜管(2)玻璃转子流量计:型号LZB —25 测量范围100—1000(L/h) 精度:1.5 型号LZB —10 测量范围10—100(L/h) 精度:2.5(3)单项离心清水泵:型号WB70/055 流量20—2000(L/h)扬程:13.5~19(m) 电功功率:550(W) 电机功率:550(W) 电流:1.35(A) 电压:380(V)22u d L P h ff ⨯=∆=λρ22u P L d f ∆⨯=ρλμρdu =Re四、实验步骤:1、向储水槽内注蒸馏水,直到水满为止。
流体流动阻力的测定实验报告

流体流动阻力的测定实验报告摘要:通过测算不同流速和管道直径下流体的流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
实验的结果表明,流体流动阻力与流速和管道直径的平方成正比,结果与理论计算值基本吻合。
一、实验原理在流体力学中,我们研究流体在管道中的运动和分布。
不同形状、不同截面的管道中,流体的流动速度和压强是不同的,流体的动能和势能也会随着时间和位置的变化而发生变化。
在流体流动中,管道内壁与流体的相互作用形成一定的阻力,这种阻力称为流体流动阻力。
实验中,我们设计了一套管道流体流动测量装置,通过测算流体在不同流速和管道直径下流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
二、实验步骤1. 准备工作:将实验装置安装好,并连接好各个部件。
2. 流量测定:打开水泵,将水流导向流量计中,通过观察流量计中的示数,测定流体的流量。
3. 压降测定:利用几何水平仪测定与水平面夹角,计算出流体在管道中的压降。
4. 流速测定:通过测算流量和管道截面积,计算出流体的平均流速。
5. 重复实验:重复以上测定步骤,测定不同流速和管道直径下的流量和压降数据,以确定流体流动阻力与流速和管道直径的关系。
6. 数据处理:根据实验数据计算出流体流动阻力公式,并与理论计算值对比。
三、实验结果与分析1. 流量与管道直径的关系通过实验测定,流量与管道直径的平方成正比。
实验数据如下:流量 Q (m3/h) 1 2 3 4 5直径 D (cm) 1 1.5 2 2.5 32. 压降与流速的关系通过实验测定,压降与流速的平方成正比。
实验数据如下:流速 v (m/s) 0.67 1.13 1.33 1.51压降 h (m) 0.05 0.09 0.12 0.163. 流体流动阻力与流速和管道直径的关系根据实验得到的数据,流体流动阻力与流速和管道直径的平方成正比。
流体流动阻力公式为:f = αρv2 D2/4其中,f 为阻力系数,ρ 为流体密度,v 为平均流速,D 为管道直径,α 为系数。
实验一 流体流动阻力测定实验

实验一流体流动阻力测定实验
实验目的:
1. 掌握流体流动阻力的测量方法;
2. 研究液体流动速度与流动阻力的关系;
3. 探究不同液体的流动阻力之间的差异。
实验器材:
1. 测量罐(配有胶管和流量计);
2. U形玻璃管;
3. 液体(水和甘油);
4. 秒表;
5. 卡尺。
实验原理:
在实验中,将液体从一容器倾泻到另一容器中,同时测量流量计时流量、升高高度、液体的密度和粘度等参数,然后根据流量和压力的大小计算出液体的流动阻力大小。
实验步骤:
1. 将测量罐放在试验台上,它应该与液体倾泻的容器保持水平。
2. 将U形玻璃管的两端插入液体倾泻的容器中和流入测量罐中。
3. 调整流量计,使其指针刻度为零,然后开始倾泻液体。
4. 记录下液体流动的时间和流量,以及液体的高度和温度。
5. 测量液体的密度,并计算出其粘度。
6. 重复以上步骤,倾泻另一种液体,记录相关数据。
7. 计算并比较两种液体的流动阻力。
实验注意事项:
1. 测量液体的过程中,要保持容器和测量罐平稳,以避免产生冲击和震动。
2. 测量液体的温度和粘度要准确,否则将影响结果的准确性。
3. 测量过程中,要充分排除管路和装置中的气泡。
4. 测量结束后,要及时清洗仪器,以免对下次实验造成影响。
2-流体流动阻力测定实验

一、 实验目的1、 掌握流体经直管和管阀件时阻力损失的测定方法。
通过实验了解流体流动中能量损失的变化规律。
2、 测定直管摩擦系数λ于雷诺准数Re 的关系。
3、 测定流体流经闸阀等管件时的局部阻力系数ξ。
4、 学会压差计和流量计的适用方法。
5、 观察组成管路的各种管件、阀件,并了解其作用。
二、 实验原理流体在管内流动时,犹豫粘性剪应力和涡流的存在,不可避免得要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起局部阻力。
1、沿程阻力影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。
根据因次分析,影响阻力损失的因素有, (a)流体性质:密度ρ、粘度μ;(b)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (c)流动条件:流速μ。
可表示为: 则式中,λ称为摩擦系数。
层流 (滞流)时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的函数,须由实验确定 2、局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
(1)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le 表示。
则流体在管路中流动时的总阻力损失 为 (2)阻力系数法流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法。
ρρpp p h f ∆=-=21),,,,,(ερμu l d f p =∆22u d l ph f λρ=∆=∑f h 22u d le l h f ∑∑+=λ即式中,ξ——局部阻力系数,无因次; u ——在小截面管中流体的平均流速,m /s三、 实验装置流程(1)实验装置实验装置如图所示主要由离心泵,不同管径、材质的管子,各种阀门和管件、转子流量计等组成。
实验一流体阻力测定实验

实验一 流体阻力测定实验(1)流体阻力测定一. 实验目的1、 学习直管摩擦阻力以及局部阻力的测定方法2、 测定直管摩擦阻力系数λ和局部阻力系数ξ3、 掌握直管摩擦阻力系数λ与雷诺数Re 和管子的相对粗糙度之间的关系及其变化规律 二、实验内容:1、 测定直管摩擦阻力以及直管摩擦阻力系数λ2、 测定阀门的局部阻力以及局部阻力系数ξ 三、实验原理(1)λ─Re 的计算在被测直管段的两取压口之间列柏努利方程式,可得:△P f =△P ( 1 )△P f L u 2h f =───=λ── ── ( 2 ) ρ d 22d △P f λ=── ── ( 3 ) L ρ u 2du ρ Re =─── ( 4 ) μ 符号意义:d ─管径 (m) L ─管长 (m) u ─流体流速 (m /s) △P f ─直管阻力引起的压降 (N /m 2)ρ─流体密度 (Kg /m 3) μ─流体粘度 (Pa.s) λ─摩擦阻力系数 Re ─雷诺准数测得一系列流量下的△P f 之后,根据实验数据和式(1),(3)计算出不同流速下的λ值。
用式(4)计算出Re 值,从而整理出λ─Re 之间的关系, 在双对数坐标纸上绘出λ─Re 曲线。
(2).局部阻力的计算:H f 局=ΔP 局/ρ=(2ΔP 近-ΔP 远)/ρ=ξ×(u 2/2)22up⨯∆=ρξ 四、实验装置及流程:1.实验设备流程图:水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。
被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。
1.实验系统流程示意图见图一所示2.压力传感器与直流数字电压表连接方法见图二五、实验方法及步骤:1.向储水槽内注水,直到水满为止。
(有条件最好用蒸馏水,以保持流体清洁)2.直流数字表的使用方法请详细阅读使用说明书。
化工原理流体流动阻力测定试验

流体流动阻力测定的实验一、实验目的及任务1 .学习直管摩擦阻力AP 八直管摩擦系数人的测定方法。
2 .掌握直管摩擦系数人与雷诺数Re 和相对粗糙度之间的关系及其变化规律。
3 .掌握局部摩擦阻力APr 局部阻力系数Z 的测定方法。
4 .学习压强差的几种测量方法和提高其测量精确度的一些技巧。
二、基本原理流体在管路中流动时,由于黏性剪应力和涡流的存在,不可避免地会引起流体压力损耗。
这种 损耗包括流体在流动时所产生的直管阻力损失和局部阻力损失。
1 .直管阻力损失流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示, l u 2h =九 x 一 x 一 f d 2式中 d 一管径,m ;1 一管长,m ; u —流速,m / s ; 九一摩擦系数。
在一定的流速下,测出阻力损失,按下式即可求出摩擦系数九7 d 2九=h x_x —f 1 u 2阻力损失h f 可通过对两截面间作机械能衡算求出(1-3)P -流体的密度,kg/m 3A f -两截面的压强差,Pa 。
由式(1-4)可知,对于水平等径直管只要测出两截面上静压强的差即可算出h f 。
两截面上静压 强的差可用压差计测出。
流速由流量计测得,在已知管径d 和平均流速u 的情况下,只需测出流体 的温度K 查出该流体的密度p 和黏度〃,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数人与雷诺数Re 的关系。
2.局部阻力损失阀门、突然扩大、突然缩小、弯头、三通等管件的局部阻力系数可用下式计算对于水平等径直管,z 1=z 2 u 1=u 2, 上式可简化为p 「P 2PA p―f P(1-4)式中p 1-p 2一两截面的压强差, Pa ;(1-1)(1-2)1 2)(1-5)三、实验装置流程和主要设备1.实验装置流程流体流动阻力实验流程如图1-1所示。
图1-1流动阻力实验流程示意图1-水箱;2-离心泵;3、4-放水阀;5、13-缓冲罐;6-局部阻力近端测压阀;7、15-局部阻力远端测压阀;8、20-粗糙管测压回水阀;9、19-光滑管测压阀;10-局部阻力管阀;11-U型管进水阀;12- 压力传感器;14-流量调节阀;15、16-水转子流量计;17-光滑管阀;18-粗糙管阀;21-倒置U型管放空阀;22-倒置U型管;23-水箱放水阀;24-放水阀;2.被测光滑直管段:管径d—0.008m;管长L—1.69m;材料一不锈钢管被测粗糙直管段:管径d—0.010m;管长L—1.69m;材料一不锈钢管被测局部阻力直管段:管径d—0.015m;管长L—1.2m;材料一不锈钢管3.压力传感器:型号:LXWY 测量范围:200 KPa4.直流数字电压表:型号:PZ139 测量范围:0〜200 KPa5.离心泵:型号:WB70/055 流量:8(m3/h) 扬程:12(m) 电机功率:550(W)6.玻璃转子流量计:型号测量范围精度LZB—40 100〜1000(L / h) 1.5LZB—10 10〜100(L/h) 2.5四、实验方法及步骤1.向储水槽内注水,直到水满为止。
流体阻力的测定实验报告

流体阻力的测定实验报告流体阻力的测定实验报告引言:流体阻力是指物体在流体中运动时受到的阻碍力,其大小与物体的形状、速度以及流体的性质有关。
测定流体阻力的实验对于研究物体在流体中的运动以及流体力学等领域具有重要意义。
本实验旨在通过测定不同物体在流体中的运动速度和受力情况,探究流体阻力的特性和影响因素。
实验方法:1. 实验仪器和材料本实验所需的仪器和材料包括:流体阻力测定装置、各种形状的物体(如球体、圆柱体、长方体等)、计时器、测量尺等。
2. 实验步骤(1)将流体阻力测定装置放置在水槽中,确保其稳定。
(2)选取一个物体,如球体,将其放入测定装置中,并调整装置使其运动自由。
(3)启动计时器并记录物体在流体中运动的时间。
(4)根据测量尺测量物体在流体中运动的距离。
(5)重复以上步骤,测量其他物体的运动时间和距离。
实验结果:根据实验数据,我们可以得到不同物体在流体中运动的速度和受力情况。
以球体为例,我们可以绘制出不同速度下的流体阻力与速度的关系曲线。
实验结果显示,流体阻力与物体速度成正比,且在相同速度下,不同物体的流体阻力也存在差异。
讨论与分析:1. 流体阻力与物体形状的关系从实验结果可以看出,不同形状的物体在相同速度下受到的流体阻力不同。
这是因为物体的形状会影响流体对其运动的阻碍程度。
一般来说,流体阻力与物体的表面积成正比,因此具有较大表面积的物体受到的流体阻力也较大。
2. 流体阻力与物体速度的关系实验结果显示,流体阻力与物体速度成正比。
这是因为当物体在流体中运动时,流体分子会与物体表面发生碰撞,产生阻力。
当物体速度增加时,碰撞的次数也会增加,从而导致流体阻力的增加。
3. 流体阻力与流体性质的关系流体阻力还与流体的性质有关。
粘稠度较大的流体会对物体的运动产生更大的阻碍力,因此流体阻力会随着流体粘稠度的增加而增加。
结论:通过本实验的测量和分析,我们得出以下结论:1. 流体阻力与物体形状成正比,具有较大表面积的物体受到的流体阻力较大。
流体流动阻力的测定实验

流体流动阻力的测定实验一、实验内容(1)测定流体在特定材质和εd 的直管中流动时的阻力摩擦系数λ,并确定λ和Re 之间的关系。
(2)测定流体通过阀门或90°肘管时的局部阻力系数。
二、实验目的(1)了解测定流体流动阻力摩擦系数的工程定义,掌握采用量纲分析方法规划测定流体阻力实验的组织方法。
(2)测定流体流经直管的摩擦阻力和流经管件的局部阻力,确定直管阻力摩擦系数和雷诺数之间的关系。
(3)熟悉压差计和流量计的使用方法。
(4)认识组成管路系统的各部件、阀门并了解其作用。
三、实验基本原理流体管路是由直管、管件(如三通、直管、弯头)、阀门等部件组成。
流体在管路中流动时,由于黏性剪应力和涡流作用,不可避免地要消耗一定的机械能。
流体在直管中流动的机械能损失称为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。
在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
(1)直管阻力 流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即ρρpp p h f ∆=-=21①由于流体分子在流动过程中运动机里十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。
为了减少实验工作量简化实验工作难度,并使实验结果具有普遍意义,可采用量纲分析方法来规划实验。
将所有影响流体阻力的工程因素按以下三类变量列出①流体性质:密度ρ、黏度μ②管路几何尺寸:管径d 、管长l 、管壁粗糙度ε ③流动条件:流速u可将阻力损失f h 与诸多变量之间的关系表示为),,,,,(εμρu l d f p =∆②根据量纲分析方法可将上述变量之间的关系转变为无量纲准数之间的关系)l,,(2dd du upεμρρψ=∆ ③其中μρdu =R e 称为雷诺准数,是表征流体流动形态影响的无量纲准数;dl 是表示相对长度的无量纲几何准数;dε称为管壁相对粗糙度。
流体流动阻力的测定实验报告

流体流动阻力的测定实验报告流体流动阻力的测定17321001 1120162761 王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。
2. 测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区λ与Re的关系曲线。
3. 测定流体流经管件、阀门时的局部阻力系数ξ。
4. 学会流量计和压差计的使用方法。
5. 识辨组成管路的各种管件、阀门,并了解其作用。
二、实验原理流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:?pfp1?p2lu2hf===λ 即,2d?pfλ= 式中:λ—直管阻力摩擦系数,无因次;d—直管内径,m;?pf—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。
层流流时,64λ= 湍流时λ是雷诺准数Re和相对粗糙度的函数,须由实验确定。
欲测定λ,需确定l、d,测定?pf、u、ρ、μ等参数。
l、d 为装置参数,ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。
?pf可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
求取Re和λ后,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法。
流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。
即:fhf′==ξ因此,2?pf′ξ=式中:ξ—局部阻力系数,无因次;?pf′-局部阻力压强降,Pa;ρ—流体密度,kg/m3;u—流体在管内流动的平均流速,m/s。
流体流动阻力的测定实验报告

流体流动阻力的测定实验报告实验报告名称:流体流动阻力的测定一、实验目的本实验旨在通过实验测定流体的流动阻力,理解流体流动的基本原理,掌握流体流动阻力的计算方法,提高实验操作和数据处理能力。
二、实验原理在流体流动过程中,由于流体的粘滞性,会产生流动阻力。
流动阻力与流体的性质、管道的几何尺寸和流速等因素有关。
根据伯努利方程,流体的能量守恒,但在流动过程中会存在压力损失,这种压力损失即为流动阻力。
流动阻力的大小可以通过测定管道两端的压力差来计算。
三、实验步骤1.实验准备:准备实验器材,包括水、测压计、管道、阀门、流量计等。
2.开始实验:开启水源,调节流量,打开测压计,记录初始数据。
3.改变流量:通过调节阀门改变流量,记录每次改变流量后测压计的数据。
4.结束实验:关闭水源,整理实验数据。
四、数据分析表1 测压计数据记录表根据实验数据,我们发现随着流量的增加,测压计的压力差也在增加。
这说明流速越大,流动阻力也越大。
同时,我们可以通过计算得到每个流量下的阻力值。
将数据绘制成图表可以更直观地观察阻力与流量之间的关系。
通过线性拟合可以找到阻力与流量之间的定量关系。
这将为我们后续的流体流动分析提供重要依据。
五、实验结论本实验通过测定不同流量下管道两端的压力差,成功地测得了流体的流动阻力。
实验结果表明,随着流量的增加,流动阻力也相应增加。
这说明流速是影响流动阻力的一个重要因素。
此外,本实验还初步探讨了流动阻力与流量之间的关系,为今后更深入的流体流动研究奠定了基础。
本实验不仅提高了我们的实验操作能力,还强化了我们对于流体流动基本原理的理解。
通过数据处理和图表分析,我们能够更准确地把握流动阻力的变化规律,为实际生产过程中的流体输送和分配提供了重要参考依据。
六、实验体会与建议在本次实验中,我深刻体会到了实践对于理论知识的检验作用。
通过实际操作和观察,我对流体流动阻力的概念有了更深入的理解。
同时,我也意识到了实验数据处理和误差分析的重要性。
流体力学综合实验流动阻力测定

• c)平衡水位。关闭阀(4)、(5)、(3),然后打 开(1)和(2)两个阀门,让水进入玻璃管至平 衡水位(此时系统中旳出水阀门一直是关闭 旳,管路中旳水在零流量时,U形管内水位 是平衡旳。)压差计即处于待用状态
• d)调整管路总出口阀,则被测对象在不同流 量下相应旳差压,就反应为倒U型管压差计 旳左右水柱之差。
• 2.局部阻力系数 旳测定
• 局部阻力损失一般有两种表达措施,即当 量长度法和阻力系数法。
• (1)当量长度法
• 流体流过某管件或阀门时造成旳机械能损
失看作与某一长度为le 旳同直径旳管道所产
生旳机械能损失相当,此折合旳管道长度
称为当量长度,用符号 le 表达。
• 这么,就能够用直管阻力旳公式来计算局 部阻力损失,而且在管路计算时可将管路 中旳直管长度与管件、阀门旳当量长度合 并在一起计算,则流体在管路中流动时旳 总机械能损失 为:
• 2.根据光滑管试验成果,对照柏拉修斯方程, 计算其误差。
• 3.根据局部阻力试验成果,求出闸阀全开时 旳平均ξ值。
• 4.对试验成果进行分析讨论。
• 七、思索题
1.在对装置做排气工作时,是否一定要关闭 流程尾部旳出口阀?为何?
2.怎样检测管路中旳空气已经被排除洁净? 3.以水做介质所测得旳λ~Re关系能否合用 于其他流体?怎样应用? 4.在不同设备上(涉及不同管径),不同水温 下测定旳λ~Re数据能否关联在同一条曲线上? 5.假如测压口、孔边沿有毛刺或安装不垂直, 对静压旳测量有何影响?
u —流体在小截面管中旳平均 流速,m部阻力损失。
• 根据连接管件或阀门两端管径中小管旳直 径d,指示液密度 0 ,流体温度t0(查流体物
性ρ、μ),及试验时测定旳流量V、液柱压
流体阻力测定实验报告

实验6 流体阻力测定实验装置一、实验目的1、了解实验所用到的实验设备、流程、仪器仪表;2、了解并掌握流体流经直管阻力系数λ的测定方法及变化规律,并将λ与Re 的关系标绘在双对数坐标上。
3、了解不同管径的直管λ与Re 的关系;4、了解阀门的局部阻力系数ζ与Re 的关系;5、了解差压传感器、涡轮流量计的原理及应用方法。
二、实验原理1、流体在管内流量及Re 的测定:本实验采用涡轮流量计直接测出流量q[m 3/h]:]/[)*3600/(42s m d q u ⋅=πμρ⋅⋅=u d Re式中:d 、ρ、μ— 管内径[m]、流体在测量温度下的密度和粘度 [Kg/m 3]、[Pa S]2、直管摩擦阻力损失ΔP 0Af 及摩擦阻力系数λ的测定流体在管路中流动,由于粘性剪应力的存在,不可避免的会产生机械能损耗。
根据范宁(Fanning )公式,流体在圆形直管内作定常稳定流动时的摩擦阻力损失为:][220Pa u d l p Af⋅=∆ρλ式中:l ——沿直管两测压点间距离,m ;λ——直管摩擦系数,无因次;由上可知,只要测得ΔP 0f 即可求出直管摩擦系数λ。
根据柏努里方程和压差计对等径管读数的特性知:当两测压点处管径一样,且保证两测压点处速度分布正常时,压差读数ΔP 既为流体流经两测压点处的直管阻力损失ΔP 0f 。
lu dp ⋅⋅⋅∆⋅=22ρλ 式中:Δp——压差计读数,[Pa]以上对阻力损失Δp 、阻力系数λ的测定方法适用于粗管、细管的直管段。
3、阀门局部阻力损失ΔP f 、及其阻力系数ζ的测定流体流经阀门时,由于速度的大小和方向发生变化,流动受到阻碍和干扰,出现涡流而引起的局部阻力损失为:22'u P fρζ=∆ [Pa]式中:ζ――局部阻力系数,无因次。
对于测定局部管件的阻力如阀门,其方法是在管件前后的稳定段内分别有两个测压点。
按流向顺序分别为1、2、3、4点,在1-4点和2-3点分别连接两个压差计,分别测出压差为ΔP 14、ΔP 23。
流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握测定流体流经直管和管件时阻力损失的实验方法。
2、测定直管摩擦系数λ与雷诺数 Re 的关系,验证在一般湍流区内λ与 Re 的关系曲线。
3、测定流体流经管件的局部阻力系数ζ。
4、学会压差计和流量计的使用方法。
二、实验原理1、直管阻力损失流体在水平等径直管中稳定流动时,阻力损失表现为压力降。
根据柏努利方程,直管阻力损失可以表示为:$\Delta P_f =\lambda \frac{l}{d} \frac{\rho u^2}{2}$其中,$\Delta P_f$ 为直管阻力损失,$\lambda$ 为直管摩擦系数,$l$ 为直管长度,$d$ 为直管内径,$\rho$ 为流体密度,$u$ 为流体流速。
雷诺数$Re =\frac{du\rho}{\mu}$,其中$\mu$ 为流体粘度。
对于湍流,摩擦系数$\lambda$ 与雷诺数$Re$ 及相对粗糙度$\frac{\varepsilon}{d}$有关。
2、局部阻力损失局部阻力损失通常用局部阻力系数$\zeta$ 来表示,其计算式为:$\Delta P_j =\zeta \frac{\rho u^2}{2}$其中,$\DeltaP_j$ 为局部阻力损失。
三、实验装置本实验装置主要由离心泵、水箱、直管、管件(弯管、阀门等)、压差计、流量计等组成。
1、离心泵:用于提供流体流动的动力。
2、水箱:储存实验所用的流体。
3、直管:有不同管径和长度的直管,用于测量直管阻力损失。
4、管件:包括各种类型的弯管、阀门等,用于测量局部阻力损失。
5、压差计:用于测量流体流经直管和管件前后的压力差。
6、流量计:用于测量流体的流量。
四、实验步骤1、实验前准备熟悉实验装置,了解各仪器仪表的使用方法。
检查水箱中水位是否足够,离心泵是否正常运转。
打开压差计上的平衡阀,排除其中的气泡。
2、直管阻力损失的测定关闭实验管线上的阀门,启动离心泵,调节流量至某一值。
流体流动阻力的测定实验

hf
p1 p2
Hf
p1 p2
g
J ·kg –1 (3)
m水柱
(4)
试验基本原理
当流体在圆形直管内流动时,流体因磨擦阻力所
造成旳能量损失(压头损失),有如下一般关系式:
hf
p1
p2
p
l
d
u2
2
J ·kg –1
(5)
或
Hf
p1 p2
g
l
d
u2 2g
m液柱
试验环节
3、试验布点 因为Re在充分湍流区,λ~Re旳关系是直线,所以大流量时 少布点,而Re在比较小时,λ~Re旳关系是曲线,所以小 流量时多布点。先将控制阀开至最大,读取流量显示仪读, 然后关至水银压差计差值约0.10时,在读取流量显示仪读 数,在和二个读数之间布12~14个点。水温取第一组和最 终一组读数旳平均值。
(6)
或写成
p
p1
p2
l d
u2
2
2p
u2
d l
试验基本原理
p p1 p2 (示-)gR (示-)g(R1 R2 ) Pa
u qV A
qV
F C
103 m3
s
Re du
2、局部阻力系数ζ旳测定:
试验基本原理
当流体流过管路系统时,因遇多种管件、阀门和测量仪
表等而产生局部阻力,所造成旳能量损失(压头损失),
化工原理试验
—— 流体流动阻力旳测定试验
试验目旳
1、学习直管摩擦阻力△P、局部阻力△P局、直管摩擦系数λ、 局部阻力系数ζ旳测量措施;
2、掌握直管摩擦系数λ与雷诺数Re之间旳关系旳测定措施及 其变化规律;
流体阻力测定

七、实验数据记录表格
光滑管:l=1.5 m d=21 mm ρ--被测流体密度 kg/m3;
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re之间关系曲线和关系式。
5 m d=21 mm
本设备为FFRS-Ⅲ型流体阻力实验装置。
序 水流量 光滑管压降 ⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re之间关系曲线和关系式。
利方程可以简化为: hf=(p1-p2)/ρ
2、雷诺系数: Re=duρ/ μ
ρ--被测流体密度 kg/m3; μ--被测流体粘度PaS; ρ和μ可由测量流体温度查表取得,
这样根据测量压差及流量便可以推出一定相对粗糙度时直管的λ-Re关系。
四、 实验任务:
1.光滑光的摩擦系数测定 2.绘制λ~Re曲线关系图。
• ⒉测定实验管路内流体流动的直管摩擦系 数λ与雷诺数Re之间关系曲线和关系式。
三、 原理:
• 本设备为FFRS-Ⅲ型流体阻力实验装置。 • 水在圆形直管中流动时,由于粘性和涡流
的作用产生摩擦阻力;在流经弯头、阀门 等局部时,由于流体运动的速度和方向突 然发生变化,产生局部阻力。
三、 原理:
1.摩擦系数的测定:
5 1.6Βιβλιοθήκη 6 2.07 2.5
8 3.0
9 4.0
水温度 /℃
雷诺数Re
能量损失 /J
摩擦阻力系数λ
• 五.数据处理
2、具体解法:
1)、解: Re=duρ/ μ=2.07×10-2×0.89×10-3/(π/4×100.5×10-5)
hf=(p1-p2)/ρ
λ=hf(d/L)(2/u2)=hf (2.07/199.9)(2/(0.892/π×410-3)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体阻力测定实验实验指导书环境与市政工程学院2015年11月一、实验目的:1.学习直管摩擦阻力f P ∆,直管摩擦系数λ的测定方法。
2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。
3.掌握局部摩擦阻力f P ∆,局部阻力系数ζ的测定方法。
4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。
二、实验内容:1.测定实验管路内流体流动的阻力和直管摩擦系数λ。
2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。
3.测定管路部件局部摩擦阻力f P ∆和局部阻力系数ζ。
三、实验原理:1.直管摩擦系数λ与雷诺数Re 的测定:直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。
流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρρff P P P h ∆=-=21 (1)又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式)22u d l h fP f λρ==∆ (2)整理(1)(2)两式得 22u P l d f∆⋅⋅=ρλ (3) μρ⋅⋅=u d Re (4)式中: -d 管径,m ; -∆f P 直管阻力引起的压强降,Pa ;-l 管长,m ; -u 流速,m / s ;-ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。
在实验装置中,直管段管长l 和管径d 都已固定。
若水温一定,则水的密度ρ和粘度μ也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。
根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
2.局部阻力系数ζ的测定 22'u P h ff ζρ=∆=' 2'2uP f ∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ 式中: -ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。
图-1 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '在a ~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5) 在b ~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f= △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
其数值用差压传感器来测量。
四、实验装置的基本情况: 1.实验装置流程示意图:图-2 流动过程综合实验装置流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-观测段;12-压力传感器;13-涡流流量计;18、25、26-阀门;19-普通管阀;20-粗糙管阀;22-小转子流量计;23-大转子流量计; 24水箱放水阀;27- 倒U型管放空阀;28-倒U型管;30、32-倒U型管排水阀;29、31-倒U型管平衡阀实验装置流程简介流体阻力测量:水泵2将储水槽1中的水抽出,送入实验系统,经玻璃转子流量计22、23测量流量,然后送入被测直管段测量流体流动阻力,经回流管流回储水槽1。
被测直管段流体流动阻力ΔP可根据其数值大小分别采用变送器12或空气—水倒置U型管来测量。
2.实验设备主要技术参数:表-1实验设备主要技术参数序号名称规格材料1 玻璃转子流量计LZB~25 100~1000(L/h)VA10~15F 10~100(L/h)2 压差传感器型号LXWY 测量范围0~200 KPa 不锈钢3 离心泵型号WB70/055 不锈钢4 实验管路管径0.045m 实验管路5 真空表测量范围-0.1-0MPa 精度1.5级,真空表测压位置管内径d1=0.041m真空表6 压力表测量范围0~0.6MPa 精度1.5级压强表测压位置管内径d2=0.041m压力表7 涡轮流量计型号LWY-40 测量范围2—20m3/h 涡轮流量计表-2 实验设备主要技术参数光滑管:管径d-0.008(m) 管长L-1.70(m)粗糙管:管径d-0.010(m) 管长L-1.70(m)真空表与压强表测压口之间的垂直距离h=0.41m3.实验装置面板图:图-3 实验装置仪表面板图五、实验方法及步骤:1.流体阻力测量(1)向储水槽内注水至水满为止。
(最好使用蒸馏水,以保持流体清洁)(2)光滑管阻力测定:①关闭粗糙管路阀门8,17,20,将光滑管路阀门9,19,21全开,在流量为零条件下,打开通向倒置U型管的进水阀29,31,检查导压管内是否有气泡存在。
若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡。
需要进行赶气泡操作。
导压系统如图4所示操作方法如下:加大流量,打开U型管进出水阀门29,31,使倒置U型管内液体充分流动,以赶出管路内的气泡;若观察气泡已赶净,将流量调节阀26关闭,U型管进出水阀29,31关闭,慢慢旋开倒置U型管上部的放空阀26后,分别缓慢打开阀门30、32,使液柱降至中点上下时马上关闭,管内形成气—水柱,此时管内液柱高度差不一定为零。
然后关闭放空阀27,打开U型管进出水阀29,31,此时U型管两液柱的高度差应为零(1—2mm的高度差可以忽略),如不为零则表明管路中仍有气泡存在,需要重复进行赶气泡操作。
图-4 导压系统示意图32、32-排水阀;128-U型管进水阀;12-压力传感器;27-U型管放空阀;28-U型管②该装置两个转子流量计并联连接,根据流量大小选择不同量程的流量计测量流量。
③差压变送器与倒置U型管亦是并联连接,用于测量压差,小流量时用∪型管压差计测量,大流量时用差压变送器测量。
应在最大流量和最小流量之间进行实验操作,一般测取15~20组数据。
注:在测大流量的压差时应关闭U型管的进出水阀29,31,防止水利用U型管形成回路影响实验数据。
(3) 粗糙管阻力测定:关闭光滑管阀,将粗糙管阀全开,从小流量到最大流量,测取15~20组数据。
(4) 测取水箱水温。
待数据测量完毕,关闭流量调节阀,停泵。
(5) 粗糙管、局部阻力测量方法同前。
六、实验注意事项1.直流数字表操作方法请仔细阅读说明书,待熟悉其性能和使用方法后再进行使用操作。
2.启动离心泵之前以及从光滑管阻力测量过渡到其它测量之前,都必须检查所有流量调节阀是否关闭。
3.利用压力传感器测量大流量下△P 时,应切断空气—水倒置∪型玻璃管的阀门否则将影响测量数值的准确。
4.在实验过程中每调节一个流量之后应待流量和直管压降的数据稳定以后方可记录数据。
5. 若之前较长时间未做实验,启动离心泵时应先盘轴转动,否则易烧坏电机。
6. 该装置电路采用五线三相制配电,实验设备应良好接地。
7. 启动离心泵前,必须关闭流量调节阀,关闭压力表和真空表的开关,以免损坏测量仪表。
8. 实验水质要清洁,以免影响涡轮流量计运行。
七、附数据处理过程举例:1.光滑管小流量数据( 以表3第16组数据为例) Q =70(L /h) h =44(mmH 2O)实验水温t =7.8℃ 粘度μ=1.43×10-3 (Pa.s) 密度ρ=999.74(kg /m 3) 管内流速 39.0008.0)4/(1000/3600/70)4(22=⨯==ππd Q u (m/s ) 阻力降 1000/4481.99.7499⨯⨯=⋅⋅=∆h g P f ρ=432(Pa) 雷诺数 =⨯⨯⨯=⋅⋅=-3101.439.749939.0008.0Re μρu d 2.165×103 阻力系数 =⨯⨯⨯=∆⨯⋅=2239.04321.709.7499008.022u P L d f ρλ2.712×10-2 2.粗糙管、大流量数据(以表4 第8组数据为例)Q =300(L /h) △P =19.4(kPa) 实验水温t =7.8℃粘度μ=1.43×10-3 (Pa.s) 密度ρ=999.74(kg /m 3) 管内流速 =⨯==2201.0)4/(1000/3600/300)4(ππd Q u 1.06 (m/s )阻力降 =∆f P 19.4×1000 = 19400(Pa) 雷诺数 =⨯⨯⨯=⋅⋅=-3101.439.749906.101.0Re μρu d 7.422×103阻力系数 2206.1194007.19.749901.022⨯⨯⨯=∆⨯⋅=u P L d f ρλ= 0.2033.局部阻力实验数据(以表5 第2组数据为例)Q =800(L /h) 近端压差=37.2 (kPa) 远端压差=37.7(kPa) 管内流速: 258.10015.0)4/(1000/3600/800)4(22=⨯==ππd Q u (m/s ) 局部阻力: 'f P ∆=2(P b -P b ')-(P a -P a ') =(2×37.2-37.7)×1000=36700(Pa)局部阻力系数: 4.46258.13670091.9932222'=⨯⎪⎭⎫ ⎝⎛=∆⋅⎪⎪⎭⎫ ⎝⎛=u P f ρζ附:实验数据表(举例说明)表5 局部阻力实验数据表0.001000.010000.100001.0000010.00000100100010000100000Reλ图-5 直管摩擦系数 与雷诺数Re 关联图请同学们在实验前预习抄写一~六部分,装置图可不画,第七部分将实验数据表3、4、5的表头画好,具体数据不填写。