二次函数中动点图形的最值问题

合集下载

二次函数动点面积最值问题

二次函数动点面积最值问题

二次函数最大面积例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间练习1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。

_ ___________________________________________ 2(1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀t的取值范围。

(2) t为何值时,S最小?并求岀这个最小值。

A开始沿QBB边向点B以A2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。

2求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变量x的取值范围。

C3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。

(1)求点P在BC上的运动的过程中y的最大值。

1(2 )当y= cm时,求x的值。

44如图所示,边长为在线段记CD(1)过ADPBB1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E,连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为t o1当t=丄时,求线段DE3如果梯形CDEB的面积为所在直线的函数表达式S,那么S是否以及此时(2) 存在最大值?若存在,请求出最大值,t的值;若不存在,请说明理由。

2 2(3)当OD DE的算术平方根取最小值时,(4)求点E的坐标。

二次函数最大面积交ABD BE能力提高例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线1cm/s的速度沿直线I向左匀速移动,(1)(2) t秒时梯形I上,且C,Q两点重合,如果等腰△ PQR以2 ABCD与等腰△ PQF重合部分的面积记为Scm当t=4时,求S的值。

二次函数求几何最值

二次函数求几何最值

二次函数求几何最值类型1:勾股定理【例题1】如图,在△ABC 中,∠ACB =90°,AC =3,CB =5,点D 是CB 边上的一个动点,将线段AD 绕着点D 顺时针旋转90°,得到线段DE ,连接BE ,则线段BE 的最小值为____________..(提示:一线三垂直全等+线段最值,,过点E 作EF ⊥BC 于点F ,则DF =AC =3,EF =CD ,设CD =EF =x ,则FB =5-3-x =2-x ,在Rt △EFB 中,BE 2=x 2+(2-x )2=2(x -1)2+2≥2) 【例题2】如图,C 是线段AB 上一动点,△ACD 、△CBE 都是等边三角形,M 、N 分别是CD 、BE 的中点,若AB =4,则线段MN 的最小值为___________.(提示:连接CN ,则∠ECN =30°,∴∠MCN =90°,设AC =2x ,则BC =4-2x ,∴CM=x ,CN-x ),∴MN 2=x 2+3(2-x )2=4(x -32)2+3≥3)类型2:全等三角形【例题3】如图,D 为等边△ABC 边BC 上的一动点,AB =2,以AD 为边在AD 的右侧作等边△ADE ,则△CDE 的面积最大值为___________..(提示:手拉手全等,法1,二次函数求最值,过点D 作DG ⊥CE 的延长线于点G ,易证△ABD ≌△ACE (SAS ),∴BD =CE ,设BD =x ,则CE =x ,CD =2-x ,∴DG(2-x ),∴S △CDE =12·x(2-x )(x -1)2;法2ABD ≌△ACE (SAS ),∴S 四边形ADCEE =S △ADC AD ⊥BC 时,△ADECDE )【例题4】如图,在△ABC 中,AB =AC =5,BC =,D 为边AB 上一动点(B 除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为___________.ABCDEFED CBAABCD EM NNMED CBAFEDCBA【答案】8.(提示:弦图+12345模型,AH,∴tan∠ABH=12,∴CN=4,BN=8,设BD=x,则DN=8-x,∴EN=8-x,∴S△BDE=12x(8-x)=-12(x-4)2+8≤8)【例题5】如图,在Rt△ABC中,∠ABC=90°,点D为AC的中点,点E为边AB上的一点,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接EF、BF.若AB=6,BC=8,则当△BEF的面积最大时,BF的长为___________..(提示:一线三垂直全等,AG=GB=3,GD=HF=4,设AE=x,则EG=DH=3-x,EB=6-x,∴GH=x+1,∴S△BEF=12(6-x)(x+1)=-12(x-52)2+498≤498,当x=52时,BI=GH=7 2,∵IF=4-3=1,∴BF)类型3:相似三角形【例题6】如图,梯形ABCD中,AD∥BC,AB=AD=CD=6,∠ABC=60°,E、F分别是AD、CD上的动点,且∠BEF=120°,则DF的最大值为____________.【答案】32.(提示:一线三等角相似,设AE=x,DF=y,则ED=6-x,∵△ABE∽△DEF,∴66x=xy,化简得y=-16(x-3)2+32≤32)AB CDEFNMHEBDAFCAB CDEFIHGFEDCBAFE DCBA【例题7】如图,在边长为6的菱形ABCD 中,AC 为其对角线,∠ABC =60°,点M 、N 分别是边BC 、CD 上的动点,且MB =NC ,连接AM 、AN 、MN ,MN 交AC 于点P ,则点P 到直线CD 的距离的最大值为___________..(提示:一线三等角相似,问题转化为求CP 的最小值,设BM =x ,则MC =6-x ,∵△ABM ∽△MCP ,∴66x -=x CP ,∴CP =16x (6-x )=-16(x -3)2+32≤32)【例题8】如图,正方形ABCD 的边长是4,P 为BC 上的动点,连接P A ,过点P 作PQ ⊥P A 交CD 于点Q ,连接AQ ,则AQ 的最小值为____________.【答案】5.(提示:一线三直角相似,设BP =x ,则PC =4-x ,∴QC =(4)4x x -,∴DQ =4-(4)4x x-=14(x -2)2+3≥3,∴当BP =2时,DQ 有最小值3,此时AQ 有最小值5)【例题9】如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,AC =4,点D 是边AC 上一动点,连接BD ,以BD 为斜边作Rt △BDE ,使∠BDE =30°,∠BED =90°,连接CE ,则△CDE 面积的最大值为__________..(提示:手拉手相似,△BAD ∽△BCE ,∴∠BCE =∠A =30°,过点E 作EM ⊥AC ,交AC 的延长线于点M ,设CM =x ,则CE =2x ,EM,CD =4-4x ,)NMPDCB A A BCDPQ ABCE【例题10】如图,在△ABC 中,D 为AC 边上的动点,过点D 分别作DE ∥BC 交AB 于点E ,DF ∥AB 交BC 于点F ,已知△ABC 的面积为1,则四边形BEDF 面积的最大值为____________.【答案】12.(提示:设数法+A 字相似,设AG =1,BC =2,则BF =x ,则ED =x ,FC =2-x ,∵ED ∥BC ,∴AH =12x ,∴HG =1-12x ,∴S 梯形BEDF =12(x +x )(1-12x )=-12(x -1)2+12≤12)类型4:转化问题【例题11】如图,正方形ABCD 的边长为2,E 为AD 边上一动点,连接BE 、CE ,以CE 为边向右侧作正方形CEFG .(1)若BE,则正方形CEFG 的面积为___________; (2)连接DF 、DG ,则△DFG 面积的最小值为___________.【答案】(1)5;(2)1.5.(提示:转化法,(1)当BE时,AE =ED =1,∴CE;(2)设ED =x ,则CE 2=x 2+22,∴S △DFG =12S □ECGF -S △EDC =12(x 2+22)-12×2x =12(x -1)2+32≥32)ABC DEFHGF EDCBAABCDEFG。

二次函数动点的面积最值问题课件

二次函数动点的面积最值问题课件

个分支的理解和掌握。
02
掌握解题方法
解决二次函数动点面积最值问题需要掌握一定的解题技巧和方法,包括
数形结合、参数分离、极值法等。通过对这些方法的运用,可以有效地
解决各种复杂的问题。
03
理解问题本质
二次函数动点面积最值问题的本质是寻找函数在某个区间上的最大值或
最小值,以及对应的自变量取值。通过对问题本质的深入理解,可以更
矩形面积的最值
在矩形中找一点,使得该点与矩形顶点的连线将矩形划分为四个面积相等的部分 ,也可以利用二次函数动点面积最值问题求解。
在实际生活中的应用
土地规划
在土地规划中,经常需要确定土地的 分割方式以及各部分的面积,利用二 次函数动点面积最值问题可以找到最 优的分割方案,使得土地的利用率达 到最高。
局。
城市绿化
在城市绿化规划中,通过求解二 次函数动点面积最值问题,可以 确定最佳的绿化区域和分布方式 ,提高城市绿化覆盖率和环境质
量。
06
总结和展望
对二次函数动点面积最值问题的理解和总结
01
理解问题背景
二次函数动点面积最值问题是一个经典的数学问题,涉及到几何、代数
和微积分等多个领域的知识。通过对该问题的研究,可以加深对数学各
要点二
代数解法
通过几何方法(如相似三角形、勾股定理等)来求解动点 面积的最值。
利用代数公式和不等式,通过代数运算求解动点面积的最 值。
二次函数动点面积最值问题的实际应用案例
建筑规划
在建筑规划中,需要考虑土地利 用效率与美观性,动点面积最值 问题可以帮助规划者找到最佳的
建筑布局方案。
农业种植
农业种植中,为了最大化土地利 用率和产量,可以利用二次函数 动点面积最值问题来优化种植布

二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。

二次函数—动点产生的线段最值问题典型例题

二次函数—动点产生的线段最值问题典型例题

二次函数——动点产生的线段最值问题【例1】如图,在直角坐标系中,点A,B,C 的坐标分别为(-1,0),(3,0),(0,3),过A,B,C 三点的抛物线的对称轴为直线l . (1)求抛物线的解析式及顶点D 的坐标;(2)点E 是抛物线的对称轴上的一个动点,求当AE+CE 最小时点E 的坐标; (3)点P 是x 轴上的一个动点,求当PD+PC 最小时点P 的坐标;(4)点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QB QC -最大?并求出最大值.解:(1)设抛物线的解析式为:y=ax 2+bx+c , ∵抛物线经过A 、B 、C 三点,∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为:y=-x 2+2x+3. ∵y=-x 2+2x+3= 2(1)4x --+,∴该抛物线的对称轴为直线x=1,顶点D 的坐标为(1,4). (2)∵点A 关于抛物线的对称轴的对称点为B ,则AE=BE , 要使AE+CE 最小,即BE+CE 最小,则B 、E 、C 三点共线 如图,连接BC 交抛物线的对称轴于点E , 解法一:设直线BC 的解析式为y=kx+n ,则303k n n +=⎧⎨=⎩,解得13k n =-⎧⎨=⎩∴3y x =-+.当x=1时,3132x -+=-+=,∴点E 的坐标为(1,2) 解法二:设抛物线的对称轴交x 轴于点F . ∵E F ∥y 轴,∴∠BEF =∠BCO ,∠BFE =∠BOC ∴△BFE ∽△BOC∴BF EFBO CO =, ∴3133EF-=, ∴2EF =∴点E 的坐标为(1,2)(3)作出点C 关于x 轴的对称点为C′,则C′(0,-3),OC′=3,FE如图,连接C′D 交x 轴于点P ,∵点C 关于x 轴的对称点为C′,则PC=P C′,要使PD+PC 最小,即PD+P C′最小,则D 、P 、C′三点共线 设直线C′D 的解析式为y=kx+n , 则43k n n +=⎧⎨=-⎩,解得73k n =⎧⎨=⎩∴73y x =-.当y=0时,073x =-,∴37x = ∴点P 的坐标为(37,0) (4)∵点A 关于抛物线的对称轴的对称点为B ,则QB=QA , 要使QB QC-最大,即QA QC-最大,则A 、C 、Q 三点共线如图,连接AC 交抛物线的对称轴于点Q , 解法一:设直线AC 的解析式为y=kx+n ,则03k n n -+=⎧⎨=⎩,解得33k n =⎧⎨=⎩∴33y x =+.当x=1时,333136x +=⨯+=, ∴点Q 的坐标为(1,6)解法二:设抛物线的对称轴交x 轴于点F . ∵QF ∥y 轴,∴∠ACO =∠AQF ,∠AOC =∠AFQ ∴△AOC ∽△AFQ∴AO CO AF QF =, ∴1311QF =+, ∴6QF =∴点Q 的坐标为(1,6)∴QB QCQA QCAC -=-===即当点Q 的坐标为(1,6)时,QB QC -QF- - C ′P【作业1】(2011)如图,抛物线y=21x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (-1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值.解:(1)∵点A (﹣1,0)在抛物线y=21x 2+bx ﹣2上, ∴21×(﹣1 )2+b×(﹣1)﹣2=0,解得b=-23 ∴抛物线的解析式为y=21x 2﹣23x ﹣2.y=21x 2﹣23x ﹣2=21( x 2﹣3x ﹣4 )=21(x ﹣23)2﹣825, ∴顶点D 的坐标为 (23,﹣825).(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2. 当y=0时,21x 2﹣23x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0) ∴OA=1,OB=4,AB=5.∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20, ∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2,连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小. 解法一:设抛物线的对称轴交x 轴于点E . ∵ED∥y 轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM. ∴EDC O EM OM '=,∴825223=-m m , ∴m=4124解法二:设直线C′D 的解析式为y=kx+n ,则⎪⎩⎪⎨⎧-=+=825232n k n ,解得n=2,1241-=k ∴21241+-=x y . ∴当y=0时,-4124,4124,021241=∴==+m x x E【作业2】2011)如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD =90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B( -1,2),D( 3,0),连接DM,并把线段DM沿DA方向平移到ON,若抛物线y=ax2+bx+c经过点D 、M 、N . (1)求抛物线的解析式.(2)抛物线上是否存在点P .使得PA =PC .若存在,求出点P 的坐标;若不存在.请说明理由. (3)设抛物线与x 轴的另—个交点为E .点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QE QC -最大?并求出最大值. 解:(1)由题意可得M (0,2),N (-3,2),∴ 2,293,093.c a b c a b c =⎧⎪=-+⎨⎪=++⎩ 解得:1,91,32.a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩∴211293y x x =--+(2)∵PA =PC , ∴P 为AC 的垂直平分线上,依题意,AC 的垂直平分线经过(-1,2)、(1,0),其所在的直线为y =-x +1.根据题意可列方程组21,112.93y x y x x =-+⎧⎪⎨=--+⎪⎩解得:1132x y ⎧=+⎪⎨=--⎪⎩2232x y ⎧=-⎪⎨=-+⎪⎩∴P 1(32+--)、P 2(32--+).(3)如图所示,延长DC 交抛物线的对称轴于点Q ,根据题意可知此时点Q 满足条件. 由题意可知C (1,2),D (3,0),可求得CD 所在的直线的解析式为3y x =-+.抛物线211293y x x =--+的对称轴为直线 1.5x =-. ∵点Q 在直线x =-1.5上,又在直线3y x =-+上.∴Q (-1 .5,4.5),QE =QD . ∴QE QC QD QC CD -=-===.即当点Q 的坐标为(-1.5,4.5)时,QE QC -有最大值, 最大值为。

二次函数综合(动点)问题——四边形面积最值存在问题培优教案(横版)

二次函数综合(动点)问题——四边形面积最值存在问题培优教案(横版)

教学过程一、课堂导入在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),问题:这是在平面直角坐标系那章我们经常遇到的求四边形面积的题目,这类问题相信大家都有不同的解题方法,在二次函数这一章,我们依然要研究四边形的面积,如果我们将二次函数容纳其中,在抛物线(直线、坐标轴等)上求作一点,使得四边形面积最大并求出该点坐标时,又该如何解答呢?二、复习预习(一)二次函数y=ax2+bx+c的图像和性质:(二)相似三角形的性质:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

(三)相似三角形模型探究与解题技巧:1、课堂导入题解如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为_________________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).解:∵点C在x轴上,∴点C的纵坐标是0,且当∠BOC=90°时,由点B、O、C组成的三角形与△AOB 相似,即∠BOC应该与∠BOA=90°对应,①当△AOB∽△COB,即OC与OA相对应时,则OC=OA=4,C(-4,0);②当△AOB∽△BOC,即OC与OB对应,则OC=1,C(-1,0)或者(1,0).故答案可以是:(-1,0);(1,0).解析:分类讨论:①当△AOB∽△COB时,求点C的坐标;②当△AOB∽△BOC时,求点C的坐标;如果非直角三角形也要分类讨论,对应边不一样就得到不同的结果。

2、几种常见的相似三角形模型①直角三角形相似的几种常见模型②非直角三角形相似的几种常见模型3、解题技巧函数中因动点产生的相似三角形问题一般有三个解题途径。

二次函数中动点图形的面积最值

二次函数中动点图形的面积最值

求解动点图形面积最值的步骤
1
步骤1
确定最值问题的区间。
2
步骤2
通过求导或综合判断确定极值点或临界点。
3
ቤተ መጻሕፍቲ ባይዱ
步骤3
计算极值点或临界点对应的面积。
案例分析:计算动点图形面积 最大值和最小值
假设二次函数为y = -x^2 + 3x + 2,动点轨迹为一条垂直于x轴的直线,探索动 点图形的面积变化。通过计算可以得到动点图形的最大面积和最小面积。
二次函数中动点图形的面 积最值
二次函数是数学中的一个重要概念,它描述了一种用抛物线表示的函数关系。 本节将探讨如何通过动点图形的面积来寻找二次函数中的最值。
二次函数简介
二次函数是一种具有二次项的代数函数,它的一般形式为y = ax^2 + bx + c。二次函数在数学和物理学中有广泛 的应用,可以用来描述各种实际问题。
问题讨论与思考
除了计算动点图形面积的最值,我们还可以思考以下问题:如何改变函数的系数以改变图形的面积范围?是否 存在其他方法来求解动点图形的最值?这些问题可以帮助我们深入理解二次函数和面积最值概念的应用。
结论和总结
通过寻找二次函数中动点图形的面积最值,我们可以进一步理解函数的性质 和图像的变化规律。这一概念在数学和实际问题中都具有重要的应用价值。
最值的概念和意义
最值是指函数在给定区间内取得的最大值或最小值。在二次函数中,最值的 位置和数值可以提供关于函数图像的重要信息,帮助我们解决实际问题。
动点图形面积的计算方法
步骤1
确定二次函数的表达式,并 绘制函数图像。
步骤2
确定动点的轨迹,通常是垂 直于x轴的直线或水平于y轴 的直线。
步骤3
计算动点图形的面积。

二次函数双动点面积最值

二次函数双动点面积最值

二次函数双动点面积最值一、问题描述在平面直角坐标系内,给定二次函数 $y=ax^2+bx+c$,且 $a<0$。

定义该二次函数的双动点为其图像上两个不同的点 $(x_1,y_1)$ 和$(x_2,y_2)$,满足 $y=ax^2+bx+c$ 在区间 $(x_1,x_2)$ 内单调递减或单调递增。

现在要求求出所有可能的双动点,并计算出其对应的面积最大值。

二、解题思路本题需要分别考虑二次函数的凸性和双动点的性质。

具体来说,我们可以通过求导数来判断二次函数的凸性,并通过判别式来计算二次方程的根以确定双动点。

然后,我们可以利用双动点的性质,结合微积分知识求出面积最大值。

三、解题步骤1. 求解二次函数的凸性由于$a<0$,因此该二次函数开口向下。

此时,当且仅当$a>0$ 时,该二次函数在整个定义域内为凸函数;当且仅当 $a<0$ 时,该二次函数在整个定义域内为下凸函数。

因此,在本题中,我们可以通过判断 $a$ 的符号来确定该二次函数的凸性。

2. 计算二次方程的根由于$a<0$,因此该二次函数的图像是一个开口向下的抛物线。

此时,该二次函数的双动点必然是两个不同的零点,即 $ax^2+bx+c=0$ 的两个根。

根据二次方程求根公式可得:$$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$由于 $a<0$,因此 $\sqrt{b^2-4ac}$ 为实数。

因此,当 $b^2-4ac>0$ 时,该二次方程有两个不同的实根;当 $b^2-4ac=0$ 时,该二次方程有一个重根;当$b^2-4ac<0$ 时,该二次方程无实数解。

在本题中,我们需要计算出所有可能的双动点。

因此,在计算完根之后,我们需要对其进行判断:若两个根均在定义域内,则它们为一个双动点;若其中一个根在定义域内而另一个不在,则不存在双动点;若两个根均不在定义域内,则也不存在双动点。

二次函数动点问题中面积最值的解法策略

二次函数动点问题中面积最值的解法策略

二次函数动点问题中面积最值的解法策略摘要:我国正在实施新的基础教育课程改革,《义务教育数学课程标准(2022年版)》指出要培养学生的数学核心素养,而二次函数和几何图形的综合应用题,能充分的考查学生的数学抽象,逻辑推理,数学运算以及数学建模等综合能力。

这种类型的综合题,通常出现在中考的压轴题中,综合性强,计算强度大,具有较大的难度,在二次函数与几何图形的综合题中,求二次函数面积的最值问题比较常见,本文就此问题解法进行探讨。

关键词:二次函数与几何图形;函数动点问题;二次函数面积最值二次函数动点问题就是通过点的运动生成一种函数关系及函数图象,抛物线上点的运动与直线相结合而产生的三角形面积问题,就是将几何图形与函数图象有机地融合在一起,解决的关键是结合图形通过点坐标衔接函数、方程找到函数关系。

本文就求解二次函数面积最值的问题,浅谈几种解决此类问题的方法策略。

一、割补法在解决二次函数面积最值问题时,不规则多边形的面积往往可以通过割补法把多边形分为几个三角形或者是规则的四边形的面积来求解,当三角形中有一边是在坐标轴上,或者在以坐标轴平行的直线上,那么就可以把这一条边当作三角形的底边,第三个点到这一条边的距离,作为三角形的高,直接利用三角形的面积公式求解,或者过图形的各端点作两坐标轴的平行线,构造与轴平行的最小矩形对所要求面积的图形进行覆盖,然后所求图形的面积即为矩形面积减去多余的几个直角三角形的面积。

最终把多边形面积的最值问题,转化为求三角形面积的最值问题,这也体现了一种“化归”的思想方法。

题目1、(2019枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图①,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由.[思路分析](1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线的表达式,再令其y值为0,解一元二次方程即可求出A和B的坐标。

专题13 二次函数中的图形运动最值问题(原卷版)-备战2021年中考数学复习重难点与压轴题型专项训练

专题13 二次函数中的图形运动最值问题(原卷版)-备战2021年中考数学复习重难点与压轴题型专项训练

备战2021年中考复习重难点与压轴题型专项训练专题13 二次函数中的图形运动最值问题【专题训练】一、解答题1.(2020·浙江绍兴市·九年级其他模拟)已知:如图,△ABC 是等腰直角三角形,90,3cm A AB AC ∠===,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,AB 方向匀速移动,P 的速度是1cm/s ,Q ,当点P 到达点B 时,P ,Q 两点停止运动,设点P 的运动时间为(s)t ,解答下列问题:(1)当t 为何值时,PBQ △是直角三角形?(2)问:是否存在某一时刻t ,使四边形APQC 的面积与PBQ △面积差最小?如果存在,求出相应的t 值;不存在,说明理由;(3)设PQ 的长为(cm)y ,试确定y 与t 之间的关系式;写出当t 分别为何值时,PQ 达到最短和最长,并写出PQ 的最小值和最大值.2.(2020·武汉二中广雅中学九年级二模)有一根直尺短边长4cm ,长边长10cm ,还有一块锐角为45°的直角三角形纸板,它的斜边长为16cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x≤12,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=______;当x=4cm时,S=_____;当x=12cm时,S=_____.(2)当4<x<8(如图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为28cm2?若存在求出此时x的值.3.(2020·四会市四会中学九年级二模)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,OC=3.动点P从点C 出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、Q的运动时间为t秒(1)当t=2秒时,求tan∠QP A的值;(2)当线段PQ与线段AB相交于点M,且BM=2AM时,求t的值;(3)连结CQ,当点P,Q在运动过程中,记CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式;(4)直接写出∠OAB的角平分线经过CQP边上中点时的t值.4.(2020·揭阳市实验中学九年级期中)如图,已知在∠ABC中,∠B=90°,AB=8cm,BC=6cm.P,Q是∠ABC边上的两个动点,其中点P从点A出发沿A→B方向运动,速度为每秒1cm,到达点B停止运动;点Q从点B出发沿B→C→A方向运动,速度为每秒2cm,到达点A停止运动.它们同时出发,设出发时间为t秒.(1)当t=________秒时,PQ∠AC;(2)设∠PQB的面积为S,求S关于t的函数关系式,并写出自变量的取值范围;(3)当点Q在边CA上运动时,直接写出能使∠BCQ为等腰三角形的t的值.5.(2020·云南昆明市·九年级其他模拟)矩形管在我们日常生活中应用广泛,石油、天然气的运输,制造建筑结构网架,制造公路桥梁等领域均有应用.如图,若矩形管ABCD 的两边长20 , 6 AB cm AD cm ==,()1若点PQ 分别从A B 、同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x 秒,PBQ △的面积为()2y cm .求PBQ △面积的最大值;()2若点P 在边AB 上,从点A 出发,沿AB 方向以每秒2cm 的速度匀速运动,点Q 在边BC 上,从BC 中点出发,沿BC 方向以每秒1cm 的速度匀速运动,当点P 运动到AB 中点时,点Q 开始向上运动,当一点到达终点时,另一点也停止运动.设点P 运动时间为t 秒,PBQ △的面积为2mcm .求m 与t 的函数关系式.6.(2020·银川唐徕回民中学九年级二模)如图,在锐角三角形ABC 中,BC =12,∠ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∠BC ,以DE 为边,在点A 的下方作正方形DEFG .(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE =x ,∠ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.7.(2020·广东惠州市·九年级二模)如图1,已知Rt ABC ∆中,10AB cm =,6BC cm =,点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,速度均为2/cm s ,连接PQ ,设运动的时间为t (单位:s )()04t ≤≤.图1 图2 (1)当//PQ BC 时,t=_____s ;(2)设AQP ∆的面积为S (单位:2cm ),当t 为何值时,S 取得最大值,并求出最大值;(3)如图2,取点Q 关于AP 的对称点Q ',连接AQ ',PQ ',得到四边形AQPQ ',是否存在某一时刻t ,使四边形AQPQ '为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.8.(2020·新疆和田地区·九年级二模)如图,在矩形ABCD 中,6,12AB BC ==,点P 从点A 出发沿AB 边向点B 以1个单位每秒的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2个单位每秒的速度移动。

二次函数中几何图形周长的最值问题题型及解法

二次函数中几何图形周长的最值问题题型及解法
汇报人姓名
202X年12月20日
目 录
二次函数中几何图形周长的最值问题考法分析以及学生对该题的态度 基本题型及解法 1 一个动点在抛物线上求三角形周长的最大值 含有45°角的直角三角形周长最大值的求法 含有30°(或60°)角的直角三角形周长最大值的求法 任意角的直角三角形周长最大值的求法 2 两个动点在抛物线上求四边形周长最大值 3 一个动点在一条直线上求三角形周长最小值 4 两个动点分别在两条相交直线上求三角形周长的最小值 5 两个动点分别在两条相交直线上求四边形周长的最小值 三 . 方法总结
E‘
D’
N
E
M
做法:
1.作E点关于X轴的对称点对称点E’
2.作D点关于y轴的对称点对称点D’
3.链接D’E’与x轴,y轴相交于点M,N,此时的交点就是我们做要找的点的位置
4.连接EM,DN
5.此时四边形的周长最小
02
第三部分 方法总结
方法总结
运用相关知识和方法求出几何图形的最值
若求最小值,找准定点所在的直线
4.两个动点分别在两条相交直线上求三角形周长的最小值
“将军饮马”模型——两次对称(一定点两动点)
如图:一位将军骑马从驻地A出发,先牵马去草地OM吃草,再牵马去河边ON喝水, 最后回到驻地A, 问:这位将军怎样走路程最短?
A1
P
Q
A2
1.作A点关于直线OM的对称点对称点A1
2.作A点关于直线OM的对称点对称点A2
2. 四边形周长最大值转化为线段最大值 例2:(3)如图,抛物线 y=-x2-2x+3的图象与x轴交于A、B两点 (点A在点B的左边),与y轴交于点C,点D为抛物线的顶点. (1)求A、B、C的坐标; (2)点M为线段AB上一点(点M不与点A、B重合) ,过点M作x轴的垂线,与直线AC交于点E,与抛物 线交于点P,过点P作PQ∥AB交抛物线于点Q,过 点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形 PQMN的周长最大时,求△AEM的面积;

二次函数动点问题解答方法技巧(含例解标准答案)

二次函数动点问题解答方法技巧(含例解标准答案)
其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线 (a≠0)与 轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与 轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.
[解](1)点 ,点 ,点 关于原点的对称点分别为 , , .
设抛物线 的解析式是


解得
所以所求抛物线的解析式是 .
(2)由(1)可计算得点 .
过点 作 ,垂足为 .
⑶ 根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
当运动到时刻 时, , .
根据中心对称的性质 ,所以四边形 是平行四边形.
所以 .
所以,四边形 的面积 .
因为运动至点 与点 重合为止,据题意可知 .
所以,所求关系式是 , 的取值范围是 .
(3) ,( ).

二次函数动点三角形面积最值问题

二次函数动点三角形面积最值问题

当点CC在何处时SS△AAAAAA有最大值?1.铅垂高法做CCCC⊥ xx轴且交直线AABB于点D,设点CC坐标为(mm, aamm2+ bbmm+ cc),直线AB的解析式为gg(xx) = kkxx + qq,∴点D坐标为(mm, kkmm + qq),∴CC CC的长度为f(m) − g(m) = aamm2 + bbmm + cc−kkmm−qq, ∴SS△AA AAAA= SS△AAAAAA+ SS△AA AAAA= AAAA×(xx BB−xx AA),将CC CC为aamm2 + bbmm + cc−kkmm−qq代入,令(xx−xx) = ss,可2 AA AA得SS= (aamm2+bbmm+cc−kk mm−qq)×ss= aa ss mm2+(bb−kk)ss mm+ss(cc−qq),当aassmm2+ (bb−△AAAAAA 2 2kk)ssmm + ss(cc−qq)有最大值时,SS△AA AAAA有最大值.当m = −bb= −(bb−kk)ss= −bb−kk时, aassmm2 + (bb−kk)ssmm + ss(cc−qq)有最2aa2aass2aa大值, SS△AAAAAA有最大值.A A � A A A � A作直线l l 平行于直线AABB 且与f(x)只有一个交点C (即直线l 与ff (xx ) = aaxx 2 + bbxx + cc 相切),此时SS △AAAAAA 为最大值.∴ ff ′(xx ) =ff (xx AA ) − ff (xx A A ) = 2aaxx + bb xx AA − xx AA (aaxx 2 + bbxx AA + cc ) − (aaxx 2 + bbxx A A + cc ) ⇒= 2aaxx + bb xx AA − xx AA aa (xx 2 − xx 2) + bb (xx AA − xx A A ) ⇒= 2aaxx + bb xx AA − xx AA aa (xx AA + xx A A )(xx AA − xx A A ) + bb (xx AA − xx A A )⇒ xx AA − xx AA= 2aaxx + bb ⇒ aa (xx AA + x x AA ) + bb = 2aaxx + bb ⇒ xx = xx AA + xx AA 2 ∴当xx = xx BB +xx AA时, SS 有最大值. 2 △AAAAAA。

中考二次函数中的几何最值问题(一)

中考二次函数中的几何最值问题(一)

二次函数中的几何最值问题(一)模型一:如图,A,B 为坐标系中两个定点,x 轴上有一动点P ,求PA+PB 的最小值,并求此时P 点的坐标.作法:过作A 点关于x 轴的对称点A’,连接A’B 与x 轴的交点即为P 点 例1.如图,在平面直角坐标系中,52x 23x 105y 2++-=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C.连接AC 、BC ,E 为BC 的中点,连接AE. (1) 判断△ACE 的形状;(2) 如图2,点P 为直线BC 上方抛物线上的一动点,当△PCE 的面积最大时,将△OAC 沿直线BC 进行平移,平移后点O 、A 、C 对应的点为O 1、A 1、C 1.连接A 1P 、A 1B 、PB ,当△PA 1B 的周长最短时,求此时点A 1的坐标及△PA 1B 周长的最小值.A迁移练习1.如图,在平面直角坐标系中,抛物线211242y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C.(1)求直线BC 的解析式及抛物线的对称轴;(2)如图1,D 为抛物线的顶点,P 是直线BC 上方抛物线上一点,当点P 到直线BC 距离最大时,在直线BC 上找一点Q 使得△DPQ 周长最小,求点Q 的坐标;模型2:如图:在∠ABC 内部有一点定点P ,点M 、N 分别为BC 、AB 上的动点,要使△PMN 的周长最短,试确定M 、N 的位置。

作法:作P 关于BC 的对称点P ' ,作P 关于AB 的对称点P '',连接P 'P '',与BC 、AB 的交点即为M 、N 点。

例2.如图1,已知抛物线333233y 2++-=x x 与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是点C 关于抛物线对称轴的对称点,连接CD ,过点D 作DH ⊥x 轴交于点H ,过点A 作AE ⊥AC 交DH 的延长线与点E. (1)求线段DE 的长度;(2)如图,试在线段AE 上找一点F ,在线段DE 上找一点P ,且点M 为直线PF 上方抛物线上的一点,求当△CPF 的周长最小时,△MPF 的面积的最大值是多少;BB迁移练习2.如图,抛物线c bx x y ++-=2与直线n mx y +=相交于点)8,1(A 和点)4,5(B 。

二次函数动点最值问题

二次函数动点最值问题

二次函数动点最值问题我们有一个二次函数,并且知道它的顶点坐标。

现在,我们想找到一个动点,使得这个点到顶点的距离与到直线的距离之和最小。

假设二次函数的顶点坐标为 (h, k),动点的坐标为 (x, y)。

根据题目,我们可以建立以下模型:1. 动点到顶点的距离是 sqrt((x-h)^2 + (y-k)^2)。

2. 动点到直线的距离是 Ax + By + C / sqrt(A^2 + B^2),其中直线方程为Ax + By + C = 0。

我们要找的是这两个距离之和的最小值。

用数学公式,我们可以表示为:最小值 = min(sqrt((x-h)^2 + (y-k)^2) + Ax + By + C / sqrt(A^2 +B^2))现在我们要来解这个问题,找出动点的坐标使得这个距离之和最小。

为了解决这个问题,我们可以使用几何和代数的方法。

首先,我们观察到动点到顶点的距离和动点到直线的距离都是关于动点坐标(x, y) 的函数。

为了找到这两个距离之和的最小值,我们可以使用拉格朗日乘数法。

设拉格朗日函数为:F(x, y) = sqrt((x-h)^2 + (y-k)^2) + λ ( Ax + By + C / sqrt(A^2 + B^2) - d )其中,λ 是拉格朗日乘数,d 是我们要找的最小值。

接下来,我们对 F(x, y) 求偏导数,并令其为0,以找到极值点。

偏导数分别为:∂F/∂x = (x-h)/sqrt((x-h)^2 + (y-k)^2) + λ A / sqrt(A^2 + B^2) (Ax + By + C) / Ax + By + C和∂F/∂y = (y-k)/sqrt((x-h)^2 + (y-k)^2) + λ B / sqrt(A^2 + B^2) (Ax + By + C) / Ax + By + C令这两个偏导数等于0,我们可以得到一个关于 x 和 y 的方程组。

解这个方程组,我们可以找到动点的坐标 (x, y),使得到顶点的距离与到直线的距离之和最小。

二次函数中的几何最值问题

二次函数中的几何最值问题
− + = 4,
= −1,
B(3,0),代入得:ቊ
∴ቊ
3 + = 0,
= 3,
∴ = − + 3,当 = 0时, = 3,
∴ M(0,3)
(图2)
典型
例题
(3)如图3,M为y轴上一动点, N为抛物线对称轴上一动点,
且MN⊥ y轴,求 PN+MN+BM的最小值.
y
P′ D P

点,求 DM+MN+ NB的最小值.
例题

解:如图,作点D关于y轴的对称点′ −, ,作

5
∠OBQ,使sin ∠ = 5 ,过点′ 作′ H⊥BQ 于H,
交y轴于点′ ,交x轴于点′ ,当′ 、′ 、 H三点共

Q

取最小值,此时


( + MN + ) = ′ H.
过点′ 作′ ⊥ 于x轴于点E,∵∠E ′ H=∠OBH,
线时, + MN +
H
R
1
∴tan ∠′ H = tan OBH = 2 ,


∴ ′ = ,′ E=4, ∴ =2, ∴B′ =2,

(图6)
E

,

∴′ ′= ∴′H=


∴′ H=2 +
B:(3,0)
C:(0,3)
D:(1,4)
A O
(图1)
B
x
典型
(2)如图2,M为y轴上一动点,
求BM+DM最小值以及此时点M的坐标.
例题
D'
y
C

二次函数中动点三角形面积最值问题

二次函数中动点三角形面积最值问题

二次函数中动点三角形面积最值问题
___九年级数学学案:二次函数中动点面积最值问题
一、研究目标:
1.学会用代数法表示与函数图象相关的几何图形的面积最值问题。

2.能够用函数图象的性质解决有关问题。

研究重点:二次函数中动点图形的面积最值的一般及特殊解法。

研究难点:点的求法及最值问题的解决。

二、学前准备:
给定抛物线y=-x^2+3x+4,与x轴交于点A、B,与y轴交于点C,顶点为D。

求△BCD的面积。

回顾公式:S△=1/2×底×高
三、例题
给定抛物线y=x^2-x-2,与x轴交于点A、B,与y轴交于点C。

动点M在抛物线上滑动,使得△___的面积最大。

求点M的坐标。

四、考点链接
给定抛物线y=-2x^2+2x+4,经过点B(2,0)、C(0,4)两点,抛物线与x轴的另一个交点为A。

若点P为第一象限内抛物线上一点,设四边形COBP的面积为S。

求S的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
距离为:
如图(3)所示.
图(3)
典例精析---走进线的家族
例1.已知抛物线 y ax2 3 x 4 的对称轴是直线 x 3,抛物线与 x 轴 2 交于A, B两点(点 B 在点 A 右侧),与 y 轴交于点 C .
(1)求抛物线的解析式和 A, B 两点的坐标.
解:因为抛物线y ax2 3 x 4的对称轴是x 3,
2
2
1 CE 2 2
CE x 4 1 x2 4 x 4
33
1 x2 7 x 33
1 (x 7 )2 49 3 2 12
当x
7 2
时,
SABE最大
49 , 所以E点坐标为( 7
12
2
, 55). 12
y
C
O
BD
x
E
A
F
探秘三角形的世界
变式3: 已知B(2,2),若E(x, y)为抛物线上的一个动点 (0 x 6),
其中, y1 y2.
两点的奇妙之旅
二、当线段与 y轴平行时,线段的长度等于上端点的纵坐标 减去下端点的纵坐标.
如图(2)所示,线段 AB // y 轴,则 AB y2 y1; 其中, x1 x2.
AB // y轴
两点的奇妙之旅
三、线段不与坐标轴平行 当线段不与坐标轴平行时,线段的长度即两点之间的
B
当x 3时,Smax 9
此时点B的坐标为(3,5).
探秘三角形的世界
变式3: 已知B(2,2),若E(x, y)为抛物线上的一个动点 (0 x 6), 连接 AB、BE、AE,求AB面E积的最大值及此时点 E 的坐标.
<法1> 解: SABE SACE SBCE
1 CE AF 1 CE BD
1 2
yA yD
xC xB
(2)如右图, 若B, C两点位于l的同侧,则
SABC SABD SACD
1 AD BE 1 AD CF
2
2
x
1 AD (BE CF ) 2
1 2
yA yD
xC xB
课堂小结,反思升华
函数中动点 图形与面积
静态
以 静 代 动
动态
规则:用公式




不规则
补 法
解 :由题可知,点A(0,4), 点C(6,0), 则直线AC解析式为
y
O
F
D
A
E
Cx
y 2 x4 3
设点B(x, 1 x2 4 x 2
3
x
4)
3
(
1
x2
4
x
4)
3
3
3
3
1 x2 2x 3
SABC
1 6 ( 1
2
3
x2
2x)
(x
3)2
9
0 x 6
4
1 (m2 8m) 1 (m2 8m 16) 4 1 (m
4
4
4
4)2 4
所以当m 4时, MN有最大值 4,此时点M的坐标为(4,2).
典例精析---探秘三角形的世界
例2.如图二次函数 y 1 x2 4 x 4 与 x 轴交于点 C ,与 y 轴交于点 A ,
33
3
2
所以 2 3, 解得a 1 ,
2a
4
所以抛物线的方程为y 1 x2 3 x 4. 42
令y 0, 可得 1 x2 3 x 4 0,即x2 6x 16 0, 42
解得x1 2, x2 8,
因为点B在点A的右侧,所以A(2,0), B(8,0).
典例精析---走进线的家族
课前准备
➢ 复习回顾二次函数的有关性质 并形成本章知识框架
➢ 学习用具:笔记本、草稿纸、笔
宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学;学数学、用数学、爱数学
人教2011课标版九年级数学
两点的奇妙之旅
一、当线段与 x 轴平行时,线段的长度等于右端点的横坐标 减去左端点的横坐标. 如图(1)所示,线段 AB// x 轴,则 AB x2 x1;
2
3
3
2
2
3
3
1 2x 1 (2 1 x2 4 x 4)x 1 x(2 1 x2 4 x 4) (2 1 x2 4 x 4)
2
2
3
3
2
3
3
3
3
x 2 2 1 x2 4 x
3
3
1 x2 7 x
3
3
1 (x2 7x) 3
O
GB D
x
E
A
1 [x2 7x (7 )2 ] 49
y
点B, C为定点,
A
点A为动点, 过
F
动点A作平行
于y轴的直线
l , 交B C(或 其
D
延长线)于点D
B
E
O
示例图形
y C
B C
xO
公式
l A
E F D
(1)如左图, 若B, C两点位于l的两侧,则
SABC SABD SACD
1 AD BE 1 AD CF
2
2
1 AD (BE CF ) 2
y
O
F
法1:
SABC SOAB SOBC SOAC
C
x 法2:
D
SABC SABD SCBD
A
E
B
1 BD AE 1 BD CF
2
2
1 BD( AE CF ) 2
探秘三角形的世界
变式2:若点B是线段AC下方的抛物线上的动点,那么ΔABC的面积 有最大值吗?如果有,请求出最大面积和此时点B的坐标.
3
2
12
1 (x 7 )2 49 3 2 12
探秘三角形的世界
变式4: 若B、C是抛物线与x轴的交点,A是抛物线与y轴的交点,点D 是线段AC上的动点,过点D作x轴的垂线与抛物线相交于点E, 四边形ABCE的面积有最大值吗 ?如果有,求此时点E的坐标.
y
B
O
A
C
x
D
E
课堂小结,反思升华
背景

规则 不规则
关 用含x的代数式
键 表示相关线段的长度
过点 A 作一条直线与 x 轴平行,与抛物线交于点 B.连接BC,
求ABC 的面积.
y
1
1
SABC 2 ABCD 2 4 4 8
O
Cx
A
BD
探秘三角形的世界
变式1:若抛物线的顶点为 B,求AB的C面积.
y
SABC SOAB SOBC SOAC
O
A B
Cx
探秘三角形的世界
变式2:若点B是线段AC下方的抛物线上的动点,那么ΔABC的面积 有最大值吗?如果有,请求出最大面积和此时点B的坐标.
连接 AB、BE、AE,求AB面E积的最大值及此时点 E 的坐标.
<法2>解: 设E点的坐标为(x, 1 x2 4 x 4),则DE (2) (1 x2 4 x 4).
y
33
33
SABE S梯GAED SABG SBDE
1 [2 (2 1 x2 4 x 4)]x 1 2 2 1 (x 2)(2 1 x2 4 x 4)
(3)若点 M是抛物线第一象限内的点,过点 M作y轴的平行
线,交直线 BC于点 N ,当MN最长时,求 M点的坐标.
解:设点M的坐标为(m, 1 m2 3 m 4),点N的坐标为(m, 1 m 4),
42
2
MN ( 1 m2 3 m 4) ( 1 m 4) 1 m2 2m
4
2
2
点M的坐标表示为(m, 1 m2 3 m 4),则点N的坐标为(m, 1 m 4), 2
MN
1
m2
3
m
4
4
(
21
m 4)
1
m2
2m
2
又 MN
3,
1 m2 2m
3,
4
2
2
4
4
当0 m 8时, 1 m2 2m
当m
0或m
4 8时,
1
点M的坐标为
(4
4
2
3 0, 解得m1 2, m2 6,点M的坐标为(2,6)或(6,4);
m2 2m 3 0, 解得m3 4 2 7, m4 4 2 7,
7, 7 1)或(4 2 7, 7 1).
典例精析---走进线的家族
例1.已知抛物线 y ax2 3 x 4 的对称轴是直线 x 3,抛物线与 x 轴 2 交于A, B两点(点 B 在点 A 右侧),与 y 轴交于点 C .
例1.已知抛物线 y ax2 3 x 4 的对称轴是直线 x 3,抛物线与 x 轴 2 交于A, B两点(点 B 在点 A 右侧),与 y 轴交于点 C .
(2)若点 M是抛物线上任意一点,过点 M作y轴的平行
线,交直线 BC于点 N ,当MN 3时,求 M点的坐标.
解: 设直线BC的解析式为y kx b(k 0),将B(8,0),C(0,4)代入,可得y 1 x 4.
相关文档
最新文档