浙江省嘉兴市浙教版八年级(下)期末数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省嘉兴市2017-2018学年八年级(下)期末数学试卷
一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)
1.方程①=1;②x2=7;③x+y=1;④xy=3.其中为一元二次方程的序号是()A.①B.②C.③D.④
2.下列图案中,中心对称图形的是()
A.B.
C.D.
3.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()
A.∠ABC=90°B.AC=BD C.∠OBC=∠OCB D.AO⊥BD
4.化简(﹣)2的结果是()
A.±3B.﹣3C.3D.9
5.某校田径运动会上,参加男子跳高的16名运动员成绩如下表:
成绩(m) 1.45 1.50 1.55 1.60 1.65 1.70人数343231则这些运动员成绩的中位数是()
A.1.5B.1.55C.1.60D.1.65
6.一元二次方程x2﹣4x﹣6=0经过配方可变形为()
A.(x﹣2)2=10B.(x+2)2=10C.(x﹣4)2=6D.(x﹣2)2=2
7.如图,已知▱ABCD的周长为20,∠ADC的平分线DE交AB于点E,若AD=4,则BE的长为()
A.1B.1.5C.2D.3
8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,首先应假设这个直角三角形中()
A.两个锐角都大于45°B.两个锐角都小于45
C.两个锐角都不大于45°D.两个锐角都等于45°
9.反比例函数y=,当x的值由n(n>0)增加到n+2时,y的值减少3,则k的值为()A.B.C.﹣D.
10.下列关于一元二次方程x2+bx+c=0的四个命题
①当c=0,b≠0时,这个方程一定有两个不相等的实数根;
②当c≠0时,若p是方程x2+bx+c=0的一个根,则是方程cx2+bx+1=0的一个根;
③若c<0,则一定存在两个实数m<n,使得m2+mb+c<0<n2+nb+c;
④若p,q是方程的两个实数根,则p﹣q=,
其中是假命题的序号是()
A.①B.②C.③D.④
二、填空题(本题有10小题,每小题3分,共30分)
11.二次根式中字母x的取值范围是.
12.一元二次方程x2﹣4=0的解是.
13.在四边形ABCD中,AB=CD,请添加一个条件,使得四边形ABCD是平行四边形.14.一组数据﹣1,0,1,2,3的方差是.
15.已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=.16.已知点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,若y1>y2,则x1,
x2的大小关系是.
17.若某多边形有5条对角线,则该多边形内角和为.
18.某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x,根据题意可列方程为.
19.如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为.
20.平面直角坐标系中,A是y=﹣(x>0)图象上一点,B是x轴正半轴上一点,点C的坐标为(0,﹣2),若点D与A,B,C构成的四边形为正方形,则点D的坐标.
三、解答题(本题有6小题,第21~24题每题6分,第25、26题每题8分,共40分)
21.(6分)(1)计算:﹣.
(2)解方程:x2﹣5x=0
22.(6分)如图,已知BD是▱ABCD对角线,AE⊥BD于点E,CF⊥BD于点F.(1)求证:△ADE≌△CBF;
(2)连结CE,AF,求证:四边形AFCE为平行四边形.
23.(6分)如图,平面直角坐标系中,反比例函数y1=,k图象与函数y2=mx图象交于点A,过点A作AB⊥x轴于点B,已知点A坐标(2,1).
(1)求反比例函数解析式;
(2)当y2>y1时,求x的取值范围.
24.(8分)嘉兴某校组织了“垃圾分类”知识竞赛活动,获奖同学在竞赛中的成绩绘成如下图表,根据图表提供的信息解答下列问题:
垃圾分类知识竞赛活动成绩统计表
分数段频数频数频率
80≤x<85x0.2
85≤x<9080y
90≤x<95600.3
95≤x<100200.1
(1)求本次获奖同学的人数;
(2)求表中x,y的数值:并补全频数分布直方图.
25.(6分)某商品的进价为每件40元,售价每件不低于60元且不高于80元,当售价为每件60元时,每个月可卖出100件;经调查发现,每件商品每上涨1元,每月少卖出2件.设每件商品的售价为x元(x为正整数).
(1)求每个月的销售利润;(用含有x代数式表示)
(2)若每个月的利润为2250元,定价应为多少元?
26.(8分)如图,边长为2的正方形纸片ABCD中,点M为边CD上一点(不与C,D重合),将△ADM沿AM折叠得到△AME,延长ME交边BC于点N,连结AN.
(1)猜想∠MAN的大小是否变化,并说明理由;
(2)如图1,当N点恰为BC中点时,求DM的长度;
(3)如图2,连结BD,分别交AN,AM于点Q,H.若BQ=,求线段QH的长度.
参考答案与试题解析
一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)
1.解:其中为一元二次方程的是②x2=7,
故选:B.
2.解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
3.解:∵ABCD为矩形,
∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;
∴OB=OC,
∴∠OBC=∠OCB,故C正确,与要求不符.
当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.
故选:D.
4.解:原式=3,
故选:C.
5.解:将这组数据从小到大的顺序排列后,处于中间位置的两个数都是1.55,那么由中位数的定义可知,这组数据的中位数是1.55(米).
故选:B.
6.解:x2﹣4x=6,
x2﹣4x+4=10,
(x﹣2)2=10.
故选:A.
7.解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC=4,AB=CD=6,
∴∠AED=∠CDE,
∵DE平分∠ADC,
∴∠ADE=∠EDC,
∴∠ADE=∠AED,
∴AD=AE=4,
∴EB=AB﹣AE=6﹣4=2.
故选:C.
8.解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设两个锐角都大于45°.
故选:A.
9.解:由题意,得
﹣=3,
解得k=,
故选:D.
10.解:当c=0,b≠0时,△=b2>0,
∴方程一定有两个不相等的实数根,①是真命题;
∵p是方程x2+bx+c=0的一个根,
∴p2+bp+c=0,
∴1++=0,
∴是方程cx2+bx+1=0的一个根,②是真命题;
当c<0时,抛物线y=x2+bx+c开口向上,与y轴交于负半轴,
则当﹣<m<0<n时,m2+mb+c<0<n2+nb+c,③是真命题;
p+q=﹣b,pq=c,
(p﹣q)2=(p+q)2﹣4pq=b2﹣4c,
则|p﹣q|=,④是假命题,
故选:D.
二、填空题(本题有10小题,每小题3分,共30分)
11.解:根据题意得:x﹣1≥0,
解得x≥1.
故答案为:x≥1.
12.解:移项得x2=4,
∴x=±2.
故答案:x=±2.
13.解:∵AB=CD,
∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)
或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为:AD=BC或者AB∥CD.
14.解:数据的平均数=(﹣1+0+1+2+3)=1,
方差s2=[(﹣1﹣1)2+(0﹣1)2+(1﹣1)2+(2﹣1)2+(3﹣1)2]=2.
故填2.
15.解:如图所示:连接BD.
∵E,F分别是AB,AD的中点,EF=5,
∴BD=2EF=10.
∵ABCD为矩形,
∴AC=BD=10.
故答案为:10.
16.解:∵反比例函数y=(x>0),
∴该函数图象在第一象限,y随x的增大而减小,
∵点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,y1>y2,
∴x1<x2,
故答案为:x1<x2.
17.解:设多边形的边数为n,
∵多边形有5条对角线,
∴=5,
解得:n=5或n=﹣2(舍去),
即多边形是五边形,
所以多边形的内角和为(5﹣2)×180°=540°,
故答案为:540°.
18.解:第一次降价后的价格为75×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为:
75×(1﹣x)×(1﹣x),
则列出的方程是75(1﹣x)2=45.
故答案为:75(1﹣x)2=45.
19.解:
延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,
∵四边形ABCD和四边形BEFG都是菱形,
∴GF∥BE,EF∥AM,
∴四边形AMFE是平行四边形,
∴AM=EF=2,MF=AE=AB+BE=5+2=7,
∴DM=AD﹣AM=5﹣2=3,
∵∠A=60°,
∴∠DAH=30°,
∴MN=DM=,
∴DN==,NF=MF﹣MN=,
在Rt△DNF中,DF==,
故答案为:.
20.解:如图1所示:当CD为对角线时.
∵OC=2,AB=CD=4,
∴D(4,﹣2).
如图2所示:
∵OC=2,BD=AC=4,
∴D(2,﹣4).
如图3所示:过点A作AE⊥y轴,BF⊥AE,则△AEC≌△BFA.
∴AE=BF.
设点A的横纵坐标互为相反数,
∴A(2,﹣2)
∴D(2﹣2,2﹣2).
综上所述,点D的坐标为(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
故答案为:(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
三、解答题(本题有6小题,第21~24题每题6分,第25、26题每题8分,共40分)21.解:(1)原式=2﹣
=;
(2)x(x﹣5)=0,
x=0或x﹣5=0,
所以x1=0,x2=5.
22.(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADB=∠CBD,
∵AE⊥AD,
∴∠EAD=90°,同理∠BCF=90°.
∴∠EAD=∠BCF.
在△AED和△CFB中
∠ADB=∠CBD,AD=BC,∠EAD=∠BCF,
∴△ADE≌△CBF.
(2)结论:四边形AECF是平行四边形.
理由:连接AC,∵四边形ABCD是平行四边形,
∴AC平分BD,
由(1)△ADE≌△CBF,
∴AE=CF,∠AED=∠BFC,
∴AE∥CF,
∴四边形AECF是平行四边形
23.解:(1)∵反比例函数y1=经过点A(2,1),
∴k=2,
∴反比例函数的解析式为y=.
(2)根据对称性可知:A、C关于原点对称,可得C(﹣2,﹣1),
观察图象可知,当y2>y1时,x的取值范围为﹣2<x<0或x>2.
24.解:(1)本次获奖同学的人数为60÷0.3=200人;
(2)x=200×0.2=40、y=80÷200=0.4,
补全图形如下:
25.解:(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100﹣2(x﹣60)]件,∴每个月的销售利润为(x﹣40)[100﹣2(x﹣60)]=﹣2x2+300x﹣8800.
(2)根据题意得:﹣2x2+300x﹣8800=2250,
解得:x1=65,x2=85(不合题意,舍去).
答:若每个月的利润为2250元,定价应为65元.
26.解:(1)∠MAN的大小没有变化,
∵将△ADM沿AM折叠得到△AME,
∴△ADM≌△AEM,
∴AD=AE=2、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,
又∵AD=AB=2、∠D=∠B=90°,
∴AE=AB、∠B=∠AEM=∠AEN=90°,
在Rt△BAN和Rt△EAN中,
∵,
∴Rt△BAN≌Rt△EAN(HL),
∴∠BAN=∠EAN=∠BAE,
则∠MAN=∠EAM+∠EAN=∠DAE+∠BAE=(∠DAE+∠BAE)=∠BAD=45°,∴∠MAN的大小没有变化;
(2)∵N点恰为BC中点,
∴EN=BN=CN=1,
设DM=EM=x,则MC=2﹣x,
∴MN=ME+EN=1+x,
在Rt△MNC中,由MC2+CN2=MN2可得(2﹣x)2+12=(1+x)2,
解得:x=,即DM=;
(3)如图,将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,
则△ABQ≌△ADG,
∴DG=BQ=、AG=AQ、∠ADG=∠ABQ=∠ADB=45°、∠BAQ=∠DAG,
∵∠MAN=∠BAD=45°,
∴∠BAQ+∠DAM=∠DAG+∠DAM=∠GAH=45°,
则∠GAH=∠QAH,
在△GAH和△QAH中,
∵,
∴△GAH≌△QAH(SAS),
∴GH=QH,
设GH=QH=a,
∵BD=AB=2,BQ=,
∴DQ=BD﹣BQ=,
∴DH=﹣a,
∵∠ADG=∠ADH=45°,
∴∠GDH=90°,
在Rt△DGH中,由DG2+DH2=GH2可得()2+(﹣a)2=a2,解得:a=,即QH=.。