球与几何体的切接问题

合集下载

球的接切问题,内切球,棱切球,外接球,正四面体

球的接切问题,内切球,棱切球,外接球,正四面体

O
S底面积 r 1 S全面积 h 4
A
C MDຫໍສະໝຸດ Br1h 4h
a2 ( 3 a)2 6 a
3
3
r 6a 12
用一个平面去截球面, 截线是圆。
大圆--截面过球心,半径等于球半径; 小圆--截面不过球心组卷网
性质2:球心和截面圆心的连线 垂直于截面.
性质3: 球心到截面的距离d与球
的半径R及截面的半径r
A
有下面的关系: r R2 d 2
三、补形法
类型一、棱两两垂直
例1:若三棱锥的三条侧棱两两垂直,且 侧棱长均为a,则其外接球的表面积是
球的接切问题
球的概念
•球的定义
半圆以它的直径为旋 转轴,旋转所成的曲面 叫做球面。球面所围成 的几何体叫做球体。
球表面积公式: S 4 R2 球体积公式: V 4 R3
3
球半径的求法
• 方法一:直接法 • 方法二:构造直角三角形 • 方法三:补形
一、直接法
正方体与球
正方体的内切球, 棱切球,外接球
r 3a 2
A C
P
O B
类型二、正四面体与球
1.求棱长为a的正四面体的外接球的半径R.
2.求棱长为a的正四面体的棱切球的半径R.
R= 2 a 4
正四面体的棱切球就是正方体的内切球
3.求棱长为a的正四面体的内切球的半径r.
1
1
P
V 3 S底面积 h 3 S全面积 r
S底面积 h S全面积 r
长方体与球
一、长方体的外接球
长方体的(体)对角线等于球直径
设长方体的长、宽、高分别为a、b、c,则 l a2 b2 c2 2R

一般的长方体有内切球吗?

高中数学立体几何专题·球的切接问题

高中数学立体几何专题·球的切接问题
一个几何体的所有顶点都在另一个几何体的表面上?解决接切问题的关键是画出正确的截面把空间接切转化为平面接切问题球与正方体的切接问题正方体的内切球直径正方体的外接球直径与正方体所有棱相切的球直径探究一
球的“接”与“切”:
• 两个几何体相(内)切:一个几何体的各个面与另一 个几何体的各面相切 • 两个几何体相接:一个几何体的所有顶点都在另一个 几何体的表面上 • 解决“接切”问题的关键是画出正确的截面,把空 间“接切”转化为平面“接切”问题
3、 甲球内切于正方体的各面, 乙球内切于该正方体的各条棱, 丙球外接于该正方体,则三球表 面面积之比为( ) A. 1:2:3 B.1: 2: 3 C. 1: 4: 9
3 3
D. 1: 8: 27
球与正四面体的切与接
探究二: 若正四面体的棱长为a,则
⑴正四面体的内切球直径= ⑵正四面体的外接球直径= ⑶与正四面体所有棱相切的球直=
1、内切球球心到多面体各面的距离均相等,外接球 球心到多面体各顶点的距离均相等 2、正多面体的内切球和外接球的球心重合 3、正棱锥的内切球和外接球球心都在高线上,但 不重合 4、基本方法:构造三角形利用相似比和勾股定理 5、体积分割是求内切球半径的通用做法
练习 1、求棱长为a的正四面体的外接球、 棱切球、内切球的体积之比。
求棱长为a的正四面体外接球、内切球及棱切球 的半径. [解] 设正四面体A—BCD的高为AO1,外接 球球心为O,半径为R,如图所示.
解法2:求正四面体外接球的半径
求正方体外接球的半径
A B O A B
O
D C C
D
典型:正四面体ቤተ መጻሕፍቲ ባይዱBCD的棱长 为a,求其内切球半径r与外 接球半径R. 思考:若正四面体变成正三棱 锥,方法是否有变化?

新高考数学二轮复习学案板块1命题区间精讲精讲11球与几何体的切接问题

新高考数学二轮复习学案板块1命题区间精讲精讲11球与几何体的切接问题

球与几何体的切接问题命题点1外接球求解外接球问题的方法解决多面体外接球问题的关键是确定球心的位置,方法是先选择多面体中的一面,确定此面多边形外接圆的圆心,再过此圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点的情况确定球心的准确位置.对于特殊的多面体还可通过补成正方体或长方体的方法找到球心位置.[高考题型全通关]1.直三棱柱ABC-A′B′C′的所有棱长均为23,则此三棱柱的外接球的表面积为()A.12πB.16πC.28πD.36πC[由直三棱柱的底面是边长为23的正三角形,得底面所在平面截外接球所成的圆O的半径r=2,又由直三棱柱的侧棱长为23,得外接球球心到圆O的距离d=3,则外接球半径R满足R2=r2+d2=7,∴外接球的表面积S=4πR2=28π.故选C.]2.(2020·石家庄模拟)已知正三棱锥S-ABC的所有顶点都在球O的球面上,棱锥的底面是边长为23的正三角形,侧棱长为25,则球O的表面积为() A.25πB.20π C.16πD.30πA[如图,延长SO交球O于点D,设△ABC的外心为E,连接AE,AD,由正弦定理得2AE=23=4,∴AE=2,sin 60°易知SE⊥平面ABC,由勾股定理可知,三棱锥S-ABC的高SE=SA2-AE2=(25)2-22=4,由于点A是以SD为直径的球O上一点,∴∠SAD=90°,由射影定理可知,球O 的直径2R =SD =SA 2SE =5, 因此,球O 的表面积为4πR 2=π×(2R )2=25π.] 3.(2020·武汉部分学校质量检测)已知三棱锥P -ABC 的四个顶点均在球O 的球面上,P A =PB =PC =2,且P A ,PB ,PC 两两互相垂直,则球O 的体积为 ( )A .163πB .83πC .43πD .23πC [因为P A ,PB ,PC 两两互相垂直,且P A =PB =PC =2,所以以P A ,PB ,PC 为交于一点的三条棱构造正方体,则球O 即此正方体的外接球,该正方体的体对角线长为球的直径,即球的直径为P A 2+PB 2+PC 2=22+22+22=23,所以球的半径R =3,所以球O 的体积V =43πR 3=43π(3)3=43π,选C .] 4.如图,半径为R 的球的两个内接圆锥有公共的底面.若两个圆锥的体积之和为球的体积的38,则这两个圆锥的高之差的绝对值为( )A .R 2B .2R 3C .4R 3D .RD [设球的球心为O ,半径为R ,体积为V ,上面圆锥的高为h (h <R ),体积为V 1,下面圆锥的高为H (H >R ),体积为V 2,两个圆锥共用的底面的圆心为O 1,半径为r .由球和圆锥的对称性可知h +H =2R ,|OO 1|=H -R .∵V 1+V 2=38V ,∴13πr 2h+13πr 2H =38×43πR 3,∴r 2(h +H )=32R 3.∵h +H =2R ,∴r =32R .∵OO 1垂直于圆锥的底面,∴OO 1垂直于底面的半径,由勾股定理可知R 2=r 2+|OO 1|2,∴R 2=r 2+(H -R )2,∴H =32R ,∴h =12R ,则这两个圆锥的高之差的绝对值为R ,故选D .]命题点2 内切球求解内切球问题的关键点求解多面体的内切球问题的关键是求内切球的半径.求内切球半径的一般方1.已知一圆锥的底面直径与母线长相等,一球体与该圆锥的所有母线和底面都相切,则球的表面积与圆锥的表面积的比值为 ( )A .23B .49C .269D .827B [设圆锥的底面半径为R ,球的半径为r ,由题意知,圆锥的轴截面是边长为2R 的等边三角形,球的大圆是该等边三角形的内切圆,所以r =33R ,S 球=4πr 2=4π·⎝ ⎛⎭⎪⎫33R 2=4π3R 2,S 圆锥=πR ·2R +πR 2=3πR 2,所以球的表面积与圆锥的表面积的比值为4π3R 23πR 2=49,故选B .]2.在封闭的正三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB =6,AA 1=4,则V 的最大值是 ( )A .16πB .32π3C .12πD .43πD [由正三角形ABC 的边长为6,得其内切圆的半径为r =3<2,所以在封闭的正三棱柱ABC -A 1B 1C 1内的球的半径的最大值为3,所以V max =43πr 3=43π,故选D .]3.如图,在三棱锥P -ABC 中,P A =4,AC =27,PB =BC =23,P A ⊥平面PBC ,则三棱锥P -ABC 的内切球的表面积为( )A .32πB .94πC .43πD .163πB [由P A ⊥平面PBC ,且P A =4,PB =23,AC =27,得AB =27,PC =23,所以△PBC 为等边三角形,△ABC 为等腰三角形,V 三棱锥P -ABC =V 三棱锥A -PBC=13S △PBC ×P A =13×34×(23)2×4=43,三棱锥P -ABC 的表面积为S =12×23×4×2+34×(23)2+12×23×5=16 3.设内切球半径为r ,则V 三棱锥P -ABC =13×S ×r ,即43=13×163×r ,所以r =34,所以三棱锥P -ABC 的内切球的表面积为4π×⎝ ⎛⎭⎪⎫342=9π4.] 4.如图,圆柱O 1O 2的底面直径与高都等于球O 的直径,记圆柱O 1O 2的表面积为S 1,球O 的表面积为S 2,则S 1S 2=________. 32 [设球的半径为R ,则圆柱的底面半径为R ,高为2R .所以球的表面积S 2=4πR 2,圆柱的表面积S 1=2πR ×2R +πR 2+πR 2=6πR 2,则S 1S 2=6πR 24πR 2=32.] 命题点3 与球有关的最值问题多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题;二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[高考题型全通关]1.(2020·成都模拟)若矩形ABCD 的对角线交点为O ′,周长为410,四个顶点都在球O 的表面上,且OO ′=3,则球O 的表面积的最小值为( )A .322π3B .642π3C .32πD .48πC [由题意,知矩形ABCD 所在的圆面为球O 的一个截面.因为O ′为矩形ABCD 的对角线的交点,所以OO ′所在直线垂直于矩形ABCD 所在的圆面.因为矩形ABCD 的周长为410,所以BC +CD =210.设BC =x ,则CD =210-x ,所以BD 2=BC 2+CD 2=x 2+(210-x )2,即BD 2=2(x -10)2+20.设球O 的半径为R ,则R 2=⎝ ⎛⎭⎪⎫BD 22+O ′O 2=12(x -10)2+8,所以当x =10时,R 2取得最小值8,所以球O 的表面积的最小值S min =4π(R 2)min =32π,故选C .]2.(2020·洛阳尖子生第一次联考)已知三棱锥P -ABC 的四个顶点均在同一个球面上,底面△ABC 满足BA =BC =6,∠ABC =π2,若该三棱锥体积的最大值为3,则其外接球的体积为( )A .8πB .16πC .163πD .323πD [如图,∵△ABC 是等腰直角三角形,∴AC 为截面圆的直径,外接球的球心O 在截面ABC 上的射影为AC 的中点D ,∴当P ,O ,D 共线且P ,O 位于截面ABC 同一侧时三棱锥的体积最大,高最大,此时三棱锥的高为PD ,由13×12×6×6×PD =3,解得PD =3,设外接球的半径为R ,则OD =3-R ,OC =R ,在△ODC中,CD =12AC =3,由勾股定理得(3-R )2+(3)2=R 2,解得R =2.∴三棱锥P -ABC的外接球的体积V =43π×23=323π.故选D .]3.(2020·惠州第一次调研)在三棱锥A -BCD 中,底面BCD 是直角三角形且BC ⊥CD ,斜边BD 上的高为1,三棱锥A -BCD 的外接球的直径是AB ,若该外接球的表面积为16π,则三棱锥A -BCD 体积的最大值为________.43 [如图,过点C 作CH ⊥BD 于H .由外接球的表面积为16π,可得外接球的半径为2,则AB =4.因为AB 为外接球的直径,所以∠BDA =90°,∠BCA =90°,即BD ⊥AD ,BC ⊥CA ,又BC ⊥CD ,CA ∩CD =C ,所以BC ⊥平面ACD ,所以BC ⊥AD ,又BC ∩BD =B ,所以AD ⊥平面BCD ,所以平面ABD ⊥平面BCD ,又平面ABD ∩平面BCD =BD ,所以CH ⊥平面AB D .设AD =x (0<x <4),则BD =16-x 2.在△BCD 中,BD 边上的高CH =1,所以V 三棱锥A -BCD =V 三棱锥C -ABD =13×12×x ×16-x 2×1=16-x 4+16x 2,当x 2=8时,V 三棱锥-BCD 有最大值,故三棱锥A-BCD体积的最大值为4 3.]4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.22[由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+B C.由基本不等式可得AB×BC=AB+BC≥2AB×BC,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为2 2.]。

立体几何中球与几何体的切接问题

立体几何中球与几何体的切接问题

立体几何中球与几何体的切接问题(精讲+精练)一、外接球如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.二、内切球球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.【常用结论】①外接球模型一:墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:②外接球模型二:三棱锥的三组对棱长分别相等模型,一般用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即(长方体的长、宽、高分别为a、b、c).秒杀公式:R2=x2+y2+z28 (三棱锥的三组对棱长分别为x、y、z).可求出球的半径从而解决问题.A BCDA1B1C1D1类型ⅠA BCDA1B1C1D1类型ⅡA BCDA1B1C1D1类型ⅢA BCDA1B1C1D1例外型2R=③外接球模型三:直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=,.④外接球模型四:垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球,由对称性可知球心O 的位置是△CBD的外心O 1△AB 2D 2的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=,. ⑤外接球模型五:有一侧面垂直底面的棱锥型,常见的是两个互相垂直的面都是特殊三角形且平面ABC ⊥平面BCD ,如类型Ⅰ,△ABC 与△BCD 都是直角三角形,类型Ⅱ,△ABC 是等边三角形,△BCD 是直角三角形,类型Ⅲ,△ABC 与△BCD 都是等边三角形,解决方法是分别过△ABC 与△BCD 的外心作该三角形所在平面的垂线,交点O 即为球心.类型Ⅳ,△ABC 与△BCD 都一般三角形,解决方法是过△BCD 的外心O 1作该三角形所在平面的垂线,用代数方法即可解决问题.设三棱锥A -BCD 的高为h ,外接球的半径为R ,球心为O .△BCD 的外心为O 1,O 1到BD 的距离为d ,O 与O 1的距离为m ,则Error!解得R .可用秒杀公式:R 2=r 12+r 22-l 24(其中r 1、r 2为两个面的外接圆的半径,l 为两个面的交线的长)AB C D A 1B 1C 1D 12h 2224h R r ∴=+O 1C 1AA 1B 1O B CRrh2hO 22h 2224h R r ∴=+r h C DB R A O 1O2h r hC D BR A O 1O2h O 2D 2B 2⑥外接球模型六:圆锥、顶点在底面的射影是底面外心的棱锥.秒杀公式:R =h 2+r 22h(其中h 为几何体的高,r 为几何体的底面半径或底面外接圆的圆心)⑦内切球思路:以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P-ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ; 第三步:解出r =3V P -ABC SO -ABC +S O -PAB +S O -PAC +S O -PBC =3V S 表.【典例1】(2023·浙江·高三校联考期中)正四面体的所有顶点都在同一个表面积是36π的球面上,则该正四面体的棱长是 .类型Ⅰ类型Ⅱ类型ⅢABCDO 1O R rm h -m R dd 类型Ⅳ因为正四面体内接于球,则相应的一个正方体内接球,设正方体为则正四面体为,设球的半径为R ,则, 解得,所以则正方体的棱长为,【典例2】(2023·河南·开封高中校考模拟预测)已知四面体ABCD 中,,ABCD 外接球的体积为()A .B CD .则故11A CB D -2436R ππ=3R =16AC =23AB CD ==AC BD ==AD BC ==45π22222220,29,41,a b b c a c ⎧+=⎪+=⎨⎪+=⎩22a b R +=【典例3】(2023·黑龙江齐齐哈尔·高三齐齐哈尔市第八中学校校考阶段练习)设直三棱柱的所有顶点都在一个表面积是的球面上,且,则此直三棱柱的表面积是( ) A .B .C .D .【典例4】(2023·安徽宣城·高三统考期末)在三棱锥中,△ABC 是边长为3的等边三角形,侧棱PA ⊥平面ABC ,且,则三棱锥的外接球表面积为 .【答案】【解析】根据已知,底面是边长为3的等边三角形,平面, 可得此三棱锥外接球,即以为底面以为高的正三棱柱的外接球.111ABC A B C -40π1,120AB AC AA BAC ∠===16+8+8+16+-P ABC 4PA =-P ABC 28πABC PA ⊥ABC ABC PA的中点,的外接圆半径为所以球的半径为所以四面体外接球的表面积为故答案为:.【典例5】(2023·四川乐山·高三期末)已知正边长为1,将绕旋转至,使得平面平面,则三棱锥的外接球表面积为.取BC 中点G ,连接AG,DG ,则分别取与的外心的球心,由ABC r AN =R OA ==-P ABC 28πABC ABC BC DBC △ABC ⊥BCD D ABC -ABC DBC A BCD -AB AC DB DC BC =====2213122AG DG ⎛⎫∴==-=⎪⎝⎭【典例6】(2023·山东滨州·高三校考期中)已知正四棱锥的底面边长为侧棱长为6,则该四棱锥的外接球的体积为.,显然正四棱锥令,则在中,所以该四棱锥的外接球体积为【典例7】(2023·高三课时练习)边长为的正四面体内切球的体积为()A B C.DP ABCD-221133PO PA AO=-=PO AO R==1|33OO=1Rt AO O△22R AOA O==1π6设正四面体的内切球半径为由等体积法可得因此,该正四面体的内切球的体积为【题型训练1-刷真题】一、单选题322144243A BCDB ACE V V --⎛⎫=-=-⨯ ⎪ ⎪⎝⎭ABCD (21123A BCD V r S -==2.(2022·全国·统考高考真题)已知球上,则当该四棱锥的体积最大时,其高为(A .B .【答案】C【分析】方法一:先证明当四棱锥的顶点1312,底面所在圆的半径为[方法一]:导数法设正四棱锥的底面边长为,高为则,所以,所以正四棱锥的体积2a 2222l a h =+2232(3a =+26h l =2222a l h =-13V Sh =二、填空题【点睛】方法点睛:多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;(2)若球面上四点P 、A 、B 、C 构成的三条线段PA 、PB 、PC 两两垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解;(3)正方体的内切球的直径为正方体的棱长;(4)球和正方体的棱相切时,球的直径为正方体的面对角线长;(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【题型训练2-刷模拟】一、单选题)故选:B3.(2023·全国·高三专题练习)在直三棱柱直三棱柱的外接球的体积为( )A .B . 【答案】C【分析】将直三棱柱放入长方体中,借助长方体的外接球求解8π316π34.(2023秋·四川眉山的球面上,则该圆柱的体积为(A .【答案】C【分析】设圆柱的底面半径为 A .B .【答案】B π12π外接球球心位置,求出外接球半径,即可求得答案 因为由于平面平面故平面,又M 为的外心,⊥22AB BC AC ===ACD ⊥ABC BM ⊥ACD DM ADC △的外接球,结合直三棱柱的性质求外接圆半径接球, 设四面体的外接球的球心为,半径为,,则, 的外接球表面积为.AEF A BCD -O R 132AB ==22217R O O r =+=24π28πR =8.(2023·四川成都·校联考二模)在三棱锥平面,若三棱锥A .【答案】B【分析】根据三棱锥中线面关系可先确定球心【详解】 的中点为,连接,因为,又因为平面平面,平面PAC ⊥ABC 231O 1PO AC ⊥112AO AC ==221(26)PA AO =-=PAC ⊥ABC是边长为 10.(2023春·四川绵阳底面是正方形,( )A .【答案】CABCD 89π【详解】 的边长为,在等边三角形平面,∴平面是等边三角形,则,设四棱锥外接球的半径为,为正方形为四棱锥P -ABCD 外接球球心,则易知ABCD 2x PAB ⊥ABCD PE ⊥PAB 3PE x =()211233633ABCD S PE x x ⋅⋅=⨯⨯=R 1O故选:C12.(2023秋·陕西西安·高三校联考开学考试)已知在三棱锥平面,则三棱锥A.B.⊂ABC-P ABC π4【点睛】求解几何体外接球有关的问题,关键点在于找到球心的位置,然后计算出外接球的半径接法和补形法,直接法是根据几何体的结构来找到球心;补形法是补形成直棱柱、长方体(正方体)等几何体,并根据这些几何体的结构找到球心并求得半径13.(2023秋·湖南衡阳·高三衡阳市田家炳实验中学校考阶段练习)球,.若由,则,即又,故,仅当BCD BD CD ⊥BD =24π9πR =32R =1BD =22BD CD ++4CD AC ⋅≤AC所以,四面体外接球即为长方体外接球,则半径由题意,四面体的四个侧面均为全等三角形,形内角,的外接球的直径,要想体积最设,则,,所以当时,,则有三棱锥所以. 故选:A16.(2023·河南·统考三模)如图,该几何体为两个底面半径为的体积为V 1,它的内切球的体积为V A . B .AB x =PA x =6BC x =-PC 2x =min 26PC =3min 4π86π3V R ==2:3的内切圆的半径即为该几何体内切球的半径,求出半径,再根据球的体积公17.(2023·福建宁德·校考模拟预测)将一个半径为半径为()A.C.313+ () 2313-【点睛】关键点点睛:此题考查圆锥的内切球问题,解题的关键是表示出圆锥的体积,化简后利用导数求出其最大值,从而可确定出圆的大小,考查空间想象能力和计算能力,属于较难题18.(2023·全国·高三专题练习)已知四棱锥A . C . 【答案】B所以故其内切圆表面积为故选:B .19.(2023·全国·高三专题练习)若一个正三棱柱存在外接球与内切球,则它的外接球与内切球体积之比为(823)π-(863)π-1133P ABCD ABCD V S PH S -=⋅=表面积24π(8r =-将直三棱柱补成如图所示的长方体,则外接球的直径即为该长方体的体对角线,故外接球的半径为故外接球的的表面积为. 故选:D.21.(2023春·贵州·高三校联考期中)已知正三棱锥221232+29π故选:A.22.(2023·全国·高三专题练习)已知圆台则该圆台的体积为( )A .B .【答案】B72π3143设上底面半径易知,作,垂足为1O B r =1BC O B r ==AC 2BD O A ⊥故选:A【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径.24.(2023秋·浙江丽水·高三浙江省丽水中学校联考期末)将菱形体积最大时,它的内切球和外接球表面积之比为(26323R +B ACD -因为,所以当平面平面时,平面平面,所以此时四面体的高最大为因为,所以BA BC =BO ⊥BAC ⊥DAC BO ⊂BAC BO B ACD -DA DC =二、填空题故答案为:26.(2023秋·四川眉山,则该三棱柱的外接球的表面积为【答案】又由三棱柱的高为,则球心因此球半径R 满足:所以外接球的表面积故答案为:4π2360π322R r d =+24πS R ==60π【点睛】求解正棱锥有关问题,要把握住正棱锥的性质,如底面是正多边形,定点在底面的射影是底面的中心等等.求解几何体外接球有关问题,目是求球的表面积还是求体积28.(2023·河南·统考模拟预测)在菱形ABC16【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则 由,以为坐标原点, 设内切圆半径,易知由等面积可得,解得设四面体外接球球心为所以易知在平面射影为4,3AB BC ==AB ⊥B ,BA BC ABC r 12S lr =PABC O 'ABC31.(2023春·江西南昌·高三南昌市八一中学校考阶段练习)底面,,若【答案】32.(2023·四川绵阳·绵阳南山中学实验学校校考模拟预测)在边长为段,的中点,连接ABCD AC BD O = 163π-AB BC DE【答案】【分析】由题意可知两两垂直,所以将三棱锥就是三棱锥的外接球的直径,求出体对角线的长,则可求出外接球的表面积【详解】由题意可知两两垂直,且 33.(2023秋·河南周口这个圆台的体积为 【答案】【分析】根据圆台与球的性质结合圆台的表面积、体积公式计算即可6π,,OD OE OF ,,OD OE OF OD =1423π故答案为: 34.(2023·全国·高三专题练习)【答案】【分析】作出内切球的轴截面,再根据几何关系求解即可 设该内切球的球心为所以,由已知得所以,在中,142π38πO OE OF OB ===2,BD DF ==AOF AO【答案】 【分析】根据题意利用余弦定理求得方体的六个面的对角线,利用等体积法求出内切球半径,运算求解即可 设长方体从同一个顶点出发的三条棱长分别为则,解得又因为三棱锥是长方体切掉四个角的余下部分,23π222222749a b a c b c ⎧+=⎪+=⎨⎪+=⎩a b c ⎧⎪⎨⎪⎩A BCD -'因为菱形的四条边相等,对角线互相垂直中,面与面的面积是确定的,所以要使三棱锥表面积最大,则需要面最大即可,而且;,当时,取得最大值 因为,,所以由余弦定理知所以,易得. =ABC -ADC ABC DCB DAB S S = sin DCB DC BC ∠⋅⋅π2DCB ∠=DBC S △2DB =32EB ED ==22sin 3DED '∠=63DD '=设,高,则,在Rt 中,所以正四棱锥的体积,故当调递减,2AB a =PO h =2OD a =MOD 13V Sh =2282(4)V h h h h '=-+=--。

立体几何中球的内切和外接问题完美版

立体几何中球的内切和外接问题完美版

S
A.
B.
C.1
D.
答案:D.
O
,即
.
C
A
M
B
7
若棱锥的顶点可构成共斜边的直角三角形,则共斜边的中点就是其外接球的球心。
例 9、已知三棱锥的四个顶点都在球 的球面上,

,,
解:



因为 所以
所以知 所以可得图形为:


,
,求球 的体积。
P

中斜边为

中斜边为
B
取斜边的中点 , 在



所以在几何体中
则这个球的表面积是( )
A.16π
B.20π
C.24π
D.32π
4
举一反三-突破提升
2.正六棱柱的底面边长为 4,高为 6,则它的外接球的表面积为
A. 20 B. 25 C. 100 D. 200
4
举一反三-突破提升
已知正三棱锥 P-ABC 的主视图和俯视图如图所 示,
则此三棱锥的外接球的表面积为 ( )
B、体积为 3
D、外接球的表面积为 16
3
1正视图
1
3 1 侧视图
俯视图
点 A、B、C、D 均在同一球面上,其中
是正三角形,
AD 平面 ABC,AD=2AB=6,则该球的体积为 ( )
(A)
(B)
(C)
(D)
平面四边形 ABCD中, AB AD CD1, BD 2, BD CD ,
将其沿对角线 BD 折成四面体 A'BCD,使平面 A' BD 平面 BCD,
∴S 表=S 侧+S 底=9

球与几何体的切接问题

球与几何体的切接问题
若一个多面体的各面都与一个球的球面相切则称这个多面体是这个球的外切多面体这个球是这个多面体的外接球多面体的内切球外接球球心到各顶点的距离相等r内切球球心到各面的距离相等r的棱长为a
2016-2017学年年高三一轮复习专题讲解
课题 球与几何体的切接问题
可编辑ppt
2016.10.27
1
考情分析
球是空间几何体中一个特殊的旋转体,
a (1)球内切于正方体 2R=______;
(2)球外接于正方体 a3 2R=______;
(3)长方体的长、宽、高分别为a、b、c则它的外接
S (a b c) 2 2 2
2R= a b c 球的直径
= 2 2 2
__________________.
__________________
V= S•R(a2b2c2)•R
BC=16,AB=4
,cos∠ABC=
7
则三棱柱P-ABC
4
外接球的半径为_____
P
A C
B
可编辑ppt
9
【变式】四棱锥P—ABCD内接于球,
若 PA⊥底面ABCD, BC=3,CD=4,PA=5,
B A D 9 0 , A B C 9 0 则该球的表面积为__5__0__
P
D A
.C
O1
D. 6π
D
A
可编辑ppt
C
B
12
【变式】四面体 A-BCD中,三组对棱长分别相等且依次是
13,2 5,5 ,则其外接球半径是_____.
可编辑ppt
13
【达标检测】--------(2008宁夏、海南15 )
一个六棱柱的底面是正六边形,其侧棱垂直底.已知

高考数学复习考点题型专题讲解17 球的切、接、截问题

高考数学复习考点题型专题讲解17 球的切、接、截问题

高考数学复习考点题型专题讲解专题17 球的切、接、截问题1.球的切接问题(1)长方体的外接球①球心:体对角线的交点;②半径:r=a2+b2+c22(a,b,c为长方体的长、宽、高).(2)正方体的外接球、内切球及与各条棱相切的球(a为正方体的棱长)①外接球:球心是正方体中心,半径r=32a,直径等于体对角线长;②内切球:球心是正方体中心,半径r=a2,直径等于正方体棱长;③与各条棱都相切的球:球心是正方体中心,半径r=22a,直径等于面对角线长.(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分,a为正四面体的棱长)①外接球:球心是正四面体的中心,半径r=64a;②内切球:球心是正四面体的中心,半径r=612a.2.平面截球平面截球面得圆.截面圆的圆心与球心的连线与截面圆圆面垂直且R2=d2+r2(R为球半径,r为截面圆半径,d为球心到截面圆的距离).类型一外接球问题考向1 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:例1 已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π答案 D解析因为点E,F分别为PA,AB的中点,所以EF∥PB.因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示. 因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的半径R=6 2,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.考向2 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R)2=a2+b2+c2(长方体的长、宽高分别为a,b,c),即R2=18(x2+y2+z2),如图.例2 在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥A -BCD 外接球的表面积为________. 答案29π2解析 构造长方体,三个长度为三对面的对角线长,设长方体的长宽高分别为a ,b ,c ,则a 2+b 2=9,b 2+c 2=4,c 2+a 2=16, 所以2(a 2+b 2+c 2)=9+4+16=29, 即a 2+b 2+c 2=4R 2=292, 则外接球的表面积为S =4πR 2=29π2.考向3 汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h2,所以R 2=r 2+h 24.例3(2022·金华调研)在三棱柱ABC -A 1B 1C 1中,AB =BC =AC ,侧棱AA 1⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( ) A.63B.3 3 C.32D.3 答案 B解析 如图,设三棱柱上、下底面中心分别为O 1,O 2,则O 1O 2的中点为O ,设球O 的半径为R ,则OA =R ,设AB =BC =AC =a ,AA 1=h ,则OO 2=12h ,O 2A =23×32AB =33a .在Rt△OO 2A 中,R 2=OA 2=OO 22+O 2A 2=14h 2+13a 2≥2×12h ×33a =33ah , 当且仅当h =233a 时,等号成立,所以S 球=4πR 2≥4π×33ah , 所以43π3ah =4π, 所以ah =3,所以该三棱柱的侧面积为3ah=3 3.考向4 垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.例4(2022·广州模拟)已知四棱锥S-ABCD的所有顶点都在球O的球面上,SD⊥平面ABCD,底面ABCD是等腰梯形,AB∥CD且满足AB=2AD=2DC=2,且∠DAB=π3,SC=2,则球O的表面积是( ) A.5π B.4πC.3πD.2π答案 A解析依题意,得AB=2AD=2,∠DAB=π3,由余弦定理可得BD=3,则AD2+DB2=AB2,则∠ADB=π2.又四边形ABCD是等腰梯形,故四边形ABCD的外接圆直径为AB,半径r=AB2=1,设AB的中点为O1,球的半径为R,因为SD ⊥平面ABCD , 所以SD =SC 2-CD 2=1, R 2=12+⎝ ⎛⎭⎪⎫SD 22=54,则S =4πR 2=5π. 考向5 切瓜模型切瓜模型是有一侧面垂直底面的棱锥模型,常见的是两个互相垂直的面都是特殊三角形,在三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,设三棱锥的高为h ,外接球的半径为R ,球心为O ,△BCD 的外心为O 1,O 1到BC 的距离为d ,O 与O 1的距离为m ,△BCD 和△ABC 外接圆的半径分别为r 1,r 2,则⎩⎨⎧R 2=r 21+m 2,R 2=d 2+(h -m )2,解得R ,可得R =r 21+r 22-l 24(l 为两个面的交线段长).例5(2022·济宁模拟)在边长为6的菱形ABCD 中,∠A =π3,现将△ABD 沿BD 折起,当三棱锥A -BCD 的体积最大时,三棱锥A -BCD 的外接球的表面积为________. 答案 60π解析 边长为6的菱形ABCD ,在折叠的过程中, 当平面ABD ⊥平面BCD 时,三棱锥的体积最大; 由于AB =AD =CD =BC =6, ∠C =∠A =π3.所以△ABD 和△CBD 均为正三角形,设△ABD 和△CBD 的外接圆半径为r , 则2r =BDsin C,所以r =2 3.△ABD 和△CBD 的交线段为BD ,且BD =6. 所以三棱锥A -BCD 的外接球的半径R =(23)2+(23)2-624=15.故S 球=4·π(15)2=60π.训练1 (1)(2022·青岛一模)设三棱柱的侧棱垂直于底面,所有棱的长都为1,顶点都在一个球面上,则该球的表面积为( ) A.5π B.π C.113π D.73π (2)在三棱锥P -ABC 中,平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC ,且PA =4,底面△ABC 的外接圆的半径为3,则三棱锥P -ABC 的外接球的表面积为________. 答案 (1)D (2)52π解析 (1)由三棱柱所有棱的长a =1,可知底面为正三角形, 底面三角形的外接圆直径2r =1sin 60°=233,所以r =33, 设外接球的半径为R ,则有R 2=r 2+⎝ ⎛⎭⎪⎫a 22=13+14=712,所以该球的表面积S =4πR 2=73π,故选D.(2)因为平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC , 所以PA ⊥平面ABC .设三棱锥P -ABC 的外接球的半径为R ,结合底面△ABC 的外接圆的半径r =3,可得R 2=⎝ ⎛⎭⎪⎫PA 22+r 2=22+33=13,所以三棱锥P -ABC 的外接球的表面积为S 表=4πR 2=52π. 类型二 内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r ,建立等式V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )r ; 第三步:解出r =3V P -ABCS △ABC +S △PAB +S △PAC +S △PBC.例6 (1)(2022·成都石室中学三诊)《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P -ABC 为鳖臑,PA ⊥平面ABC ,PA =BC =4,AB =3,AB ⊥BC ,若三棱锥P -ABC 有一个内切球O ,则球O 的体积为( ) A.9π2B.9π4 C.9π16D.9π (2)在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =6,BC =8,AC =10,则该三棱柱内能放置的最大球的表面积是( ) A.16π B.24π C.36π D.64π答案(1)C (2)A解析(1)设球O的半径为r,则三棱锥P-ABC的体积V=13×12×3×4×4=13×(12×3×4+12×4×3+12×5×4+12×4×5)×r,解得r=34,所以球O的体积V=43πr3=9π16,故选C.(2)由题意,球的半径为底面三角形内切圆的半径r,因为底面三角形的边长分别为6,8,10,所以底面三角形为直角三角形,r=AB+BC-AC2=6+8-102=2.又因为AA1=6,2r=4<6,所以该三棱柱内能放置的最大球半径为2,此时S表面积=4πr2=4π×22=16π.训练 2 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB,如图所示,则△PAB的内切圆为圆锥的内切球的大圆.在△PAB中,PA=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.类型三 球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).例7(2022·杭州质检)在正三棱锥P -ABC 中,Q 为BC 中点,PA =2,AB =2,过点Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为________. 答案⎣⎢⎡⎦⎥⎤π,3π2解析 因为正三棱锥P -ABC 中,PB =PC =PA =2,AC =BC =AB =2,所以PB 2+PA 2=AB 2,即PB ⊥PA , 同理PB ⊥PC ,PC ⊥PA ,因此正三棱锥P -ABC 可看作正方体的一角,如图.记正方体的体对角线的中点为O ,由正方体结构特征可得,点O 即是正方体的外接球球心,所以点O 也是正三棱锥P -ABC 外接球的球心,记外接球半径为R , 则R =122+2+2=62,因为球的最大截面圆为过球心的圆,所以过点Q 的平面截三棱锥P -ABC 的外接球所得截面的面积最大为S max =πR 2=3π2. 又Q 为BC 中点,由正方体结构特征可得OQ =12PA =22;由球的结构特征可知,当OQ 垂直于过点Q 的截面时,截面圆半径最小为r =R 2-OQ 2=1, 所以S min =πr 2=π.因此,过Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为⎣⎢⎡⎦⎥⎤π,3π2. 训练3 (1)设球O 是棱长为4的正方体的外接球,过该正方体棱的中点作球O 的截面,则最小截面的面积为( ) A.3π B.4π C.5π D.6π(2)(2022·武汉质检)已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为________. 答案 (1)B (2)2π3解析 (1)当球O 到截面圆心连线与截面圆垂直时,截面圆的面积最小, 由题意,正方体棱的中点与O 的距离为22,球的半径为23, ∴最小截面圆的半径为12-8=2, ∴最小截面面积为π·22=4π.(2)∵正方体ABCD -A 1B 1C 1D 1的棱长为2,球O 与该正方体的各个面相切,则球O 的半径为1,设E ,F ,G 分别为球O 与平面ABCD 、平面BB 1C 1C 、平面AA 1B 1B 的切点, 则等边三角形EFG 为平面ACB 1截此球所得的截面圆的内接三角形, 由已知可得EF =EG =GF =2, ∴平面ACB 1截此球所得的截面圆的半径r =22sin 60°=63,∴截面的面积为π×⎝ ⎛⎭⎪⎫632=2π3.一、基本技能练1.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4C.π2D.π4 答案 B解析 如图画出圆柱的轴截面ABCD ,O 为球心.球的半径R =OA=1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4.2.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.24π C.36π D.144π 答案 C解析 由题意知球的直径2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.故选C.3.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A.3π B.4π C.33π D.6π 答案 A解析 构造棱长为1的正方体,该四面体的外接球也是棱长为1的正方体的外接球, 所以外接球半径R =32, 所以外接球表面积为S =4πR 2=3π.4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132D.310 答案 C解析 将直三棱柱补为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13,则R =132.5.(2022·南阳二模)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π 答案 C解析 折后的几何体构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造长方体,其对角线即为球的直径,三条棱长分别为1,1,3,所以2R =1+1+3=5,球的表面积S =4π⎝ ⎛⎭⎪⎫522=5π.6.(2022·青岛模拟)如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O 的表面积为( )A.2πB.4πC.6πD.8π 答案 B解析 根据图形可知,该十四面体是由一个正方体切去八个角得到的,如图所示,十四面体的外接球球心与正方体的外接球球心相同, 建立空间直角坐标系,∵该十四面体的棱长为1,故正方体的棱长为2, ∴该正方体的外接球球心的坐标为O ⎝ ⎛⎭⎪⎫22,22,22,设十四面体上一顶点为D ,则D ⎝ ⎛⎭⎪⎫2,22,0,所以十四面体的外接球半径R =OD =⎝ ⎛⎭⎪⎫2-222+⎝ ⎛⎭⎪⎫22-222+⎝ ⎛⎭⎪⎫0-222=1,故外接球的表面积为S =4πR 2=4π.故选B.7.四面体ABCD 的四个顶点都在球O 上且AB =AC =BC =BD =CD =4,AD =26,则球O 的表面积为( )A.70π3B.80π3C.30πD.40π答案 B解析如图,取BC的中点M,连接AM,DM,由题意可知,△ABC和△BCD都是边长为4的等边三角形. ∵M为BC的中点,∴AM⊥BC,且AM=DM=23,又∵AD=26,∴AM2+DM2=AD2,∴AM⊥DM,∵BC∩DM=M,BC,DM⊂平面BCD,∴AM⊥平面BCD,∵AM⊂平面ABC,∴平面ABC⊥平面BCD,△ABC与△BCD外接圆半径r=23DM=433,又△ABC与△BCD的交线段BC=4. 所以四面体外接球半径R =⎝ ⎛⎭⎪⎫4332+⎝ ⎛⎭⎪⎫4332-424=2153,四面体ABCD 的外接球的表面积为4π×R 2=803π. 8.已知三棱锥P -ABC 的棱AP ,AB ,AC 两两垂直,且长度都为3,以顶点P 为球心,2为半径作一个球,则球面与三棱锥的表面相交所得到的四段弧长之和等于( ) A.2π3B.5π6C.πD.3π2答案 D解析 如图,∠APC =π4,AP =3,AN =1,∠APN =π6,∠NPM =π12,MN ︵=π12×2=π6,同理GH ︵=π6,HN ︵=π2,GM ︵=2π3,故四段弧长之和为π6+π6+π2+2π3=3π2.9.(多选)(2022·石家庄调研)已知一个正方体的外接球和内切球上各有一个动点M 和N ,若线段MN 长的最小值为3-1,则( ) A.该正方体的外接球的表面积为12π B.该正方体的内切球的体积为π3C.该正方体的棱长为1D.线段MN长的最大值为3+1 答案AD解析设该正方体的棱长为a,则其外接球的半径R=32a,内切球的半径R′=a2,该正方体的外接球与内切球上各有一个动点M,N,由于两球球心相同,可得MN的最小值为3a2-a2=3-1,解得a=2,故C错误;所以外接球的半径R=3,表面积为4π×3=12π,故A正确;内切球的半径R′=1,体积为43π,故B错误;MN的最大值为R+R′=3+1,故D正确.故选AD.10.(多选)设圆锥的顶点为A,BC为圆锥底面圆O的直径,点P为圆O上的一点(异于B,C),若BC=43,三棱锥A-PBC的外接球表面积为64π,则圆锥的体积为( ) A.4π B.8πC.16πD.24π答案BD解析如图,设圆锥AO的外接球球心为M,半径为r,则M在直线AO上,4πr2=64π,解得r=4.由勾股定理得BM2=OM2+OB2,即42=(23)2+OM2,可得OM=2,即OM=|AO-r|=|AO-4|=2,解得AO=6或AO=2.当AO=6时,圆锥AO的体积为V=13π×(23)2×6=24π;当AO=2时,圆锥AO的体积为V=13π×(23)2×2=8π.故选BD.11.在三棱锥A-BCD中,△BCD和△ABD均是边长为1的等边三角形,AC=2,则该三棱锥外接球的表面积为________.答案2π解析取AC的中点O,连接OB,OD,在△ABC中,AB=BC=1,AC=2,所以∠ABC=90°,所以OA=OB=OC=2 2,同理得OD=22,故点O为该三棱锥外接球的球心,所以球O的半径r=22,S球=4πr2=2π.12.如图,已知球O是棱长为3的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为________.答案3π2解析 根据题意知,平面ACD 1是边长为9+9=32的正三角形,且所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD 1内切圆的半径r =13(32)2-⎝⎛⎭⎪⎫3222=62, 所以平面ACD 1截球O 的截面面积为 S =π×⎝ ⎛⎭⎪⎫622=3π2.二、创新拓展练13.(多选)(2022·华大新高考联考)已知三棱锥S -ABC 中,SA ⊥平面ABC ,SA =AB =BC =2,AC =2,点E ,F 分别是线段AB ,BC 的中点,直线AF ,CE 相交于G ,则过点G 的平面α截三棱锥S -ABC 的外接球O 所得截面面积可以是( ) A.23π B.89π C.π D.32π答案 BCD解析 因为AB 2+BC 2=AC 2,故AB ⊥BC , 故三棱锥S -ABC 的外接球O的半径R =2+2+22=62,取AC 的中点D ,连接BD 必过G , 因为AB =BC =2,故DG =13BD =13,因为OD =22, 故OG 2=⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫132=1118,则过点G 的平面截球O 所得截面圆的最小半径r 2=⎝ ⎛⎭⎪⎫622-1118=89,故截面面积的最小值为89π,最大值为πR 2=32π,故选BCD.14.(多选)(2022·济南模拟)已知三棱锥P -ABC 的四个顶点都在球O 上,AB =BC =AC =1,∠APC =π6,平面PAC ⊥平面ABC ,则( )A.直线OA 与直线BC 垂直B.点P 到平面ABC 的距离的最大值为1+32C.球O 的表面积为13π3D.三棱锥O -ABC 的体积为18答案 ACD解析 设△ABC 外接圆的圆心为O 1,连接OO 1,O 1A . 因为O 为三棱锥P -ABC 外接球的球心, 所以OO 1⊥平面ABC ,所以OO 1⊥BC ,因为AB =BC =AC =1,所以O 1A ⊥BC ,所以BC ⊥平面OO 1A , 所以OA ⊥BC ,故A 选项正确; 设△PAC 外接圆的圆心为O 2,AC 的中点为D ,连接O 2D , 由于AC =1,∠APC =π6,所以圆O 2的半径r 2=12×1sinπ6=1,则易知O 2D =32, 所以点P 到平面ABC 的距离的最大值为1+32(此时P ,O 2,D 三点共线),故B 选项错误;由于AB =BC =AC =1,平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC , 所以圆O 1的半径r 1=12×1sin π3=33, 圆O 2的半径r 2=1,△ABC 与△PAC 的交线段AC =1, 所以三棱锥P -ABC 外接球半径R 2=⎝ ⎛⎭⎪⎫332+12-14=1312.故球O 的表面积S =4π×1312=13π3,故C 选项正确;由于OO 1⊥平面ABC ,且OO 1=O 2D =32,S △ABC =34,所以三棱锥O-ABC的体积为13×OO1×S△ABC=13×32×34=18,故D选项正确,故选ACD.15.(多选)(2022·湖州调研)已知正四面体ABCD的棱长为3,其外接球的球心为O.点E 满足AE→=λAB→(0<λ<1),过点E作平面α平行于AC和BD,设α分别与该正四面体的棱BC,CD,DA相交于点F,G,H,则( )A.四边形EFGH的周长为定值B.当λ=12时,四边形EFGH为正方形C.当λ=13时,平面α截球O所得截面的周长为13π4D.四棱锥A-EFGH的体积的最大值为22 3答案ABD解析将正四面体ABCD放入正方体中.因为正四面体ABCD的棱长为3,所以正方体的棱长为322.如图所示,过点E作平面α平行于AC和BD,平面α与正方体的棱交于M,N,P,Q四点.因为AE→=λAB→,故AH→=λAD→,即有EH=λBD,同理FG=λBD,EF=(1-λ)AC,HG=(1-λ)AC,且EH∥BD,EF∥AC,故四边形EFGH 为平行四边形.因为AC ⊥BD ,故EF ⊥EH ,则四边形EFGH 为矩形.对于A ,四边形EFGH 的周长为2(EF +EH )=2[(1-λ)AC +λBD ]=2[(1-λ)AC +λAC ]=2AC =6,为定值,故A 选项正确;对于B ,当λ=12时,E 为AB 的中点,故EF =EH ,所以四边形EFGH 为正方形,故B 选项正确;对于C ,当λ=13时,球心O 到平面EFGH 的距离即球心到平面MNPQ 的距离,即BC 中点到MF 的距离,经计算为24,球半径为322×32=364,故截面圆的半径为⎝ ⎛⎭⎪⎫3642-⎝ ⎛⎭⎪⎫242=132,所以截面圆的周长为132×2π=13π,故C 选项错误;对于D ,四棱锥A -EFGH 的高为AQ ,所以其体积V =13×322λ×3(1-λ)×3λ=922λ2(1-λ),0<λ<1, 令f (λ)=922λ2(1-λ),则f ′(λ)=922(2λ-3λ2),令f ′(λ)=0得λ=23,故当λ=23时,四棱锥A -EFGH 的体积最大,最大值为922×49×13=223,故D 选项正确,故选ABD.16.(多选)(2022·嘉兴测试)如图,在等腰梯形ABCD 中,AB =2AD =2BC =2CD =4.现将△DAC沿对角线AC所在的直线翻折成△D′AC,记二面角D′-AC-B的大小为α(0<α<π),则( )A.存在α,使得D′A⊥BCB.存在α,使得D′A⊥平面D′BCC.存在α,使得三棱锥D′-ABC的体积为3 3D.存在α=π2,使得三棱锥D′-ABC的外接球的表面积为20π答案ACD解析如图1,取AB的中点E,连接DE交AC于点F.因为AB=2CD,所以CD=EB=AE,所以四边形AECD为菱形,四边形EBCD为菱形,所以△AED,△DEC,△EBC均为等边三角形,所以AC⊥ED,∠DAC=∠BAC=π6,∠ACB=π2,在翻折过程中,如图2,AC⊥D′F,AC⊥FE,所以∠D′FE为二面角D′-AC-B的平面角,所以∠D′FE=α.对于A,当α=π2时,平面D′AC⊥平面ABC.因为BC⊥AC,所以BC⊥平面D′AC.又因为D′A⊂平面D′AC,所以D′A⊥BC,所以存在α,使得D′A⊥BC,故A选项正确;对于B,假设存在α,使得D′A⊥平面D′BC.因为D′C⊂平面D′BC,所以D′A⊥D′C,与∠AD′C=2π3矛盾,故B选项不正确;对于C,由分析可得,D′F=12DE=12AD=1,AC=2AF=2×32×AD=2 3.设D′到平面ABC的距离为d,则V三棱锥D′-ABC=13×S△ABC×d=13×12×AC×BC×d=13×12×23×2×d=33,解得d=1 2,所以sin α=dD′F=12,所以α=π6或5π6,故C选项正确;对于D,当α=π2时,平面D′AC⊥平面ABC,所以BC⊥平面D′AC,D′F⊥平面ABC.如图2所示,因为E,F分别为AB,AC的中点,所以EF∥BC,且EF=12BC=1,所以EF⊥平面D′AC.设△D′AC外接圆圆心为O1,则O1A=O1D′=AD′=2.因为E是Rt△ABC斜边的中点,所以E为Rt△ABC的外心.过O1作平面D′AC的垂线,过点E作平面ABC的垂线,则两垂线的交点O即为三棱锥D′-ABC外接球的球心,显然四边形EFO1O是矩形,所以OO1=EF=1.设三棱锥D′-ABC的外接球半径为R,则在Rt△OO1D′中,R=OD′=O1O2+O1D′2=1+4=5,所以三棱锥D′-ABC的外接球的表面积S=4πR2=20π,故D选项正确.综上所述,故选ACD.17.在菱形ABCD中,AB=23,∠ABC=60°,若将菱形ABCD沿对角线AC折成大小为60°的二面角B-AC-D,则四面体DABC的外接球球O的体积为________.答案5239π27解析如图,设M,N分别为△ABC,△ACD的外心,E为AC的中点,则EN=EM=13BE=1,在平面BDE内过点M作BE的垂线与过点N作DE的垂线交于点O. ∵BE⊥AC,DE⊥AC,BE∩DE=E,∴AC⊥平面BDE.∵OM⊂平面BDE,∴OM⊥AC,∵OM⊥BE,BE∩AC=E,∴OM⊥平面ABC,同理可得ON⊥平面ACD,则O为四面体DABC的外接球的球心,连接OE,∵EM=EN,OE=OE,∠OME=∠ONE=90°,∴△OME≌△ONE,∴∠OEM=30°,∴OE=EMcos 30°=233.∵AC⊥平面BDE,OE⊂平面BDE,∴OE⊥AC,∴OA=OE2+AE2=39 3,即球O的半径R=39 3.故球O的体积V=43πR3=5239π27.18.(2022·湖南三湘名校联考)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1=4,M 为棱AB的中点,N是棱BC的中点,O是三棱柱外接球的球心,则平面MNB1截球O所得截面的面积为________.答案8π解析如图1,将直三棱柱补形成正方体ABCD-A1B1C1D1,连接BD1,则直三棱柱的外接球也是正方体的外接球,球心O是BD1的中点,半径R=2 3. 连接BD交MN于点E,连接B1E交BD1于点F,过点O作OO1⊥B1E于点O1,连接B1D1,因为MN∥AC,AC⊥平面BB1D1D,所以MN⊥平面BB1D1D,所以OO1⊥MN,所以OO1⊥平面MNB1.如图2,31 / 31 在矩形BB 1D 1D 中,BF FD 1=BE B 1D 1=14, 所以BF OF =23,过点B 作BG ⊥B 1E 于点G , 则BG =BE ·BB 1B 1E =43,BGOO 1=BF OF =23,所以OO 1=2,设截面圆的半径为r , 则r 2=R 2-OO 21=(23)2-22=8,所以截面的面积为8π.。

空间几何体的切接球问题(八个模型)

空间几何体的切接球问题(八个模型)

微专题 立体几何3空间几何体的外接球与内切球——八个模型一些提速的小结论:1.设正三角形边长为a ,则其高h =,外接圆半径r a =,面积2S =;2.设正四面体棱长为a ,则其高h =,外接球半径R =外,内切球半径4h R ==内,体积312V a =,正四面体相对棱的距离为2d =模型一 墙角模型模型解读:类似于三角形有且仅有唯一一个外接圆,将三角形补成平行四边形,则该平行四边形外接圆与三角形外接圆是同一个外接圆;三菱锥有且仅有一个外接球,特殊情况下,将其补成一个长方体,则该长方体与三棱锥有共同的外接球。

根据对称性,长方体体对角线即为外接球的直径。

模型公式:2222)2(c b a R ++=或2222c b a R ++=; 秒杀公式:()222S a b c π=++,()222222V ab c a b c π=++++适用情况:几何体中有三条两两垂直的棱时(非必要条件,见图3)。

(柱体适应模型1)c abCP A Babc 图2PCBAabc 图3CBPAa bc PCO 2BA典型例题例1、已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32例2、若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 9π 例3、若三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 29π跟踪练习1、已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为2、若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( A ) A.3B.6C.36D.93、(2018宝鸡模拟)已知底面边长为12的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )32.3A π .4B π .2C π 4.3D π4、(广东省汕头市达濠华桥中学2017-2018学年期末)《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑, PA ⊥平面ABC , 2,4PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( C )A. 8πB. 12πC. 20πD. 24π5、(2020·安徽高三(理))已知一个正方体的各顶点都在同一球面上,现用一个平面去截这个球和正方体,得到的截面图形恰好是一个圆及内接正三角形,若此正三角形的边长为a ,则这个球的表面积为( D ). A .234a πB .23a πC .26a πD .232a π6、(2020延安高考模拟)刘徽《九章算术•商功》中将底面为长方形,两个三角面与底面垂直的四棱锥叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( B )A .B .C .D .7、(2020菏泽高三模拟)已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为( C ) A .B .C .D .8、(2020届·厦门市五月质量检测理6)某三棱锥的三视图如图所示,其中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为( B ) A.9π B.27π C.81π D.108π9、已知一个三棱锥的三视图如图,其中俯视图是斜边长为2的等腰直角三角形,该三棱锥的外接球的半径为2,则该三棱锥的体积为(C )(A )2 (B )43 (C )23(D )2210、(2017云南第二次统一检测)已知体积为6的长方体的八个顶点都在球O 的球面上,在这个长方体经过同一个顶点的三个面中,如果有两个面的面积分别为343O 的体积等于( A ) A .323π B .73π C .332πD .1172π11、(2017江西赣州模拟)在四面体SABC 中,SA ⊥平面ABC ,∠ABC =90°,SA =AC =2,AB =1,则该四 面体的外接球的表面积为 . 8π提升练习1、在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱3SA =三棱锥ABC S -外接球的表面积是 。

立体几何中球的内切和外接问题完美版

立体几何中球的内切和外接问题完美版

性质
内切球的球心位于旋转体 的轴线上,且球的半径等 于旋转体半径。
应用
在几何和工程领域中,内 切球常用于研究旋转体的 体积和表面积。
旋转体的外接球
定义
旋转体的外接球是指与旋 转体外侧相切的球。
性质
外接球的球心位于旋转体 外侧,且球的半径等于旋 转体轴线到旋转体外侧的 垂直距离。
应用
在几何ቤተ መጻሕፍቲ ባይዱ工程领域中,外 接球常用于研究旋转体的 空间位置和关系。
立体几何中球的内 切和外接问题完美 版
目 录
• 球与多面体的内切和外接问题 • 球与旋转体的内切和外接问题 • 球与几何体的内切和外接问题实例 • 总结与展望
01
CATALOGUE
球与多面体的内切和外接问题
多面体的内切球
01
02
03
04
多面体的内切球是指与多面 体的所有顶点和面都相切的
球。
内切球半径的求法:设多面体的 每个面为$S_i$,内切球的半径
03
CATALOGUE
球与几何体的内切和外接问题实例
多面体内切球实例
总结词
多面体内切球是指一个球完全内切于一个多面体,且与多面体的每个面都相切 。
详细描述
多面体内切球的问题可以通过几何定理和公式来解决,例如欧拉公式和球内切 定理。例如,一个正方体的内切球就是其中心,半径等于正方体边长的一半。
旋转体外接球实例
外接球的性质:外接球与 多面体的每个顶点都相切 ,且外接球的直径等于多 面体的对角线长度。
外接球的应用:在几何、 物理和工程领域中,外接 球的概念被广泛应用于研 究多面体的性质和计算。
02
CATALOGUE
球与旋转体的内切和外接问题

(完整版)空间几何体与球的切接问题

(完整版)空间几何体与球的切接问题

空间几何体与球的切、接问题1.体积为 8 的正方体的极点都在同一球面上,则该球的表面积为()B.323种类一:三条棱两两垂直可转变为长方体(正方体)2.在三棱锥P ABC中,PA平面ABC , AC BC , AC BC 1, PA3则三棱锥外接球的体积为3.已知球 O 上四点 A、B、C、D,DA平面ABC,AB BC, DA AB BC a ,则球 O 的体积等于圆柱的外接球ORBC2设柱体的高为l ,底面外接圆的半径为r,则有R r2l24.直三棱柱 ABC- A1B1C1的 6 个极点都在球 O 的球面上”,若 AB=3,AC=4,AB⊥AC,AA1= 12,则球 O 的半径为种类二:有一条侧棱垂直于底面可转变为直棱柱5.已知三棱锥 P-ABC 中,三角形 ABC 为等边三角形,且 PA=8,PB=PC= 13 ,AB=3 ,则其外接球的体积为6.在三棱锥 P ABC 中, PA平面ABC , AC1, BC 2, PA 6,ACB 120 ,求三棱锥的外接球的表面积。

圆锥的外接球O O1A设椎体的高为 h, 底面外接圆的半径为 r, 则有R r 22 h R7.正四棱锥的极点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为()A. 81D.27448.在三棱锥 A-BCD中 ACD 与 BCD 都是边长为 2 的正三角形,且平面 ACD 平面BCD,求三棱锥外接球的体积练习 1、在四周体P ABC 中,PC平面ABC,AB=AC=1,BC=2 ,PC= 3 .则该四周体外接球的表面积为.练习 2、正三角形 ABC的边长为 2,将它沿高 AD翻折,使点 B 与点 C 间的距离为2 ,此时四周体ABCD外接球表面积为____________练习 3.已知三棱锥 S-ABC的全部极点都在球 O 的球面上, SC是球 O 的直径。

若平面 SCA⊥平面 SCB,SA=AC,SB=BC,三棱锥 S-ABC的体积为 9,则球 O 的表面积为 ________。

高考必考题—几何体中与球有关的切、接问题(含解析)

高考必考题—几何体中与球有关的切、接问题(含解析)

几何体中与球有关的切、接问题球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π例2、【2020年高考天津】若棱长为 A .12π B .24π C .36πD .144π例3、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π例4、(2020届山东省日照市高三上期末联考)已知四棱锥P ABCD -的体积是ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为( )A .BCD .例5、(2020届山东省德州市高三上期末)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =P ADE -的外接球的体积为,则阳马P ABCD -的外接球的表面积等于______.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.例7、(2020届山东省潍坊市高三上期中)如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.二、达标训练1、(2020届山东省泰安市高三上期末)已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是( ) A .16πB .20πC .32πD .64π2、【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D 3、【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D4、【2018年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .5、【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 半径的球面与侧面BCC 1B 1的交线长为________.6、(2020届山东省滨州市三校高三上学期联考)已知三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.若三棱锥S ABC -的四个顶点都在同一球面上,则该球的表面积为________.7、(2020届山东省枣庄、滕州市高三上期末)如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC =,则PA 与平面ABC 所成角的大小为________;三棱锥P -ABC 外接球的表面积是________.8、(2020届山东省烟台市高三上期末)已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC,6PA =,AB =2AC =,4BC =,则:(1)球O 的表面积为__________;(2)若D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是__________.9、(2020届山东省滨州市高三上期末)在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC=________,该四面体外接球的表面积为________.10、(2020届山东省济宁市高三上期末)下图是两个腰长均为10cm的等腰直角三角形拼成的一个四边形-的外接球的体积为ABCD,现将四边形ABCD沿BD折成直二面角A BD C--,则三棱锥A BCDcm.__________3一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====, ∴球O 的表面积2464S R ππ==.故选:A.本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.例2、【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=. 故选:C .本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 例3、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π【答案】C【解析】边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,12R ==2452S ππ==,故选C.例4、(2020届山东省日照市高三上期末联考)已知四棱锥P ABCD -的体积是ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为( )A .BCD .【答案】A【解析】设AB 的中点为Q ,因为PAB ∆是等边三角形,所以PQ AB ⊥,而平面PAB ⊥平面ABCD , 平面PAB ⋂平面ABCD AB =,所以PQ ⊥平面ABCD ,四棱锥P ABCD -的体积是13AB AB PQ =⨯⨯⨯13AB AB AB =⨯⨯,所以边长6AB =,PQ =OH x =,OM x =,()(222222R OA OM AM x==+=+,2222223R OP OH PH x ==+=+,x =2212321R =+=343V R π==球.故选:A.例5、(2020届山东省德州市高三上期末)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =P ADE -的外接球的体积为,则阳马P ABCD -的外接球的表面积等于______.【答案】20π 【解析】四边形ABCD 是正方形,AD CD ∴⊥,即AD CE ⊥,且AD =ED =,所以,ADE ∆的外接圆半径为122AE r ===设鳖臑P ADE -的外接球的半径1R ,则3143R π=,解得12R =.PA ⊥平面ADE ,1R ∴=2PA ==PA ∴=正方形ABCD 的外接圆直径为22r AC ==22r ∴=,PA ⊥平面ABCD ,所以,阳马P ABCD -的外接球半径2R ==因此,阳马P ABCD -的外接球的表面积为22420R ππ=.故答案为:20π. 题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:2r,其体积:343V r =π=.故答案为:3. 与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例7、(2020届山东省潍坊市高三上期中)如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.【解析】(1)因为16(12S =⨯⨯=. (2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,每个三角形面积是4,六面体体积是正四面体的2倍,所以六面体体积是6. 由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设球的半径为R ,所以16()6349R R =⨯⨯⨯⇒=,所以球的体积334433V R ππ===.故答案为:. 二、达标训练1、(2020届山东省泰安市高三上期末)已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是( ) A .16π B .20πC .32πD .64π【答案】D【解析】如图所示,因为正三棱锥S ABC -的侧棱长为6,则263AE ==6SE ===, 又由球心O 到四个顶点的距离相等,在直角三角形AOE 中,,6AO R OE SE SO R ==-=-,又由222OA AE OE =+,即222(6)R R =+-,解得4R =, 所以球的表面积为2464S R ππ==, 故选D.2、【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ==.故选:C .本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.3、【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==即344π33R V R =∴=π==,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,,,PA PB PC ∴=== 又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D.本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.4、【2018年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B . C.D .【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==,Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,()max 163D ABC V -∴=⨯= B.5、【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =,所以||EP ===所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.. 6、(2020届山东省滨州市三校高三上学期联考)已知三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.若三棱锥S ABC -的四个顶点都在同一球面上,则该球的表面积为________. 【答案】13π【解析】如图:SA ⊥平面ABC ,则SBA ∠为直线SB 和平面ABC 所成的角,即3SBA π∠=在Rt SAB ∆中:tan3SA AB π=== 如图,设O 为三棱锥S ABC -外接球的球心,G 为ABC ∆外接圆圆心, 连结,,,,OA OB GA GB OG ,则必有OG ⊥面ABC 在ABC ∆,2222cos 312162AC AB BC AB BC π=+-⋅⋅=+-=, 则1AC = 其外接圆半径122,1sin sin 6AC r r ABC π====∠, 又1322OG SA ==, 所以三棱锥S ABC -外接球半径为R ===该球的表面积为21344134S R πππ==⨯=, 故答案为:13π.7、(2020届山东省枣庄、滕州市高三上期末)如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC =,则PA 与平面ABC 所成角的大小为________;三棱锥P -ABC 外接球的表面积是________.【答案】45︒ 6π【解析】如图,作平行四边形ABCD ,连接PD ,由AB BC ⊥,则平行四边形ABCD 是矩形. 由BC CD ⊥,BC PC ⊥,PCCD C =,∴BC ⊥平面PCD ,而PD ⊂平面PCD ,∴BC PD ⊥,同理可得AB PD ⊥,又AB BC B ⋂=,∴PD ⊥平面ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,CD AB PC ===1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.由,PA AB ⊥PC BC ⊥知PB 的中点到,,,A B C P 的距离相等,PB 是三棱锥P -ABC 外接球的直径.由BC ⊥平面PCD 得BC PC ⊥,PB ===24()62PB S ππ==. 故答案为:45︒;6π.8、(2020届山东省烟台市高三上期末)已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC,6PA =,AB =2AC =,4BC =,则:(1)球O 的表面积为__________;(2)若D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是__________. 【答案】52π 4π【解析】(1)由题,根据勾股定理可得AC AB ⊥,则可将三棱锥P ABC -可放入以,,AP AC AB 为长方体的长,宽,高的长方体中,则体对角线为外接球直径,即2r ==则r =,所以球的表面积为224452r πππ=⨯=;(2)由题,因为Rt ABC ,所以D 为底面ABC 的外接圆圆心,当DO ⊥截面时,截面面积最小,即截面为平面ABC ,则外接圆半径为2,故截面面积为224ππ⨯=故答案为:(1)52π;(2)4π9、(2020届山东省滨州市高三上期末)在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC =________,该四面体外接球的表面积为________.【答案】68π【解析】因为2SA SB ==,且SA SB ⊥,BC =,AC =AB ==,因此222BC AC AB +=,则AC BC ⊥;取AB 中点为O ,连接OS ,OC ,则OA OB OC OS ====,所以该四面体的外接球的球心为O ,半径为OC=所以该四面体外接球的表面积为248S ππ=⋅=; 又因为SA SB =,所以SO AB ⊥;因为底面三角形ABC 的面积为定值122AC BC ⋅=,SO ,因此,当SO ⊥平面ABC 时,四面体的体积最大,为136ABC V S SO =⋅=.故答案为:(1).6(2). 8π10、(2020届山东省济宁市高三上期末)下图是两个腰长均为10cm 的等腰直角三角形拼成的一个四边形ABCD ,现将四边形ABCD 沿BD 折成直二面角A BD C --,则三棱锥A BCD -的外接球的体积为__________3cm .【答案】 【解析】由题设可将该三棱锥拓展成如图所示的正方体,则该正方体的外接球就是三棱锥的外接球,由于正方体的对角线长为2l R ==即球的半径R =该球的体积343V R π==,应填答案.。

如何确定外接(内切)球的球心

如何确定外接(内切)球的球心

如何确定外接(内切)球的球心球与其他几何体的切接问题,是近几年高考的热点,这种题目几乎在各省高考试题中都有涉及,主要考查直观想象和逻辑推理的核心素养.“切”“接”问题的处理规律:(1)“切”的处理解决与球有关的内切问题主要是指球内切于多面体或旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.1.由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.①长方体或正方体的外接球的球心是其体对角线的中点;②正三棱柱的外接球的球心是上、下底面中心连线的中点;③直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;④正棱锥的外接球的球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到.[例1] 若正三棱柱ABC-A′B′C′的底面边长为2,侧棱长为1,其顶点都在同一个球面上,则球的表面积为.. [解析] 如图,H ′,H 分别为上、下底面的中心,HH ′的中心 O为外接球的球心.由题意得,在 Rt △OAH 中,AH =2 3,OH =1,3 2则外接球的半径 R =OA = AH 2+OH 2=19,12表面积 S =4πR 2=19π 3[答案] 19π 32.构造长方体或正方体确定球心①正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补成长方体或正方体;②同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补成长方体或正方体;③若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体;④若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.[例 2] 若三棱锥的三个侧面两两垂直,且侧棱长均为 3,则其外接球的体积是 .[解析] 三棱锥的三个侧面两两垂直,且侧棱长均为 3,则可将三棱锥补形成正方体.从而其外接球的直径为 3,半径为3,故所求24π 9π外接球的体积 V = 3 = . 2[答案] 9π2[点评]一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为 a ,b,c,则可以将这个三棱锥补形成一个长方体,长方体的体对角线的长就是该三棱锥外接球的直径,即2R=a2+b2+c2.3.由球的性质确定球心[典例3] 正三棱锥A-BCD 内接于球O,且底面边长为3,侧棱长为2,则球O 的表面积为.[解析] 如图,设三棱锥A-BCD 的外接球的半径为rM 为正△BCD 的中心,因为BC=CD=BD=3,AB=AC=AD=2,AM⊥平面BCD,所以DM=1,AM=3,又OA=OD=r,所以( 3-r)2+1=r2,解得r=2 3,所以球O 的表面积S=4πr2 316π=3.[答案] 16π3[点评]本题运用公式R2=r2+d2(r 为三棱锥底面外接圆的半径,R 为三棱锥外接球的半径,d 为球心到三棱锥底面中心的距离)求球的半径,该公式是求球的半径的常用公式.本题的思路是探求正棱锥外接球半径的通法,该方法的实质是通过寻找外接球的一个轴截面,把立体几何问题转化为平面几何问题来研究.。

球的接切问题结论

球的接切问题结论
在于 确定球心在多面体中的位置, 找到球的半径 或直径与多面体相关元素之间的关系, 结合 原有多面体的特性求出球的半径, 然后再利 用球的表面积和体积公式进行正确计算. 常 见的方法是将多面体还原到正方体和长方 体中再去求解.
★(1)正多面体存在内切球且正多面体的中 心为内切球的球心. (2)求多面体内切球半径,往往可用“等体 积法”. 1 V 多=S 表·R 内切·3. 1 (3)正四面体内切球半径是高的4, 外接球半 3 径是高的4. (4)并非所有多面体都有内切球(或外接球).
球与几何体的切接问题
(1)长方体的外接球: ①球心:体对角线的交点; a2+b2+c2 ②半径:r= (a,b,c 为长 2 方体的长、宽、高).
(2) 正方体的外接球、内切球及与各条 棱相切的球: ①外接球:球心是正方体中心;半径 r 3 = 2 a(a 为正方体的棱长); ②内切球:球心是正方体中心;半径 r a =2(a 为正方体的棱长); ③与各条棱都相切的球: 球心是正方体 2 中心;半径 r= 2 a(a 为正方体的棱长).
(3) 正四面体的外接球与内切球 ( 正四面体 可以看作是正方体的一部分) ①外接球:球心是正四面体的中心;半径 r 6 = 4 a(a 为正四面体的棱长); ②内切球:球心是正四面体的中心;半径 r 6 = 12 a(a 为正四面体的棱长).
★ 球的表面积和体积都是半径 R 的函 数.对于和球有关的问题,通常可以在轴截 面中建立关系. 画出轴截面是正确解题的关 键.

2025高考数学二轮复习球的切接问题

2025高考数学二轮复习球的切接问题
PC=AB=2,则三棱锥P-ABC的外接球的表面积为( C )
A.20π
B.12π
C.5π
D.4π
解析 如图,将三棱锥P-ABC转化为长方体,可知三棱锥P-ABC的外接球即为
长方体的外接球,
2 + 2 = 4,
则 2 + 2 = 3, 可得 a2+b2+c2=5,
2 + 2 = 3,
为外接球的球心,
2
则外接球的半径 OB =OD +BD ,BD=
3
3 2 7 2
2 2
所以外接球半径1 =( ) +( ) = ,
2
3
12
2
因为
3
OE= 3 a=
2
1
(2 )
2
+(
2
×
3
3
a= a,
2
3
2
3
) =OF,所以
6
3 2 2
1
2
则棱切球半径2 =( ) = ,所以
3
当 O 在线段 O1M 上时,由球的性质可知 R2=OE2=OA2,
易得 O1A=
12
+
1 2
(2)
=
5 2
1 2
2
5
2
,则( 2 -m) +(2) =( 2 ) +m2,此时无解.
2
当 O 在线段 MO1 的延长线上时,由球的性质可知,(
解得
2
m= 4 ,所以
2
2
2
R =OE =(MO1+m) +EM
则圆台内切球的球心O一定在O1O2的中点处,

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题提高练【答题技巧】1.“切”“接”问题的处理规律(1)“切”的处理:球的内切问题主要是球内切于多面体或旋转体.解答时要找准切点,通过作截面来解决.(2)“接”的处理:把一个多面体的顶点放在球面上即球外接于该多面体.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.2.当球的内接多面体为共顶点的棱两两垂直的三棱锥、共顶点的三个侧面两两垂直的三棱锥或三组对棱互相垂直的三棱锥时,常构造长方体或正方体以确定球的直径.3.与球有关的组合体的常用结论 (1)长方体的外接球: ①球心:体对角线的交点;②半径:,,r a b c =为长方体的长、宽、高). (2)正方体的外接球、内切球及与各条棱都相切的球:①外接球:球心是正方体的中心,半径(r a =为正方体的棱长); ②内切球:球心是正方体的中心,半径(2ar a =为正方体的棱长);③与各条棱都相切的球:球心是正方体的中心,半径r =(a 为正方体的棱长). (3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分):①外接球:球心是正四面体的中心,半径(r a =为正四面体的棱长);②内切球:球心是正四面体的中心,半径(r a =为正四面体的棱长). 【练习】1.在三棱锥P-ABC 中,△ABC 的内切圆圆O 的半径为2,PO ⊥平面ABC ,且三棱锥P-ABC 的三个侧面与底面所成角都为60°,则该三棱锥的内切球的体积为( )C.16π3D.4π32.已知在三棱锥P-ABC 中,△ABC 是以A 为直角的三角形,AB=AC=2,△PBC 是正三角形,且PC 与底面ABC所成角的正弦值为34,则三棱锥P-ABC外接球的半径为( )A.43B.32C.133D.2233.张衡是中国东汉时期伟大的天文学家、数学家等,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A-BCD的每个顶点都在球O的表面上,AB⊥底面BCD,BC⊥CD,且AB=CD=3,BC=2,利用张衡的结论可得球O的表面积为( )A.30B.1010C.33D.12104.已知三棱锥P-ABC中,PA PB PC ABC==,是边长为42的正三角形,D,E分别是PA,AB上靠近点A 的三等分点,DE PC⊥,则三棱锥P-ABC的内切球的表面积为( )A.(5763203)π-B.(2881603)π-C.(64323)π-D.(64323)π-5.取两个相互平行且全等的正n边形,将其中一个旋转一定角度,连接这两个多边形的顶点,使得侧面均为等边三角形,我们把这种多面体称作“n角反棱柱”.当6n=时,得到如图所示棱长均为2的“六角反棱柱”,则该“六角反棱柱”外接球的表面积等于( )A.(53)π+ B.(1243)π+ C.(2553)π+ D.(2843)π+6.已知在菱形ABCD中,23AB BD==ABCD沿对角线BD折起,得到三棱锥A BCD-,且使得棱33AC=A BCD-的外接球的表面积为( )A.7πB.14πC.28πD.35π7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟一万斛.问高几何?”其意思为:“今有一个长方体的粮仓,宽3丈,长4丈5尺,可装粟10 000斛,问该粮仓的高是多少?”已知1斛粟的体积为2.7立方尺,一丈为10尺,则该粮仓的外接球的体积是( )A.133π4立方丈 B.133π48立方丈 C.133133π4立方丈 D.133133π48立方丈 8.已知正方形ABCD 中,E ,F 分别是AB ,BC 的中点,沿DE ,DF ,EF 折起得到如图所示的空间几何体,若2AB =,则此几何体的内切球的体积为( )A.3π2B.π4C.π48D.π169.在平面四边形ABCD 中,2,2AB AD BC CD DB =====,现将ABD 沿BD 折起,使二面角A BD C --的大小为60︒.若,,,A B C D 四点在同一个球的球面上,则球的表面积为( ) A.13π3B.14π3C.52π9D.56π910.已知三棱锥S-ABC 的顶点都在球O 的球面上,且该三棱锥的体积为23,SA ⊥平面,4,120ABC SA ABC =∠=︒,则球O 的体积的最小值为_________.11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为_________________.12.设正四面体的内切球半径为r ,外接球半径为R ,则rR=___________. 13.已知底面为正方形的四棱锥P ABCD -的五个顶点在同一个球面上,,2,1PD BC AB PC ⊥==,3PD =则四棱锥P ABCD -外接球的体积为________.14.已知有两个半径为2的球记为12,O O ,两个半径为3的球记为34,O O ,这四个球彼此相外切,现有一个球O 与这四个球1234,,,O O O O 都相内切,则球O 的半径为____________.15.在三棱锥P-ABC 中,PA ⊥平面,,12ABC AB BC PA AB AC ⊥===,三棱锥P-ABC 的所有顶点都在球O 的表面上,则球O 的半径为__________;若点M 是ABC 的重心,则过点M 的平面截球O 所得截面的面积的最小值为__________.16.已知正三棱柱111ABC A B C -,底面边长为3,高为2,P 为上底面三角形111A B C 中线上一动点,则三棱锥P ABC -的外接球表面积的取值范围是_____________.17.如图,已知边长为1的正方形ABCD 与正方形BCFE 所在平面互相垂直,P 为EF 的中点,Q 为线段FC 上的动点,当三棱锥P-ABQ 的体积最大时,三棱锥P-ABQ 的外接球的表面积为_________________.答案以及解析1.答案:A解析:设三棱锥P ABC -的内切球的半径为R ,过O 作OD AC ⊥于点,D OE BC ⊥于点,E OF AB ⊥于点F ,则2OD OE OF ===.连接PD ,易证PD AC ⊥,因为三棱锥P-ABC 的三个侧面与底面所成角都为60°,所以60PDO ∠=︒,则22tan 6023,4cos60PO PD ===︒=︒.由题意可知三棱锥P-ABC 的内切球的球心'O 在线段PO 上,在Rt POD 中,sin OD RDPO PD PO R∠==-,即2423R =-,解得23R =.所以该三棱锥的内切球的体积为334423323πππ33R ⎛⎫== ⎪ ⎪⎝⎭,故选A. 2.答案:C解析:如图,不妨令二面角P BC A --为钝二面角,取BC 的中点D ,连接AD , 因为2AB AC ==,90BAC ∠=︒,所以2BC =,且D 为ABC 外接圆的圆心.作PH ⊥平面ABC 于H ,易知H 在直线AD 上,连接,HC HA ,则PCH ∠为PC 与底面ABC 所成角, 则3sin 4PH PCH PC ∠==,又2PC BC ==,所以32PH =,又3PD =,则332sin 3PH PDH PD ∠===. 设1O 为PBC 的外心,O 为三棱锥P ABC -外接球的球心,连接1,OO OD ,则1OO ⊥平面PBC ,OD ⊥平面133,,cos ABC O D PDO =∠=,则12cos 3O D OD PDO ==∠,设外接球的半径为R ,则222413131,99R OD DA R =+=+==,故选C.3.答案:B解析:因为BC CD ⊥,所以7BD 又AB ⊥底面BCD ,所以10AD O 的球心为侧棱AD 的中点,从而球O 10利用张衡的结论2π5168=,可得π10=所以球O 的表面积为2104π10π1010==⎝⎭故选B.4.答案:C解析:因为PA PB PC ==,ABC 是边长为42的正三角形,所以三棱锥P ABC -为正三棱锥, 由正棱锥对棱垂直可知PB AC ⊥.又D ,E 分别是PA ,AB 上靠近点A 的三等分点,所以//DE PB , 所以DE AC ⊥.又,DE PC PC AC C ⊥⋂=,所以DE ⊥平面PAC ,所以PB ⊥平面PAC ,所以90APB ∠=︒,所以4PA PB PC ===,所以,,PA PB PC 两两互相垂直. 设三棱锥P ABC -的内切球的半径为r ,则由等体积法可得,()1133PABPACPBCABCPACSSSSr S PB ⋅+++=⋅,即11(88883)8433r ⨯+++=⨯⨯,解得2(33)r -=,故三棱锥P ABC -的内切球的表面积为222(33)(64323)π4π4πS r ⎡⎤--==⨯=⎢⎥⎣⎦.故选C. 5.答案:B解析:如图,设上、下正六边形的中心分别为1O ,2O ,连接12O O ,则其中点O 即为所求外接球的球心. 连接2O C ,取棱AB 的中点M ,作2MN O C ⊥于点N ,连接1O M ,MC ,则13O M MC ==.而22O C =, 则22212NC O C O N O C O M =-=-=-3,222123(23)231O O MN MC NC ∴==-=--=-,则131OO -.连接OA ,1O A ,设所求外接球的半径为R ,则有2222211(31)233R OA OO O A ==+=+=+∴该“六角反棱柱”外接球的表面积24π(1243)πS R ==+.故选B.6.答案:C解析:由题意可知,ABD BCD 为等边三角形.如图所示,设外接球的球心为O ,等边三角形BCD 的中心为,O '取BD 的中点F ,连接,,,AF CF OO ',,,OB O B OA '由AB AD BC BD DC ====,得,,AF BD CF BD ⊥⊥又AF CF F ⋂=,所以BD ⊥平面AFC ,且可求得AF =3,CF =而33,AC =所以AFC ∠=120.︒在平面AFC 中过点A 作CF 的垂线,与CF 的延长线交于点E ,由BD ⊥平面AFC 得.BD AE ⊥又,,AE EC BD EC F ⊥⋂=所以AE ⊥平面BCD .过点O 作OG AE ⊥于点G ,则四边形O EGO '是矩形. 又2sin 6023O B BC '︒=⨯=,所以13331.sin 60,sin3022O F O B AE AF EF AF ''︒︒======. 设外接球的半径为,,R OO x '=则由222222,OO O B OB OA AG GO ''+==+, 得2222223332,1,2x R x R ⎛⎫⎛⎫+=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭解得23,7,x R == 故三棱锥A BCD -外接球的表面积24π28π.S R ==故选C.7.答案:D解析:由题意可得粮仓的高2723 4.5h ==⨯(丈),设外接球的半径为R , 则2222133133(2)23 4.533.25,4R R =++==该粮仓的外接球的体积是34133133133π3⨯⨯⎝⎭(立方丈),选D. 8.答案:C解析:在等腰DEF 中,2222215,112DE DF EF ==+=+=D 到EF 的距离为h , 则22293(5)2222h ⎛⎫-= ⎪ ⎪⎝⎭令该几何体的内切球的球心为O ,且球心O 到三个面的距离均为半径r .又因为,DP PE DP PF ⊥⊥,且PE PF P ⋂=,所以DP ⊥平面PEF .由等体积法知O PEF O PFD O PDE O DEF D PEF V V V V V -----+++=,即11113111121212211232323232232r r r r ⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯,解得14r =, 则3 441πππ336448O V r ==⨯⨯=球,故选C.9.答案:C解析:如图所示,设M 为BD 的中点,连接,MA MC ,依题意,折起后AMC ∠是二面角A BD C --的平面角,则60AMC ∠=︒.易知,四面体ABCD 的外接球的球心O 在平面MCA 上,于是点O 在底面BCD 上的射影是正BCD的中心,设为点Q,而点O在侧面ABD上的射影是M,易得3MQ=,又30OMQ∠=︒,因此13OQ=,进而22221231333R OC OQ QC⎛⎫⎛⎫==+=+=⎪⎪ ⎪⎝⎭⎝⎭,所以球O的表面积为21352π4π9⎛⎫⨯=⎪⎪⎝⎭,故选C.10.4010π解析:由题意得,三棱锥S ABC-的体积11342332S ABCV AB BC-=⨯⋅=,则6AB BC⋅=,、当球O 的体积最小时,ABC外接圆的半径最小,即AC最小,在ABC中,由余弦定理和基本不等式得222123182AC AB BC AB BC AB BC⎛⎫=+-⋅⨯-⋅=⎪⎝⎭,当且仅当6AB BC=取等号,则min32AC=,此时ABC外接圆的直径min32226sin1203ACr===O的半径22210R r=+=O的体积的最小值为344010ππ3R=.11.答案:2821π解析:解法一由题意知PAD为正三角形,取AD的中点M,PAD的中心N,记AC BD F⋂=,连接,PM FM,过,N F分别作平面11AA D D与平面ABCD的垂线,两垂线交于点O,则点O为四棱锥P ABCD-的外接球球心.由题意知22362333PN PM===132ON MF AB===,所以四棱锥P ABCD-的外接球半径22223(23)21R ON PN++所以四棱锥P ABCD-的外接球的体积34π2821π3V R==.解法二连接1111,,,AC BD AC B D,记1111,AC BD F AC B D E⋂=⋂=,连接EF,易知四棱锥P ABCD-的外接球的球心O在线段EF上.取AD的中点G,连接PG,设OF x=,球O的半径为R,易知1122AF AC==⨯36232,633PG==则22222(32)(33)3R x x =+=-+,得3x =,则21R =, 所以四棱锥P ABCD -的外接球的体积34π2821π3V R ==. 12.答案:13解析:如图,在正四面体PABC 中,D ,E 分别为BC ,AC 的中点,连接AD ,BE 交于点F ,则点F 为正三角形ABC 的外心,连接PF ,则PF ⊥底面ABC ,且正四面体PABC 的外接球球心与内切球球心为同一点,应在线段PF 上,记作点O ,如图所示.不妨设正四面体PABC 的棱长为a ,则在ABC 中,22233sin 60333AF AD AC ==⋅⋅==°. PF ⊥底面,ABC AF ⊂底面,ABC PF AF ∴⊥,2222363PF AP AF a a ⎛⎫∴=-=-= ⎪ ⎪⎝⎭. 正四面体PABC 的外接球、内切球球心均为O ,,OP OA R OF r ∴===.OF PF OP =-,且在Rt AFO 中有222AF OF OA +=,22236R R ⎫⎫∴+-=⎪⎪⎪⎪⎝⎭⎝⎭, 6666,R r ∴==-=,611236r R a ∴==. 13.答案:82π3. 解析:由题意知,BC DC BC PD ⊥⊥,所以BC ⊥平面PCD ,而BC ⊂平面ABCD ,则平面PCD ⊥平面ABCD .由条件知222CD PC PD =+,所以PC PD ⊥.如图,取CD 的中点G ,连接,AC BD ,交于点O , 则O 为正方形ABCD 的中心,过点G 作平面CDP 的垂线,则点O 在该垂线上, 所以O 为四棱锥P ABCD -外接球的球心,由于2AO , 所以四棱锥P ABCD -外接球的体积为3482ππ(2)3=.14.答案:6解析:由题意可得121314234,O O O O O O O O ====24345,6O O O O ==.如图,取12O O 的中点34,M O O 的中点N ,连接1234,,,,,MN O N O N O M O M 则12O O ⊥3124,.O M O O O M ⊥ 又3412,O M O M M O O ⋂=∴⊥平面34.O O M 同理可证34O O ⊥平面2,.O O N 平面12O O N ⋂平面34,O O M MN =∴球心O 在线段MN 上. 设球O 的半径为R ,则142442, 3.5,3,OO R OO R O O O N =-=-==2222222114,23,O N MN O N O M OM OO O M ∴==-==-=222244(2)4,(3)9R ON OO O N R --=-=--.,MN OM ON =+即22(2)4(3)923,R R --+--=解得6R =.故球O 的半径为6.15.答案:3;4π9解析:(1)PA ⊥平面,ABC BC ⊂平面ABC ,,PA BC ∴⊥又AB BC ⊥,且,PA AB A BC ⋂=∴⊥平面,PAB PB ⊂平面,PAB BC PB ∴⊥,所以PC 是两个直角三角形PAC 和PBC 的斜边,取PC 的中点O ,点O到四点P ,A ,B ,C 的距离相等,即点O 是三棱锥P ABC -的外接球的球心,2231(2)3,PC R =+==(2)当点M 是截面圆的圆心时,此时圆心到截面的距离最大,那么截面圆的半径最小,即此时的面积最小,点N 是AC 的中点,M 是ABC 的重心,112,366MN BN AC ON ∴====1122PA =,所以22116OM ON MN =+=,截面圆的半径222()3r R OM =-=,所以2min 4ππ9S r ==16.答案:25π,8π4⎡⎤⎢⎥⎣⎦解析:如图,设正三棱柱111ABC A B C -上、下底面中心分别为1,O O ,点P 是111A B C 中线1C D 上一点,G 是三棱锥P ABC -的外接球的球心.因为A ,B ,C 在球面上,所以球心在线段1O O 上,点P 也在球面上, 设三棱锥P ABC -外接球的半径为R ,ABC 外接圆的半径为r ,由正弦定理有260sin 32==r ,所以1r =,设11,O P x O G y ==,则OG =2,y PG CG R -==,在1Rt PGO 中,222R x y =+,在Rt CGO 中,2221(2)R y =+-,于是2221x y +=+2(2)y -,解得254.x y =-因为点P 是111A B C 中线1C D 上一点,所以10≤≤x ,于是451≤≤y ,所以222222554(2)1,216R x y y y y ⎡⎤=+=-+=-+∈⎢⎥⎣⎦,所以外接球的表面积225π4π,8π4S R ⎡⎤=∈⎢⎥⎣⎦球.17.答案:41π16解析:如图,由题意知三棱锥P-ABQ 的体积最大时,点Q 与点C 重合,即求三棱锥P-ABC 外接球的表面积.因为正方形ABCD 与正方形BCFE 的边长均为1,点P 为EF 的中点,所以51,2,AB BC AC BP PC =====.过点P 作PG BC ⊥,垂足为G ,由正方形ABCD 与正方形BCFE 所在平面互相垂直,得PG ⊥平面ABC .设三棱锥P-ABC 外接球的球心为O ,AC 的中点为1O ,连接1OO , 则1OO ⊥平面ABC.延长1O O 到点H ,使1O H PG =.连接PH ,OP ,OA ,设1OO x =, 则2222211,(1)22OH x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得38x =, 设三棱锥P-ABC 外接球的半径为R ,则2221314128264R x ⎛⎫=+=+= ⎪⎝⎭.故所求表面积241414π4ππ6416S R ==⨯=.。

球与各种几何体切、接问题专题)资料讲解

球与各种几何体切、接问题专题)资料讲解

球与各种几何体切、接问题近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见。

首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球•一、球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题•1、球与正方体(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r a.(2)正方体的棱切球,如图2.位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r /2a.(3)正方体的外接球,如图与球心重合;棱长为1的正方体ABCD数据关系:设正方体的棱长为a,球的半径为r,这时有2r 3a.A|B1C1D1的8个顶点都在球0的表面上, E, F分别是棱3. 位置关系:正方体的八个顶点在同一个球面上;正方体中心AA,DD1的中点,则直线EF被球0截得的线段长为( )思路分析:由题意推出,球为正方体的外接球.平面AADD1截面所得圆面的半径R 一- ——,得知直线EF被球0截得的线段就是球的截面圆的直径.2 2【解析】由题意可知]球为正方体的外接琲尸面曲载面所得圆面的半径卫二警二f. •••ETu面九如D巩-直线廿杆止得的线段黄]球的截面厨的直径2—上点评*本题着査球与正方体唏”的间题「闻球的截面性囱转化虛为求球的截面13直径. _____________ 2、球与长方体例2自半径为R的球面上一点M,引球的三条两两垂直的弦MA,MB,MC,求MA2MB2MC2的值.4,体积为16,A. 16B.20 C.24 D.32思路分析:正四棱柱也是长方体 可得长方体的长、宽、高分别为【解析】以谢A/B . MC 为从一个顶点出发的三衆協 将三棱锥3/ -曲C 补应一个长方也 则另外四个 顶点逊在疎面上,故长方体是球的内接民右郎,围按方陳的对星线農是璘的貢径...3A? -M3'十」/C Z = (2A): =点评=此题突出构造法的使用,以反淆觀炜令割补形的方法解诀立体几何中体积计算…结论:长方体的外接球直径是长方体的对角线.例3 (全国卷I 高考题)已知各顶点都在一个球面上的正四棱柱高为球的表面积为()..由长方体的体积16及高4可以求出长方体的底面边长为 2,2, 2,4,长方体内接于球,它的体对角线正好为球的直径【解析】正四粧柱也是长再体.由廉方体的休积応斥高4可刃「出长為悴的底面边扶为2,因此,长肓体的长、宽、鬲分别为囚2, 4,因为长方体內捋于險 所以立药陳对角线正好为瑾能直径.松方体你对角钱故球的表面积沏24 故选G点评*年题考查球与扶帛体^接”的问题,巧勺伕市体■的性质,转化咸対求具体对角餵3、球与正棱柱(1)结论1 :正棱柱的外接球的球心是上下底面中心的连线的中点. (2)结论2 :直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.例1、个兀棱柱的底而足止木边形,面,已知该;;检柱的顶点都&间•个昧而上._!!浚7<检牡的体积为一 •底血周长为3,则这个球的体枳为3已知各厦点都在同一个球面上的正四棱柱的高为4. 休积沟1筋 则这牛嫌的k\ft!袒屋 _______ . 24用例3、 在M 三检柱」EU -蚣EC «P, AB 二 4.AC = 6,ri= !60?rU!H 也-;蛙柱ABC -舛坊G 的外接蟀的表血切二、球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或 者表面积等相关问题. 1、正四面体与球的切接问题(1) 正四面体的内切球,如图 4.位置关系:正四面体的四个面都与一个球相切,正四面体 的中心与球心重合;数据关系:设正四面体的棱长为 a ,高为h ;球的半径为 R ,这时有4R h —6 a ;3【解析】 如图正四面体 A — BCD 的中心为0,即内切球球心,内切球半径 R 即为0到1正四面体各面的距离AB = a,—正四面体的咼h= 丁a,又V A-BCD = 4V o-BCD, ()「. R=[h=12a.(2)正四面体的外接球,位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h ;球的半径为R,这时有4R 3h .6a ;(可用正四面体高h 减去内切球的半径得到) 例5求棱长为1的正四面体外接球的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合体,如果该组合体的主视图、左视图、俯视图均如图所示,且 图中的四边形是边长为 2 的正方形, 则该球的表面积是________.
【解析】 由三视图知,棱长为 2 的正方体内接于球,故正 方体的体对角线长为 2 3,即为球的直径. 2 32 所以球的表面积为 S=4π ·( ) =12π . 2 【答案】 12π
设 OO1=x,则 O1A= R2-x2,AB= 2· R2-x2,PO1= 1 2 1 R+x, 所以正四棱锥 P-ABCD 的体积 V= AB ×PO1= ×2(R2 3 3 2 2 3 2 2 3 -x )(R+x)=3(-x -Rx +R x+R ), 求导: V′=3(-3x2-2Rx
2
2 R 64 3 +R )=- (x+R)(3x-R),当 x= 时,体积 V 有最大值 R , 3 3 81
2
故选 C. 【答案】 C
类型 2:柱体的外接球 (1)若棱长为 3 的正方体的顶点都在同一球面上, 则该球 的表面积为________.
【解析】 本题主要考查简单的组合体和球的表面积.画出 球的轴截面可得,球的直径是正方体的对角线,所以球的半径 R 3 3 = 2 ,则该球的表面积为 S=4π R2=27π .故填 27π . 【答案】 27π
(2)已知正四棱锥P-ABCD内接于一个半径为R的球,则正 四棱锥P-ABCD体积的最大值是( 16R3 A. 81 64R3 C. 81 ) 32R3 B. 81 D.R3
【解析】 如图, 记 O 为正四棱锥 P-ABCD 外接球的球心, O1 为底面 ABCD 的中心, 则 P, O, O1 三点共线, 连接 PO1, OA, O1A.
4 4 63 6 3 ∴V球= π R = π ( ) = π . 3 3 4 8 【答案】 6 8π
(2)(2014· 大纲全国)正四棱锥的顶点都在同一球面上,若该 棱锥的高为4,底面边长为2,则该球的表面积为( 81π A. 4 C.9π B.16π 27π D. 4 )
【解析】 利用球心到各顶点距离相等列 式求解. 如图,设球心为 O,半径为 r,则在 Rt△ 9 AOF 中,(4-r) +( 2) =r ,解得 r=4.
★状元笔记 柱体的外接球问题,其解题关键在于确定球心在多面体中的 位置,找到球的半径或直径与多面体相关元素之间的关系,结合 原有多面体的特性求出球的半径,然后再利用球的表面积和体积 公式进行正确计算.常见的方法是将多面体还原到正方体和长方 体中再去求解.
思考题 2
(1)已知某一多面体内接于球构成一个简单组
专题研究 球与几何体的切接问题
专 题 要 点
(1)长方体的外接球: ①球心:体对角线的交点; a2+b2+c2 ②半径:r= (a,b,c为长方体的长、宽、高). 2
(2)正方体的外接球、内切球及与各条棱相切的球: 3 ①外接球:球心是正方体中心;半径r= 2 a(a为正方体的棱 长); a ②内切球:球心是正方体中心;半径r= 2 (a为正方体的棱 长); 2 ③与各条棱都相切的球:球心是正方体中心;半径r= 2 a(a 为正方体的棱长).
(3)正四面体的外接球与内切球(正四面体可以看作是正方体 的一部分) 6 ①外接球:球心是正四面体的中心;半径r= a(a为正四面 4 体的棱长); 6 ②内切球:球心是正四面体的中心;半径r= 12 a(a为正四面 体的棱长).
专 题 讲 解
题型一 几何体的外接球
类型1:锥体的外接球 (1)求棱长为1的正四面体外接球的体积为________.
(2)(2017· 长春模拟)已知三棱柱 ABC-A1B1C1 的底面是边长 为 6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面 积为 12π ,则该三棱柱的体积为________.
【解析】 设球半径为 R,上,下底面中心设为 M,N,由题 意,外接球心为 MN 的中心,设为 O,则 OA=R,由 4π R2=12π , 得 R=OA= 3,又易得 AM= 2,由勾股定理可知,OM=1,所 3 以 MN=2,即棱柱的高 h=2,所以该三棱柱的体积为 ×( 6)2×2 4 =3 3. 【答案】 3 3
16π A. 3 C.4 3π
8π B. 3 D.2 3π
【解析】 几何体的直观图是三棱锥,由对 称性可知外接球球心在侧视图中直角三角形的高 线上,设外接球的半径为R,则(
2
3 -R)2+12=
2 3 2 3 2 2 R ,R= 3 ,其表面积S=4π R =4π ( 3 ) = 16π 3 . 【答案】 A
2 2 2
∴该球的表面积为 4π r =4π 【答案】 A
2
92 81 ×4 = π 4
.
★状元笔记 球的表面积和体积都是半径 R 的函数.对于和球有关的问 题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关 键.
思考题 1
(1)如图是某几何体的三视图,其中正视图是 )
一个正三角形,则这个几何体的外接球的表面积为(
(2)已知直三棱柱 ABC-A1B1C1 的 6 个顶点都在球 O 的球面 上, 若 AB=3, AC=4, AB⊥AC, AA1=12, 则球 O 的半径为( 3 17 A. 2 13 C. 2 B.2 10 D.3 10 )
【解析】 的中点M.
如图,由球心作平面ABC的垂线,则垂足为BC
1 5 1 又AM=2BC=2,OM=2AA1=6, 所以球O的半径R=OA= 【答案】 C 5 2 13 2 (2) +6 = 2 .
题型二
几何体的内切球
(1)半径为R的球的外切圆柱(球与圆柱的侧面、两底面 都相切)的表面积为________,体积为________.
【解析】 设SO1是正四面体S-ABC的高,外接球的球心 O在SO1上,设外接球半径为R,AO1=r,
3 则在△ABC中,用解直角三角形知识得r= 3 .
从而SO1= SA
2 3,
在Rt△AOO1中,由勾股定理,得 R =(
2
2 32 6 2 3-R) +( 3 ) ,解得R= 4 .
相关文档
最新文档