高中物理磁通量的计算

合集下载

第十三章2.磁感应强度磁通量新教材人教版(教材)高中物理必修三PPT

第十三章2.磁感应强度磁通量新教材人教版(教材)高中物理必修三PPT

自我检测
二、匀强磁场
1.匀强磁场:如果磁场中各点的磁感应强度的大小相等、方向相同,
这个磁场叫作匀强磁场。
2.匀强电场的磁感线用间隔相等的平行直线表示。
三、磁通量
1.定义:匀强磁场的磁感应强度B与磁场方向垂直的平面面积S的
乘积,叫作穿过这个面积的磁通量。
2.公式:Ф=BS。
3.单位:韦伯,简称韦,符号Wb,1 Wb=1图
必备知识
自我检测
一、磁感应强度
1.物理意义:描述磁场强弱和方向的物理量。
2.磁感应强度的方向:小磁针静止时N极所指的方向。
3.定义:在磁场中垂直于磁场方向放置的通电导线,所受的磁场力F
与导线长度L和电流I的乘积的比值。
N

A·m
4.单位:特斯拉,简称特,符号 T,1 T=1
必备知识
导线所受的力F与通过导线的电流I的关系。下列说法中正确的是
(
)
A.A、B两点磁感应强度相等
B.A点的磁感应强度大于B点的磁感应强度
C.A点的磁感应强度小于B点的磁感应强度
D.无法比较磁感应强度的大小
解析:导线受到的磁场力F=IlB=Bl·I,对于题图给出的F-I图线,直线
的斜率k=Bl,由图可知ka>kb,又因为A、B两处导线的长度l相同,故A
C.若B=1 T,I=1 A,l=1 m,则F一定等于1 N
D.若l=1 m,I=1 A,F=1 N,则B一定等于1 T

解析:应用公式B= 或F=IlB时要注意导线必须垂直于磁场方向放
置,故选项B、C、D错误,A正确。
答案:A
探究一
探究二
探究三
探究四
随堂检测
磁感应强度与电场强度的比较

高中物理人教必修三第13章第1节磁感应强度磁通量 讲义

高中物理人教必修三第13章第1节磁感应强度磁通量 讲义

2 磁感应强度 磁通量1.理解磁感应强度的概念,知道磁感应强度是描述磁场强弱和方向的物理量.2.知道什么是匀强磁场,知道匀强磁场磁感线的特点.3.理解磁通量的概念,会计算磁通量的大小.一、磁感应强度1.定义:一段通电直导线垂直放在磁场中所受的力与导线中的电流和导线的长度的乘积的比值,叫磁感应强度.2.定义式:B =F Il. 3.单位:特斯拉,简称特,符号为T.4.B 反映了磁场的强弱.5.磁感应强度是矢量,小磁针的N 极在磁场中某点受力的方向,就是这点磁感应强度的方向.二、匀强磁场1.概念:各点磁感应强度大小相等、方向相同的磁场.2.磁感线特点:匀强磁场的磁感线是间隔相等的平行直线.三、磁通量1.定义:匀强磁场中磁感应强度和与磁场方向垂直的平面面积S 的乘积.即Φ=BS .2.拓展:磁场与平面不垂直时,这个面在垂直于磁场方向的投影面积S ′与磁感应强度的乘积表示磁通量.3.单位:国际单位是韦伯,简称韦,符号是Wb,1 Wb =1 T·m 2.4.引申:B =ΦS ,表示磁感应强度的大小等于穿过垂直磁场方向的单位面积的磁通量.一、磁感应强度1.物理意义:磁感应强度是表示磁场强弱和方向的物理量.2.大小:当导线方向与磁场方向垂直时B =F Il.3.方向:磁感应强度的方向就是小磁针北极在磁场中某点受力的方向,也就是该处的磁场方向.4.描述:磁感线的疏密程度表示磁感应强度的大小,磁感线的切线方向表示磁感应强度的方向.5.匀强磁场如果磁场中各处的磁感应强度大小和方向都相同,则该磁场为匀强磁场.二、磁通量1.磁通量的计算:(1)公式:Φ=BS.适用条件:①匀强磁场;①磁感线与平面垂直.(2)若磁感线与平面不垂直,则Φ=BS cos θ.其中S cos θ为面积S在垂直于磁感线方向上的投影面积S1,如图所示.2.磁通量的正负:磁通量是标量,但有正负,若磁感线从某一面穿入时,磁通量为正值,磁感线从此面穿出时则为负值.3.磁通量可用穿过某一平面的磁感线条数表示.若有磁感线沿相反方向穿过同一平面,则磁通量等于穿过该平面的磁感线的净条数(磁通量的代数和).三、磁感应强度矢量的叠加磁感应强度是矢量,当空间存在几个磁体(或电流)时,每一点的磁场等于各个磁体(或电流)在该点产生磁场的矢量和.磁感应强度叠加时遵循平行四边形定则.1.如图所示,矩形线框平面与匀强磁场方向垂直,穿过的磁通量为Φ,若线框绕某条边转过90°角,则磁通量变为()A.0B.12ΦC.ΦD.2Φ2.如图所示为某匀强磁场的磁感线分布,则磁场中各点的磁感应强度( )A .大小相等,方向相同B .大小不等,方向相同C .大小相等,方向不同D .大小不等,方向不同 3.下列物理量中属于矢量的是( )A .磁感应强度B .感应电动势C .电流D .磁通量4.如图所示,直角三角形abc 中,①abc =30°,将一电流为I 、方向垂直纸面向外的长直导线放置在顶点a 处,则顶点c 处的磁感应强度大小为B 0。

高中物理公式总结--电磁感应

高中物理公式总结--电磁感应

高中物理公式总结:电磁感应
电磁感应
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),
ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕
(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=1 06μH。

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

高中物理公式电磁学所有公式

高中物理公式电磁学所有公式

高中物理公式电磁学所有公式
电磁学是研究电磁现象的学科,生活中我们经常会看到电磁学的相关公式,下面就为大家列举出高中物理中关于电磁学的最常用的公式:
一、直流电场的电场强度:
1. 静止电荷产生的电场强度:E = kq/r2;
2. 依据线磁定律,定义磁通量密度为:B = μo·I;
三、交变电场强度:
1. 磁通量:φ = B·S;
2. 根据分段线性变化假设,定义磁感应强度:H = B/μo;
3. 根据库仑定律:F=u·IΔL;
四、电磁辐射:
1. 光速:c = λ·f;
2. 谐波定律:E = ko·Q;
3. 波能:W = S·E·cosδ;
4. 辐射功率:P = E2·kπo/2;
五、电磁动量定理:p=E·B;
六、电位的多位势模型:V = Vt·ln(C2/C1);
七、贝瑟尔定律:j = σ·E;
八、电磁航空参数公式:
1. 磁气动力:F = k·B2·I·L/2;
2. 磁场强度:B = μo·I/2πr;
3. 电导率:σ = n·e2/m;
九、延伸公式:
1. 雷诺数:Re = ρ·v·L/μ;
2. 普朗克定律:F = kQQ/R2;
3. 麦克斯韦动量定理:F = qE + qvXB。

高中物理磁感应强度的知识点归纳

高中物理磁感应强度的知识点归纳

高中物理磁感应强度的知识点归纳高中物理磁感应强度的知识点归纳磁感应强度(magneticfluxdensity),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为T)。

磁感应强度也被称为磁通量密度或磁通密度。

在物理学中磁场的强弱使用磁感应强度来表示,磁感应强度越大表示磁感应越强;磁感应强度越小,表示磁感应越弱。

磁感应强度的定义公式磁感应强度公式B=F/(IL)如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。

如果是电磁铁,那么B与I、匝数及有无铁芯有关。

R的计算公式是R=U/I;可一个导体的电阻R大小并不是由U或者I来决定的。

而是由其导体自身属性决定的,包括电阻率、长度、横截面积。

同样,磁感应强度B也不是由F、I、L来决定的,而是由磁极产生体本身的属性。

如果同学们有时间,可以把静电场中电容的两个公式来对比着复习、巩固下。

B为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则(左手定则)。

描述磁感应强度的磁感线在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。

磁感线是闭合曲线。

规定小磁针的北极所指的方向为磁感线的方向。

磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S极到N极。

磁感线都有哪些性质呢?⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。

⒉磁感线是闭合曲线;磁铁的磁感线,外部从N指向S,内部从S 指向N;⒊磁感线的疏密表示磁感应强度的强弱,磁感线上某点的切线方向表示该点的磁场方向。

⒋任何两条磁感线都不会相交,也不能相切。

磁感线(不是磁场线)的性质最好与电场线的性质对比来记忆。

磁感应强度B的所有计算式磁感应强度B=F/IL磁感应强度B=F/qv磁感应强度B=ξ/Lv磁感应强度B=Φ/S磁感应强度B=E/v其中,F:洛伦兹力或者安培力q:电荷量v:速度ξ:感应电动势E:电场强度Φ:磁通量S:正对面积磁通量磁通量是闭合线圈中磁感应强度B的累积。

高中磁通量的原理

高中磁通量的原理

高中磁通量的原理
高中电磁学中的磁通量是描述磁场强度的物理量。

它表示通过一个面积的磁场线数目,也可以看作磁场线的流量。

磁通量的计算基于法拉第电磁感应定律,该定律表明当一个导线在磁场中运动时,磁通量的变化会诱导出电动势。

而磁通量的计算公式为:
Φ= B ×A ×cosθ
其中,Φ表示磁通量,B表示磁感应强度(单位:特斯拉),A表示面积(单位:平方米),θ表示磁场线与面积法线的夹角。

这个公式可以解释为,在给定的面积上,磁场线的数量与磁感应强度、面积的乘积以及夹角的余弦成正比。

夹角的余弦代表了磁场线与面积法线的相对方向,当它们完全平行时取1,垂直时取0。

磁通量的单位是韦伯(Wb),1 Wb等于1特斯拉乘以1平方米。

在国际单位
制中,磁通量的单位也可以表示为伏特秒(V·s),因为它与电动势存在直接关系。

磁通量的概念在各种电磁学和电路问题中都有广泛应用。

例如,在变压器中,通过变化磁通量可实现电压的变换;在感应电动机中,磁通量的变化可驱动转子;
在电磁传感器中,磁通量的测量可用于检测磁场的变化等等。

第13章 第2节 磁感应强度 磁通量 新教材高中物理必修第三册(人教版)(解析版)

第13章 第2节 磁感应强度 磁通量  新教材高中物理必修第三册(人教版)(解析版)

第2节磁感应强度磁通量课程内容要求核心素养提炼1.知道磁感应强度的定义、物理意义及单位.2.知道磁通量,通过计算磁通量的大小进一步了解定量描述磁场的方法.1.物理观念:磁感应强度、匀强磁场、磁通量.2.科学思维:(1)理解磁感应强度的概念.(2)应用公式计算磁通量.一、磁感应强度1.定义:在磁场中垂直于磁场方向的通电导线受到的磁场力F 跟电流I 和导线长度l 的乘积Il 的比值叫作通电导线所在处的磁感应强度.2.定义式:B =F Il.3.单位:特斯拉,简称特,符号为T ,1_T =1N A·m.二、匀强磁场1.定义:磁场中各点的磁感应强度的大小相等、方向相同的磁场.2.磁感线:间隔相等的平行直线.3.实例:距离很近的两个平行的异名磁极间的磁场,相隔适当距离的两平行放置的通电线圈中间区域的磁场都是匀强磁场.[判断](1)通电导线在磁场中受到的磁场力为0,则说明该处的磁感应强度为0.(×)(2)磁感应强度的大小与电流成反比,与其受到的磁场力成正比.(×)(3)磁感应强度的大小等于通电导线受到的磁场力大小F 与电流I 和导线长度l 的乘积的比值.(×)三、磁通量1.定义:匀强磁场磁感应强度B 与和磁场方向垂直的平面面积S 的乘积,即Φ=BS .2.单位:韦伯,简称韦,符号是Wb .1Wb =1T·m 2.3.引申:B =ΦS,因此磁感应强度的大小等于穿过垂直磁场方向的单位面积的磁通量.[思考]若通过某面积的磁通量等于0,则该处一定无磁场,你认为对吗?提示不对.磁通量除与磁感应强度、面积有关外,还与环面和磁场夹角有关,当环面与磁场平行时,磁通量为0,但磁场仍存在.探究点一磁感应强度的理解和叠加观察如图所示的“探究影响通电导线受力的因素”的实验,思考以下几个问题:(1)实验装置中,通电导线应如何放入磁场中?为什么?(2)通过实验总结通电直导线受力大小与导线长度、电流大小的关系.提示(1)通电导线应垂直放入磁场中.只有通电导线与磁场方向垂直时,它所受磁场力才最大,此时磁场力F 与电流和导线长度的乘积Il 的关系最简单.(2)当通电直导线与磁场方向垂直时,它受力的大小既与导线的长度l 成正比,又与导线中的电流I 成正比,即与I 和l 的乘积Il 成正比.即F Il 是一个恒量.1.对磁感应强度的认识(1)磁感应强度的大小:磁感应强度的大小反映该处磁场的强弱,它的大小取决于场源以及在磁场中的位置.(2)磁感应强度是用比值法定义的即B =F Il,但B 的大小由磁场本身决定,与F 、Il 的大小没有关系.(3)磁感应强度的方向:磁感应强度的方向就是该处磁场的方向,规定为小磁针静止时N 极的指向,也可以表示为磁感线在该点的切线方向.2.磁场的叠加:由于磁感应强度是矢量,若某区域有多个磁场叠加,该区域中某点的磁感应强度就等于各个磁场在该点的磁感应强度的矢量和,可根据平行四边形法则求解.磁场中放一根与磁场方向垂直的通电直导线,它的电流是2.5A ,导线长1cm ,它受到的磁场力为5.0×10-2N .(1)求这个位置的磁感应强度大小;(2)若把通电导线中的电流增大到5A ,则求这个位置的磁感应强度大小.解析解题关键是只有当通电直导线垂直于磁场方向放置时,才能用B =F Il计算B 的大小.(1)由磁感应强度的定义式得B =F Il = 5.0×10-22.5×1×10-2T =2T .(2)磁感应强度B 是由磁场和空间位置(点)决定的,与导线的长度l 、电流I 的大小无关,所以该位置的磁感应强度大小还是2T .答案(1)2T (2)2T(多选)如图所示,三根平行的足够长的通电直导线A 、B 、C (电流方向如图)分别放置在一个等腰直角三角形的三个顶点上,其中AB 边水平,AC 边竖直.O 点是斜边BC 的中点,每根导线在O 点所产生的磁感应强度大小均为B 0,则下列说法正确的有()A .导线B 、C 在O 点产生的合磁感应强度大小为2B 0B .导线A 、B 、C 在O 点产生的合磁感应强度大小为B 0C .导线B 、C 在A 点产生的合磁感应强度方向由A 指向OD .导线A 、B 在O 点产生的合磁感应强度方向水平向右ACD [导线B 、C 在O 点产生的磁场方向相同,磁感应强度叠加后大小为2B 0,选项A 正确;三根平行的通电直导线在O 点产生的磁感应强度大小相等,B 合=(B 0)2+(2B 0)2=5B 0,选项B 错误;导线B 、C 在A 点产生的总的磁感应强度的方向是两个磁场叠加后的方向,方向由A 指向O ,选项C 正确;根据安培定则和矢量的叠加原理,导线A 、B 在O 点产生的总的磁感应强度的方向水平向右,选项D 正确.][训练1]关于磁感应强度,下列说法正确的是()A .由B =F Il可知,B 与电流强度I 成反比B .由B =F Il可知,B 与电流受到的安培力F 成正比C .垂直磁场放置的通电导线的受力方向就是磁感应强度方向D .磁感应强度的大小、方向与放入磁场的通电导线的电流大小、长度、导线放置方向等均无关D[磁感应强度B=FIl是采用比值法定义的,B与F、I无关,由磁场本身属性决定,故选项A、B错误,选项D正确;垂直于磁场方向放置的通电导线的受力方向与磁感应强度的方向垂直,故选项C错误.][训练2](2020·浙江卷)特高压直流输电是国家重点能源工程.如图所示,两根等高、相互平行的水平长直导线分别通有方向相同的电流I1和I2,I1>I2.a、b、c三点连线与两根导线等高并垂直,b点位于两根导线间的中点,a、c两点与b点距离相等,d点位于b点正下方.不考虑地磁场的影响,则()A.b点处的磁感应强度大小为0B.d点处的磁感应强度大小为0C.a点处的磁感应强度方向竖直向下D.c点处的磁感应强度方向竖直向下C[电流周围的磁场截面图如图所示,因I1>I2,则离导线相同距离处B1>B2.由磁感应强度的叠加可以看出,a处的磁感应强度方向竖直向下,大小为两电流在a处磁感应强度的同向叠加;b处的磁感应强度大小为B b1-B b2,方向竖直向上;c处磁感应强度方向为竖直向上,大小为两电流在该处磁感应强度同向叠加;d处磁感应强度不为0.故答案为C.]探究点二磁通量的理解和计算如图所示,当磁场方向与平面成θ角时,磁通量的表达式是怎样的?当磁场方向与平面平行时,磁通量是多少?提示Φ=BS sinθ01.磁通量的计算(1)公式:Φ=BS.适用条件:①匀强磁场;②磁感线与平面垂直.(2)在匀强磁场中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积.2.磁通量的正负(1)磁通量是标量,但有正负,当磁感线从某一面上穿入时,磁通量为正值,磁感线从此面穿出时即为负值.(2)若同时有磁感线沿相反方向穿过同一平面,且正向磁通量为Φ1,反向磁通量为Φ2,=Φ1-Φ2.则穿过该平面的磁通量Φ总3.磁通量的变化量(1)当B不变,有效面积S变化时,ΔΦ=B·ΔS.(2)当B变化,有效面积S不变时,ΔΦ=ΔB·S.(3)B和S同时变化,则ΔΦ=Φ2-Φ1.但此时ΔΦ≠ΔB·ΔS.(4)匀强磁场中与磁场垂直的线圈磁通量为BS.当线圈转过180°时,磁通量的变化量ΔΦ=2BS.如图所示,有一个垂直于纸面向里的匀强磁场,磁感应强度B=0.8T,磁场有明显的圆形边界,圆心为O,半径为10cm,现在在纸面内先后放上圆线圈A、B和C(图中未画出),圆心均在O点处,A线圈的半径为1cm,共10匝;B线圈的半径为2cm,只有1匝;C线圈的半径为0.5cm,只有1匝.(1)在磁感应强度B减为0.4T的过程中,A和B线圈中的磁通量改变了多少?(2)在磁场方向转过30°角的过程中,C线圈中的磁通量改变了多少?解析(1)对A线圈,有Φ1=B1πr2A,Φ2=B2πr2A故A线圈的磁通量的改变量为ΦA=|Φ2-Φ1|=(0.8-0.4)×3.14×(1×10-2)2Wb=1.256×10-4WbB线圈的磁通量的改变量为ΦB=(0.8-0.4)×3.14×(2×10-2)2Wb=5.024×10-4Wb.(2)对C线圈,Φ1=Bπr2C磁场方向转过30°角,线圈在垂直于磁场方向的投影面积为πr2C cos30°,则Φ2=Bπr2C cos 30°故磁通量的改变量为ΔΦC=Bπr2C(1-cos30°)=0.8×3.14×(5×10-3)2×(1-0.866)Wb=8.4×10-6Wb.答案(1)1.256×10-4Wb 5.024×10-4Wb(2)8.4×10-6Wb[变式]在[例3]中,若将线圈A转过180°角的过程中,A线圈中的磁通量改变了多少?解析若转过180°角时,磁通量的变化为ΔΦ=2BS=2×0.8×3.14×(1×10-2)2Wb=5.024×10-4Wb.答案 5.024×10-4Wb[题后总结]多角度判断磁通量大小1.定量计算通过公式Φ=BS来定量计算,计算磁通量时应注意的问题:(1)明确磁场是否为匀强磁场,知道磁感应强度的大小.(2)平面的面积S应为磁感线通过的有效面积.当平面S与磁场方向不垂直时,应明确所研究的平面与磁感应强度方向的夹角,准确找出垂直面积.(3)线圈的磁通量及其变化与线圈匝数无关,即磁通量的大小不受线圈匝数的影响.2.定性判断磁通量是指穿过线圈面积的磁感线的“净条数”,当有不同方向的磁场同时穿过同一面积时,此时的磁通量为各磁场穿过该面磁通量的代数和.[训练3]如图所示,一个闭合线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度为B,用下述哪个方法可使穿过线圈的磁通量增加一倍()A.把线圈的匝数增加一倍B.把线圈的面积增加一倍C.把线圈的半径增加一倍D.转动线圈使得轴线与磁场方向平行B[把线圈的匝数增加一倍,穿过线圈的磁感线的条数不变,磁通量不变,故选项A 错误;根据Φ=BS sinθ,把线圈的面积增加一倍,可使穿过线圈的磁通量增加一倍,故选项B正确;把线圈的半径增加一倍,线圈的面积S=πR2变为原来的4倍,磁通量变为原来的4倍,故选项C错误;转动线圈使得轴线与磁场方向平行,相当于线圈转过30°,与磁场垂直,线圈面积在垂直B方向上的投影由S sin60°变为S,磁通量没有增加一倍,故选项D错误.]。

高中物理【电磁感应现象 楞次定律】知识点、规律总结

高中物理【电磁感应现象 楞次定律】知识点、规律总结

三、感应电流方向的判断 1.右手定则:伸开右手,使拇指与其余四个手指__垂__直__,并且都与 手掌在同一个平面内;让磁感线从掌心垂直进入,并使拇指指向 _导__线__运__动___的方向,这时四指所指的方向就是_感__应___电__流__的方向.如图 所示. 2.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要 _阻__碍___引起感应电流的_磁__通__量___的变化.
感应电流的磁场方向 __向__下__ __向__上__
3.实验结论 表述一:当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向_相__反___;当 穿过线圈的磁通量减少时,感应电流的磁场与原磁场的方向__相__同__. 表述二:当磁铁靠近线圈时,两者__相__斥__;当磁铁远离线圈时,两者_相__吸___.
四、电磁阻尼与电磁驱动
电磁阻尼
电磁驱动
由于导体在磁场中运动而产生感 由于磁场运动引起磁通量的变化而产
不 成因
应电流,从而使导体受到安培力 生感应电流,从而使导体受到安培力

安培力的方向与导体运动方向相 导体受安培力的方向与导体运动方向
点 效果
反,阻碍导体运动
相同,推动导体运动
电磁阻尼
电磁驱动
能量转化
第 1 讲 电磁感应现象 楞次定律
一、磁通量 1.概念:磁感应强度 B 与面积 S 的_乘__积___. 2.计算 (1)公式:Φ=__B_S___. (2)适用条件:①匀强磁场;②S 是_垂__直___磁场的有效面积. (3)单位:韦伯(Wb),1 Wb=___1__T_·_m_2_____. 3.意义:穿过某一面积的磁感线的__条__数__. 4.标矢性:磁通量是_标__量___,但有正、负.
由于电磁感应,磁场能转化为电能,通 导体克服安培力做功,其他形式的

高中物理必修三(人教版)13.2磁感应强度 磁通量

高中物理必修三(人教版)13.2磁感应强度 磁通量

2.磁通量的正、负: (1)磁通量是标量,但有正、负,当磁感线从某一面穿入时,磁 通量为正值,则磁感线从此面穿出时即为负值.
(2)若磁感线沿相反方向穿过同一平面,且正向磁通量为 Φ1, 反向磁通量为 Φ2,则穿过该平面的磁通量 Φ=Φ1-Φ2.
警示 ①穿过线圈的磁通量与线圈匝数无关. ②磁通量的正、负既不表示大小,也不表示方向,它是为了计 算“总”磁通量而人为规定的.
2.物理意义:可表示穿过某一面积的磁感线净条数(磁通量的
代数和).
3.表达式:Φ=___B_S____.
4.单位:韦伯(weber)简称____韦____,符号___W__b___.1 __W__b____
=1 T·m2.
Φ
5.B=____S____,表示磁感应强度的大小等于穿过垂直磁场方
向的单位面积的磁通量.
【思考辨析】
(1) 磁 感 应 强 度 是 矢 量 , 磁 感 应 强 度 的 方 向 就 是 磁 场 的 方 向.( √ )
(2)磁感应强度的方向与小磁针在任何情况下 N 极受力的方向 都相同.( √ )
(3)通电导线在磁场中受到的磁场力为零,则说明该处的磁感应 强度为零.( × )
(4)磁感应强度的大小与电流成反比,与其受到的磁场力成正 比.( × )
【解析】 在题图所示位置时,磁感线与线框平面垂直,Φ=
BS.当线框绕 OO′轴转过 60°时可以将原图改画成从上面向下看的
俯视图,如图所示,
Φ=BS⊥=BScos 60°=12BS. 转过 90°时,线框由与磁感线垂直变为与磁感线平行,Φ=0.
线框转过 180°时,磁感线仍然垂直穿过线框,只不过穿过的方
A.1:1 B.2:1 C. 2:1 D.1: 2

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应磁生电第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.1磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.2磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.3磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流;2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化;理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场Φ原方向及ΔΦ情况确定感应磁场B 感方向判断感应电流I 感方向.重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场; 2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值,即ΔΦ=|Φ2-Φ1|.例面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中磁场区域足够大,磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ=.解析设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsin θ减小到零,再由零增大到负向BScos θ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BScos θ+sin θ答案-BScos θ+sin θ点拨磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量. 二、感应电流方向的判定:方法一:右手定则部分导体切割磁感线;方法二:楞次定律例某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是D →→bB.先a →→b,后b →→a C.先b →→aD.先b →→a,后a →→b第二部分法拉第电磁感应定律一、感应电动势:在电磁感应现象中产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,感应电动势的方向就是电源内部电流的方向,由电源的负极指向电源的正极; 二、感应电动势的大小1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:nt∆ΦE =∆图9-1-3图9-1-1公式理解:①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时,t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算. ④由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤n 表示线圈的匝数,可以看成n 个单匝线圈串联而成; 2.导体切割磁感线产生的感应电动势公式:θsin Blv E =,对公式的理解如下:①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直实际应用中一般只涉及此种情况.②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+=,所以ω221Bl v Bl E==-3.反电动势:反电动势对电路中的电流起削弱作用.三、几个总结:重点难点解析一、公式nt∆ΦE =∆和sin Lv θE =B 的比较=n t∆∆Φ求的是回路中Δt 时间内的平均电动势.=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.1E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量.2122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.3E=nBS ωsin ωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt 3.公式nt∆ΦE =∆和E=BL v sin θ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方 便.二、Ф、ΔФ、ΔФ/Δt 三者的比较例一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成300角,若磁感应强度在内由增加到,则始末通过线圈的磁通量分别为Wb 和Wb;在此过程中穿过线圈的磁通量的变化量为Wb;磁通量的平均变化率为Wb/s;线圈中的感应电动势的大小为V.解析始、末的磁通量分别为:Φ1=B 1Ssin θ=×20×10-4×1/2Wb=10-4Wb Φ2=B 2Ssin θ=×20X10-4×1/2Wb=5×10-4Wb 磁通量变化量ΔΦ=Φ2-Φ1=4×10-4Wb磁通量变化率05.01044-=∆∆Φx t Wb/s=8×10-3Wb/s感应电动势大小nt∆ΦE =∆=200×8×10-3V=点拨Φ、ΔΦ、ΔΦ/Δt 均与线圈匝数无关,彼此之间也无直接联系;感应电动势Ε的大小取决于ΔΦ/Δt 和线圈匝数n,与Φ和ΔΦ无必然联系. 三、直导体在匀强磁场中转动产生的感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为:(1)以中点为轴时Ε=02以端点为轴时122L ωE =B 平均速度取中点位置线速度v =ωL/23以任意点为轴时122()122L L ωE =B -与两段的代数和不同第三部分互感和自感涡流一、互感与互感电动势1.互感现象:一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.2.互感电动势:在互感现象中产生的电动势叫做互感电动势. 二、自感现象1.自感现象:由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象.2.自感电动势1.定义:在自感现象中产生的电动势,叫做自感电动势. 2.作用:总是阻碍导体中原电流的变化.3.自感电动势的方向:自感电动势总是阻碍导体中原电流的变化.即当电流增大时,自感电动势阻碍电流增大;当电流减小时,自感电动势阻碍电流减小.4.自感电动势的大小:Lt∆I E =∆,自感电动势的大小与电流的变化率成正比,其中L 为自感系数.3.自感系数:自感系数也叫自感或电感.自感系数L 由线圈本身的特性决定.L 的大小与线圈的长度、线圈的横截面积等因素有关,线圈越长,单位长度的匝数越多,横截面积越大,自感系数L 越大.另外,若线圈中有铁芯,自感系数L 会大很多.4.自感现象与互感现象的区别和联系区别:1互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部; 2通过互感可以把能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放. 联系:二者都是电磁感应现象.通电自感和断电自感的比较例如图9-3-6所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其 直流电阻忽略不计.当电键K 闭合时,下列说法正确的是 比B 先亮,然后A 熄灭比A 先亮,然后B 逐渐变暗,A 逐渐变亮 、B 一齐亮,然后A 熄灭、B 一齐亮.然后A 逐渐变亮.B 的亮度不变 正解电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源,这样对整个回路图9-3-6图9-3-7而言相当于两个电源共同作用在同一个回路中.两个电源各自独立产生电流,实际上等于两个电流的叠加.根据上述原理可在电路中标出两个电源各自独立产生的电流的方向.图9-3-7a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图.由图可知在A灯处原电流与感应电流反向,故A灯不能立刻亮起来.在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流,故B灯比正常发光亮因正常发光时电流就是原电流.随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A灯变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光,应选B.三、三、涡流1.涡流:当线圈的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的漩涡,把它叫做涡电流,简称涡流.特点:整块金属的电阻很小,涡流往往很大.四.电磁阻尼与电磁驱动1电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动.注意:电磁阻尼与电磁驱动也是一种特殊的电磁感应现象,原理上都可以用楞次定律解释.五、电磁感应中的能量问题1.电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能量.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.解决这类问题的一般步骤:1用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向2画出等效电路,求出回路中电阻消耗电功率的表达式3分析导体机械能的变化,用动能定理或能量守恒关系,得到机械功率的改变所满足的方程。

高中物理公式大全(全集) 十五、电磁感应

高中物理公式大全(全集) 十五、电磁感应

十五、电磁感应1、磁通量设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B ,平面的面积为S ,如图所示。

一、知识网络二、画龙点睛概念(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量,简称磁通。

(2)公式:Φ=BS当平面与磁场方向不垂直时,如图所示。

Φ=BS⊥=BScosθ(3)物理意义物理学中规定:穿过垂直于磁感应强度方向的单位面积的磁感线条数等于磁感应强度B。

所以,穿过某个面的磁感线条数表示穿过这个面的磁通量。

(4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。

1Wb=1T·1m2=1V·s。

(5) 磁通密度:B=ΦS⊥磁感应强度B为垂直磁场方向单位面积的磁通量,故又叫磁通密度。

2、电磁感应现象(1)电磁感应现象:利用磁场产生电流的现象,叫做电磁感应现象。

(2)感应电流:在电磁感应现象中产生的电流,叫做感应电流。

(3)产生电磁感应现象的条件①产生感应电流条件的两种不同表述a.闭合电路中的一部分导体与磁场发生相对运动b.穿过闭合电路的磁场发生变化②两种表述的比较和统一a.两种情况产生感应电流的根本原因不同闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。

穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。

b.两种表述的统一两种表述可统一为穿过闭合电路的磁通量发生变化。

③产生电磁感应现象的条件不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。

条件:a.闭合电路;b.磁通量变化3、电磁感应现象中能量的转化能的转化守恒定律是自然界普遍规律,同样也适用于电磁感应现象。

3、感应电动势(1)定义:在电磁感应现象中产生的电动势,叫做感应电动势。

高中物理必修三 新教材 学习笔记 第13章 2 磁感应强度 磁通量

高中物理必修三 新教材 学习笔记 第13章 2 磁感应强度 磁通量

2磁感应强度磁通量[学习目标] 1.理解磁感应强度的概念,会利用磁感应强度的定义式进行相关计算(重点)。

2.知道什么是匀强磁场以及匀强磁场的特点。

3.学会根据平行四边形定则处理磁场叠加的问题(重难点)。

4.理解磁通量的概念,会计算磁通量的大小(难点)。

一、磁感应强度匀强磁场1.电场强度E的大小是通过试探电荷受力定义的,E=Fq。

能否用类似的方法,测量N极受力的大小来确定磁感应强度的大小?________________________________________________________________________________________________________________________________________________2.磁场还对通电导体有作用力,能否用很小一段通电导体来表示磁场的强弱?________________________________________________________________________________________________________________________________________________3.在利用如图所示装置进行“探究影响通电导线受力的因素”的实验时,我们更换磁性强弱不同的磁体,按实验步骤完成以下实验探究:保持I与l不变,按磁性从弱到强更换磁体,观察悬线摆动的角度变化,发现磁体磁性越强,悬线摆动的角度越大,表示通电导线受的力越______,力F与Il的比值越______,即B越____,这表示B能反映磁场的________。

1.磁感应强度(1)电流元:在物理学中,把很短一段通电导线中的________与________________的乘积________叫作电流元。

(2)定义:在磁场中________磁场方向的通电导线,所受的磁场力F跟________和________的乘积Il的比值叫磁感应强度。

2022年新教材高中物理13-2磁感应强度磁通量讲义新人教版必修第三册

2022年新教材高中物理13-2磁感应强度磁通量讲义新人教版必修第三册

2 磁感应强度磁通量1.理解磁感应强度B的定义,知道B的单位是特斯拉,会用磁感应强度的定义式进行有关计算;2.掌握匀强磁场;3.知道磁通量的物理意义和定义式。

1.磁感应强度的定义及理解。

2.磁感应强度的大小和方向的判断。

3.磁感应强度与电场强度的比较。

4.对磁通量的理解与计算。

一、磁感应强度1.电流元:很短一段通电导线中的电流I与导线长度l的乘积Il。

2.控制变量法探究影响通电导线受力的因素如图所示,三块相同的蹄形磁铁,并列放在桌上,直导线所在处的磁场认为是均匀的。

(1)保持长度不变,改变电流大小,观察直导线摆动角度大小来比较磁场力大小。

(2)保持电流大小不变,改变磁场中导线长度,通过观察直导线摆动角度大小比较磁场力大小。

(3)实验结论:直导线与磁场垂直时,它受力大小既与导线的长度l成正比,又与导线中的电流I成正比。

3.磁感应强度的大小在磁场中垂直于磁场方向放置的通电导线,所受的磁场力F跟电流I和导线长度l的乘积Il的比值叫磁感应强度。

4.公式:B=FIl。

5.单位:国际单位是特斯拉,简称特,国际符号是T,1 T=1NA·m。

二、匀强磁场1.定义:各点的磁感应强度的大小相等、方向相同的磁场。

2.磁感线特点:间隔相等的平行直线。

三、磁通量1.定义:匀强磁场中磁感应强度和与磁场方向垂直的平面面积S 的乘积,即Φ=BS 。

2.拓展:磁场B 与研究的平面不垂直时,这个面在垂直于磁场B 方向的投影面积S ′与B 的乘积表示磁通量。

3.单位:国际单位制是韦伯,简称韦,符号是Wb ,1 Wb =1 T·m 2。

4.引申:B =ΦS,表示磁感应强度等于穿过单位面积的磁通量,因此磁感应强度B 又叫磁通密度。

知识点一 对磁感应强度的理解1.公式B =F Il是磁感应强度的定义式,是用比值法定义的,磁感应强度B 的大小只决定于磁场本身的性质,而与F 、I 、l 均无关。

2.在定义式B =F Il中,通电导线必须垂直于磁场方向放置。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.(1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.(2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.(3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流。

2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化。

理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况)确定感应磁场(B 感方向)判断感应电流(I 感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场。

教科版高中物理必修第三册第三章第2节磁感应强度 磁通量

教科版高中物理必修第三册第三章第2节磁感应强度 磁通量

Sa=Sb,Ba>Bb,Φa> Φb
有什么关系?
Ba=Bc, Sa<Sc,Φa< Φc
Φ与S成正比
Φ与B和S的乘积成正比
a
b
条件:匀强磁场,B⊥S
c
四、磁通量 BS BS sin a
1.定义:在磁感应强度为B的匀强磁场中,有一块垂直磁 感线方向的面积为S的平面,我们定义BS为通过这个面的
④多匝线圈的磁通量与线圈匝数有关,如果线框有 n 匝,穿过每匝线框的磁通量为 Φ,则穿过整个线框 的磁通量为 nΦ.
Φ总=nΦ
⑤若同时有磁感线沿相反方向穿过同一平面,且正向 磁通量为Φ1,反向磁通量为Φ2,则穿过该平面的磁 通量Φ=Φ1-Φ2(表达式中Φ1和Φ2指磁通量的大小).
7.磁通量的变化量(△Φ=Φ2-Φ1) (1)当B不变,有效面积S变化时,ΔΦ=B·ΔS. (2)当B变化,S不变时,ΔΦ=ΔB·S. (3)B和S同时变化,则ΔΦ=Φ2-Φ1.但此时 ΔΦ≠ΔB·ΔS.
特别提醒: 计算穿过某面的磁通量变化量时,要注意
前、后磁通量的正、负值,如原磁通量Φ1= BS,当平面转过180°后,磁通量Φ2=-BS, 磁通量的变化量ΔΦ=|Φ2-Φ1|=2BS.
五、利用安培力测定磁感应强度 1.实验原理
1.为了使测量过程简单,(1)矩形线框所在的平面要与N极、S极的连线
垂直 ;(2)矩形线框的短边要 全部 放在N,S极之间的区域中.
2.当电路未接通时弹簧测力计的读数为F0,它表示的是 矩形线框的重力 . 3.接通电路开关,调节滑动变阻器的滑片使电流表指针在某一数值I1,此时 弹簧测力计的读数为F1. 4.由此得出磁场对矩形线框位于磁场中的一条边的作用力的大小为
F1-F0
2.单位:_韦__伯__,简称韦,符号_W__b_,1_W__b_=1

物理必修三 13.2《磁感应强度 磁通量》

物理必修三 13.2《磁感应强度 磁通量》

13.2磁感应强度 磁通量一、教材分析《磁感应强度 磁通量》是普通高中教科书物理必修第三册第十三章第2节的内容。

磁感应强度是描述磁场力的性质的物理量,其概念的建立是本节课的重难点。

本节内容用电流元受的电场力与电流元的比值定义磁感应强度,和用电荷受到的电场力与电量之比定义电场强度与异曲同工之妙。

教材通过对电流元的受力F 与IL 的比值来定义磁感应强度,但必须注意导线与磁场要垂直放置。

另外磁感应强度B 是矢量,可以分解,我们就能对安培力公式作进一步的推广,并就此能解决有安培力参与下的力学问题的分析。

磁通量是中学生遇到的唯一一个“通量”,对学生而言难度相当大,通过穿过面磁感线条数来理解就好很多。

二、学情分析学习本节之前,学生已对磁场及其描述有了初步了解,已经知道用磁感线定性描述磁场的方法,已经学习了电场可用电场线和电场强度来描述,这为本节课的类比教学奠定了基础。

三、教学目标1.物理观念:通过类比的方法理解描述磁场强弱的物理量。

理解磁通量的含义及会使用公式计算。

2.科学思维:孤立的磁极和电流元是不存在的,电流元受到的磁场力可以用微元法测量。

3.科学探究:对于磁通量的理解可以做光通量的实验来类比探究。

4.科学态度与责任:通过观察生活实例、交流与讨论等学习活动,培养学生尊重客观事实、实事求是的科学态度以及学生体验物理与生活的紧密联系。

四、教学重点磁感应强度的物理意义。

五、教学难点磁感应强度概念的建立,磁通量的计算。

六、教学流程七、教学过程(一)创设情境,引入新课播放动图观察:巨大的电磁铁能吸起成吨的钢铁,小磁体却只能吸起几枚铁钉。

阐述:磁场有强弱之分,那么我们怎样定量地描述磁场的强弱呢?创设情境 引入新课 层层设问 得出概念 实验观察 理论推导 类比分析 迁移应用 课堂小结查漏补缺之前我们研究过电场,磁场和电场有很多相似的地方,电场对于处于其中的电荷有力的作用,通过这个力引入了电场强度。

(二)层层设问,得出概念用类似的方法,通过分析磁场中磁体或电流的受力,我们可以找出一个物理量来描述磁场的强弱和方向。

物理高中电磁学公式

物理高中电磁学公式

物理高中电磁学公式高中物理中的电磁学公式,那可是相当重要的“法宝”,在解决各种电磁学问题时,它们就是我们手中的利剑。

咱先来说说库仑定律,这可是电磁学中的基础公式之一。

库仑定律描述了真空中两个静止点电荷之间的相互作用力,其表达式为 F = k *q1 * q2 / r²。

这里的 F 表示库仑力,k 是库仑常量,q1 和 q2 分别是两个点电荷的电荷量,r 是它们之间的距离。

我记得有一次在课堂上,老师给我们出了一道题,就是让我们计算两个带不同电荷量的小球之间的库仑力。

当时同学们都在埋头苦算,我也不例外。

我心里想着:“可千万别算错了,这库仑定律可得用对了。

”我认真地把数值代入公式,一步步计算,最后得出了答案。

当老师公布正确答案的时候,我发现自己算对了,那种成就感,别提多棒了!再来说说电场强度的公式 E = F / q ,这个公式表明了电场中某点的电场强度等于置于该点的试探电荷所受的电场力F 与电荷量q 的比值。

还有一个特别重要的公式——法拉第电磁感应定律,E = nΔΦ/Δt 。

这个公式在电磁感应现象中可是起着关键作用。

n 表示线圈匝数,ΔΦ表示磁通量的变化量,Δt 表示变化所用的时间。

记得有一次做实验,我们用一个线圈在磁场中运动,然后通过测量相关数据来验证法拉第电磁感应定律。

那时候,大家都全神贯注地盯着仪器,记录着数据,生怕出一点差错。

当最终的实验结果和我们根据公式计算出来的结果相符时,整个实验室都充满了欢呼声。

还有安培力的公式 F = BIL ,其中 B 是磁感应强度,I 是电流强度,L 是导线在磁场中的有效长度。

这个公式在研究通电导线在磁场中的受力情况时经常用到。

洛伦兹力的公式 f = qvB 也不能忘,q 是电荷量,v 是带电粒子的速度,B 是磁感应强度。

在学习电磁学公式的过程中,我发现理解它们的物理意义和适用条件是至关重要的。

不能死记硬背,得通过大量的练习题和实际例子来加深对它们的理解和运用。

高中物理基础知识及例题(学案) 磁感应强度

高中物理基础知识及例题(学案) 磁感应强度

第二节磁感应强度[学习目标] 1.理解磁感应强度的概念,知道磁感应强度是描述磁场强弱和方向的物理量.会利用磁感应强度定义式计算其大小.2.知道什么是匀强磁场,知道匀强磁场磁感线的特点.3.理解磁通量的概念,会计算磁通量的大小.一、磁感应强度的方向磁感应强度的方向就是磁场方向,也就是小磁针____极受力的方向,即小磁针静止时______极所指的方向.二、磁感应强度的大小1.定义:当通电导线与磁场________时,通电导线所受磁场的作用力F与电流I和导线长度L的________之比,称为磁感应强度.2.定义式:B=________.3.单位:________,简称______,符号是______,1 T=1 N/(A·m).三、匀强磁场1.磁感应强度大小、方向处处______的磁场.2.磁感线特点:匀强磁场的磁感线是间隔______的平行直线.四、磁通量1.定义:匀强磁场中______________和与磁场方向______的平面面积S的乘积.即Φ=BS. 2.单位:国际单位是______,简称韦,符号是______.3.引申:B=__________,表示磁感应强度的大小等于穿过垂直磁场方向的单位面积的磁通量.1.判断下列说法的正误.(1)磁感应强度是矢量,磁感应强度的方向就是磁场的方向.()(2)磁感应强度的方向与小磁针在任何情况下N极受力的方向都相同.()(3)通电导线在磁场中受到的磁场力为零,则说明该处的磁感应强度为零.()(4)磁感应强度的大小与电流成反比,与其受到的磁场力成正比.()(5)穿过某一面积的磁通量为零,该处磁感应强度一定为零.()2.在匀强磁场中,一导线垂直于磁场方向放置,导线长度为0.1 m,导线中电流为5 A,若导线受到的磁场力大小为0.28 N,则磁感应强度大小为________T.一、磁感应强度导学探究在利用如图所示装置进行“探究影响通电导线受力的因素”的实验时,我们更换磁性强弱不同的磁体,按实验步骤完成以下实验探究:保持I与L不变,按磁性从弱到强改换磁体,观察悬线摆动的角度变化,发现磁体磁性越强,悬线摆动的角度越大,表示通电导线受的力越__________________,力F与IL的比值越________________,即B越________________,这表示B能反映磁场的______________.知识深化1.磁感应强度的定义式B=EIL也适用于非匀强磁场,这时L应很短,IL称为“电流元”,相当于静电场中的“试探电荷”.2.磁感应强度是反映磁场强弱的物理量,它是用比值定义法定义的物理量,由磁场自身决定,与是否引入电流元、引入的电流元是否受力及受力大小无关.3.磁感应强度的方向可以有以下几种表述方式:(1)小磁针静止时N极所指的方向,即N极受力的方向.(2)小磁针静止时S极所指的反方向,即S极受力的反方向.(3)磁感应强度的方向就是该点的磁场方向.[深度思考]磁感应强度的定义式B=FIL是否在任何时候都成立,而与导线放置方式无关?例1关于磁感应强度,下列说法中正确的是()A.由B=FIL可知,B与F成正比、与IL成反比B.通电导线放在磁场中的某点,那点就有磁感应强度,如果将通电导线拿走,那点的磁感应强度就为零C.通电导线所受磁场力不为零的地方一定存在磁场,通电导线不受磁场力的地方一定不存在磁场D.磁场中某一点的磁感应强度由磁场本身决定,其大小和方向是唯一确定的,与是否放入通电导线无关1.在定义式B=FIL中,通电导线必须垂直于磁场方向放置.因为磁场中某点通电导线受力的大小,除和磁场强弱有关以外,还和导线的方向有关,导线放入磁场中的方向不同,所受磁场力一般不相同.2.B的大小与F、I、L无关:通电导线受力为零的地方,磁感应强度B的大小不一定为零,可能是由于电流方向与B的方向在一条直线上.例2磁场中放一根与磁场方向垂直的通电导线,通过它的电流是2.5 A,导线长1 cm,它受到的磁场力为5.0×10-2 N.求:(1)这个位置的磁感应强度大小;(2)当把通电导线中的电流增大到5 A时,这一位置的磁感应强度大小;二、磁通量导学探究如图所示,一矩形线框从abcd位置移动到a′b′c′d′位置的过程中(线框平行于纸面移动,线框与导线相互绝缘),中间是一条电流向上的通电导线,请思考:(1)导线左边的磁场方向向哪?右边呢?(2)在移动过程中,当线框的一半恰好通过导线时,穿过线框的磁感线条数有何特点?知识深化1.磁通量的计算(1)公式:Φ=BS.适用条件:①匀强磁场;②磁感线与平面垂直.(2)若磁感线与平面不垂直,则Φ=BS cos θ.其中S cos θ为面积S在垂直于磁感线方向上的投影面积S1,如图所示.2.磁通量的正、负(1)磁通量是标量,但有正、负,当磁感线从某一面穿入时,磁通量为正值,则磁感线从此面穿出时磁通量为负值.(2)若磁感线沿相反方向穿过同一平面,且正向磁通量为Φ1,反向磁通量为Φ2,则穿过该平面的磁通量Φ=Φ1-Φ2.3.磁通量的变化量(1)当B不变,有效面积S变化时,ΔΦ=B·ΔS.(B、S相互垂直时)(2)当B变化,S不变时,ΔΦ=ΔB·S.(B、S相互垂直时)(3)B和S同时变化,ΔΦ=Φ2-Φ1.4.磁通量可用穿过某一平面的磁感线条数表示.若有磁感线沿相反方向穿过同一平面,则磁通量等于穿过该平面的磁感线的净条数(磁通量的代数和).例3如图所示,线圈平面与水平方向夹角θ=60°,磁感线竖直向下,线圈平面面积S=0.4 m2,匀强磁场磁感应强度B=0.6 T,则:(1)穿过线圈的磁通量Φ为多少?把线圈以cd为轴顺时针转过120°角,则通过线圈磁通量的变化量为多少?(2)若θ=90°,穿过线圈的磁通量为多少?当θ为多大时,穿过线圈的磁通量最大?针对训练如图所示,正方形线圈abcd位于纸面内,边长为L,匝数为N,过ab中点和cd 中点的连线OO′恰好位于垂直纸面向里的匀强磁场的右边界上,匀强磁场的磁感应强度为B,穿过线圈的磁通量为Φ,若线圈绕OO′轴转过60°的过程中,磁通量的变化量为ΔΦ,则Φ和ΔΦ的大小分别为()A.BL 22,BL 24B.NBL 22,NBL 24C .BL 2,BL 22D .NBL 2,NBL 22三、磁感应强度矢量的叠加磁感应强度是矢量,当空间存在几个磁体(或电流)时,每一点的磁场等于各个磁体(或电流)在该点产生磁场的矢量和.磁感应强度叠加时遵循平行四边形定则.例4 (2022·广州市高二期末)如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将N 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A.3∶1B.3∶2 C .1∶1D .1∶2磁场叠加问题的解决思路1.应用安培定则判断各电流在某点分别产生的磁感应强度的方向(过该点磁感线的切线方向,即与点和导线的连线垂直).2.根据平行四边形定则,利用合成法或正交分解法进行合成,求得合磁感应强度. 例5 (2022·茂名市高二期末)如图所示,一根通电直导线垂直放在磁感应强度大小为B =1 T 的匀强磁场中,以导线为中心,R 为半径的圆周上有a 、b 、c 、d 四个点,已知c 点的实际磁感应强度为0,则下列说法正确的是( )A .直导线中电流方向垂直纸面向里B .a 点的磁感应强度为 2 T ,方向向右C .b 点的磁感应强度为 2 T ,方向斜向下,与原匀强磁场方向成45°角D .d 点的磁感应强度为0第二节 磁感应强度探究重点 提升素养 一、 导学探究 大 大 大 强弱[深度思考] 不是.定义式B =F IL 在导线与磁场垂直时才成立,不垂直时,B =FIL 不成立.例1 D [磁感应强度B =FIL 只是定义式,而不是决定式,磁感应强度B 是由磁场本身决定的,与有无通电导线放入其中无关,故A 、B 错误,D 正确;当通电导线平行于磁场方向放置时,通电导线所受到的磁场力为零,而此处的B ≠0,故C 错误.] 例2 (1)2 T (2)2 T解析 (1)由磁感应强度的定义式得 B =FIL = 5.0×10-22.5×1×10-2T =2 T.(2)磁感应强度B 是由磁场本身决定的,和导线的长度L 、电流I 的大小无关,所以该位置的磁感应强度大小还是2 T. 二、 导学探究(1)导线左边的磁场方向垂直纸面向外,右边的磁场方向垂直纸面向里.(2)当线框的一半恰好通过导线时,穿过线框垂直纸面向外的磁感线条数与垂直纸面向里的磁感线条数相同. 例3 (1)0.12 Wb 0.36 Wb (2)0 0 解析 (1)线圈在垂直磁场方向上的投影面积 S ⊥=S cos 60°=0.4×12m 2=0.2 m 2穿过线圈的磁通量Φ1=BS ⊥=0.6×0.2 Wb =0.12 Wb.线圈以cd 为轴顺时针方向转过120°角后变为与磁场垂直,但由于此时磁感线从线圈平面穿入的方向与原来相反,故此时通过线圈的磁通量Φ2=-BS =-0.6×0.4 Wb =-0.24 Wb. 故磁通量的变化量ΔΦ=|Φ2-Φ1|=|-0.24-0.12| Wb =0.36 Wb.(2)当θ=90°时,线圈在垂直磁场方向上的投影面积S ⊥′=0,据Φ=BS ⊥知,此时穿过线圈的磁通量为零.当θ=0时,线圈平面与磁场垂直,此时S ⊥″=S ,穿过线圈的磁通量最大. 针对训练 A [在题图所示位置,穿过线圈的磁通量Φ=BS =BL 22,当线圈绕OO ′轴转过60°时,穿过线圈的磁通量为Φ1=BS cos 60°=BL 24,则此过程中磁通量的变化量大小为ΔΦ=|Φ1-Φ|=|BL 24-BL 22|=BL 24,则Φ和ΔΦ的大小分别为BL 22、BL 24,选项A 正确.]例4 D [根据右手定则可知,导线在M 和N 处时,每根导线在O 点产生的磁感应强度为B 12,方向竖直向下;根据右手定则可知,将N 处长直导线移至P 处时,N 在O 点的场强斜向左上方,与竖直方向的角度为60°,M 在O 点的场强竖直向下,则O 点合磁感应强度大小为 B 2=2×B 12×cos 120°2=B 12,则B 2与B 1之比为1∶2.故选D.]例5 C [由c 点磁感应强度为0可得,电流在c 点产生的磁场的磁感应强度大小B ′=B =1 T ,方向水平向左,由安培定则可知导线中电流方向垂直纸面向外,电流在a 、b 、d 各点产生的磁场方向分别为向右、向下、向上,且磁感应强度大小均为1 T ,故对于a 点,B a =2 T ,对于b 点,B b = 2 T ,方向斜向右下方,与匀强磁场方向成45°角,对于d 点,B d = 2 T ,方向斜向右上方,与匀强磁场方向成45°角,故C 正确,A 、B 、D 错误.]。

浅谈线圈磁通量的计算

浅谈线圈磁通量的计算

浅谈线圈磁通量的计算对于一个匝数为N ,截面积为S 的线圈,置于磁感强度为B 的匀强磁场中,线圈截面垂直于磁场方向,则穿过该线圈的磁通量为多少?计算穿过线圈的磁通量竟是用BS Φ=还是用NBS Φ=?对于这个问题,许多资料强调:穿过线圈的磁通量与匝数无关,也就是磁通量不受线圈匝数的影响.同理,磁通量的变化率也不受线圈匝数的影响[1]。

下面举一个例子,2009年广州一模的物理卷中有这样一道题:例1(2009广州一模·9)如图所示,原、副线圈匝数比为2:1的理想变压器正常工作时( )A .原、副线圈磁通量之比为2:1B .原、副线圈电流之比为1:2C .输入功率和输出功率之比为1:1D .原、副线圈磁通量变化率之比为1:1标准答案是BCD ,B 和C 两个选项是没有问题的。

下面讨论一下A 选项和D 选项: 对于理想变压器,穿过原副线圈每一匝的磁通量是相同的,即12Φ=Φ,同样,原副线圈每一匝的磁通量变化率也是相同的,即12t t∆Φ∆Φ=∆∆.因此,对变压器原、副线圈的每一匝来说,应该有磁通量之比为1:1,磁通量变化率之比也为1:1. 但选项中提到的是原副线圈的磁通量、原副线圈的磁通量变化率. 按照题目的意思,原副线圈不是单匝的线圈,穿过它每一匝的磁通量和穿过线圈的磁通量这两种说法有没有什么区别呢?按照许多资料和参考书的说法,线圈的磁通量与匝数无关,也就是磁通量不受线圈匝数的影响。

同理,磁通量的变化率也不受线圈匝数的影响,则选项D 是正确的,A 是错误的。

通过这个例题可以看出,现在高中的物理教学中,普遍认为线圈的磁通量与匝数无关。

但对于穿过线圈每一匝的磁通量与穿过线圈的磁通量这两个概念,也有人认为是应该加以区别的:认为从线圈的整体角度讲,以公式Φ=NBS 计算所得结果,才应该是穿过线圈的磁通量,而以公式Φ=ΒS 计算所得结果则是穿过线圈截面的磁通量[2]。

论证方法如下:为简单起见,用实线表示软导线绕成一个两匝的闭合线圈,而用虚线表示“磁感线”穿过此线圈,如图1所示.将上述线圈拉展成圆形单匝闭合线圈,这时就会发现“磁感线”缠绕在圆形线圈上,如图2所示.从图2中不难看出“磁感线”反复两次单方向地穿过圆形单匝线圈,如同有两根磁感线同时穿过线圈一样,因而可形象地说产生的磁通量为“两条”,即一条磁感线穿过两匝闭合线圈的截面,使整个线圈产生的磁通量为“两条”,以此推想,一条磁感线穿过N匝闭合线圈截面,则穿过整个线圈的磁通量为“N”条.由此得出结论:从多匝闭合线圈的整体角度来看,穿过线圈的磁通量应等于穿过线圈截面的磁通量与线圈匝数的乘积,即Φ=N(BS),Φ也称作磁链或全磁通。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁通量 一、
磁通量的定义
穿过一个面的磁感线的条数
磁通量公式∅= B ·S,其中S 指垂直B 方向的面积
1、(2009年安徽卷)20.如图甲所示,一个电阻为R ,面积为S 的矩形导线框abcd ,水平旋转在匀强磁场中,磁场的磁感应强度为B ,方向与ad 边垂直并与线框平面成450角,o 、o’ 分别就是ab 与cd 边的中点。

现将线框右半边obco’ 绕oo’ 逆时针900到图乙所示位置。

在这一过程中,导线中通过的电荷量就是
A.
2BS 2R B.2BS R C.BS
R
D.0
答案:A
解析:对线框的右半边(obco ′)未旋转时整个回路的磁通量
12
BSsin 452
o
BS Φ==
对线框的右半边(obco ′)旋转90o 后,穿进跟穿出的磁通量相等,如右 图整个回路的磁通量20Φ=。

212BS 2∆Φ=Φ-Φ=。

根据公式22BS q R R
∆Φ==。

选A 二、S B ⋅=φ公式的理解 1、s 为磁场中的有效面积
2、合磁通
a
a
b b
c c
d
d B B 450
450


o
o
o / o /
b (
c )
o (o ′)
b (
c )o (o ′)
3、磁通量的方向
说明:磁通量就是标量,它的方向只表示磁感线就是穿入还就是穿出,当穿过某一面积的磁感线有穿入的又有穿出的时,二者将互相抵消一部分,这类似于导体带电时的“净”电荷。

条形磁铁
1、如图所示,在垂直于条形磁铁的轴线的同一平面内,有两个圆形线圈A 与B 。

问穿过这两个线圈的磁通量哪个大?
两条通电直导线
2、如下图所示,在两根平行长直导线M 、N 中,通过同方向同强度的电流、导线框ABCD 与两导线在同一平面内、线框沿着与两导线垂直的方向,自右向左在两导线间匀速移动、在移动过程中,线框中感生电流的方向:
1、沿ABCDA,不变、
2、沿ADCBA,不变、
3、由ABCDA 变形ADCBA 、
4、由ADCBA 变成ABCDA 、
通电螺线管
3、在水平放置的光滑绝缘杆ab 上,挂有两个金属环M 与N,两环套在一个通电密绕长螺线管的中部,如图所示、螺线管中部区域的管外磁场可以忽略、当变阻器的滑动接头向左移动时,两环将怎样运动?
A 、两环一起向左移动、
B 、两环一起向右移动、
C 、两环互相靠近、
D 、两环互相离开、

4、磁通量的改变量
12φφφ-=∆
磁通量就是双向标量,若设初始为正,则转过180︒时为负。

三、几种典型场的磁通量 条形磁铁
1.如右图所示,一水平放置的矩形闭合线圈abcd,在细长磁铁的N 极附近竖直下落,保持bc 边在纸外,ad 边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,位置Ⅰ与Ⅲ都很靠近Ⅱ、在这个过程中,线圈中感生电流: (1)沿abcd 流动、 (2)沿dcba 流动、
(3)由Ⅰ到Ⅱ就是沿abcd 流动,由Ⅱ到Ⅲ就是沿dcba 流动、 (4)由Ⅰ到Ⅱ就是沿dcba 流动,由Ⅱ到Ⅲ就是沿abcd 流动、。

相关文档
最新文档