西南大学中学代数2016年秋考试答案

合集下载

大学附中九年级数学上学期入学试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

大学附中九年级数学上学期入学试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

某某市西南大学附中2016-2017学年九年级(上)入学数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.请将答题卡上对应题目的正确答案标号涂黑.1.在,﹣2,π,这四个数中,无理数的个数是()A.1个B.2个C.3个D.4个2.下列图形中不是轴对称图形的是()A.B.C.D.3.下列计算结果正确的是()A.6x6÷2x3=3x2B.x2+x2=x4C.﹣2x2y(x﹣y)=﹣2x3y+2x2y2D.(﹣3xy2)3=﹣9x3y64.一个正多边形的内角和是1080°,则它是()边形.A.六B.七C.八D.九5.下列调查中,最适合采用普查方式的是()A.调查一批灯泡的使用寿命B.调查全国人民对延迟退休政策的态度C.调查某航班的旅客是否携带了违禁物品D.调查全国人民对里约奥运会的收视情况6.如图,直线AB∥CD,EF分别交AB、CD于点E、F,EM平分∠BEF,FM平分∠DFE,则∠EMF的度数为()A.70° B.80° C.90° D.100°7.若b=++1,则a﹣3b+1的值为()A.0 B.1 C.2 D.38.代数式有意义,则x的取值X围是()A.x>2 B.x≥﹣2 C.x≥﹣2且x≠0 D.x≥﹣2且x≠﹣19.如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣9πB.18﹣3πC.9﹣D.18﹣3π10.如图是由火柴棒搭成的几何图案,其中图形①中有4根火柴,图形②中有12根火柴,图形③中有24根火柴,则图形⑧中火柴的根数是()A.96 B.112 C.144 D.18011.甲、乙两位运动员在一段2000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y米,比赛时间是x秒,当两人都到达终点计时结束,整个过程中y与之间的函数图象是()A.B.C.D.12.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②4ac﹣b2=0;③a>2;④4a﹣2b+c>0.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据统计,到2015年末我国现有人口约为1375000000人,把1375000000用科学记数法表示为.14.计算:﹣22+(π﹣4)0++()﹣1=.15.因式分解:x2y2﹣y4的结果是.16.若直线y=(a﹣2)x+3﹣b不经过第一象限,化简:|a﹣2|++|3﹣b|=.17.若关于x的方程(m﹣3)x2+x+1=0有两个不等的实根,则m的取值X围为.18.如图,在正方形ABCD中,有一个△AMN,MA=NA,M、N分别在DC、BC上,连接BD、AC,若∠DAM=15°,则下列说法中:①MC=NC;② △AMN为等边三角形;③ AC⊥MN;④NP=AM;⑤若S△AMN=,则S△ABN=,正确的有个.三、解答题(本大题共2小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(7分)已知:如图,点E是线段AB的中点,∠A=∠B,∠AED=∠BEC.求证:CE=DE.20.(7分)已知:如图,在Rt△ABC中,∠C=90°,AC=.点D为BC边上一点,且BD=2AD,∠ADC=60°,求△ABC的周长(结果保留根号).四、解答题(本大题共4小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)计算:(1)(m﹣n)2+m(2n﹣m)+(m+n)(m﹣n)(2)÷(x﹣1﹣)﹣.22.(10分)在平面直角坐标系中,正比例函数y=(m+1)x+m﹣3与一次函数y=(2m+1)x ﹣m交于点A,(1)求m的值及点A的坐标;(2)过点A的直线l与坐标轴在第一象限围成等腰直角三角形,交y轴于点B,求△AOB的面积.23.(10分)第31届夏季奥林匹克运动会于2016年8月5日在巴西里约热内卢举行,里约热内卢成为奥运史上首个主办奥运会的南美洲城市,某经销商抓住商机在今年6月底购进了一批奥运吉祥物1160件,预计在7月份进行试销,购进价格为每件10元,若售价为12元/件,则可全部售出.若每涨价0.1元,销售量就减少2件.(1)求该经销商在7月份的销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,8月份该吉祥物进价比6月底的进价每件增加20%,该经销商增加了进货量,并加强了宣传力度,结果8月份的销售量比7月份在(1)的条件下的最低销售量增加了m%,但售价比7月份在(1)的条件下的最高售价减少m%,结果8月份利润达到3388元,求m的值(m>10).24.(10分)定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为(3×6)能被(3+6)整除;又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…(1)我们发现,3和6,4和12,5和20,6和30…,都是两个数的祖冲之数组;由此猜测n和n(n﹣1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想.(2)若(3a,4a,5a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.五、解答题(本大题共2小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(12分)如图1,在△ABC中,∠BAC=90°,AB=AC.(1)若点M为AC上的任意一点,过M作MN⊥BC于点N,取BM的中点D,连接AD、DM,求证:AD=DN.(2)如图2,若M为BC上的任意一点,以线段CM为底边作等腰Rt△M,此时,取BM的中点D,连接AD、DN,则AD与DN有怎样的数量关系?说明理由.(3)如图3,在(2)的条件下将Rt△MNC绕C点旋转任意角度,连接BM,取BM的中点D,再连接AD、DN,则(2)中的结论仍然成立吗,它们之间又有怎样的位置关系?请说明理由.26.(12分)如图,抛物线y=﹣x2+bx+c与直线y=mx+n相交于点A(1,8)和点B(5,4).(1)求抛物线和直线AB的解析式.(2)如图1,直线AB上方的抛物线上有一点P,过点P作PQ垂直于AB所在直线,垂足为Q,在x轴正半轴和y轴正半轴上分别有两个动点M和N,连接PN,NM,MB,BP.当线段PQ 的长度最大时,求四边形PNMB周长的最小值.(3)如图2,抛物线与y轴交于点C,直线AB交x轴于点E,点D(,0),连接CD,将CD所在的直线绕着点D顺时针旋转90°,所得直线交直线AB于点H,将直线DH沿着x 轴正方向平移得到直线D1H1,其中点H1为直线D1H1与直线AB的交点,D1为直线D1H1与x轴的交点,当点D1平移到点E时平移结束,连接BD1.当△BD1H1是等腰三角形时,试求出点D1的坐标.2016-2017学年某某市西南大学附中九年级(上)入学数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.请将答题卡上对应题目的正确答案标号涂黑.1.在,﹣2,π,这四个数中,无理数的个数是()A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列计算结果正确的是()A.6x6÷2x3=3x2B.x2+x2=x4C.﹣2x2y(x﹣y)=﹣2x3y+2x2y2D.(﹣3xy2)3=﹣9x3y6【考点】整式的混合运算.【分析】计算出各个选项中式子的正确结果然后对照即可解答本题.【解答】解:∵6x6÷2x3=3x3,故选项A错误;∵x2+x2=2x2,故选项B错误;∵﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;∵(﹣3xy2)3=﹣27x3y6,故选项D错误;故选C.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.4.一个正多边形的内角和是1080°,则它是()边形.A.六B.七C.八D.九【考点】多边形内角与外角.【分析】根据多边形内角和公式结合该多边形内角和为1080°,即可算出该多边形的边数,由此即可得出结论.【解答】解:(1080°+360°)÷180°=8,∴该正多边形为正八边形.故选C.【点评】本题考查了多边形内角与外角,解题的关键是牢牢掌握多边形内角和公式.5.下列调查中,最适合采用普查方式的是()A.调查一批灯泡的使用寿命B.调查全国人民对延迟退休政策的态度C.调查某航班的旅客是否携带了违禁物品D.调查全国人民对里约奥运会的收视情况【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:调查一批灯泡的使用寿命适合采用抽样调查方式;调查全国人民对延迟退休政策的态度适合采用抽样调查方式;调查某航班的旅客是否携带了违禁物品适合采用普查方式;调查全国人民对里约奥运会的收视情况适合采用抽样调查方式,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,直线AB∥CD,EF分别交AB、CD于点E、F,EM平分∠BEF,FM平分∠DFE,则∠EMF的度数为()A.70° B.80° C.90° D.100°【考点】平行线的性质.【分析】由于AB∥CD,那么直线AB、CD被直线EF所截得的同旁内角∠BEF、∠DFE互补,而ME、MF分别平分两角,故∠MEF、∠MFE的度数和为∠BEF、∠DFE的度数和的一半,于是得到结论.【解答】解:∵AB∥CD,∴∠BEF+∠DFE=180°;∵ME平分∠BEF、MF平分∠DFE,∴∠BEM=∠MEF,∠DFM=∠MFE,∴∠MEF+∠MFE=(∠BEF+∠DFE)=90°,∴∠EMF=90°.故选C.【点评】本题考查综合运用平行线的性质、角平分线的定义、三角形内角和等知识解决问题的能力.7.若b=++1,则a﹣3b+1的值为()A.0 B.1 C.2 D.3【考点】二次根式有意义的条件.【分析】根据二次根式有意义可得:,解不等式组可得a=2,进而可得b的值,然后可得答案.【解答】解:由题意得:,解得:a=2,则b=1,a﹣3b+1=2﹣3×1+1=0,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.8.代数式有意义,则x的取值X围是()A.x>2 B.x≥﹣2 C.x≥﹣2且x≠0 D.x≥﹣2且x≠﹣1【考点】二次根式有意义的条件.【分析】结合二次根式有意义的条件:(1)二次根式的概念.形如a(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值X围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.a(a≥0)是一个非负数.求解即可.【解答】解:∵代数式有意义,∴,∴x≥﹣2且x≠﹣1.故选D.【点评】本题考查了二次根式有意义的条件,解答本题的关键在于熟练掌握二次根式有意义的条件:(1)二次根式的概念.形如a(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值X围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.a(a≥0)是一个非负数.9.如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18﹣9πB.18﹣3πC.9﹣D.18﹣3π【考点】菱形的性质;扇形面积的计算.【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积﹣扇形DEFG的面积,根据面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°﹣60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=6×=3,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEFG的面积=6×3﹣=18﹣9π.故选:A.【点评】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10.如图是由火柴棒搭成的几何图案,其中图形①中有4根火柴,图形②中有12根火柴,图形③中有24根火柴,则图形⑧中火柴的根数是()A.96 B.112 C.144 D.180【考点】规律型:图形的变化类.【分析】先利用前面三个图形中火柴的根数得到规律,即图形n值火柴的根数为n×(2n+2),然后计算n=8时的值即可.【解答】解:图形①中火柴的根数为4=1×4=1×(2×1+2),图形②中火柴的根数为4=2×6=2×(2×2+2),图形③中火柴的根数为4=3×8=3×(2×3+2),所以图形⑧中火柴的根数为8×(2×8+2)=144.故选C.【点评】本题考查了规律型﹣图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.甲、乙两位运动员在一段2000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y米,比赛时间是x秒,当两人都到达终点计时结束,整个过程中y与之间的函数图象是()A.B.C.D.【考点】函数的图象.【分析】先算出甲到达终点的时间,由此算出二者之间的最大距离,再算出乙到达终点的时间,由此找出点的坐标,结合点的坐标利用待定系数法求出函数解析式,根据函数解析式分析四个选项即可得出结论.【解答】解:当甲跑到终点时所用的时间为:2000÷8=250(秒),此时甲乙间的距离为:2000﹣200﹣6×250=300(米),乙到达终点时所用的时间为:(2000﹣200)÷6=300(秒),∴最高点坐标为(250,300).设y关于x的函数解析式为y=kx+b,当0≤x≤100时,有,解得:,此时y=﹣2x+200;当100<x≤250时,有,解得:,此时y=2x﹣200;当250<x≤300时,有,解得:,此时y=﹣6x+1800.∴y关于x的函数解析式为y=.∴整个过程中y与之间的函数图象是B.故选B.【点评】本题考查了函数的图象,解题的关键是根据点的坐标利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.12.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②4ac﹣b2=0;③a>2;④4a﹣2b+c>0.其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】根据二次函数的图象以及顶点坐标,分别找出a、b、c之间的关系,对照4条结论判断其正确与否,由此即可得出结论.【解答】解:①∵抛物线开口朝上,∴a>0.∵抛物线的对称轴为x=﹣=﹣1,∴b=2a>0.当x=0时,y=c+2>2,∴c>0.∴abc>0,①错误;②∵抛物线与x轴只有一个交点,∴b2﹣4a(c+2)=b2﹣4ac﹣8a=0,∴b2﹣4ac=8a>0,②错误;③∵抛物线的顶点为(﹣1,0),∴抛物线解析式为y=a(x+1)2=ax2+2ax+a=ax2+bx+c+2,∴a=c+2>2,③正确;④∵b=2a,c>0,∴4a﹣2b+c=c>0,④正确.故选B.【点评】本题考查了二次函数图象与系数的关系,根据二次函数图象以及顶点坐标找出a、b、c之间的关系是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据统计,到2015年末我国现有人口约为1375000000人,把1375000000用科学记数法表示为×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×109.×109.【点评】此题考查科学记数法表示较大数的方法,准确确定a与n值是关键.14.计算:﹣22+(π﹣4)0++()﹣1= 3.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及乘方、零指数幂、负指数幂、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【解答】解:原式=﹣4+1+3+3=3,故答案为:3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.因式分解:x2y2﹣y4的结果是y2(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=y2(x2﹣y2)=y2(x+y)(x﹣y),故答案为:y2(x+y)(x﹣y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.若直线y=(a﹣2)x+3﹣b不经过第一象限,化简:|a﹣2|++|3﹣b|= 2b﹣1 .【考点】一次函数图象与系数的关系;二次根式的性质与化简.【分析】先根据直线y=(a﹣2)x+3﹣b不经过第一象限得出a、b的取值X围,再把原式进行化简,合并同类项即可.【解答】解:∵直线y=(a﹣2)x+3﹣b不经过第一象限,∴a﹣2<0,3﹣b<0,解得a<2,b>3,∴原式=2﹣a++b﹣3=2﹣a+b﹣a+b﹣3=2b﹣1.故答案为:2b﹣1.【点评】本题考查的是一次函数的图象与系数的关系,先根据题意得出a、b的取值X围是解答此题的关键.17.若关于x的方程(m﹣3)x2+x+1=0有两个不等的实根,则m的取值X围为2≤m<,且m≠3 .【考点】根的判别式.【分析】根据一元二次方程的定义及根的判别式、二次根式有意义的条件可得m﹣3≠0,()2﹣4(m﹣3)>0且m﹣2≥0,解之即可.【解答】解:∵方程(m﹣3)x2+x+1=0有两个不等的实根,∴m﹣3≠0,且△>0,即()2﹣4(m﹣3)>0,其中m﹣2≥0,解得:2≤m<,且m≠3,故答案为:2≤m<,且m≠3.【点评】本题主要考查一元二次方程根的判别式及其定义、二次根式有意义的条件,熟练掌握根的情况与根的判别式间的关系是解题的关键.18.如图,在正方形ABCD中,有一个△AMN,MA=NA,M、N分别在DC、BC上,连接BD、AC,若∠DAM=15°,则下列说法中:①MC=NC;② △AMN为等边三角形;③ AC⊥MN;④NP=AM;⑤若S△AMN=,则S△ABN=,正确的有 5 个.【考点】四边形综合题.【分析】如图,在AB上截取一点G,使得AG=NG..先证明△ADM≌△ABN,推出∠DAM=∠BAN=15°,推出∠MAN=60°,由此可以判断①②③④正确,设BN=a,则GN=AG=2a,BG=a,由AB2+BN2=AN2,列出方程求出a,即可求出△ABN的面积,作出判断.【解答】解:如图,在AB上截取一点G,使得AG=NG..∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠ADB=∠ABC=90°,在Rt△ADN和Rt△ABN中,,∴△ADM≌△ABN,∴∠BAN=∠DAM=15°,DM=BN,∴CM=,∠MAN=90°﹣∠DAM﹣∠BAN=60°,故①正确,∵AM=AN,∴△AMN是等边三角形,故②正确,∵∠MAC=∠NAC=30°,AM=AN,∴AC⊥MN,PN=AN=AM,故③④正确,∵•AN2=,∴AN2=4,∵GA=GN,∴∠GAN=∠GNA=15°,∴∠BGN=∠GAN+∠GNA=30°,设BN=a,则GN=AG=2a,BG=a,∵AB2+BN2=AN2,∴(2a+a)2+a2=4,解得a2=,∴S△ABN=•a•(2a+a)=)•=.故⑤正确.综上所述,①②③④⑤都是再正确的,故答案为5、【点评】本题考查四边形综合题、全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造30度角,属于中考压轴题.三、解答题(本大题共2小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.已知:如图,点E是线段AB的中点,∠A=∠B,∠AED=∠BEC.求证:CE=DE.【考点】全等三角形的判定与性质.【分析】由∠AED=∠BEC可求得∠AEC=∠BED,则可证明△AEC≌△BED,可证得CE=DE.【解答】证明:∵∠AED=∠BEC,∴∠AED+∠DEC=∠DEC+∠BEC,即∠AEC=∠BED,∵E是AB的中点,∴AE=BE,在△AEC和△BED中,∴△AEC≌△BED(ASA),∴CE=DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.20.已知:如图,在Rt△ABC中,∠C=90°,AC=.点D为BC边上一点,且BD=2AD,∠ADC=60°,求△ABC的周长(结果保留根号).【考点】解直角三角形.【分析】要求△ABC的周长,只要求得BC及AB的长度即可.根据Rt△ADC中∠ADC的正弦值,可以求得AD的长度,也可求得CD的长度;再根据已知条件求得BD的长度,继而求得BC的长度;运用勾股定理可以求得AB的长度,求得△ABC的周长.【解答】解:在Rt△ADC中,∵sin∠ADC=,∴AD===2.∴BD=2AD=4,∵tan∠ADC=,DC===1,∴BC=BD+DC=5.在Rt△ABC中,AB==2,∴△ABC的周长=AB+BC+AC=2+5+.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.四、解答题(本大题共4小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2016秋•某某校级月考)计算:(1)(m﹣n)2+m(2n﹣m)+(m+n)(m﹣n)(2)÷(x﹣1﹣)﹣.【考点】分式的混合运算;整式的混合运算.【分析】(1)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果.【解答】解:(1)原式=m2﹣2mn+n2+2mn﹣m2+m2﹣n2=m2;(2)原式=÷﹣=﹣•﹣=﹣﹣=﹣=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)(2016秋•某某校级月考)在平面直角坐标系中,正比例函数y=(m+1)x+m ﹣3与一次函数y=(2m+1)x﹣m交于点A,(1)求m的值及点A的坐标;(2)过点A的直线l与坐标轴在第一象限围成等腰直角三角形,交y轴于点B,求△AOB 的面积.【考点】两条直线相交或平行问题;等腰直角三角形.【分析】(1)由题意可知:m﹣3=0,求出m的值后分别代入两个函数的解析式,然后联立两个函数的解析式即可求出A点的坐标;(2)利用条件求出直线l的解析式,再求出点B的坐标,最后利用三角形的面积公式即可求出答案.【解答】解:(1)由题意可知:m﹣3=0,∴m=3,∴正比例函数为:y=4x,一次函数为:y=7x﹣3,∴解得:,∴A的坐标为(1,4);(2)设直线l的解析式为:y=kx+b,把A(1,4)代入y=kx+b,∴4=k+b,∴直线l的解析式为:y=kx+4﹣k,令x=0代入y=kx+4﹣k,∴y=4﹣k,∵过点A的直线l与坐标轴在第一象限围成等腰直角三角形,∴直线l与x轴交点为(4﹣k,0),∴把(4﹣k,0)代入y=kx+4﹣k,∴k=4或k=﹣1,∵直线l与第一象限围成等腰直角三角形,∴k<0,∴k=﹣1,∴直线l的解析式为:y=﹣x+5,∴B(0,5),∴OB=5,过点A作AD⊥y轴于点D,∴AD=1,∴△AOB的面积为:AD•OB=,【点评】本题考查一次函数的解析式,涉及待定系数求解析式,三角形面积公式等知识,属于综合问题.23.(10分)(2016秋•某某校级月考)第31届夏季奥林匹克运动会于2016年8月5日在巴西里约热内卢举行,里约热内卢成为奥运史上首个主办奥运会的南美洲城市,某经销商抓住商机在今年6月底购进了一批奥运吉祥物1160件,预计在7月份进行试销,购进价格为每件10元,若售价为12元/件,则可全部售出.若每涨价0.1元,销售量就减少2件.(1)求该经销商在7月份的销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,8月份该吉祥物进价比6月底的进价每件增加20%,该经销商增加了进货量,并加强了宣传力度,结果8月份的销售量比7月份在(1)的条件下的最低销售量增加了m%,但售价比7月份在(1)的条件下的最高售价减少m%,结果8月份利润达到3388元,求m的值(m>10).【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设售价应为x元,根据不等关系:在7月份销售量不低于1100件,列出不等式求解即可;(2)先求出8月份的进价,再根据等量关系:8月份利润达到3388元,列出方程求解即可.【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得:x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.【点评】此题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.24.(10分)(2016秋•某某校级月考)定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为(3×6)能被(3+6)整除;又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…(1)我们发现,3和6,4和12,5和20,6和30…,都是两个数的祖冲之数组;由此猜测n和n(n﹣1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想.(2)若(3a,4a,5a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.【考点】规律型:数字的变化类.【分析】(1)根据祖冲之数组的定义,即可解决问题.(2)首先根据定义判断出a是7,8,9的倍数,由此即可解决问题.【解答】(1)∵n•n(n﹣1)=n2(n﹣1),而n+n(n﹣1)=n2且:n2(n﹣1)能被n2整除,∴n和n(n﹣1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组.(2)∵(3a,4a,5a)是三个数的祖冲之数组,∴=, =, =a都是整数,∴a是7,8,9的倍数,∴满足条件的所有三位正整数a为504.【点评】本题主要考查数字的变化规律,解决本题的关键是弄清、理解并运用新定义.五、解答题(本大题共2小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(12分)(2016秋•某某校级月考)如图1,在△ABC中,∠BA C=90°,AB=AC.(1)若点M为AC上的任意一点,过M作MN⊥BC于点N,取BM的中点D,连接AD、DM,求证:AD=DN.(2)如图2,若M为BC上的任意一点,以线段CM为底边作等腰Rt△M,此时,取BM的中点D,连接AD、DN,则AD与DN有怎样的数量关系?说明理由.(3)如图3,在(2)的条件下将Rt△MNC绕C点旋转任意角度,连接BM,取BM的中点D,再连接AD、DN,则(2)中的结论仍然成立吗,它们之间又有怎样的位置关系?请说明理由.【考点】几何变换综合题.【分析】(1)如图1中,延长AD到K,使得DK=AD,连接AN、KN、KM.首先证明△ADB≌△KDM,再证明△ANC≌△KNM,推出△ANK是等腰直角三角形即可解决问题.(2)结论:AD=DN.延长AD到K,使得DK=AD,连接AN、KN、KM.首先证明△ADB≌△KDM,再证明△ANC≌△KNM,推出△ANK是等腰直角三角形即可解决问题.(3)结论:AD=DN,AD⊥DN.延长AD到K,使得DK=AD,连接AN、KN、KM.首先证明△ADB ≌△KDM,再证明△ANC≌△KNM,推出△ANK是等腰直角三角形即可解决问题.【解答】(1)证明:如图1中,延长AD到K,使得DK=AD,连接AN、KN、KM.。

2019秋季西南大学[0772]《中学代数》参考答案

2019秋季西南大学[0772]《中学代数》参考答案

0772 20192
单项选择题
1、有理数集可以与自然数集建立一一对应的关系,这说明有理数集具有()
1.稠密性
2.可数性
3.完备性
2、高中代数课程的基本主线是()
1.方程
2.不等式
3.函数
4.数列
3、下列哪一个数,用尺规是可以做出的()
1.根号2
2.圆周率
3.欧拉数e
4、对有理数运算中的“负负得正”,可以用()给予解释
1.复数坐标表达式的乘法运算
2.复数向量表达式的乘法运算
3.复数三角函数表达式的乘法运算
5、幂数列属于()
1. E. 等比数列
2.高阶等差数列
3.等差数列
6、下列说法,哪一个是正确的()
1.函数的“变量说”定义比较抽象
2.函数的“关系说”定义比较形式
3.函数的“对应说”定义比较直观
7、用复数的棣莫弗公式,可以推导
1.三角函数的n倍角公式
2.一元二次方程的求根公式
3.点到直线的距离公式
8、
不定方程求解的算理依据是:
1. B. 孙子定理
2.辗转相除法
3.单因子构件法
4.拉格朗日插值法
9、
下列说法,哪一个是错误的:
1.戴德金分割中对有理数集的分割满足“不空”、“不漏”、“不乱”三个条件;
2.戴德金分割和有理数区间套定义是等价的;
3.戴德金分割的下集存在最大数时,上集存在最小数。

10、。

西南大学《线性代数》网上作业及参考答案

西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。

西南大学18秋0772《中学代数》作业答案

西南大学18秋0772《中学代数》作业答案

1、有理数集可以与自然数集建立一一对应的关系,这说明有理数集具有()
1.稠密性
2.可数性
3.完备性
2、高中代数课程的基本主线是()
1.方程
2.不等式
3.函数
4.数列
3、下列哪一个数,用尺规是可以做出的()
1.根号2
2.圆周率
3.欧拉数e
4、对有理数运算中的“负负得正”,可以用()给予解释
1.复数坐标表达式的乘法运算
2.复数向量表达式的乘法运算
3.复数三角函数表达式的乘法运算
5、幂数列属于()
1. E. 等比数列
2.高阶等差数列
3.等差数列
6、“等价关系”和“顺序关系”的区别在于,后者不具有()
1.反身性
2.对称性
3.传递性
7、复数集按照“字典排序”关系,是一个
1.复数域
2.全序集
3.有序域
8、两个集合A和B的笛卡尔积的子集,被称为
1.结构
2.序偶
3.关系
4.对偶
9、下列说法,哪个是正确的()
1. A. 复数可以排序
2.复数集是一个有序域
3.复数可以比较大小
10、下列那个定理所体现出来的方法是单因子构件法()
1.韦达定理
2.代数基本定理
3.正弦定理
4.孙子定理
11、用实数的()的定义,可以较好地解释0、999…….=1。

2016年中考数学试题分项版解析(第02期)专题02 代数式和因式分解

2016年中考数学试题分项版解析(第02期)专题02 代数式和因式分解

专题02 代数式和因式分解一、选择题1.(2016上海市)下列单项式中,与2a b 是同类项的是( ) A .22a b B .22a b C .2ab D .3ab 【答案】A .考点:同类项.2.(2016北京市)如果a +b =2,那么代数2()b aa a a b-⋅-的值是( )A .2B .﹣2C .12D .12- 【答案】A . 【解析】试题分析:∵a +b =2,∴原式=22a b aa a b-⋅-=()()a b a b a a a b +-⋅-=a +b =2.故选A .考点:分式的化简求值.3.(2016吉林省长春市)把多项式269x x -+分解因式,结果正确的是( ) A .2(3)x - B .2(9)x - C .(x +3)(x ﹣3) D .(x +9)(x ﹣9) 【答案】A . 【解析】试题分析:269x x -+=2(3)x -,故选A .考点:因式分解-运用公式法.4.(2016四川省凉山州)下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C .=D .222()a b a b +=+ 【答案】C . 【解析】试题分析:A .2a +3b 无法计算,故此选项错误; B .2363(2)8a b a b -=-,故此选项错误;C =D .222()2a b a b ab +=++,故此选项错误; 故选C .考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.完全平方公式. 5.(2016四川省巴中市)下列计算正确的是( )A .2222()a b a b =B .623a a a ÷= C .2224(3)6xy x y = D .725()()m m m -÷-=- 【答案】D .考点:1.同底数幂的除法;2.幂的乘方与积的乘方.6.(2016四川省巴中市) )A B C D 【答案】B .考点:同类二次根式.7.(2016四川省广安市)下列运算正确的是( )A .326(2)4a a -=-B 3=±C .236m m m ⋅= D .33323x x x += 【答案】D . 【解析】试题分析:A .326(2)4a a -=,故本选项错误;B 3=,故本选项错误;C .235m m m ⋅=,故本选项错误; D .33323x x x +=,故本选项正确. 故选D .考点:1.幂的乘方与积的乘方;2.算术平方根;3.合并同类项;4.同底数幂的乘法. 8.(2016四川省成都市)计算32()x y -的结果是( ) A .5x y - B .6x y C .32x y - D .62x y 【答案】D . 【解析】试题分析:()23x y -=322()x y -=62x y .故选D . 考点:幂的乘方与积的乘方.9.(2016四川省攀枝花市)计算23()ab 的结果,正确的是( ) A .36a b B .35a b C .6ab D .5ab 【答案】A . 【解析】试题分析:23()ab =36a b .故选A . 考点:幂的乘方与积的乘方.10.(2016四川省攀枝花市)化简22m n m n n m+--的结果是( ) A .m +n B .n ﹣m C .m ﹣n D .﹣m ﹣n 【答案】A .考点:分式的加减法.11.(2016四川省泸州市)计算223a a -结果是( ) A .24a B .23a C .22a D .3 【答案】C . 【解析】试题分析:223a a -=22a .故选C . 考点:合并同类项.12.(2016四川省自贡市)下列根式中,不是最简二次根式的是( )A B C D 【答案】B . 【解析】B . 考点:最简二次根式.13.(2016四川省自贡市)多项式24a a -分解因式,结果正确的是( )A .()4a a -B .()()22a a +-C .()()22a a a +-D .()224a -- 【答案】A . 【解析】试题分析:24a a -=()4a a -,故选A .考点:因式分解-提公因式法.14.(2016四川省资阳市)下列运算正确的是( )A .426x x x += B .236x x x ⋅= C .236()x x = D .222()x y x y -=- 【答案】C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.因式分解-运用公式法. 15.(2016山东省临沂市)下列计算正确的是( )A .32x x x -= B .326x x x ⋅= C .32x x x ÷= D .325()x x =【答案】C . 【解析】试题分析:A .不是同类项,不能合并,故此选项错误; B .325x x x ⋅=,故此选项错误; C .32x x x ÷=,正确; D .326()x x =,故此选项错误; 故选C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.16.(2016山东省临沂市)用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A .2n +1B .21n - C .22n n + D .5n ﹣2 【答案】C .考点:规律型:图形的变化类.17.(2016山东省德州市)下列运算错误的是( )A .a +2a =3aB .236()a a = C .235a a a ⋅= D .632a a a ÷=【答案】D . 【解析】试题分析:A .合并同类项系数相加字母及指数不变,故A 正确; B .幂的乘方底数不变指数相乘,故B 正确; C .同底数幂的乘法底数不变指数相加,故C 正确; D .同底数幂的除法底数不变指数相减,故D 错误; 故选D .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.18.(2016山东省德州市)化简2222a b ab b ab ab a ----等于( ) A .b a B .a b C .﹣b a D .﹣ab【答案】B .考点:分式的加减法.19.(2016山东省菏泽市)当1<a <2时,代数式|a ﹣2|+|1﹣a |的值是( ) A .﹣1 B .1 C .3 D .﹣3 【答案】B . 【解析】试题分析:当1<a <2时,|a ﹣2|+|1﹣a |=2﹣a +a ﹣1=1.故选B . 考点:1.代数式求值;2.绝对值.20.(2016江苏省宿迁市)下列计算正确的是( )A .235a a a += B .236a a a ⋅= C .235()a a = D .523a a a ÷= 【答案】D . 【解析】试题分析:A .不是同类项不能合并,故A 错误; B .同底数幂的乘法底数不变指数相加,故B 错误; C .幂的乘方底数不变指数相乘,故C 错误; D .同底数幂的除法底数不变指数相减,故D 正确; 故选D .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方. 21.(2016江苏省淮安市)下列运算正确的是( )A .236a a a ⋅= B .222()ab a b = C .235()a a = D .224a a a +=【答案】B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 22.(2016江苏省淮安市)已知a ﹣b =2,则代数式2a ﹣2b ﹣3的值是( ) A .1 B .2 C .5 D .7 【答案】A . 【解析】试题分析:∵a ﹣b =2,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×2﹣3=1.故选A . 考点:代数式求值.23.(2016江西省)下列运算正确的是( )A .224a a a += B .236()b b -=- C .232.22x x x = D .222()m n m n -=-【答案】B . 【解析】试题分析:A .2222a a a +=,故本选项错误; B .236()b b -=-,故本选项正确; C .232.24x x x =,故本选项错误;D .222()2m n m mn n -=-+,故本选项错误. 故选B .考点:1.单项式乘单项式;2.合并同类项;3.幂的乘方与积的乘方;4.完全平方公式. 24.(2016湖北省黄冈市)下列运算结果正确的是( )A .235a a a += B .236a a a ⋅= C .32a a a ÷= D .235()a a =【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.25.(2016湖南省邵阳市)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .2n y n =+C .12n y n +=+D .21n y n =++ 【答案】B . 【解析】试题分析:∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22, (2),下边三角形的数字规律为:1+2,222+,…,2n n +,∴2ny n =+.故选B .考点:规律型:数字的变化类.26.(2016甘肃省白银市)下列根式中是最简二次根式的是( )A B C D 【答案】B . 【解析】试题分析:ABC ,故此选项错误;D 故选B .考点:最简二次根式.27.(2016甘肃省白银市)若2440x x +-=,则23(2)6(1)(1)x x x --+-的值为( ) A .﹣6 B .6 C .18 D .30 【答案】B .考点:1.整式的混合运算—化简求值;2.整体思想;3.条件求值. 28.(2016福建省福州市)下列算式中,结果等于6a 的是( )A .42a a + B .222a a a ++ C .23a a ⋅ D .222a a a ⋅⋅ 【答案】D . 【解析】试题分析:∵A .∵4a 与2a 不是同类项,不能相加,故本选项错误; B .∵222a a a ++=23a ,故本选项错误; C .∵23a a ⋅=5a ,故本选项错误; D .∵222a a a ⋅⋅=6a ,故本选项正确; 故选D .考点:1.同底数幂的乘法;2.合并同类项. 29.(2016陕西省)下列计算正确的是( )A .22434x x x += B .23422x y x x y ⋅=C .222(6)(3)2x y x x ÷=D .22(3)9x x -=【答案】D.考点:1.整式的除法;2.合并同类项;3.幂的乘方与积的乘方;4.单项式乘单项式.二、填空题30.(2016上海市)计算:计算:3a a÷=__________.【答案】2a.【解析】试题分析:3a a÷=2a.故答案为:2a.考点:同底数幂的除法.31.(2016上海市)如果12a=,3b=-,那么代数式2a b+的值为__________.【答案】-2.【解析】试题分析:当12a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2.考点:代数式求值.32.(2016北京市)如果分式21x-有意义,那么x的取值范围是.【答案】x≠1.【解析】试题分析:由题意,得:x﹣1≠0,解得x≠1,故答案为:x≠1.考点:分式有意义的条件.33.(2016北京市)下图中的四边形均为矩形,根据图形,写出一个正确的等式:.【答案】am +bm +cm =m (a +b +c ). 【解析】试题分析:由题意可得:am +bm +cm =m (a +b +c ).故答案为:am +bm +cm =m (a +b +c ). 考点:因式分解-提公因式法.34.(2016北京市)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为 .【答案】505.考点:规律型:数字的变化类.35.(2016吉林省长春市)计算:3()ab =.【答案】33a b . 【解析】试题分析:原式=33a b ,故答案为:33a b .考点:幂的乘方与积的乘方.36.(2016四川省凉山州)分解因式:39a b ab - = . 【答案】ab (a +3)(a ﹣3).考点:提公因式法与公式法的综合运用.37.(2016四川省凉山州)若实数x 满足210x --=,则221x x += . 【答案】10. 【解析】试题分析:∵210x --=,∴10x x -=,∴1x x -=∴21()8x x -=,即22128x x-+=,∴221x x +=10,故答案为:10. 考点:1.代数式求值;2.条件求值.38.(2016四川省宜宾市)分解因式:43244ab ab ab -+=.【答案】22(2)ab b -. 【解析】试题分析:原式=22(44)ab b b -+=22(2)ab b -.故答案为:22(2)ab b -. 考点:提公因式法与公式法的综合运用.39.(2016四川省巴中市)若a +b =3,ab =2,则2()a b -= . 【答案】1. 【解析】试题分析:将a +b =3平方得:222()29a b a b ab +=++=,把ab =2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为:1.考点:完全平方公式.40.(2016四川省巴中市)把多项式3216m mn -分解因式的结果是 . 【答案】m (4m +n )(4m ﹣n ).【解析】试题分析:原式=22(16)m m n -=m (4m +n )(4m ﹣n ).故答案为:m (4m +n )(4m ﹣n ). 考点:提公因式法与公式法的综合运用.41.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()n a b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x-展开式中含2014x项的系数是 .【答案】﹣4032.考点:1.整式的混合运算;2.阅读型;3.规律型.42.(2016四川省泸州市)分解因式:2242a a ++=.【答案】22(1)a +. 【解析】试题分析:原式=22(21)a a ++=22(1)a +,故答案为:22(1)a +. 考点:提公因式法与公式法的综合运用.43.(2016四川省自贡市)x 的取值范围是 . 【答案】x ≥1. 【解析】试题分析:由题意得,x ﹣1≥0且x ≠0,解得x ≥1且x ≠0,所以,x ≥1.故答案为:x ≥1. 考点:1.二次根式有意义的条件;2.分式有意义的条件.44.(2016四川省资阳市)若代数式意义,则x 的取值范围是 .【答案】x≥2. 【解析】考点:二次根式有意义的条件.45.(2016四川省资阳市)设一列数中相邻的三个数依次为m 、n 、p ,且满足p =m 2﹣n ,若这列数为﹣1,3,﹣2,a ,﹣7,b …,则b = . 【答案】128.考点:规律型:数字的变化类.46.(2016山东省临沂市)分解因式:322x x x -+=.【答案】2(1)x x -. 【解析】试题分析:322x x x -+=2(21)x x x -+=2(1)x x -.故答案为:2(1)x x -. 考点:提公因式法与公式法的综合运用. 47.(2016山东省临沂市)化简111a a a+--= . 【答案】1. 【解析】 试题分析:原式=111a a a ---=11a a --=1.故答案为:1. 考点:分式的加减法. 48.(2016山东省德州市)的结果是 .【解析】试题分析:原式考点:分母有理化.49.(2016山东省菏泽市)已知m 是关于x 的方程2230x x --=的一个根,则224m m -= . 【答案】6. 【解析】试题分析:∵m 是关于x 的方程2230x x --=的一个根,∴2230m m --=,∴223m m -=,∴224m m -=6,故答案为:6.考点:1.一元二次方程的解;2.条件求值.50.(2016江苏省宿迁市)因式分解:228a -= . 【答案】2(a +2)(a ﹣2).考点:提公因式法与公式法的综合运用.51.(2016江苏省宿迁市)计算:211x xx x ---= . 【答案】x . 【解析】试题分析:211x x x x ---=21x x x --=(1)1x x x --=x .故答案为:x .考点:分式的加减法.52.(2016江苏省无锡市)分解因式:2ab a -= . 【答案】a (b ﹣a ). 【解析】试题分析:2ab a -=a (b ﹣a ).故答案为:a (b ﹣a ). 考点:因式分解-提公因式法. 53.(2016江苏省淮安市)若分式15x -在实数范围内有意义,则x 的取值范围是 . 【答案】x ≠5. 【解析】试题分析:依题意得:x ﹣5≠0,解得x ≠5.故答案为:x ≠5.54.(2016江苏省淮安市)分解因式:24m -= . 【答案】(m +2)(m ﹣2).考点:因式分解-运用公式法.55.(2016江苏省淮安市)计算:3a ﹣(2a ﹣b )= . 【答案】a +b . 【解析】试题分析:3a ﹣(2a ﹣b )=3a ﹣2a +b =a +b .故答案为:a +b . 考点:整式的加减.56.(2016江西省)分解因式:分解因式:22ax ay -=____ ____. 【答案】 ()()a x y x y +-. 【解析】试题分析:22ax ay -=22()a x y -=()()a x y x y +-.故答案为:()()a x y x y +-. 考点:提公因式法与公式法的综合运用.57.(2016湖北省黄冈市)分解因式:224ax ay -= . 【答案】a (2x +y )(2x ﹣y ). 【解析】试题分析:原式=22(4)a x y -=a (2x +y )(2x ﹣y ),故答案为:a (2x +y )(2x ﹣y ). 考点:提公因式法与公式法的综合运用.58.(2016湖北省黄冈市)计算22()ab b a ba a a---÷的结果是 . 【答案】a ﹣b . 【解析】试题分析:原式=222.a ab b a a a b -+-=2().a b a a a b--=a ﹣b ,故答案为:a ﹣b .59.(2016湖南省邵阳市)将多项式32m mn -因式分解的结果是 . 【答案】m (m +n )(m ﹣n ). 【解析】试题分析:原式=22()m m n -=m (m +n )(m ﹣n ).故答案为:m (m +n )(m ﹣n ). 考点:提公因式法与公式法的综合运用.60.(2016甘肃省白银市)因式分解:228a -= . 【答案】2(a +2)(a ﹣2).考点:提公因式法与公式法的综合运用.61.(2016甘肃省白银市)计算:42(5)(8)a ab -⋅-=.【答案】5240a b . 【解析】试题分析:42(5)(8)a ab -⋅-=5240a b .故答案为:5240a b .考点:单项式乘单项式.62.(2016甘肃省白银市)如果单项式2222m nn m x y +-+与57x y 是同类项,那么m n 的值是 .【答案】13. 【解析】试题分析:根据题意得:25227m n n m +=⎧⎨-+=⎩,解得:13m n =-⎧⎨=⎩,则m n =13-=13.故答案为:13.考点:同类项.63.(2016甘肃省白银市)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n +1=. 【答案】2(1)n +.考点:规律型:数字的变化类.64.(2016福建省福州市)分解因式:24x -= . 【答案】(2)(2)x x +-. 【解析】试题分析:24x -=(2)(2)x x +-.故答案为:(2)(2)x x +-. 考点:1.因式分解-运用公式法;2.因式分解.65.(2016福建省福州市)若二次根式1-x 在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥1. 【解析】试题分析:若二次根式1-x 在实数范围内有意义,则:x -1≥0,解得x ≥1.故答案为:x ≥1. 考点:二次根式有意义的条件.66.(2016福建省福州市)若x +y =10,xy =1,则33x y xy +的值是 . 【答案】98. 【解析】试题分析:∵x +y =10,xy =1,∴33x y xy +=22()xy x y +=2[()2]xy x y xy +- =21[102]⨯-=98.故答案为:98.考点:代数式求值. 三、解答题67.(2016上海市)计算:1221|1|4()3--.【答案】6 【解析】试题分析:利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解. 试题解析:原式129--=6 考点:1.实数的运算;2.负整数指数幂.68.(2016北京市)计算:0(3)4sin 4581π-+-+.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.69.(2016吉林省长春市)先化简,再求值:(a +2)(a ﹣2)+a (4﹣a ),其中a =14. 【答案】44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -;当a=14时,原式=1444⨯-=14-=3-.考点:整式的混合运算—化简求值.70.(2016四川省凉山州)计算:0201613tan 6012( 3.14)(1)π-+-+-.【答案】1. 【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、二次根式的性质分别化简求出答案.111-+=1.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.71.(2016四川省凉山州)先化简,再求值:21222x x y x xy x⎛⎫++÷ ⎪--⎝⎭,其中实数x 、y 满足1y =+. 【答案】2x y-,2.考点:1.分式的化简求值;2.二次根式有意义的条件.72.(2016四川省宜宾市)(1)计算;2201601()(1)5(1)3π---+-;(2)化简:2291(1)362m m m m -÷---. 【答案】(1)4;(2)33m m +.【解析】试题分析:(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 试题解析:(1)原式=9﹣1﹣5+1=4;(2)原式=(3)(3)33(2)2m m m m m m +--÷--=(3)(3)23(2)3m m m m m m +--⋅--=33m m +. 考点:1.实数的运算;2.分式的混合运算;3.零指数幂;4.负整数指数幂.73.(2016四川省巴中市)计算:2012sin 453()22016--+-+【答案】3.【解析】试题分析:原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.试题解析:原式=11212299⨯-++-=3. 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.74.(2016四川省巴中市)先化简:2221()211x x x x x x+÷--+-,然后再从﹣2<x ≤2的范围内选取一个合适的x 的整数值代入求值. 【答案】21x x -,4.考点:分式的化简求值.75.(2016四川省广安市)计算:11()tan 6033-+-.【答案】0.【解析】试题分析:本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=33-+.考点:1.实数的运算;2.负整数指数幂;3.特殊角的三角函数值.76.(2016四川省广安市)先化简,再求值:2211()3369x x x x x x --÷---+,其中x 满足240x +=. 【答案】31x x -+,5.考点:分式的化简求值.77.(2016四川省成都市)化简:22121()x x x x x x-+-÷-. 【答案】1x +.【解析】 试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.试题解析:原式=22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭=21)(1)(1)(1)x x x x x x +--⋅-(=1x +. 考点:分式的混合运算.78.(2016四川省攀枝花市)0201621+.【答案】2+【解析】试题分析:根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值即可.试题解析:原式=21(21+-+=2+考点:1.实数的运算;2.零指数幂.79.(2016四川省泸州市)计算:021)sin60(2)+-.【答案】2.【解析】 试题分析:直接利用特殊角的三角函数值以及结合零指数幂的性质以及二次根式的性质分别化简进而求出答案.试题解析:原式=14-+=1﹣3+4=2.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.80.(2016四川省泸州市)化简:322(1)12a a a a -+-⋅-+.【答案】24a -.【解析】试题分析:先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.试题解析:原式=(1)(1)32(1)12a a a a a +---⋅-+=(2)(2)2(1)12a a a a a +--⋅-+=24a -.考点:分式的混合运算.81.(2016四川省自贡市)计算:()11sin 6012cos30312-⎛⎫+--+- ⎪⎝⎭.【答案】2.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.82.(2016四川省资阳市)化简:21(1)121aa a a +÷--+.【答案】a ﹣1.【解析】试题分析:首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.试题解析:原式=21(1)a a a a ÷--=2(1)1a a a a -⋅-=a ﹣1.考点:分式的混合运算.83.(2016山东省临沂市)计算:0312(2016)π---.【答案】2考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.84.(2016山东省菏泽市)计算:2022cos6012( 3.14)π--+-+-.【答案】14+ 【解析】试题分析:原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.试题解析:原式=112142-⨯+=14+ 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.85.(2016山东省菏泽市)已知4x =3y ,求代数式22(2)()()2x y x y x y y ---+-的值.【答案】0.【解析】试题分析:首先利用平方差公式和完全平方公式计算,进一步合并,最后代入求得答案即可. 试题解析:原式=22222442x xy y x y y -+-+-=243xy y -+.∵4x =3y ,∴原式=233y y y -⨯+=0.考点:整式的混合运算—化简求值.86.(2016江苏省宿迁市)计算:102sin3031)-++【答案】13. 【解析】试题分析:直接利用特殊角的三角函数值结合零指数幂的性质以及负整数指数幂的性质分别化简进而求出答案.试题解析:原式=1121223⨯++-=13. 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.87.(2016江苏省无锡市)(1)205(3)----;(2)2()(2)a b a a b ---.【答案】(1)-5;(2)2b .考点:1.单项式乘多项式;2.完全平方公式;3.零指数幂.88.(2016江苏省淮安市)(1)计算:)0123+-1--; (2)解不等式组:215432x x x x +<+⎧⎨>+⎩. 【答案】(1)223;(2)2<x <4. 【解析】 试题分析:(1)本题涉及零指数幂、绝对值、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.试题解析:(1)原式=1123+-=223; (2)215432x x x x +<+⎧⎨>+⎩①②,不等式①的解集为:x <4,不等式②的解集为:x >2.故不等式组的解集为:2<x <4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.解一元一次不等式组.89.(2016江西省)先化简,再求值:221()339x x x x +÷+-- ,其中6x =. 【答案】9x x -,12-. 【解析】试题分析:先算括号里面的,再算除法,最后把x =6代入进行计算即可.试题解析:原式=2(3)(3)(3)(3)(3)(3)x x x x x x x--++-⋅+-=263x x x ---=9x x - 当x =6时,原式=696-=12-. 考点:分式的化简求值.90.(2016湖南省邵阳市)计算:20(2)2cos60(10)π-+-.【答案】4.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.91.(2016湖南省邵阳市)先化简,再求值:2()(2)m n m m n ---,其中m =n = 【答案】2n ,2.【解析】试题分析:原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把m 与n 的值代入计算即可求出值.试题解析:原式=22222m mn n m mn -+-+=2n当=2.考点:整式的混合运算—化简求值.92.(2016甘肃省兰州市)(1)101()2cos 45(2016)2π----; (2)2242y y y +=+.【答案】(1)1;(2)112y =,22y =-. 【解析】 试题分析:(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用利用零指数幂法则计算即可得到结果;(2)先把方程化为一般式,然后利用因式分解法解方程.试题解析:(1)原式=221-1; (2)22320y y +-=,(2y ﹣1)(y +2)=0,2y ﹣1=0或y +2=0,所以112y =,22y =-. 考点:1.解一元二次方程-因式分解法;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.93.(2016甘肃省白银市)计算:201()12sin 60(12---++-. 【答案】6.【解析】试题分析:本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、二次根式化简5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=4121+=6. 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.94.(2016福建省福州市)计算:01(2016)-- .【答案】0.考点:1.有理数的混合运算;2.立方根;3.零指数幂.95.(2016福建省福州市)化简:2()a b a b a b+--+. 【答案】2b -.【解析】试题分析:先约分,再去括号,最后合并同类项即可.试题解析:原式=()a b a b --+=a b a b ---=2b -.考点:分式的加减法.96.(2016陕西省)计算:01(7)π++.2.考点:1.实数的运算;2.零指数幂.97.(2016陕西省)化简:2161(5)39x x x x --+÷+-.【答案】243x x -+.【解析】试题分析:根据分式的除法,可得答案.试题解析:原式=2(1)(3)(3)31x x x x x -+-⋅+-=(x ﹣1)(x ﹣3)=243x x -+. 考点:分式的混合运算.。

2016西南大学秋高等数学9102机考答案

2016西南大学秋高等数学9102机考答案

西南大学网络与继续教育学院课程考试试题卷类别:网教专业:工程造价,建筑工程技术 2016年12月课程名称【编号】: 9102 【高等数学】 A卷大作业满分:100 分注意:请从下列六道大题中选作五道。

一,设下面所考虑的函数都是定义在对称区间(-l,l)上的,证明:(20分)(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明 (1)设F(x)=f(x)+g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x), 所以F(x)为偶函数, 即两个偶函数的和是偶函数。

如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数, 即两个奇函数的和是奇函数。

(2)设F(x)=f(x)×g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)×g(-x)=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的积是偶函数。

如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)×g(-x)=[-f(x)][-g(x)]=f(x)×g(x)=F(x), 所以F(x)为偶函数, 即两个奇函数的积是偶函数。

如果f(x)是偶函数, 而g(x)是奇函数, 则F(-x)=f(-x)×g(-x)=f(x)[-g(x)]=-f(x)×g(x)=-F(x), 所以F(x)为奇函数, 即偶函数与奇函数的积是奇函数。

二,已知水渠的横断面为等腰梯形,斜角ϕ=40︒(图1).当过水断面ABCD的面积为定值S0时,求湿周L(L=AB+BC+CD)与水深h之间的函数关系式,并指明其定义域.(20分)图1三,求由下列方程所确定的隐函数y的导数dxdy:(20分)(1)y2-2x y+9=0;(2)x3+y3-3axy=0;(3) xy=e x+y;(4) y=1-xe y.- 1 -- 2 -四,注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?(20分)五,甲船以6km/h 的速率向东行驶, 乙船以8km/h 的速率向南行驶, 在中午十二点正, 乙船位于甲船之北16km 处. 问下午一点正两船相离的速率为多少?(20分)六,求下列函数的导数: (20分)(1)y =x 4; (2)32x y =; (3)y =x 1. 6; (4)xy 1=;。

0772西南大学 中学代数研究 A卷

0772西南大学 中学代数研究 A卷
实数a的绝对值就是在数轴上实数a所对应的点与原点的距离.
5、实数大小的比较:任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数的绝对值大的反而小.
6、实数的运算:
实数的运算和在有里数范围内一样,值得一提的是,实数既可以加、减、乘、除、乘方运算,又可以进行开方运算.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.在教学实数中,要用好1.转化思想:
定义(戴德金分割)把全体有理数集合分成两个集合A和A',满足下列三个条件:
(1)集合A和 都是非空的(不空)
(2)每一个有理数在而且只在A和 两个集合的一个之中(不漏)
(3)集合A中的每一个数a都小于集合 中的每一个数 (不乱)
则称上述分法为戴德金分割,把集合A叫做分割的下集,集合 叫上集,记为 。
4.通过创设问题情景,让学生能初步运用所学知识和技能解决问题;通过与同伴进行交流、讨论,让学生在合作学习的过程中,探索有理数运算的不同方法和解决间题的不同途径。
5.通过有理数的学习,学会用数表达和交流信息;学会用数学的眼光观察、分析、处理生活中的实际问题。
6、在进行有理数的有关概念的教学时,应尽量从实际问题引入,除教科书提供的实例外,教师还可根据学生已有的知识选择一些学生身边的数学问题、生活问题帮助学生理解有理数的有关概念。借助数轴,通过数形结合,帮助学生建立相反数、绝对值的概念,比较有理数大小。在有理数的教学中,数轴的引人,为有理数、相反数、绝对值、有理数大小的比较、有理数的运算法则的教学提供了直观的工具。
二定义实数的另一个方法戴德金分割定义实数的方法不只一种以上我们用区间套原理理解了康托尔的实数基本序列定义法如果把区间套定义实数看作为通过在数轴采用以区间的形式从外围步步紧逼缩小包围圈的方法那么是否可以采用中间开花的方法定义实数呢

【精选试卷】西南师范大学附属中学中考数学专项练习习题(含答案)

【精选试卷】西南师范大学附属中学中考数学专项练习习题(含答案)

一、选择题1.下列运算正确的是( )A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=2.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(3+5 )米 3.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D . 4.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .35.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 6.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2) 7.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.5 8.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A .40B .30C .28D .209.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q10.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解 11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70° 12.函数21y x =-中的自变量x 的取值范围是( ) A .x ≠12 B .x ≥1 C .x >12 D .x ≥1213.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .14.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③ 15.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯16.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D 17.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+18.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数k y x =(k >0)的图象上,且x 1=﹣x 2,则( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 219.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米20.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .421.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A .B .C .D .22.如图,在ABC 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒23.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 24.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .7 25.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0 26.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .4 27.估6√3−√27的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间28.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)29.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-30.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.D2.A3.D4.B5.A6.D7.A8.D9.C10.D11.D12.D13.A14.C15.C17.D18.D19.D20.B21.D22.B23.B24.C25.A26.A27.C28.D29.C30.A2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【详解】解:A 、a+a 2不能再进行计算,故错误;B 、(3a )2=9a 2,故错误;C 、a 6÷a 2=a 4,故错误;D 、a·a 3=a 4,正确;故选:D .【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.2.A解析:A【解析】试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠D=90°可得:米,则BC=BD -CD=8-3=5米.考点:直角三角形的勾股定理3.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.4.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S+=12.故选B.5.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE=.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.6.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.7.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.8.D解析:D【解析】【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB=√AO2+BO2=5,∴菱形的周长为4×5=20.故选D.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB的长是解题的关键.9.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.10.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.11.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.14.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.15.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.17.D解析:D【解析】试题分析:根据题意,点A、A′关于点C对称,设点A的坐标是(x,y),则0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.18.D解析:D【解析】 由题意得:1212k k y y x x ==-=- ,故选D. 19.D解析:D【解析】【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长.【详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°,∴AC =2×100=200米, ∴AD∴AB =AD +BD =100(故选D .【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.20.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵抛物线与x轴的一个交点为(3,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∵x=﹣1时,y=0,∴a﹣b+c=0,所以②错误;∵b=﹣2a,∴2a+b=0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.21.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.22.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.23.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.24.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.25.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.26.A解析:A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1故选A.考点: 1.旋转;2.勾股定理.27.C解析:C【解析】【分析】先化简后利用√3的范围进行估计解答即可.【详解】6√3−√27=6√3-3√3=3√3,∵1.7<√3<2,∴5<3√3<6,即5<6√3−√27<6,故选C .【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.28.D解析:D【解析】【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D29.C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误;B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 30.A解析:A【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选:A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.。

【精选试卷】西南师范大学附属中学中考数学解答题专项练习习题(含答案)

【精选试卷】西南师范大学附属中学中考数学解答题专项练习习题(含答案)

一、解答题1.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根. 2.问题:探究函数y =x +2x 的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x 的取值范围是:____;(2)如表是y 与x 的几组对应值,请将表格补充完整: x … ﹣3 ﹣2 ﹣32﹣1 −12 12 1 322 3 … y… ﹣323﹣3−256﹣3﹣412412256323…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可). 3.解方程:3x x +﹣1x=1. 4.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来5.直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG∥ED 交AB 于点G .(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE 的面积.6.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?7.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品? 8.已知抛物线y =ax 2﹣13x +c 经过A (﹣2,0),B (0,2)两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒 (1)求抛物线的解析式; (2)当BQ =13AP 时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使△MPQ 为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.9.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:2 1.414≈,3 1.732≈)10.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .求证:BC=ED .11.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩12.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表. 整理情况 频数频率 非常好0.21 较好 70 0.35一般 m 不好36请根据图表中提供的信息,解答下列问题: (1)本次抽样共调查了 名学生; (2)m= ;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A 1、A 2),1本“较好”(记为B ),1本“一般”(记为C ),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.13.如图,BD 是△ABC 的角平分线,过点D 作DE∥BC 交AB 于点E ,DF∥AB 交BC 于点F . (1)求证:四边形BEDF 为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF 的面积.14.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他几点钟遇见小慧?15.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 16.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?17.计算:219(34)02cos 452-︒⎛⎫-+-- ⎪⎝⎭. 18.(问题背景)如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =60°,试探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使GD =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 . (探索延伸)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由. (学以致用)如图3,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是边AB 上一点,当∠DCE =45°,BE =2时,则DE 的长为 .19.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)20.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 23.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.24.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标;(3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.25.如图,AB 是⊙O 的直径,点C 是AB 的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且OE EB=23,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.26.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?27.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.28.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛. 29.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 30.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、解答题 1.(1)12,32-;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.2.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.3.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键. 4.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.5.(1)证明见解析(2)48【解析】【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】(1)连接FO,∵ OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵ CE是⊙O的直径,∴∠EDG=90°,又∵FG//ED,∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH=22OE HE-=2254-=3.∴FH=FO+OH=5+3=8.S四边形FGDH=12(FG+ED)•FH=12×(4+8)×8=48.6.(1)0x=;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x-得()5321x+-=-解得0x=经检验,0x=是原分式方程的解.(2)设?为m,方程两边同时乘以()2x-得()321m x+-=-由于2x=是原分式方程的增根,所以把2x=代入上面的等式得()3221m+-=-1m=-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.8.(1)y=-23x2-13x+2;(2)当BQ=13AP时,t=1或t=4;(3)存在.当t=1-+M(1,1),或当t=3+M(﹣3,﹣3),使得△MPQ为等边三角形.【解析】【分析】(1)把A(﹣2,0),B(0,2)代入y=ax2-13x+c,求出解析式即可;(2)BQ=13AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP关于t的表示,代入BQ=13AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【详解】(1)∵抛物线经过A(﹣2,0),B(0,2)两点,∴240,32.a cc⎧++=⎪⎨⎪=⎩,解得2,32.ac⎧=-⎪⎨⎪=⎩∴抛物线的解析式为y=-23x2-13x+2.(2)由题意可知,OQ=OP=t,AP=2+t.①当t≤2时,点Q在点B下方,此时BQ=2-t.∵BQ=13AP,∴2﹣t=13(2+t),∴t=1.②当t>2时,点Q在点B上方,此时BQ=t﹣2.∵BQ=13AP,∴t﹣2=13(2+t),∴t=4.∴当BQ=13AP时,t=1或t=4.(3)存在.作MC⊥x轴于点C,连接OM.设点M的横坐标为m,则点M的纵坐标为-23m2-13m+2.当△MPQ为等边三角形时,MQ=MP,又∵OP=OQ,∴点M点必在PQ的垂直平分线上,∴∠POM =12∠POQ =45°, ∴△MCO 为等腰直角三角形,CM =CO ,∴m =-23m 2-13m +2, 解得m 1=1,m 2=﹣3. ∴M 点可能为(1,1)或(﹣3,﹣3).①如图,当M 的坐标为(1,1)时,则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2﹣2t +2=2t 2, 解得t 1=1+3-,t 2=13--(负值舍去).②如图,当M 的坐标为(﹣3,﹣3)时,则有PC =3+t ,MC =3,∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2+6t +18=2t 2,解得t 1=333+t 2=333-∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.9.该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒,∴tan BC DB CDB==∠ ∴()DH AH AD AH DB AB =-=--101020 2.7=-=-≈(米), ∵2.7米3<米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.10.见解析【解析】【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.11.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.12.(1)200;(2)52;(3)840人;(4)16【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m 的值;(3)利用总人数乘以对应的频率即可; (4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人); (2)非常好的频数是:200×0.21=42(人), 一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21=126. 点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.(1)见解析;(2)243.【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形;(2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB , ∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.14.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧. 15.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -;当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 16.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人,根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x =500是该方程的实数根. 17.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+12=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 18.【问题背景】:EF =BE +FD ;【探索延伸】:结论EF =BE +DF 仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD 到点G .使DG =BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;[探索延伸]延长FD 到点G .使DG =BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;[学以致用]过点C 作CG ⊥AD 交AD 的延长线于点G ,利用勾股定理求得DE 的长.【详解】[问题背景】解:如图1,在△ABE 和△ADG 中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.19.(1)证明见解析;(2)6πcm2.【解析】【分析】连接BC,OD,OC,设OC与BD交于点M.(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;(2)证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=12BD=33. 在Rt △OBM 中, ∠COB=60°,OB=33cos3032MB ︒==6.在△CDM 与△OBM 中3090CDM OBM MD MBCMD OMB ︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩, ∴△CDM ≌△OBM (ASA ),∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC =2606360π⋅=6π(cm 2).考点:1.切线的判定;2.扇形面积的计算.20.49. 【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x 2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)当1≤x<50时,∵W=-2x 2+180x+2000=-2(x-45)2+6050,∴当x=45时,W 取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W 随x 的增大而减小,∴当x=50时,W 取得最大值,最大值为6000元;综上,当x=45时,W 取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 24.(1)213y x x 222=--;(2)D 的坐标为122⎛⎫ ⎪ ⎪⎝⎭,122⎛+ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫-⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入。

西南大学《线性代数》网上作业及参考答案

西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。

代数专题(含答案)

代数专题(含答案)

状元廊数学思维方法讲义之十四 年级:九年级第14讲专题复习—代数专题反比例函数与二次函数的相关知识是期末考试重点,二次函数的考察也是一难点,所以本次专题以这二者的讲解与训练为主。

【典例精析】●专题一 一元二次方程考点1: 一元二次方程的根的判别式、韦达定理、根的定义以及整体思想【例1】1、方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是 .2、已知a 是方程0232=--x x 的根,则代数式32252013a a a --+的值为 .考点2: 一元二次方程的应用【例2】“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。

某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆。

(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车? (2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A 型车的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆。

根据销售经验,A 型车不少于B 型车的2倍,但不超过B 型车的2.8倍。

假设所进车辆全部售完,为使利润最大,该商城应如何进货? ●专题二 反比例函数和二次函数 考点1:反比例函数图像及性质应用【例3】1、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k k y x++=的图象上。

若点A 的坐标为(-2,-2),则k 的值为( )A .1B .-3C .4D .1或-32、如图,直线l 与反比例函数2y x=的图象在第一象限内交于A 、B 两点,交x 轴的正半轴于C 点,若AB :BC =(m -1):1(m >1),则△OAB 的面积(用m 表示)为.图1 图2 图33、如图,M为双曲线y =过点M 作x 轴、y 轴的垂线,分别交直线y x m =-+于D 、C 两点,若直线y x m =-+与y 轴交与点A ,与x 轴交与点B ,则AD ·BC 的值为 。

2019秋季西南大学[0772]《中学代数》参考答案

2019秋季西南大学[0772]《中学代数》参考答案

0772 20192单项选择题1、有理数集可以与自然数集建立一一对应的关系,这说明有理数集具有()1.稠密性2.可数性3.完备性2、高中代数课程的基本主线是()1.方程2.不等式3.函数4.数列3、下列哪一个数,用尺规是可以做出的()1.根号22.圆周率3.欧拉数e4、对有理数运算中的“负负得正”,可以用()给予解释1.复数坐标表达式的乘法运算2.复数向量表达式的乘法运算3.复数三角函数表达式的乘法运算5、幂数列属于()1. E. 等比数列2.高阶等差数列3.等差数列6、下列说法,哪一个是正确的()1.函数的“变量说”定义比较抽象2.函数的“关系说”定义比较形式3.函数的“对应说”定义比较直观7、用复数的棣莫弗公式,可以推导1.三角函数的n倍角公式2.一元二次方程的求根公式3.点到直线的距离公式8、不定方程求解的算理依据是:1. B. 孙子定理2.辗转相除法3.单因子构件法4.拉格朗日插值法9、下列说法,哪一个是错误的:1.戴德金分割中对有理数集的分割满足“不空”、“不漏”、“不乱”三个条件;2.戴德金分割和有理数区间套定义是等价的;3.戴德金分割的下集存在最大数时,上集存在最小数。

10、高中代数课程的基本主线是:1.函数2.数列3.方程11、在中学代数教学中,应提倡的一个基本原则是:在注意形式化的同时,加强代数知识的-----------------.1.形式推导2.直观理解3.恒等变换12、点到直线的距离公式,可以用--------推出:1.柯西不等式2.排序不等式3.均值不等式13、有理数集可以与自然数集建立一一对应的关系,这说明有理数集具有:1.连续性2.完备性3.稠密性4.可数性14、加权平均不等式和下列哪种不等式有内在联系:1.均值不等式2.排序不等式3.柯西不等式15、代数学是研究数学对象的运算的理论和方法的一门学科,根据数学对象的不同表现代数学可分为:1.方程和函数;2.古典代数和近代代数;3.数列和算法4.抽象代数和近世代16、下列说法,哪个是正确的;1.复数集是一个有序域;2.复数可以比较大小;3.复数可以排序;17、下列哪个说法是错误的:1.用尺规作图可以三等分角2.用尺规作图可以二等分角3.用尺规作图可以画直线外一点到该直线的垂直线4.用尺规作图可以画出根号5的数18、任意两个有理数之间,均存在一个有理数,这说明有理数具有:1.完备性2.稠密性3.可数性;4.连续性;19、高中教材“函数”的定义采用的是:1.函数“对应说”;2.函数“变量说”;3.函数“关系说”20、“等价关系”和“顺序关系”的区别在于,后者不具有()1.反身性2.对称性3.传递性21、复数集按照“字典排序”关系,是一个1.复数域2.全序集3.有序域22、两个集合A和B的笛卡尔积的子集,被称为1.结构2.序偶3.关系4.对偶23、下列说法,哪个是正确的()1. A. 复数可以排序2.复数集是一个有序域3.复数可以比较大小24、下列那个定理所体现出来的方法是单因子构件法()1.韦达定理2.代数基本定理3.正弦定理4.孙子定理25、一个收敛的有理数列,其极限可以不是有理数,这说明有理数不具有:1.连续性2.稠密性3.可数性判断题26、有理数对极限运算是封闭的。

2016年某师大附中初三数学秋季第二次月考答案

2016年某师大附中初三数学秋季第二次月考答案

学校班级姓名考号密 封 线 内 不 要 答 题2016学年某师大附中数学第二次月考试题答案一、选择题1-5 ACBBA7-10 BCBC二、填空题11.(2,﹣1)12.x 1=﹣1,x 2=513.﹣214. 4.8615.x <﹣2或x >816.mnsinθ17.y=﹣(x +6)2+418.③④三、解答题19.(1)21212133322222130tan 345sin 2260cos =++=⨯+⨯+=︒+︒+︒(2)2360tan 1-60sin -160tan 1)1-60(sin 60tan -1-160sin 2-60sin 22=︒+︒=︒+-︒=︒+︒︒ 20.解:(1)∵直线y=﹣x +3与x 轴、y 轴分别相交于点B 、C ,∴当x=0时,y=3,当y=0时,x=3, 故B (3,0),C (0,3),∵抛物线对称轴为直线x=2,∴设抛物线解析式为:y=a (x ﹣2)2+h ,将B ,C点代入得:,解得:,故抛物线解析式为:y=(x ﹣2)2+1;(2)∵抛物线解析式为:y=(x ﹣2)2+1,∴P (2,﹣1),∵x=2时,y=﹣x +3=1,故PE=1﹣(﹣1)=2,∴△PBC 的面积为:×2×3=3.21.解:过点A 作AE ⊥MN 于E ,过点C 作CF ⊥MN 于F ,则EF=AB ﹣CD=1.7﹣1.5=0.2(m ),在Rt △AEM 中,∵∠AEM=90°,∠MAE=45°,∴AE=ME .设AE=ME=xm ,则MF=(x +0.2)m ,FC=(28﹣x )m .在Rt △MFC 中,∵∠MFC=90°,∠MCF=30°,∴MF=CF•tan ∠MCF ,∴x +0.2=(28﹣x ),解得x ≈9.7,∴MN=ME +EN=9.7+1.7≈11米.答:旗杆MN 的高度约为11米.22.解:(1)∵抛物线y=ax 2+bx (a ≠0)的顶点坐标为(2,),∴设顶点式形式为y=a (x ﹣2)2+,则a (0﹣2)2+=0,解得a=﹣,所以,y=﹣(x﹣2)2+=﹣x2+x,故抛物线解析式为y=﹣x2+x;(2)设正方形ABCD的边长为2m,∵抛物线对称轴为直线x=2,AB落在x轴的正半轴上,顶点C、D在这条抛物线上,∴点C的坐标为(2+m,2m),∴﹣(2+m)2+(2+m)=2m,整理得,m2+3m﹣4=0,解得m1=1,m2=﹣4(舍去).所以正方形ABCD的边长为2m=2×1=2.23.解:(1)直线y=2x﹣1,当x=0时,y=﹣1,则点C坐标为(0,﹣1).设抛物线解析式为y=ax2+bx+c,∵点A(﹣1,0)、B(1,0)、C(0,﹣1)在抛物线上,∴,解得,∴抛物线的解析式为:y=x2﹣1;(2)联立直线与抛物线解析式可得,解得或,∴D(2,3),∴CD==2;(3)①由平移的性质可知PQ=CD=2;②设G(0,t),则GC=t+1,在Rt△OCE中,可求得OE=,OC=1 ∴CE=,当△GPQ为等腰直角三角形,可能有以下情形:i)若点P为直角顶点,如答图3①所示,则GP=PQ=2,由题意可得△GPC∽△EOC,∴=,即=,解得t=9,∴G(0,9);ii)若点Q为直角顶点,如答图3②所示,则QG=PQ=2.同理可得:G(0,9);iii)若点G为直角顶点,如答图3③所示,此时PQ=2,则GP=GQ=.分别过点P、Q作y轴的垂线,垂足分别为点M、N.在△PMG和△GNQ中∴Rt△PMG≌Rt△GNQ(AAS),∴GN=PM,GM=QN.在Rt△QNG中,由勾股定理得:GN2+QN2=GQ2,即PM2+QN2=10 ①∵C、D的横坐标相差2,∴点P、Q横坐标相差2,∴NQ=PM+2,代入①式得:PM2+(PM+2)2=10,解得PM=1,∴NQ=3.在直线y=2x﹣1中,当x=1时,y=1,∴P(1,1),即OM=1.∴OG=OM+GM=OM+NQ=1+3=4,∴G(0,4).综上所述,符合条件的点G有两个,其坐标为(0,4)或(0,9).。

西南大学附属中学校初2016级九年级下期第三次月考数学试题

西南大学附属中学校初2016级九年级下期第三次月考数学试题
———————————————————————————————————————————————
(2) 已知 A 级中有 4 名数奥尖子学生,其中有 2 名男生, 2 名女 生, B 级中有 3 名体育尖子
学生,其中有 2 名男生, 1 名女生,从这 4 名数奥尖子学生和 3 名体育尖子生中各选出 1 名学生,参加学校的“特长学生经验交流会” 利用”数状图“或者”列表”法求所选出的 2 名学生恰好是一名男生 和一名女生的概率。
则?ACB?( )
A.50 ° B.60 ° C.65 ° D.70 °
11. 用棋子按下列方式摆图形,第一个图形有 1 枚棋子,第二个
图形有 5 枚棋子,第三个图形有 12 枚棋子,以此规律,第 6 个图形
有(
)枚棋子。
A.50
B.49
C.52D.512 Nhomakorabeax?4(m 为常数)与坐标轴交于 A,C两点,双曲线 y?(x?0)经 mx
(3)如图 2,做 DH 垂直于 x 轴于 H,等腰三角形 EFG中,EF=FG=3, 直角边 EF在 x 轴上,并沿 x 轴从右向左平移, 在移动过程中, 当 G 到 x 轴的距离等于它到直线 AC的距离时,求?EFG和?BDH重叠部分的面 积。
———————————————————————————————————————————————
后所用时间为 x(分钟),离家的距离为 y(米),y 与 x 的函数的大致
图像如图所示,下列说法错误的是(

A.家到学校的距离是 2000 米 误的时间是 5 分钟
B.修车耽
C.修车后自行车的速度是每分钟 200 米
比修车后速度快
C
D.修车前
分钟 ) 10.

2016年中考数学试题(含答案)

2016年中考数学试题(含答案)

XX ★启用前 [考试时间:6月13日上午9:00~11:00]2016年高中阶段教育学校招生统一考试数 学本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1至2页,第二部分3至6页,共6页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分120分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列各数中,不是负数的是()A .2-B . 3C .58-D .0.10- 2. 计算()32ab的结果,正确的是( )A .36a b B .35a b C .6ab D .5ab3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列说法中正确的是()A .“打开电视,正在播放《新闻联播》”是必然事件B .“20x <(x 是实数)”是随机事件C .掷一枚质地均匀的硬币10次,可能有5次正面向上D .为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查5.化简22m n m n n m+--的结果是( ) A .m n +B .n m -C .m n -D .m n -- 6.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分2图7.若2x =-是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为( ) A .1-或4 B .1-或4- C .1或4- D .1或48.如图1,点(0,3)D ,(0,0)O ,(4,0)C 在A 上,BD 是A 的一条弦,则sin OBD ∠=( )A .12B .34C .45D .359.如图2,二次函数2(0)y ax bx c a =++>图象的顶点为D , 其图象与x 轴的交点A 、B 的横坐标分别为1-和3,则下列结论 正确的是( )A . 20a b -=B . 0a b c ++>C . 30a c -=D . 当12a =时,ABD ∆是等腰直角三角形10.如图3,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF .给出下列结论:①22.5ADG ∠=;②tan 2AED ∠=;③AGD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤2BE OG =;⑥若1OGF S ∆=,则正方形ABCD 的面积是642+.其中正确的结论个数为( )A .2B .3C .4D .5第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米的黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米的黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共14小题,共90分.二、填空题:本大题共6小题,每小题4分,共24分.11.月球的半径约为1 738 000米,1 738 000这个数用科学记数法表示为.3图BCxy DOA1图12.对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:年龄 13 14 15 16 17 18 人数 4 5 6 6 7 2则这些学生年龄的众数是.13.如果一个正多边形的每个外角都是30,那么这个多边形的内角和为. 14.设12x x 、是方程25320x x --=的两个实数根,则1211x x +的值为. 15.已知关于x 的分式方程111k x k x x ++=+-的解为负数,则k 的取值范围是. 16. 如图4,ABC ∆中,90C ∠=,3AC =,5AB =,D 为BC 边的中点,以AD 上一点O 为圆心的O和AB 、BC 均相切,则O 的半径为.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分60201621+18.(本小题满分6分)如图5,在平面直角坐标系中,直角ABC ∆的三个顶点分别是(3,1)A -,(0,3)B ,(0,1)C .(1)将ABC ∆以点C 为旋转中心旋转180(2)分别连结1AB 、1BA 后,求四边形11AB A B5图AO4图19.(本小题满分6分)中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(图6).(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题: (1)在扇形统计图中,“很喜欢”的部分所对应的扇形圆心角为度;在条形统计图中,喜欢“豆沙”月饼的学生有人;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有人;(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼.现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.20.(本小题满分8分)如图7,在平面直角坐标系中,O 为坐标原点,ABO ∆的边AB 垂直于x 轴,垂足为点B ,反比例函数(0)ky x x =>的图象经过AO 的中点C ,且与AB 相交于点D ,4OB =,3AD =.(1)求反比例函数ky x=的解析式; (2)求cos OAB ∠的值;(3)求经过C 、D 两点的一次函数解析式.喜爱月饼情况扇形统计图很喜欢不喜欢25%40%比较喜欢“很喜欢”月饼的同学最爱 吃的月饼品种条形统计图6图21.(本小题满分8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过14吨,则超过部分每吨按市场价n 元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,请写出y 与x 之间的函数关系式; (3)小明家5月份用水26吨,则他家应交水费多少元?22.(本小题满分8分)如图8,在矩形ABCD 中,点F 在边BC 上,且AF AD =,过点D 作DE AF ⊥,垂足为点E . (1)求证:DE AB =;(2)以A 为圆心,AB 长为半径作圆弧交AF 于点G . 若1BF FC ==,求扇形ABG 的面积.(结果保留π)23.(本小题满分12分)如图9,在AOB ∆中,AOB ∠为直角,6OA =,8OB =.半径为2的动圆圆心Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(05)t <≤.以P 为圆心,PA 长为半径的P 与AB 、OA 的另一个交点分别为C 、D ,连结CD 、QC .(1)当t 为何值时,点Q 与点D 重合? (2)当Q 经过点A 时,求P 被OB 截得的弦长;(3)若P 与线段QC 只有一个公共点,求t 的取值范围.QP9图A D 8图24.(本小题满分12分)如图10,抛物线2y x bx c =++与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点(0,3)C -.(1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积;(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q .是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式;若不存在,请说明理由.2016年高中阶段教育学校招生统一考试数学参考答案与评分意见一、选择题(每题3分,共30分)1、B2、A3、D4、C5、A6、B7、C8、D9、D 10、B 二、填空题(每小题4分,共24分) 11、61.73810⨯;12、17;13、1800; 14、32-;15、102k k >-≠且;16、67三、解答题(本大题共8个小题,共66分)以下各题只提供参考解法,使用其它方法求解,按步骤相应给分.17、(6分)解:原式21(21=+--+…………………………3分(注:分项给分)42=-+5分10图2=+6分18、(6分)解:(1 (3)分(2)111111641222AB A B S AA BB =⋅⋅=⨯⨯=四.…………………………6分19、(6分)解:(1)126 ,4.…………………………………………2分 (2)675…………………………………………3分(3) 甲 云腿 莲蓉 豆沙 蛋黄乙 莲蓉 豆沙 蛋黄 云腿 豆沙 黄 云腿 莲蓉 蛋黄 云腿 莲蓉 豆沙…………………5分41123P ==.………………………6分 20、(8分)解:(1)设(4,)D a ,3AB a =+过点C 作CE x ⊥轴,垂足为E ,∵C 是AO 的中点, ∴CE 是AOB ∆的中位线,……………1分∴点3(2,)2aC +, ……………2由点C 和点D 都在反比例函数图象上得:3242aa +⨯=解得:1a =,点(4,1)D ……………3分反比例函数:4y x=……………4分(2)由4OB AB ==得,∴45OAB ∠=, cos 2OAB ∠=……………5分(3)设直线CD 的函数关系式:11(0)y k x b k =+≠∵(2,2)C ,(4,1)D 在直线上,得112214k bk b=+⎧⎨=+⎩………………………6分解得:1123k b ⎧=-⎪⎨⎪=⎩………………………7分直线CD 的函数关系式:132y x =-+………………………8分21、(8分)解:(1)由题意得:14(2014)4914(1814)42m n m n +-=⎧⎨+-=⎩………………………2分解得:23.5m n =⎧⎨=⎩………………………4分(2)当014x <≤时,2y x =;当14x >时,28(14) 3.5 3.521y x x =+-⨯=-所以2,0143.521,14x x y x x <≤⎧=⎨->⎩……………………7分(3)当26x =时, 3.5262170y =⨯-=(元) ……………………8分22、(8分)(1)证明:∵DE AF ⊥,∴90AED ∠=, 又∵四边形ABCD 是矩形, ∴90ABF ∠=, ∴90ABF AED ∠=∠=,……………………1分 又∵//AD BC∴DAE AFB ∠=∠,……………………2分 又∵AF AD =,∴ADE ∆≌()FAB AAS ∆,……………………3分∴DE AB =……………………4分(2)∵1BF FC ==,∴2AD BC BF FC ==+=,又∵ADE ∆≌FAB ∆,∴2AF AD ==,……………………5分 ∴在Rt ABF ∆中,12BF AF =,∴30BAF ∠=,……………………6分 又∵AB== ……………………7分∴扇形ABG 的面积230313603604n r πππ⨯===……………………8分A8图23、(12分)解:(1)在直角ABO ∆中,6AO =,8BO =,∴10AB =63cos 105AO BAO AB ∠===……………………1分 ∵AC P 是的直径, ∴90CDA ∠=在直角ACD ∆中,3cos 5AD CAD AC ∠== ∵OQ AP t ==,2AC t =, ∴65AD t =……………………2分∵点Q 与点D 重合,∴6OQ AD OA +==665t t +=,解得:3011t =当3011t =时,点Q 与点D 重合.……………………3分(2)∵Q 经过点A ,Q 的半径是2∴2AQ =,624OQ =-=,4t =∴4AP =,1046BP =-=……………………4分 设P 被OB 截得的弦为线段EF ,过点P 作PM EF M ⊥于点,//PM OA ,BPM ∆∽BAO ∆,BP PMBA OA=∴6106PM =,185PM =……………………5分 连结PE ,4PE =在直角PEM ∆中,EM ===……………………6分∴2EF EM ==7分 (3)当QC P 与相切时,AC QC ⊥在直角ACQ ∆中,3cos 5CAQ ∠=2AC t =,51033AQ AC t ==, ……………………8分 ∵6AQ OA OQ t =-=-∴1063t t =-,得:1813t =……………………9分 ∴当18013t <≤时,P 与线段QC 只有一个公共点 (10)分又∵当3011t =时,点Q 与点D 重合,P 与线段QC 有两个公共点 ∴当30511t <≤时,P 与线段QC 只有一个公共点 ……………………11分综上,当18013t <≤或30511t <≤时,P 与线段QC 只有一个公共点 ……………………12分24、(12分)解:(1)∵抛物线2y x bx c =++与x 轴交于B 点(3,0),与y 轴交于(0,3)C -. ∴9303b c c ++=⎧⎨=-⎩,∴2b =-……………………1分∴抛物线的解析式:223y x x =--……………………2分 (2)抛物线223y x x =--与x 轴的交点(1,0)A -,4AB = 连结BC ,ABC BCP ABPC S S S ∆∆=+四, 1143622ABC S AB OC ∆=⋅=⨯⨯= 当BCP S ∆最大时,四边形ABPC 的面积最大求出直线BC 的函数关系式:3y x =-……………………3分 平移直线BC ,当平移后直线与抛物线223y x x =--相切时,BC 边上的高最大,BCP S ∆最大.设平移后直线关系式为:3y x m =--联立2323y x m y x x =--⎧⎨=--⎩, 2233x x x m --=-- 当0∆=时,94m =∴平移后直线关系式为:214y x =-……………………4分 221423y x y x x ⎧=-⎪⎨⎪=--⎩ , 解得:32154x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴点315(,)24P -……………………5分过点P 向x 轴作垂线,与线段BC 交于点D 点33(,)22D -,3159()244PD =---= ∴BCP S ∆最大值91273428=⨯⨯=, ∴四边形ABPC 的最大面积2775688=+=……………………6分 (3)存在,设直线m 与y 轴交于点N ,与直线l 交于点M ,设点N 的坐标为(0,)t ① 当l m ⊥时, 90NOB NMC ∠=∠=∴90MCN MNC ∠+∠=, 90ONB OBN ∠+∠=又∵ONB MNC ∠=∠∴MCN OBN ∠=∠∵90AMB NMC ∠=∠=∴AMB ∆∽NMC ∆求出直线l 的函数关系式:33l y x =--∵l m ⊥,设直线m 的函数关系式:13m y x b =+ ∵直线m 经过点(3,0)B∴直线m 的函数关系式:113m y x =-,此时1t =-……………………7分 ② 当31t -<<-时,90,90AMB CMB ∠<∠>AMB ∆是一个锐角三角形,CMN ∆却是一个钝角三角形∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………8分③ 当10t -<<时,90,90AMB CMB ∠>∠< AMB ∆是一个钝角三角形,CMN ∆却是一个锐角三角形∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………9分④当01t <<时,1ON < ∴OA ON OC OB>, MCN MBA ∠>∠ 又∵CMN BMA ∠=∠(公共角)∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 (10)分⑤当1t =时,1ON = ∴13OAONOC OB ==, MCN MBA ∠=∠又∵CMN BMA ∠=∠(公共角)∴AMB ∆∽NMC ∆∵直线m 经过点(3,0)B 和(0,1)N∴直线m 的函数关系式:113m y x =-+……………………11分⑥当1t >时,1ON > ∴OA ONOC OB <, MCN MBA ∠<∠又∵CMN BMA ∠=∠(公共角)∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………12分综上,直线m 的函数关系式为:113m y x =-+或113m y x =-。

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。

2.排列45312的逆序数为 5 。

3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。

5.行列式25112214--x 中,x 的代数余子式是 —5 。

6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。

解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则 η1-η2或η2-η1 是其导出方程组的解。

重庆西南大学附中2016届九年级数学下册第九次月考试题

重庆西南大学附中2016届九年级数学下册第九次月考试题

重庆西南大学附属中学2016届九年级数学第九次月考试题
沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;
大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,
欲与天公试比高。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,
只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

希望的灯一旦熄灭,生活刹那间变成了一片黑暗。

——普列姆昌德
薄雾浓云愁永昼,瑞脑消金兽。

佳节又重阳,玉枕纱厨,半夜凉初透。

东篱把酒黄昏后,有暗香盈袖。

莫道不消魂,帘卷西风,人比黄花瘦。

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。

2.排列45312的逆序数为 5 。

3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。

5.行列式25112214--x 中,x 的代数余子式是 —5 。

6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。

解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则 η1-η2或η2-η1 是其导出方程组的解。

高等代数(2016秋季)自测题补充

高等代数(2016秋季)自测题补充

一、单项选择题1、若((),())1f xg x=,则以下命题为假的是( B ).A.23((),())1f xg x= B.(),(),u x f x v x g x+=∀有()()()() 1.u x v xC.()|()()+=f xg x f x g xg x f x h x必有()|()g x h x D.(()(),()())12、下列命题为假的是( D ).A.在有理数域上存在任意次不可约多项式B.在实数域上3次多项式一定可约C.在复数域上次数大于0的多项式都可约D.在实数域上不可约的多项式在复数域上没有重根3、下列命题为真的是( C ).A.若2()()p x f x,则()p x是()f x二重因式B.若()p x是(),(),()'''的公因式,则()p x的根f x f x f x是()f x的三重根C.()f x有重根'⇔有一次因式(),()f x f xD.若()f x有重根,则()f x有重因式,反之亦然4、下列命题为假的是( A ).A.三个本原多项式之积未必是本原多项式B.实系数多项式只有一次或含共轭非实复根的二次多项式的实数域上不可约C.任何(0)n n >次复系数多项式在复数域上有且仅有n 个根(重根按重数计算)6、排列134782695的逆序数是【 B 】(A)9 ; (B)10 ; (C)1 ; (D)12 。

7、对任意n 阶方阵A 、B ,总有【 B 】(A) AB =BA (B) |AB |=|BA |(C) (AB )T =A T B T (D) (AB )2=A 2B 28. 设CB A ,,均为n 阶方阵,且,E CA BC AB === 则=++222C B A ( A );(A )3E ;(B )2E ;(C )E ;(D )0.9.设A 为n 阶方阵,T B A A =-,则必有( C ); ();()2;();()0.T T A B B B B A C B B D B ===-= 10、设n 阶方阵A 满足20A E -=,其中E 是n 阶单位矩阵,则必有【 C 】(A )A E =; (B )A E =-;(C )1A A -=; (D )1A =。

西南大学网上作业题及参考答案

西南大学网上作业题及参考答案

西南大学网上作业题及参考答案西南大学《社会科学研究方法》网上作业题及答案.doc 西南大学《色彩》网上作业题及答案.doc西南大学《人力资源开发与管理》网上作业题及答案.doc 西南大学《区域分析与规划》网上作业题及答案.doc西南大学《园艺植物研究法》网上作业题答案.doc西南大学《遗传学》网上作业题答案.doc西南大学《仪器分析》网上作业题答案.doc西南大学《消费者行为学》网上作业题答案.doc西南大学《西方经济学(下)》网上作业题答案.doc西南大学《文字设计》网上作业题答案.doc西南大学《外语教育技术》网上作业题答案.doc西南大学《外国音乐简史》网上作业题答案.doc西南大学《土地利用规划学》网上作业题答案.doc西南大学《土地规划学》网上作业题答案.doc西南大学《商务沟通》网上作业题答案.doc西南大学《论文写作》网上作业题答案.doc西南大学《旅游地理学》网上作业题答案.doc西南大学《合唱指挥常识》网上作业题答案.doc西南大学《歌剧艺术欣赏》网上作业题答案.doc西南大学《高效率教学》网上作业题答案.doc西南大学《儿童哲学》网上作业题答案.doc西南大学《动物生物学》网上作业题答案.doc西南大学《动物生物化学》网上作业题答案.doc西南大学《动物生理学》网上作业题答案.doc西南大学《邓小平教育思想》网上作业题答案.doc西南大学《财务会计》网上作业题答案.doc西南大学《中国教育哲学思想》网上作业题及答案.doc 西南大学《中国法制史》网上作业题答案.doc西南大学《中国法律思想史》网上作业题及答案.doc 西南大学《政治学与管理》网上作业题及答案.doc西南大学《政治学》网上作业题及答案.doc西南大学《证券学》网上作业题及答案.doc西南大学《影视摄影》网上作业题及答案.doc西南大学《英语阅读一》(高)网上作业题答案.doc西南大学《英语阅读四(高)》网上作业题及答案.doc 西南大学《英语阅读二》(高)网上作业题答案.doc西南大学《英语听说二》(专)网上作业题及答案.doc 西南大学《英语国家概况》网上作业题及答案.doc西南大学《房地产经营管理》网上作业题及答案.doc西南大学《房地产估价》网上作业题及答案.doc西南大学《电子政务》网上作业题及答案.doc西南大学《当代中国公共政策》网上作业题及答案.doc 西南大学《城市地理学》网上作业题及答案.doc西南大学《财务会计》网上作业题及答案.doc西南大学《办公自动化》网上作业题及答案.doc西南大学《班主任工作》网上作业题及答案.doc西南大学《课堂教学艺术》网上作业题及答案.doc西南大学《经济地理学》网上作业题及答案.doc西南大学《计算机图象处理基础》网上作业题及答案.doc 西南大学《计算机辅助设计》网上作业题及答案.doc西南大学《花卉栽培学概》网上作业题及答案.doc西南大学《果树栽培学概论》网上作业题及答案.doc西南大学《国际贸易》网上作业题及答案.doc西南大学《管理中的计算机应用》网上作业题及答案.doc 西南大学《管理学》网上作业题及答案.doc西南大学《古代文化》网上作业题及答案.doc西南大学《公务员制度》网上作业题及答案.doc西南大学《公文写作》网上作业题及答案.doc西南大学《工程地质》网上作业题及答案.doc西南大学《政治经济学》网上作业题及答案.doc西南大学《语文教学方法论》网上作业题及答案.doc西南大学《行政管理学》网上作业题及答案.doc西南大学《行政法与行政诉讼法》网上作业题及答案.doc 西南大学《小学数学教学方法》网上作业题及答案.doc 西南大学《系统工程》网上作业题及答案.doc西南大学《无土栽培》网上作业题及答案.doc西南大学《土地管理学基础》网上作业题及答案.doc西南大学《蔬菜栽培学概论》网上作业题及答案.doc西南大学《社会学》网上作业题及答案.doc西南大学《素描》网上作业题及答案.doc西南大学《思想政治教育学》网上作业题及答案.doc西南大学《数学分析选讲》网上作业题答案.doc西南大学《世界旅游市场》网上作业题及答案.doc西南大学《审计学》网上作业题及答案.doc西南大学《社会学概论》网上作业题答案.doc西南大学《社会心理学》网上作业题答案.doc西南大学《社会调查与研究方法》网上作业题答案.doc 西南大学《社会保障》网上作业题及答案.doc西南大学《商品流通企业会计》网上作业题及答案.doc 西南大学《商法学》[下]网上作业题及答案.doc西南大学《人力资源管理》网上作业题及答案.doc 西南大学《人口地理学》网上作业题及答案.doc西南大学《人格心理学》网上作业题及答案.doc西南大学《企业管理》网上作业题及答案.doc西南大学《普通心理学》网上作业题答案.doc西南大学《普通物理选讲一》网上作业题及答案.doc 西南大学《民间文学》网上作业题答案.doc西南大学《民法总论》网上作业题答案.doc西南大学《民法分论》网上作业题及答案.doc西南大学《艺术概论》网上作业题及答案.doc西南大学《形式逻辑》网上作业题及答案.doc西南大学《行政法学》网上作业题及答案.doc西南大学《刑法总论》网上作业题答案.doc西南大学《刑法分论》网上作业题及答案.doc西南大学《新税制》网上作业题及答案.doc西南大学《心理学》网上作业题及答案.doc西南大学《心理测量学》网上作业题及答案.doc西南大学《宪法学》网上作业题答案.doc西南大学《线性代数》网上作业题答案.doc西南大学《现代化学教学论》网上作业题答案.doc 西南大学《现代汉语下》网上作业题及答案.doc西南大学《现代汉语上》网上作业题答案.doc西南大学《现代汉语词汇》网上作业题答案.doc西南大学《西方哲学史》网上作业题及答案.doc西南大学《西方经济学》网上作业题及答案.doc西南大学《文字学》网上作业题及答案.doc西南大学《外国文学下》网上作业题及答案.doc西南大学《外国文学上》网上作业题及答案.doc西南大学《土地管理》网上作业题及答案.doc西南大学《统计学原理》网上作业题答案.doc西南大学《体育新闻》网上作业题及答案.doc西南大学《综合英语一》网上作业题答案.doc西南大学《综合英语四》网上作业题及答案.doc西南大学《综合英语七》网上作业题及答案.doc西南大学《综合英语二》网上作业题及答案.doc西南大学《专业英语》网上作业题答案.doc西南大学《中级无机化学》网上作业题答案.doc西南大学《中国新诗与中外文化》网上作业题答案.doc 西南大学《古代散文》网上作业题及答案.doc西南大学《公司法学》网上作业题答案.doc西南大学《公共事业管理导论》网上作业题答案.doc 西南大学《工程地质学》网上作业题及答案.doc西南大学《高等有机化学》网上作业题及答案.doc西南大学《分子生物学》网上作业题及答案.doc西南大学《房地产法》网上作业题及答案.doc西南大学《法理学》网上作业题答案.doc西南大学《电算化会计》网上作业题及答案.doc西南大学《道德》网上作业题及答案.doc西南大学《单片机及应用》网上作业题及答案.doc西南大学《大学英语二》网上作业题答案.doc西南大学《成本会计》网上作业题及答案.doc西南大学《财政学》网上作业题及答案.doc西南大学《财务会计学》网上作业题答案.doc西南大学《材料化学》网上作业题及答案.doc西南大学《标准日本语四》网上作业题及答案.doc西南大学《旅游政策与法规》网上作业题答案.doc西南大学《旅游英语上》网上作业题及答案.doc西南大学《旅游心理学》网上作业题答案.doc西南大学《旅游企业投资与管理》网上作业题及答案.doc 西南大学《旅游美学》网上作业题及答案.doc西南大学《旅游景区开发与管理》网上作业题及答案.doc 西南大学《旅游经济学》网上作业题及答案.doc西南大学《领导科学》网上作业题及答案.doc西南大学《课程论》网上作业题及答案.doc西南大学《经济法》网上作业题及答案.doc西南大学《金融理论与实务》网上作业题及答案.doc 西南大学《教育学》网上作业题及答案.doc西南大学《教育心理学》网上作业题答案.doc西南大学《教育统计学》网上作业题及答案.doc西南大学《教育生理学》网上作业题及答案.doc西南大学《教育社会学》网上作业题及答案.doc西南大学《教育科研方法》网上作业题及答案.doc西南大学《教育经济学》网上作业题及答案.doc西南大学《教育法学》网上作业题及答案.doc西南大学《教学论》网上作业题及答案.doc西南大学《计算机应用》网上作业题及答案.doc西南大学《计算机导论》网上作业题答案.doc西南大学《基础语法下》网上作业题及答案.doc西南大学《婚姻法》网上作业题及答案.doc西南大学《环境学概论》网上作业题及答案.doc西南大学《环境伦理学》网上作业题及答案.doc西南大学《化学实验教学研究》网上作业题及答案.doc 西南大学《合同法》网上作业题及答案.doc西南大学《美学原理》网上作业题及答案.doc西南大学《体育文献检索》网上作业题及答案.doc西南大学《体育社会学》网上作业题及答案.doc西南大学《体育公共关系》网上作业题及答案.doc西南大学《唐宋词研究》网上作业题答案.doc西南大学《微积分初步》网上作业题及答案.doc西南大学《网页设计》网上作业题及答案.doc西南大学《土木工程材料》网上作业题及答案.doc西南大学《土地资源学》网上作业题及答案.doc西南大学《土地制度与政策》网上作业题及答案.doc西南大学《土地管理学》网上作业题及答案.doc西南大学《土地法学》网上作业题及答案.doc西南大学《田间试验设计》网上作业题及答案.doc西南大学《天然药物化学》网上作业题及答案.doc西南大学《体育教育学(方法论)》网上作业题及答案.doc 西南大学《水力学》网上作业题及答案.doc西南大学《数学活动》网上作业题及答案.doc西南大学《蔬菜栽培学》网上作业题及答案.doc西南大学《市场营销》网上作业题及答案.doc西南大学《社会心理学》网上作业题及答案.doc西南大学《色彩构成》网上作业题及答案.doc西南大学《企业战略管理》网上作业题及答案.doc西南大学《普通测量学》网上作业题及答案.doc西南大学《盆景制作》网上作业题及答案.doc西南大学《民族民间音乐》网上作业题及答案.doc西南大学《面向对象程序设计》网上作业题及答案.doc西南大学《乐理》网上作业题及答案.doc西南大学《中学数学课堂教学设计》网上作业题及答案.doc 西南大学《中国音乐史》网上作业题及答案.doc西南大学《中国古代文学二》网上作业题及答案.doc西南大学《政府经济学》网上作业题及答案.doc西南大学《园艺产品营销学》网上作业题及答案.doc西南大学《园艺产品采后处理与商品化》网上作业题及答案.doc 西南大学《园林制图》网上作业题及答案.doc西南大学《园林艺术设计》网上作业题及答案.doc西南大学《园林苗圃学》网上作业题及答案.doc西南大学《园林建筑》网上作业题及答案.doc西南大学《园林工程概预算》网上作业题及答案.doc西南大学《园林工程初步》网上作业题及答案.doc西南大学《英语语法》网上作业题及答案.doc西南大学《英语写作》网上作业题及答案.doc西南大学《音乐》网上作业题及答案.doc西南大学《药物化学》网上作业题及答案.doc西南大学《遥感概论》网上作业题及答案.doc西南大学《学校心理学》网上作业题及答案.doc西南大学《学习心理学》网上作业题及答案.doc西南大学《信息安全》网上作业题及答案.doc西南大学《心理学教学法(方法论)》网上作业题及答案.doc西南大学《小学数学教育学》网上作业题及答案.doc西南大学《小学数学教学案例分析》网上作业题及答案.doc 西南大学《西方文学与文化》网上作业题及答案.doc西南大学《国际私法》网上作业题及答案.doc西南大学《国际经济法》网上作业题及答案.doc西南大学《管理学原理》网上作业题及答案.doc西南大学《管理思想史》网上作业题及答案.doc西南大学《学校管理学》网上作业题及答案.doc西南大学《学校德育》网上作业题及答案.doc西南大学《学前心理学》网上作业题及答案.doc西南大学《学前教育学》网上作业题及答案.doc西南大学《新文学思潮与流派》网上作业题答案.doc西南大学《线性代数》网上作业题及答案.doc西南大学《西方经济学(上)》网上作业题及答案.doc西南大学《物业管理》网上作业题及答案.doc西南大学《土地评价与管理》网上作业题答案.doc西南大学《非营利组织会计》网上作业题及答案.doc西南大学《房屋建筑学2》网上作业题及答案.doc西南大学《房屋建筑学1》网上作业题及答案.doc西南大学《法律逻辑》网上作业题及答案.doc西南大学《发展心理学》网上作业题及答案.doc西南大学《地理信息系统原理》网上作业题及答案.doc西南大学《当代西方经济思潮》网上作业题及答案.doc西南大学《大气》网上作业题及答案.doc西南大学《存在主义疗法》网上作业题及答案.doc西南大学《城市园林绿地规划》网上作业题及答案.doc西南大学《测量学》网上作业题及答案.doc西南大学《奥林匹克学》网上作业题及答案.doc西南大学《C语言》网上作业题及答案.doc西南大学《钢筋混凝土结构与砌体结构》网上作业题及答案.doc 西南大学《课堂教学技术(教学论)》网上作业题及答案.doc 西南大学《酒店房务管理》网上作业题及答案.doc西南大学《金融学》网上作业题及答案.doc西南大学《解剖》网上作业题及答案.doc西南大学《结构力学》网上作业题及答案.doc西南大学《教育心理学》网上作业题及答案.doc西南大学《建筑制图2》网上作业题及答案.doc西南大学《建筑制图1》网上作业题及答案.doc西南大学《建筑力学》网上作业题及答案.doc西南大学《建筑工程招投标与合同管理》网上作业题及答案.doc 西南大学《建筑给水排水工程》网上作业题及答案.doc西南大学《建筑CAD》网上作业题及答案.doc西南大学《计算机制图基础(CAD)》网上作业题及答案.doc西南大学《基础工程》网上作业题及答案.doc西南大学《化工制图》网上作业题及答案.doc西南大学《化工技术经济学》网上作业题及答案.doc西南大学《花卉学》网上作业题及答案.doc西南大学《果树栽培学》网上作业题及答案.doc西南大学《果树盆景盆栽技术》网上作业题及答案.doc 西南大学《国际投资》网上作业题及答案.doc西南大学《国际金融》网上作业题及答案.doc西南大学《管理哲学》网上作业题及答案.doc西南大学《公共关系》网上作业题及答案.doc西南大学《工程建设监理》网上作业题及答案.doc西南大学《歌词创作与鉴赏》网上作业题及答案.doc西南大学《文献检索与应用》网上作业题及答案.doc西南大学《杜甫研究》网上作业题及答案.doc西南大学《第四纪地质学》网上作业题及答案.doc西南大学《地理信息系统》网上作业题答案.doc西南大学《导游业务》网上作业题及答案.doc西南大学《当代世界政治与经济》网上作业题及答案.doc 西南大学《操作系统》网上作业题及答案.doc西南大学《标准日本语三》网上作业题及答案.doc西南大学《标准日本语二》网上作业题及答案.doc西南大学《比较文学》网上作业题答案.doc西南大学《体育产业学导论》网上作业题及答案.doc 西南大学《税收学》网上作业题及答案.doc西南大学《生物化学》网上作业题及答案.doc西南大学《区域经济学》网上作业题及答案.doc西南大学《欧洲文化入门》网上作业题及答案.doc西南大学《面向对象技术》网上作业题答案.doc西南大学《美国文学史及选读》网上作业题及答案.doc 西南大学《马克思主义哲学》网上作业题及答案.doc 西南大学《旅游商品学》网上作业题及答案.doc西南大学《旅行社经营管理》网上作业题及答案.doc 西南大学《科学教育》网上作业题及答案.doc西南大学《经济数学(下)》网上作业题及答案.doc西南大学《经济数学(上)》网上作业题及答案.doc西南大学《教育案例研究》网上作业题答案.doc西南大学《建筑工程制图》网上作业题及答案.doc西南大学《会计学基础》网上作业题答案.doc西南大学《会计核算》网上作业题及答案.doc西南大学《会计电算化》网上作业题及答案.doc西南大学《化工基础》网上作业题及答案.doc西南大学《古代汉语下》网上作业题及答案.doc西南大学《高数选讲》网上作业题及答案.doc西南大学《概率统计》网上作业题答案.doc西南大学《分析化学(定量)》网上作业题答案.doc西南大学《房屋建筑学》网上作业题及答案.doc西南大学《多媒体技术》网上作业题及答案.doc西南大学《综合自然地理学》网上作业题及答案.doc 西南大学《综合英语八》网上作业题及答案.doc西南大学《资产管理》网上作业题及答案.doc西南大学《中学英语教学法》网上作业题及答案.doc 西南大学《中华人民共和国史》网上作业题及答案.doc 西南大学《植物生物学》网上作业题及答案.doc西南大学《语言学导论》网上作业题及答案.doc西南大学《英语阅读二》网上作业题及答案.doc西南大学《英语文体学引论》网上作业题答案.doc西南大学《英语听力一》(高)网上作业题及答案.doc西南大学《英语听力三》(高)网上作业题及答案.doc西南大学《英语词汇学》网上作业题及答案.doc西南大学《英国文学史及选读》网上作业题及答案.doc 西南大学《汇编语言》网上作业题及答案.doc西南大学《环境化学》网上作业题答案.doc西南大学《数学教育学》网上作业题及答案.doc西南大学《营销学》网上作业题及答案.doc西南大学《音乐审美常识》网上作业题及答案.doc西南大学《学校体育学》网上作业题及答案.doc西南大学《行政论理学》网上作业题及答案.doc西南大学《行政管理案例分析》网上作业题及答案.doc 西南大学《刑事诉讼法》网上作业题及答案.doc西南大学《心理诊断学》网上作业题及答案.doc西南大学《项目投资与分析》网上作业题及答案.doc 西南大学《现代教育技术》网上作业题及答案.doc西南大学《现代教学技术》网上作业题及答案.doc西南大学《现代广告学》网上作业题及答案.doc西南大学《系统论》网上作业题及答案.doc西南大学《物流管理》网上作业题及答案.doc西南大学《物理教育学》(方法论)网上作业题答案.doc 西南大学《物理化学》网上作业题答案.doc西南大学《网络原理》网上作业题及答案.doc西南大学《外国民商法》网上作业题及答案.doc西南大学《土木工程施工技术》网上作业题及答案.doc 西南大学《土木工程概预算》网上作业题及答案.doc 西南大学《土力学》网上作业题及答案.doc西南大学《土地经济学》网上作业题及答案.doc西南大学《投资经济学》网上作业题及答案.doc西南大学《统计物理基础》网上作业题及答案.doc西南大学《天文概论》网上作业题及答案.doc西南大学《体育经济学》网上作业题及答案.doc西南大学《体育概论》网上作业题及答案.doc西南大学《特稀蔬菜概论》网上作业题及答案.doc西南大学《数字电路》网上作业题及答案.doc西南大学《数学物理方法》网上作业题答案.doc西南大学《园艺作物无公害生产》网上作业题及答案.doc西南大学《园艺植物育种理论及实践》网上作业题及答案.doc 西南大学《园艺植物生物技术》网上作业题及答案.doc西南大学《园艺植物化学调控》网上作业题及答案.doc西南大学《园林植物造景设计》网上作业题及答案.doc西南大学《园林植物配置》网上作业题及答案.doc西南大学《园林建筑设计与构造》网上作业题及答案.doc西南大学《园林工程》网上作业题及答案.doc西南大学《语言学概论》网上作业题答案.doc西南大学《思想政治教育教学方法论》网上作业题及答案.doc 西南大学《税务会计》网上作业题及答案.doc西南大学《数学建模》网上作业题及答案.doc西南大学《食用菌栽培学》网上作业题及答案.doc西南大学《化学与社会》网上作业题答案.doc西南大学《古代汉语上》网上作业题答案.doc西南大学《公关语言》网上作业题及答案.doc西南大学《公共关系学》网上作业题及答案.doc西南大学《工程概预算》网上作业题及答案.doc西南大学《歌剧艺术欣赏》网上作业题及答案.doc西南大学《高级财务会计》网上作业题及答案.doc西南大学《钢琴教学法》网上作业题及答案.doc西南大学《钢筋混凝土结构基本原理》网上作业题及答案.doc 西南大学《钢结构设计》网上作业题及答案.doc西南大学《钢结构基本原理》网上作业题及答案.doc西南大学《儿童心理障碍》网上作业题及答案.doc西南大学《电子商务概论》网上作业题及答案.doc西南大学《地理科学》网上作业题及答案.doc西南大学《地籍管理》网上作业题及答案.doc西南大学《邓小平理论》网上作业题及答案.doc西南大学《城市园林绿地规划设计》网上作业题及答案.doc 西南大学《草坪学》网上作业题及答案.doc西南大学《变态心理学》网上作业题及答案.doc西南大学《花卉栽培》网上作业题及答案.doc西南大学《国际法》网上作业题及答案.doc西南大学《观光农场经营管理》网上作业题及答案.doc西南大学《市场营销学》网上作业题及答案.doc西南大学《世界政治制度史》网上作业题及答案.doc西南大学《实验心理学》网上作业题答案.doc西南大学《生物学》网上作业题及答案.doc西南大学《生物工程》网上作业题及答案.doc西南大学《生态学》网上作业题及答案.doc西南大学《人力资源开发与管理》网上作业题答案.doc西南大学《企业管理学》网上作业题及答案.doc西南大学《普通物理选讲二》网上作业题及答案.doc西南大学《盆景装饰》网上作业题及答案.doc西南大学《暖通空调》网上作业题及答案.doc西南大学《毛泽东思想概论》网上作业题及答案.doc西南大学《马克思主义哲学》网上作业题答案.doc西南大学《旅游规划与开发》网上作业题及答案.doc西南大学《鲁迅研究》网上作业题及答案.doc西南大学《领导心理学》网上作业题答案.doc西南大学《理论力学》网上作业题答案.doc西南大学《乐理常识》网上作业题及答案.doc西南大学《跨文化交际》网上作业题及答案.doc西南大学《教育统计与测评》网上作业题及答案.doc西南大学《建设法规》网上作业题及答案.doc西南大学《基础教育阶段英语课程》网上作业题及答案.doc 西南大学《基础会计学》网上作业题及答案.doc。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、每个自然数,都有一个后继;
不是任何自然数的后继;
、若,则;
、自然数的某个集合若含1,而且如果含一个自然数就一定含,那么这个集合含全体自然数。

这五条关于自然数的公理,组成了一个完整的公理体系,习惯上称为皮亚诺公
,它们中的每一个包含在前面的区间内;
的长度趋于零。

这样的一系列区间称为一组区间套。

设数列,总存在一个自然数
称为基本序列。

两个基本序列,对于任意的
和中的每一个数(不乱)
叫做分割的下集,集合叫上集,记为。

且是最小的数,没有最小数,下集,中有最小数。

中没有最小数;
中有最小数,中也没有最小数。

这个分割定义了有理数不是一个有理数(15
综上,a、b 都是5的倍数,那么a/b 就不是最简分数了,与假设矛盾,因此,根号5不是有理数,必定是无理数。

(2
2
1
12
2
+b a
ab
b
a。

相关文档
最新文档