第八章热力学答案
大学物理答案 8.第八章
第八章热力学第一和第二定律思考题8-13 强光照射物体,可以使物体的温度上升,导致物体内能的改变。
试问这一过程属于热量传递还是广义的做功。
8-14 储气瓶中的二氧化碳急速喷出,瓶口处会出现固态的二氧化碳----干冰。
为什么?8-15 日常生活中有“摩擦生热”的提法,从物理上讲正确的表述是什么?8-16 有人说:只有温度改变时,才有吸热或放热现象。
这种说法正确吗?试举例说明之。
8-17 微元dW、dQ和dU与具体微元过程有关吗?微元dQT呢?8-18 参考§8.4关于开尔文表述与克劳修斯表述等价性的证明,试用反证法证明卡诺循环与克劳修斯表述的等价性。
8-19 等温膨胀过程的熵变大于零,有人说这表明此过程是不可逆的过程。
这种说法正确吗?8-20 基于克劳修斯表述证明两条绝热线不可能相交。
8-21 定义状态量焓H=U+pV。
对准静态且只有压强做功的过程,证明dH=Tds+Vdp,并说明该量在等压过程中的物理意义。
8-22报载,一小孩在夏季午睡时,由于长时间压着一个一次性打火机,导致打火机破裂,其皮肤轻度冻伤。
试思考其中的物理原因。
8-23 一般来说,物体吸热(放热)温度上升(下降),其热容量为正值。
但是对于自引力系统,热容量可能取负值。
试以第七章例7.3为例说明之。
习题8-1 某一定量氧气原处于压强P1=120atm 、体积V1=1.0L 、温度t1=27摄氏度的状态,经(1)绝热膨胀,(2)等温膨胀,(3)自由膨胀,体积增至V2=5.0L 。
求这三个过程中气体对外做功及末状态压力值。
解:112120, 1.0,300 5.0p atm V l T K V l====氧气的775225p vC R R C γ=== (1)绝热膨胀:111611122212() 1.2810a V p V p V p p P V ---===⨯ 1412[1()] 1.44101V pVW J V γγ-=-=⨯- (2)等温过程:111611122212() 1.2810a V p V p V p p P V ---=∴==⨯ 1412[1()] 1.44101V pVW J V γγ-=-=⨯- (3)自由膨胀,T 不变 622.4310a p P =⨯ W=08-2 将418.6J 的热量传给标准态下的5.00×10-3kg 的氢气[Cv,m=20.331J/(mol.k)] (1) 若体积不变,这热量变为什么?氢气的温度变为多少? (2) 若温度不变,这热量变为什么?氢气的压强及体积变为多少? (3) 若压强不变,这热量变为什么?氢气的温度和体积变为多少? 解:(1)V 不变5131416.8, 1.01310,273.15 510Q W U Q J P Pa T K M Kg-∆=+∆∴∆==⨯==⨯50, 8.05522M QW Q U R T T KM R μμ∆=∆=∆=∆∴∆== 273.158.05281.2()T K ∴=+=(2)T 不变12211123111111 0, 1.0775.610QMRT V VMU Q W RT Ln e V V MRT MPV RT V m P μμμμ∆-∆=∆==∴===∴==⨯223112225.610 1.0776.0310() 9.4110 ( )PV V m P Pa V --∴=⨯⨯=⨯==⨯ (3)P 不变22321212221211111 , 5.85(),72273.15 5.7279.0()5.7210P MQQ C T T K M R T K V V T MRTT MRT V V m T T T PT P μμμμ∆∆=∆∆==∴=+======⨯1125()121.6 299.02M W P V V J U R T J μ=-=∆=∆= 计算结果Q U W ∆≠∆+是因为Cp 和Cv 近似取值,若取实验值20.331,28.646v p C C ==可得:25.845,279.0,297.1T K T K U J ∆==∆=8-3有20.0L 的氢气,温度为27摄氏度,压强为P=1.25105pa 。
08热力学第二定律习题解答
第八章热力学第二定律一选择题1. 下列说法中,哪些是正确的?( )(1)可逆过程一定是平衡过程;(2)平衡过程一定是可逆的;(3)不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。
A. (1)、(4)B. (2)、(3)C. (1)、(3)D. (1)、(2)、(3)、(4)解:答案选A。
2. 关于可逆过程和不可逆过程的判断,正确的是( )(1) 可逆热力学过程一定是准静态过程;(2) 准静态过程一定是可逆过程;(3) 不可逆过程就是不能向相反方向进行的过程;(4) 凡是有摩擦的过程一定是不可逆的。
A. (1)、(2) 、(3)B. (1)、(2)、(4)C. (1)、(4)D. (2)、(4)解:答案选C。
3. 根据热力学第二定律,下列哪种说法是正确的?( )A.功可以全部转换为热,但热不能全部转换为功;B.热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C.气体能够自由膨胀,但不能自动收缩;D.有规则运动的能量能够变成无规则运动的能量,但无规则运动的能量不能变成有规则运动的能量。
解:答案选C。
4 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后:( )A. 温度不变,熵增加;B. 温度升高,熵增加;C. 温度降低,熵增加;D. 温度不变,熵不变。
解:绝热自由膨胀过程气体不做功,也无热量交换,故内能不变,所以温度不变。
因过程是不可逆的,所以熵增加。
故答案选A 。
5. 设有以下一些过程,在这些过程中使系统的熵增加的过程是( )(1) 两种不同气体在等温下互相混合;(2) 理想气体在等体下降温;(3) 液体在等温下汽化;(4) 理想气体在等温下压缩;(5) 理想气体绝热自由膨胀。
A. (1)、(2)、(3)B. (2)、(3)、(4)C. (3)、(4)、(5)D. (1)、(3)、(5) 解:答案选D 。
二 填空题1.在一个孤立系统内,一切实际过程都向着 的方向进行。
大学物理第八章习题及答案
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
第八章第二节 热力学定律及能量守恒 气体
发器中制冷剂汽化吸收箱体内的热量,
经过冷凝器时制冷剂_______. A.热量可以自发地从冰箱内传到冰 箱外
B.电冰箱的制冷系统能够不断地把 冰箱内的热量传到外界,是因为其消 耗了电能 C.电冰箱的工作原理不违反热力学 第一定律 D.电冰箱的工作原理违反热力学第 一定律
二、能量守恒定律 能量既不会凭空产生,也不会凭空消 失,它只能从一种形式转化为别的形 式,或者从一个物体转移到别的物体, 在转化或转移的过程中,其总量不变.
三、气体的状态参量 1.温度 (1)宏观上:表示物体的______程度. 冷热 (2)微观上:表示气体分子无规则热运
激烈 动的______程度.
C.若气体的温度随时间不断升高, 其压强也一定不断增大 D.气体温度每升高1 K所吸收的热量 与气体经历的过程有关 E.当气体温度升高时,气体的内能 一定增大
解析:选ADE.一定质量的理想气体, pV =C,p、V不变,则T不变,分 T 子平均动能不变,又理想气体分子势 能为零,故气体内能不变,A项正确; 理想气体内能不变,则温度T不变,由 pV =C知,p及V可以变化,故状态 T 可以变化, B项错误;
于所有分子动能的和,内能增加,气 体分子的平均动能增加,温度升高, 选项A正确. 二、对热力学第二定律的理解 1.在热力学第二定律的表述中,“自 发地”、“不产生其他影响”的涵义
(1)“自发地”指明了热传递等热力学 宏观现象的方向性,不需要借助外界 提供能量的帮助. (2)“不产生其他影响”的涵义是发生 的热力学宏观过程只在本系统内完成, 对周围环境不产生热力学方面的影响. 如吸热、放热、做功等.
两类永动机第一类永动机第二类永动机不消耗能量却可以源源不断地对外做功的机器从单一热源吸热全部用来对外做功而不引起其他变化的机器违背能量守恒定律不可能实现违背热力学第二定律不可能实二能量守恒定律能量既不会凭空产生也不会凭空消失它只能从一种形式转化为别的形式或者从一个物体转移到别的物体在转化或转移的过程中其总量不变
热力学答案8
∑
1 e
1 ⎡ ℏ nxω x + n yω y + n zω z ⎤ ⎦ kT ⎣
(
)
, −1
(6)
或
N=
nx , n y , nz
∑
1 e
nx + n y + nz
−1
,
(7)
其中
在
ℏωi 可以将 ni 看作连续变量而将式 (7) 的求和用积分代替. 注 << 1 的情形下, kTc
kh da
后 课
第八章 玻色统计和费米统计
8.1 试证明,对于玻色或费米统计,玻耳兹曼关系成立,即
S = klnΩ.
解: 对于理想费米系统,与分布 {al } 相应的系统的微观状态数为(式 (6.5.4) )
l
取对数,并应用斯特令近似公式,得(式(6.7.7) )
l
lnΩ = ∑ ⎡ ⎣ωl ln ωl − al ln al − ( ωl − al ) ln ( ωl − al ) ⎤ ⎦.
⎛ kT ⎞ N = 1.202 × ⎜ c ⎟ , ⎝ ℏω ⎠
3
3
其中 ω = (ω xω yωz )3 . 温度为 T 时凝聚在基态的原子数 N 0 与总原子数 N 之比为
⎛T ⎞ N0 = 1− ⎜ ⎟ . N ⎝ Tc ⎠
3
1
解: 约束在磁光陷阱中的原子,在三维谐振势场中运动,其能量可表达 为
∑ω ~ ∑
l s
,
上式可改写为
S F.D. = −k ∑ ⎡ ⎣ f s ln f s + (1 − f s ) ln (1 − f s ) ⎤ ⎦.
s
160
co m
第8章热力学习题解答
第8章 热力学基础8.1基本要求1.理解准静态过程、功、热量的概念,并掌握功的计算方法。
2.掌握热力学第一定律及其在理想气体各等值过程中的应用。
3.掌握理想气体定体和定压摩尔热容及比热容比的概念及计算方法。
4.理解绝热过程,能熟练地分析、计算理想气体在此过程的功、热量和内能的增量。
5.理解循环过程的基本特征,理解热机循环和致冷循环的物理意义,理解热机效率的计算方法。
掌握卡诺循环及其特点,能熟练地分析、计算卡诺循环的效率。
6.理解热力学第二定律的两种表述及其等效性,了解可逆过程、不可逆过程及卡诺定理。
7.理解热力学第二定律的本质,了解熵的概念和熵增加原理。
8.2基本概念1 准静态过程系统经历的每一个中间状态都无限地接近平衡态的状态变化过程。
2 功热力学系统与外界交换能量的一种方式,准静态过程中系统对外界做的功为21V V V W pdV pdV ==⎰⎰3 热量传热过程中传递的能量,热力学系统与外界交换能量的另一种方式。
4 摩尔热容当一个系统温度升高(或降低)dT 时,吸收(或放出)的热量如果为dQ ,则系统的热容定义为:dQ C dT= 5 定体摩尔热容若1mol 的理想气体在等体过程中温度改变dT 时所传递的热量为V dQ ,则定体摩尔热容为:,2V V m dQ i C R dT ==,等体过程中内能的增量可表示为:21,21()V m E E C T T ν-=- 6 定压摩尔热容若1mol 的理想气体在等压过程中温度改变dT 时传递的热量为p dQ ,则气体的定压摩尔热容为:,pp m dQ C dT =,与定体摩尔热容的关系为,,p m V m C C R =+,等压过程所吸收的热量可表示为:,21()p p m Q C T T ν=-7 比热容比定压摩尔热容,p m C 与定体摩尔热容,V m C 的比值,用γ表示,,2p m V m C i C iγ+== 8 循环过程 系统经过一系列的状态变化过程以后又回到原来状态的过程,循环过程的重要特征是内能的增量0E ∆=9 正循环及热机的效率过程进行的方向在p V -图上按顺时针方向进行的循环过程叫正循环,工质作正循环的热机效率为:1221111Q Q Q W Q Q Q η-===- 10 逆循环及致冷机的效率 过程进行的方向在p V -图上按逆时针方向进行的循环过程叫逆循环,工质作逆循环的致冷机效率为:2212Q Q e W Q Q ==- 11 可逆和不可逆过程 系统逆过程能重复正过程的每一状态且不引起外界任何变化的状态变化过程称为可逆过程,一切与热现象有关的实际宏观过程都是不可逆的,可逆过程是从实际过程中抽象出来的一种理想过程。
大学物理第八章习题及答案
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
8热力学
习题及参考答案第八章 热力学 参考答案思考题8-1 “功、热量和内能都是系统状态的单值函数”这种说法对吗?如有错请改正。
8-2 质量为M 的氦气(视为理想气体),由同一初态经历下列两种过程:(1)等体过程;(2)等压过程。
温度升高了ΔT ,要比较这两种过程中气体内能的改变,有一种解答如下:(1) 等体过程T C ME V V ∆∆μ= (2) 等压过程T C ME p p ∆∆μ=∵V p C C ,∴Vp E E ∆∆以上解答是否正确?如有错误请改正。
8-3 摩尔数相同的氦气和氮气(视为理想气体),从相同的初状态(即p 、V 、T 相同)开始作等压膨胀到同一末状态,下列有关说法有无错误?如有错误请改正。
(1)对外所作的功相同; (2)从外界吸收的热量相同; (3)气体分子平均速率的增量相同。
8-4 一定量的理想气体,从p-V 图上同一初态A 开始,分别经历三种不同的过程过渡到不同的末态,但末态的温度相同,如图所示,其中A →C 是绝热过程,问:(1)在A →B 过程中气体是吸热还是放热?为什么? (2)在A →D 过程中气体是吸热还是放热?为什么?8-5 在下列理想气体各种过程中,哪些过程可能发生?哪些过程不可能发生?为什么?(1)等体加热时,内能减少,同时压强升高; (2)等温压缩时,压强升高,同时吸热; (3)等压压缩时,内能增加,同时吸热; (4)绝热压缩时,压强升高,同时内能增加。
8-6 甲说:“系统经过一个正的卡诺循环后,系统本身没有任何变化。
”乙说:“系统经过一个正的卡诺循环后,不但系统本身没有任何变化,而且外界也没有任何变化。
”甲和乙谁的说法正确?为什么?8-7 从理论上讲,提高卡诺热机的效率有哪些途径?在实际中采用什么办法? 8-8 关于热力学第二定律,下列说法如有错误请改正: (1)热量不能从低温物体传向高温物体;(2)功可以全部转变为热量,但热量不能全部转变为功。
8-9 理想气体经历如图所示的abc 平衡过程,则该系统对外作功A ,从外界吸收的热量Q 和内能的增量ΔE 的正负情况为(A )ΔE >0,Q >0,A <0; (B )ΔE >0,Q >0,A >0; (C )ΔE >0,Q <0,A <0; (D )ΔE <0,Q <0,A >0。
工程热力学思考题参考答案
第八章压气机的热力过程1、利用人力打气筒为车胎打气时用湿布包裹气筒的下部,会发现打气时轻松了一点,工程上压气机缸常以水冷却或气缸上有肋片,为什么答:因为气体在压缩时,以等温压缩最有利,其所消耗的功最小,而在人力打气时用湿布包裹气筒的下部或者在压气机的气缸用水冷却,都可以使压缩过程尽可能的靠近等温过程,从而使压缩的耗功减小。
2、既然余隙容积具有不利影响,是否可能完全消除它答:对于活塞式压气机来说,由于制造公差、金属材料的热膨胀及安装进排气阀等零件的需要,在所难免的会在压缩机中留有空隙,所以对于此类压缩机余隙容积是不可避免的,但是对于叶轮式压气机来说,由于它是连续的吸气排气,没有进行往复的压缩,所以它可以完全排除余隙容积的影响。
3、如果由于应用气缸冷却水套以及其他冷却方法,气体在压气机气缸中已经能够按定温过程进行压缩,这时是否还需要采用分级压缩为什么答:我们采用分级压缩的目的是为了减小压缩过程中余隙容积的影响,即使实现了定温过程余隙容积的影响仍然存在,所以我们仍然需要分级压缩。
4、压气机按定温压缩时,气体对外放出热量,而按绝热压缩时不向外放热,为什么定温压缩反较绝热压缩更为经济答:绝热压缩时压气机不向外放热,热量完全转化为工质的内能,使工质的温度升高,压力升高,不利于进一步压缩,且容易对压气机造成损伤,耗功大。
等温压缩压气机向外放热,工质的温度不变,相比于绝热压缩气体压力较低,有利于进一步压缩耗功小,所以等温压缩更为经济。
5、压气机所需要的功可从第一定律能量方程式导出,试导出定温、多变、绝热压缩压气机所需要的功,并用T-S图上面积表示其值。
答:由于压缩气体的生产过程包括气体的流入、压缩和输出,所以压气机耗功应以技术功计,一般用w c 表示,则w c =-w t由第一定律:q=△h+w t ,定温过程:由于T 不变,所以△h 等于零,既q=w t ,q=T △s ,21lnp p R s g =∆,则有 多变过程:w c =-w t =△h-q 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-=-111121n n g c p p T R n n w 绝热过程:即q=0,所以6、活塞式压气机生产高压气体为什么要采用多级压缩及级间冷却的工艺答:由于活塞式压气机余隙容积的存在,当压缩比增大时,压气机的产气量减小,甚至不产气,所以要将压缩比控制在一定范围之内,因此采用多级压缩,以减小单级的压缩比。
2022大学物理B-第8章热力学基础答案 (1)
第8章 热力学基础练习题一、选择题1、一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中[A ](A) 气体向外界放热 (B) 气体对外界作正功(C) 气体内能增加 (D) 气体内能减少2、一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度[B ] (A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定.3、一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为[B ] (A) –1200 J . (B) –700 J.(C) –400 J . (D) 700 J .4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是[B ] (A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.5、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于[D ] (A) 2/3. (B) 1/2.(C) 2/5. (D) 2/7.6、有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量是[A ](A) 6 J. (B) 5 J.(C) 3 J. (D) 2 J. 解:这是等容过程,做功为零,根据热力学第一定律:Vp S 1S 2)(21212T T R iE E Q -=-=ν氢气为双原子分子,自由度为5,氨气为多原子分子,自由度为6,体积、压强和温度相等,意味着两者摩尔数相同氢气吸热为5)(2512121=-=-=T T R E E Q ν氨气吸热为)(2612122T T R E E Q -=-=ν有5612=Q Q ,故62=Q 7、一定量某理想气体所经历的循环过程是:从初态(V 0,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等体升温回复到初态温度T 0,最后经等温过程使其体积回复为V 0,则气体在此循环过程中[B ] (A) 对外作的净功为正值. (B) 对外作的净功为负值. (C) 内能增加了. (D) 从外界净吸的热量为正值.8、某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是[A ] (A) 等压过程. (B) 等体过程.(C) 等温过程. (D) 绝热过程.9、一定质量的理想气体完成一循环过程.此过程在V -T 图中用图线1→2→3→1 描写.该气体在循环过程中吸热、放热的情况是[ C ](A) 在1→2,3→1 过程吸热;在2→3 过程放热 (B) 在2→3 过程吸热;在1→2,3→1 过程放热 (C) 在1→2 过程吸热;在2→3,3→1 过程放热 (D) 在2→3,3→1 过程吸热;在1→2 过程放热10、关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是平衡过程;②平衡过程一定是可逆过程;③不可逆过程发生后一定找不到另一过程使系统和外界同时复原;④非平衡过程一定是不可逆过程.以上说法,正确的是[ C ](A) ①②③. (B) ②③④.(B) ①③④. (D) ①②③④.11、如图所示为一定量的理想气体的p —V 图,由图可得出结论[ C ](A) ABC 是等温过程. (B) B A T T >. (C) B A T T <.(D) B A T T =.12、一摩尔单原子理想气体从初态(1p 、1V 、1T )准静态绝热压缩至体积为2V 其熵[ A ](A) 增大. (B) 减小.(C) 不变. (D) 不能确定.二、填空题1、已知一定量的理想气体经历p -T 图上所示的循环过程,图中各过程的吸热、放热情况为: (1) 过程1-2中,气体__________. (2) 过程2-3中,气体__________.(3) 过程3-1中,气体__________. 答案:吸热;放热;放热2、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中: (1) 温度升高的是__________过程; (2) 气体吸热的是__________过程.答案: BM 、CM ;CM解:如果以C Q B T A T T T T T ,,,,分别表示A 、T 、B 、Q 、C 点的温度,显然C Q B T A T T T T T >>>>,而MT 是等温线,T M T T =故有:M A T T >,AM 是降温过程C B M T T T >>,BM 、CM 是升温过程A E E Q +-=12三个过程中,体积是被压缩的,A 都是负的,即A<0, AM 过程是降温过程,p TO1 23)33m -0)(2<-=-A M A M T T R iE E ν0<+-=A E E Q A M AM ,AM 过程是放热的 BM 过程是升温的0)(2>-=-B M B M T T R iE E ν功为过程曲线所围面积QM BM A A >=)(2Q M Q M T T R iE E -=-ν 由于Q B T T >所以Q M B M T T T T -<-B M B M Q M Q M E E T T R iT T R i E E -=->-=-)(2)(2νν 即B M BM E E A ->0<+-=BM B M BM A E E QBM 过程是放热的 CM 过程是升温的0)(2>-=-C M C M T T R iE E νQM CM A A <=)(2Q M Q M T T R iE E -=-ν 由于Q C T T <Q M C M T T T T ->-C M C M Q M Q M E E T T R iT T R i E E -=-<-=-)(2)(2νν 即C M CM E E A ->0>+-=CM C M CM A E E QCM 过程是吸热的3、有ν摩尔理想气体,作如图所示的循环过程acba ,其中acb 为半圆弧,b -a 为等压线,p c =2p a .令气体进行a -b 的等压过程时吸热Q ab ,则在此循环过程中气体净吸热量 Q _______Q ab . (填入:>,<或=) 答案:<解:根据热力学第一定律,循环过程内能变化为零,循环过程的净吸热量为该循环过程曲线所围面积))(2(21)2(212122a c ab a b P P V V V V r Q --=-==πππ)(41)2)(2(21a b a a a a b V V P P P V V -=--=ππ 而等压过程的吸热为:(22)(,R i T T C Q a b m p ab +=-=νν 4、 一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.答案: 500 7005、一定量的理想气体,从p ─V 图上状态A 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试画出这三种过程的p ─V 图曲线.在上述三种过程中: (1) 气体对外作功最大的是___________过程; (2) 气体吸热最多的是____________过程.答案:等压;等压。
基础物理学上册习题解答和分析 第八章热力学基础题解和分析
习题八8-1 如果理想气体在某过程中依照V=pa 的规律变化,试求:(1)气体从V 1膨胀到V 2对外所作的功;(2)在此过程中气体温度是升高还是降低?分析 利用气体做功公式即可得到结果,根据做正功还是负功可推得温度的变化。
解:(a) ⎪⎪⎭⎫ ⎝⎛-===⎰⎰21222112121V V a dV V apdV W v v v v (b) 降低 8-2 在等压过程中,0.28千克氮气从温度为293K 膨胀到373K ,问对外作功和吸热多少?内能改变多少?分析 热力学第一定律应用。
等压过程功和热量都可根据公式直接得到,其中热量公式中的热容量可根据氮气为刚性双原子分子知其自由度为7从而求得,而内能则由热力学第一定律得到。
解:等压过程: 2121()()m W P V V R T T M=-=-()32808.31373293 6.651028J =⨯⨯-=⨯ ()()J T T C Mm Q p 4121033.229337331.82728280⨯=-⨯⨯⨯=-=据J E W E Q 41066.1,⨯=∆+∆=8-3 1摩尔的单原子理想气体,温度从300K 加热到350K 。
其过程分别为(1)容积保持不变;(2)压强保持不变。
在这两种过程中求:(1)各吸取了多少热量;(2)气体内能增加了多少;(3)对外界作了多少功分析 热力学第一定律应用。
一定量的理想气体,无论什么变化过程只要初末态温度确定,其内能的变化是相同的。
吸收的热量则要根据不同的过程求解。
解: 已知气体为1 摩尔单原子理想气体31,2V m C R M==(1) 容积不变。
()()J T T C Mm Q V 25.62330035031.82312=-⨯⨯=-=根据E Q W W E Q ∆==+∆=,0,。
气体内能增量J E 25.623=∆。
对外界做功0=W . (2) 压强不变。
215()8.31(350300)1038.75,2p m Q C T T J M=-=⨯⨯-=J E 25.623=∆,J J J W 5.41525.62375.1038=-=8-4 一气体系统如题图8-4所示,由状态a 沿acb 过程到达b 状态,有336焦耳热量传入系统,而系统作功126焦耳,试求: (1) 若系统经由adb 过程到b 作功42焦耳,则有多少热量传入系统?(2) 若已知J E E a d 168=-,则过程ad 及db 中,系统各吸收多少热量?(3)若系统由b 状态经曲线bea 过程返回状态a,外界对系统作功84焦耳,则系统与外界交换多少热量?是吸热还是放热?分析 热力学第一定律应用。
第八章热力学基础答案
第八章热力学基础答案一、选择题[ A ]1. (基础训练2)一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中(A) 气体向外界放热 (B) 气体对外界作正功 (C) 气体内能增加 (D) 气体内能减少【提示】因为是循环过程,故0=E ;又知是逆循环,所以0<A ,即气体对外界作负功;由热力学第一定律0向外界放出热量。
[ A ]2.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
【提示】功即过程曲线下的面积,所以由图知AD AC AB A A A >>;再由热力学第一定律:E A Q ?+=,得 AD 过程0=Q ; AC 过程AC A Q =;AB 过程()AB B A Q A E E =+-,且0B A E E ->;所以等压过程吸热最多。
[B ]3.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2.(C) 2γp 0.(D) p 0 / 2γ.【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得:0E ?=,∴温度不变;根据状态方程p V R T ν=得P 0V 0=PV ;已知V=2V 0,∴P=P 0/2.[ D ]4.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有(A) 0......0=??(C) 0......0=?=?S E . (D) 0......0>?=?S E【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。
8热力学
习题及参考答案第八章 热力学 参考答案思考题8-1 “功、热量和内能都是系统状态的单值函数”这种说法对吗?如有错请改正。
8-2 质量为M 的氦气(视为理想气体),由同一初态经历下列两种过程:(1)等体过程;(2)等压过程。
温度升高了ΔT ,要比较这两种过程中气体内能的改变,有一种解答如下:(1) 等体过程T C ME V V ∆∆μ= (2) 等压过程T C ME p p ∆∆μ=∵V p C C ,∴Vp E E ∆∆以上解答是否正确?如有错误请改正。
8-3 摩尔数相同的氦气和氮气(视为理想气体),从相同的初状态(即p 、V 、T 相同)开始作等压膨胀到同一末状态,下列有关说法有无错误?如有错误请改正。
(1)对外所作的功相同; (2)从外界吸收的热量相同; (3)气体分子平均速率的增量相同。
8-4 一定量的理想气体,从p-V 图上同一初态A 开始,分别经历三种不同的过程过渡到不同的末态,但末态的温度相同,如图所示,其中A →C 是绝热过程,问:(1)在A →B 过程中气体是吸热还是放热?为什么? (2)在A →D 过程中气体是吸热还是放热?为什么?8-5 在下列理想气体各种过程中,哪些过程可能发生?哪些过程不可能发生?为什么?(1)等体加热时,内能减少,同时压强升高; (2)等温压缩时,压强升高,同时吸热; (3)等压压缩时,内能增加,同时吸热; (4)绝热压缩时,压强升高,同时内能增加。
8-6 甲说:“系统经过一个正的卡诺循环后,系统本身没有任何变化。
”乙说:“系统经过一个正的卡诺循环后,不但系统本身没有任何变化,而且外界也没有任何变化。
”甲和乙谁的说法正确?为什么?8-7 从理论上讲,提高卡诺热机的效率有哪些途径?在实际中采用什么办法? 8-8 关于热力学第二定律,下列说法如有错误请改正: (1)热量不能从低温物体传向高温物体;(2)功可以全部转变为热量,但热量不能全部转变为功。
8-9 理想气体经历如图所示的abc 平衡过程,则该系统对外作功A ,从外界吸收的热量Q 和内能的增量ΔE 的正负情况为(A )ΔE >0,Q >0,A <0; (B )ΔE >0,Q >0,A >0; (C )ΔE >0,Q <0,A <0; (D )ΔE <0,Q <0,A >0。
高中物理:第八章热力学定律
第八章热力学定律本章学习提要1.理解热力学第一定律,知道热力学第一定律反映了系统内能的变化和系统通过做功及传热过程与外界交换的能量之间的关系。
初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。
2.知道热力学第二定律的表述。
知道熵是描写系统无序程度的物理量。
热力学的两个基本定律都是通过对自然界和生活、生产实际的观察、思考、分析、实验而得到的,这也是我们学习这两条基本定律应采取的方法。
人类的进步是与对蕴藏在物质内部能量的认识和利用密切相关的。
热力学定律为更好地设计和制造热机、更好地开发和利用能源指明了方向。
随着生产和科学实践的发展,人们逐步领悟到有效利用能源的意义,懂得遵循科学规律的重要性,从而更自觉地抵制违背科学规律的行为。
此外,以热力学定律为基础的现代热力学理论还广泛应用于物质结、凝聚态物理、低温物理、化学反应、生命现象、宇宙和恒星演化等领域,取得了巨大成就。
A 热力学第一定律一、学习要求理解热力学第一定律。
初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。
关注热力学第一定律的建立过程,明白热力学第一定律是包括内能的能的转化和能量守恒定律,是通过对自然界和生活、生产实际的观察、思考、分析、实验而得到的自然界中的最基本、最普遍的定律之一,通过对热力学第一定律的学习,体会该定律在科学史上的重要地位,感受该定律对技术进步和社会发展的巨大作用。
二、要点辨析1.热力学第一定律的含义和表式热力学第一定律是包括内能的能的转化和能量守恒定律。
物质的内能是一种与物质内的大量构成粒子无序热运动有关的能量形式,物质系统(如汽缸中一定质量的气体)内能的变化是它与外界交换能量的结果,而这种能量的交换则可通过做功和热传递两种方式实现,热力学第一定律反映了系统内能的变化(ΔU)与它和外界交换的功(W)和热量(Q)之间的定量的关系:ΔU=Q+W。
2.应用热力学第一定律解题时,要注意各物理量正、负号的含义当热力学第一定律表示为ΔU =Q +W 时,ΔU 为正值,表示系统内能增加;负值表示系统内能减小。
第八章 统计热力学
12. 若规定粒子在 0K 的能值为零, 则在 0K 时, 系统的热力学函数不一定等于零的是 (A) U (B) H (C) A (D) S 答案:D 13.统计热力学主要研究。 (A) 平衡体系 (B) 近平衡体系 (C) 非平衡体系 (D) 耗散结构 (E) 单个粒子的行 为 答案:A 14.体系的微观性质和宏观性质是通过( )联系起来的。 (A) 热 力 学 (B) 化 学 动 力 学 (C) 统 计 力 学 (D) 经 典 力 学 (E) 量 子 力 学 答案:C 15.在台称上有 7 个砝码,质量分别为 1g、2g、5g、10g、50g、100g,则能够称量的质量 共有:
U Ni i
i
答案:B
26. 对于单原子理想气体在室温下的一般物理化学过程, 若欲通过配分函数来求过程中热力 学函数的变化 (A) 必须同时获得 qt、qr、qV、qe、qn 各配分函数的值才行 (B) 只须获得 qt 这一配分函 数的值就行; (C) 必须获得 qt、qr、qV 诸配分函数的值才行 (D) 必须获得 qt、qe、qn 诸配 分函数的值才行。 答案:B 27. 通过对谐振子配分函数的讨论, 可以得出 1mol 晶体的热容 CV,m=3R, 这一关系与下列哪 一著名定律的结论相同? (A) 爱因斯坦(Einstein)定律 (B) 杜隆-柏蒂(Dulong-Petit)定律; (C) 德 拜 (Debye) 立 方 定 律 ; (D) 玻 兹 曼 分 布 定 律. 答案:B 28. 单维谐振子的配分函数 qV=[exp(-h /2kT)]/[(1-exp(-h /kT)]在一定条件下可演化 为 kT/h , 该条件是 (A) h kT, m 1 (B) kT h , m 1 (C) 0 = 0, kT >> h (D) 0 = 0, kT h (E) 0 = 0, m 1. 答案:C 29.根据热力学第三定律, 对于完美晶体, 在 S0=kln0 中, 应当是 (A) 0 = 0 ; (B) 0 0 ; (C) 0 = 1 ; (D) 0 1 ; (E) 0 1
工程热力学思考题答案,第八章
第八章压气机的热力过程1、利用人力打气筒为车胎打气时用湿布包裹气筒的下部,会发现打气时轻松了一点,工程上压气机缸常以水冷却或气缸上有肋片,为什么?答:因为气体在压缩时,以等温压缩最有利,其所消耗的功最小,而在人力打气时用湿布包裹气筒的下部或者在压气机的气缸用水冷却,都可以使压缩过程尽可能的234高,压力升高,不利于进一步压缩,且容易对压气机造成损伤,耗功大。
等温压缩压气机向外放热,工质的温度不变,相比于绝热压缩气体压力较低,有利于进一步压缩耗功小,所以等温压缩更为经济。
5、压气机所需要的功可从第一定律能量方程式导出,试导出定温、多变、绝热压缩压气机所需要的功,并用T-S图上面积表示其值。
答:由于压缩气体的生产过程包括气体的流入、压缩和输出,所以压气机耗功应以技术功计,一般用w c 表示,则w c =-w t由第一定律:q=△h+w t ,定温过程:由于T 不变,所以△h 等于零,既q=w t ,q=T △s ,21lnp p R s g =∆,则有 多变过程:w c =-w t =△h-q所以c w 6数n 7m2s 2’nm i=S T ∆0为图中的17nm1.8、如图8-13所示的压缩过程1-2,若是可逆的,则这一过程是什么过程?他与不可逆绝热压缩过程1-2的区别何在?两者之中哪一过程消耗的功大?大多少?图8-13答:若压缩过程1-2是可逆过程,则其为升温升压的吸热过程。
它与不可逆绝热过程的区别是:此过程没有不可逆因素的影响,在所有以1-2过程进行的压缩过程其耗功是最小的。
对于不可逆绝热压缩过程:q=△u+w,q=0,所以w=-△u,w c=△u可逆压缩过程1-2:q=△u+w,⎰=21Tdsq,所以⎰-∆=21Tdsuwc,所以不可逆绝热的耗功大,大了⎰21Tds。
第八章 热力学答案
第八章 热力学基础(2014)一.选择题1、 【基础训练4】[ A ]一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程就是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)就是A →B 、(B)就是A →C 、 (C)就是A →D 、(D)既就是A →B 也就是A →C , 两过程吸热一样多。
【参考答案】根据热力学过程的功即过程曲线下的面积,知AD AC AB A A A >>; 再由热力学第一定律气体吸热E A Q ∆+= AD 过程0=Q ; AC 过程AC A Q =;AB 过程AB AB E A Q ∆+=,且0>∆AB E2 【基础训练6】 [ B ]如图所示,一绝热密闭的容器,用隔板分成相等的两部分, 左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强就是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【参考答案】该过程就是绝热的自由膨胀过程,所以0=Q 0=A由热力学第一定律 0=∆E ∴0=∆T 220/0/p P V V =⇒=由 3【基础训练10】 [D ]一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有(A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E【参考答案】由上题分析知:0=∆E ;而绝热自由膨胀过程就是不可逆的,故熵增加。
4、 【自测提高3】 [ A ]一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),与图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程就是吸热还就是放热.(A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热.(C) abc 过程与def 过程都吸热. (D) abc 过程与def 过程都放热. 【参考答案】内能就是状态量,与过程无关。
工程热力学课后作业答案(第八章)第五版
8-1 温度=t 20℃,压力=p 0.1MPa ,相对湿度=j 70%的湿空气2.5m 3。
求该湿空气的含湿量、水蒸气分压力、露点、水蒸气密度、干空气质量、湿空气气体常数。
如该湿空气在压力不变的情况下,被冷却为10℃的饱和空气,求析出的水量。
解:(1)水蒸气分压力:根据=t 20℃,查水蒸气表得对应的饱和压力为0023368.0=s p MPa =´==0023368.07.0s v p p j 0.00163576 MPa 含湿量:s s v vp B p p B p d j j -=-=622622=10.34)(/a kg g 露点:查水蒸气表,当=vp 0.00163576 MPa 时,饱和温度即露点=t 14.35℃0381=v kg m /3水蒸气密度:01234.01==vr 3/m kg 干空气质量:=´´-==2932875.2)76.163510(5TR V p m a a a 2.92㎏求湿空气质量=+=)001.01(d m m a 2.95㎏湿空气气体常数:=-=510378.01287vp R 288.8)/(K kg J ·查在=t 10℃,查水蒸气表得对应的饱和压力为=s p 1.228 kPa sv p p =含湿量:vv p B p d -=6222=7.73)(/a kg g 析出水量:)2(d d m m aw -==7.62g 8-2 温度=t 25℃,压力=p 0.1MPa ,相对湿度=j 50%的湿空气10000kg 。
求该湿空气的露点、绝对湿度、含湿量、湿空气密度、干空气密度、湿空气容积。
解:水蒸气分压力:根据=t 25℃,查水蒸气表得对应的饱和压力为=sp 3.169kPa ==svp p j 0.5×3.169=1.58kPa 露点:查水蒸气表,当=v p 1.58kPa 时,饱和温度即露点时,饱和温度即露点=t13.8℃ =t 25℃,''s v =43.36kg m /3绝对湿度:''/s s v v j jr r ===0.01153/m kg 含湿量:ss v v p B p p B p d j j -=-=622622=9.985)(/a kg g 湿空气密度:)985.9001606.01(10298287)001606.01(5´+´=+=d p T R v a =0.867kg m /3=+=v d001.01r 1.163/m kg 干空气密度:===v v a a 11r 1.153/m kg 湿空气容积:=+==v dm v m V a 001.018600 m 38-3查表题查表题 8-4 压力B 为101325Pa 的湿空气,在温度t 1=5℃,相对湿度j 1=60%的状态下进入加热器,在t 2=20℃离开加热器。
第八章--统计热力学
第八章统计热力学选择题1. 统计热力学研究的主要对象是(A) 微观粒子的各种变化规律(B) 宏观系统的各种性质(C) 宏观系统的平衡性质(D) 系统的宏观性质与微观结构的关系答案:D2. 为了方便研究,常将统计热力学系统分为独立子系和相倚子系。
下面诸系统中属独立子系的是(A) 纯液体 (B) 理想液态溶液(C) 理想气体 (D) 真实气体答案:C。
粒子间无相互作用的系统称为独立子系。
3. 对于一个子数、体积和能量确定的系统,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是(A) 玻耳兹曼分布定律 (B) 分子运动论(C) 等几率假定 (D) 统计学原理答案:C4. 经典粒子的零点能标度选择不同时,必定影响(A)配分函数的值 (B) 粒子的分布规律(C)系统的微观状态数 (D) 各个能级上粒子的分布数答案:A5. 对于定域子系和离域子系,它们的热力学函数的统计表达式形式相同的是(A) 熵、吉布斯函数、亥姆霍兹函数(B) 焓、吉布斯函数、亥姆霍兹函数(C) 内能、焓、热容(D) 内能、亥姆霍兹函数、热容答案:C6. 关于粒子配分函数的单位,正确的说法是(A) 所有配分函数都无单位(B) 所有配分函数的单位都是J·mol-1(C) 所有配分函数的单位都是J·K(D) 定域子和离域子的配分函数的单位不同答案:A8. 对于玻耳兹曼分布,下面的表述中不正确的是(A) 玻耳兹曼分布就是平衡分布(B) 最可几分布一定是玻耳兹曼分布(C) 玻耳兹曼分布就是微观状态数最大的分布(D) 服从玻耳兹曼分布的系统不一定是理想气体答案:B9. 关于振动能谱εV = (v+ 1/2)hν的下列说法中不正确的是(A) 该式只适用于单维谐振子(B) 任意相邻两能级的差值都是一恒值(C) 振动量子数只能是正整数(包括零)(D) 振动能与温度无关答案:D10. 在N个NO分子组成的晶体中,•每个分子都有两种可能的排列方式,即NO和ON,也可将晶体视为NO和ON的混合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章2014)一. 选择题1. 【基础训练4】[ A ]一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
【参考答案】根据热力学过程的功即过程曲线下的面积,知AD AC AB A A A >>;再由热力学第一定律气体吸热E A Q ∆+= AD 过程0=Q ; AC 过程AC A Q =; AB 过程AB AB E A Q∆+=,且0>∆ABE2 【基础训练6】 [ B ]如图所示,一绝热密闭的容器,用隔板分成相等的两部分, 左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【参考答案】该过程是绝热的自由膨胀过程,所以0=Q0=A由热力学第一定律0=∆E ∴0=∆T 220/0/p P V V =⇒=由 3【基础训练10】 [D ]一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有(A)0......0=∆<∆S E (B) 0......0>∆<∆S E .(C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E【参考答案】由上题分析知:0=∆E ;而绝热自由膨胀过程是不可逆的,故熵增加。
4. 【自测提高3】 [ A ]一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程是吸热还是放热. (A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热. (C) abc 过程和def 过程都吸热. (D) abc 过程和def 过程都放热.【参考答案】内能是状态量,与过程无关。
所以图(1)中:abc 过程和ac 过程的内能增量相同,并由ac 为等温线可知 0=∆E 。
而功是过程曲线下的面积,显然abc 过程的功0>A 。
由热力学第一定律:abc 过程:0.>=∆+=A E A Q 所以abc 过程是吸热过程。
同理,在图(2)中:def 过程和df 过程的内能增量相同,并由绝热df 过程知 A E -=∆根据过程曲线下的面积:def 过程的功/.A 小于df 过程的功.A所以def 过程0)(///<-+=∆+=A A E A Q 所以def 过程是放热过程5. 【自测提高4】 [ B ]用下列两种方法 (1) 使高温热源的温度T 1升高ΔT ; (2) 使低温热源的温度T 2降低同样的值ΔT ,V分别可使卡诺循环的效率升高Δη1和Δη2,两者相比, (A) Δη1?Δη2. (B) Δη1?Δη2. (C) Δη1=Δη2. (D) 无法确定哪个大. 【参考答案】由卡诺循环效率公式 121T T -=η 有 T T T T T ∆+-=-=∆1212/11ηηη 1212/22T T T T T ∆--=-=∆ηηη 6. 【自测提高6】 [ B ] 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是: (A) S 1 > S 2. (B) S 1 = S 2. (C) S 1 < S 2. (D) 无法确定.【参考答案】既然是绝热过程就有E A ∆-=,而两个绝热过程对应的温度变化值相同E ∆⇒的数值相同,所以作功A 的数值相同,即过程曲线下的面积相同。
二. 填空题7. 【基础训练13】一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热 500 J ;若为双原子分子气体,则需吸热 700 J. 【参考答案】 据题意)(200J T R MmV P PdV A =∆⋅=∆⋅==⎰ 对于单原子分子 内能)(300200232J T R M m i E =⨯=∆⋅=∆所以)(500300200J E A Q =+=∆+= 对于双原子分子)(50020025J E =⨯=∆ )(700J E A Q =∆+= 8. 【基础训练14】给定的理想气体(比热容比?为已知),从标准状态(p 0、V 0、T 0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T= 01)31(T ⋅-γ 压强p = 0)31(P ⋅γ【参考答案】已知绝热过程的体积变化,求温度的变化,选绝热过程方程T V T V ⋅=⋅--101γγ ∴ 01010)31()(T T V V T ⋅=⋅=--γγ同理已知绝热过程的体积变化,求压强的变化,选绝热过程方程γγPV V P =00有 000)31()(P P V V P ⋅=⋅=γγ9. 【自测提高12】如图所示,绝热过程AB 、CD ,等温过程DEA , 和任意过程BEC ,组成一循环过程.若图中ECD 所包围的面积为70 J ,EAB 所包围的面积为30 J ,DEA 过程中系统放热100 J ,则:(1) 整个循环过程(ABCDEA )系统对外作功为40J .(2) BEC 过程中系统从外界吸热为140J 【参考答案】(1) Q AB CDEA =?E+A=0+A=A EABE (逆循环)+A ECDE (正循环) =(-30)+70=40J(2)Q ABCDEA =Q AB + Q BEC + Q CD + Q DEAVp Vabp= 0+ Q BEC +0+ Q DEA = Q BEC +(—100)=40J所以 Q BEC =140J10. 【自测提高13】如图示,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η 133.3% ,η2:50% ,η3. 66.7% 【参考答案】由121T T -=η (1T 对应高温热源的温度,2T 对应低温热源的温度)11. 【附录B----13】附图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中: (1) 温度升高的是CM BM 和过程;(2) 气体吸热的是CM 过程. 【参考答案】*温度如何变化要与等温线比较——过AB C 三点做形如等温线MT 的曲线(是双曲线的一支,图中未画出),可知靠近原点且过C 点曲线对应温度低,过B 的温度略高,过A 的对应的温度最高,所以CM BM 和过程是升温过程,AM 过程温度降低。
*是吸热还是放热要与绝热过程比较——对于绝热过程,A E -=∆,即外界对系统所做的功全部用来增加系统的内能。
对CM 过程而言,内能增加的比绝热过程的多(温度增加的多),而外界对系统所做的功却少于绝热过程,所以一定从外界吸收了部分热量。
即CM 过程是吸热过程.[对AM 过程来说,内能减少,0<∆E ,系统作功为负,故是放热过程;BM 过程中,外界对系统所做的功大于绝热过程的,而内能增加的比绝热过程的要少(温度增加得小),所以一定有部分热量放出来。
即BM AM 和过程都是放热过程。
]12. 【附录E----19】如附图所示,理想气体从状态A 出发经ABCDA 循环过程,回到初态A 点,则循环过程中气体净吸的热量为Q =)(1062.14J ⨯.【参考答案】依热力学第一定律,循环过程净吸收的热量为 A Q =即循环过程所包围的面积(注意单位!)三.计算题13. 【基础训练18】温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 【参考答案】 解:(1))(1072.23ln 29831.81ln312J V V RT A ⨯=⨯⨯⨯==ν (2) 由双原子分子的4.1=γ及绝热过程方程 212111T V T V --=γγ 得)(192)31(298)(14.112112K V V T T =⨯==--γ 即此过程的K T 106-=∆ 14【基础训练25】以氢(视为刚性分子的理想气体)为工作物质进行卡诺循环,如果在绝热膨胀时末态的压强p 2是初态压强p 1的一半,求循环的效率.p O 3T2TT 0fad b ce p (atm) V (L)【参考答案】设绝热膨胀初态的温度为T 1 , 末态温度为T 2 ,此即卡诺循环过程对应的高温热源的温度和低温热源的温度,则循环的效率即为121T T -=η 再依绝热膨胀初态和末态压强和温度的过程方程γγγγ212111T p T p --= 及57=γ 82.0)(11212==-γγP PT T 所以%18=η15. 【自测提高18】气缸内贮有36 g 水蒸汽(视为刚性分子理想气体),经abcda 循环过程如图所示.其中a -b 、c -d 为等体过程,b -c 为等温过程,d -a 为等压过程.试求:(1) d -a 过程中水蒸气作的功W da ;(2) a -b 过程中水蒸气内能的增量??ab ;(3) 循环过程水蒸汽作的净功W ;(4) 循环效率?. 【参考答案】(1)a d →过程——水蒸气作的功A da 为过程曲线下的面积,因体积减小,故功为负 (2)b a →过程(3)循环过程水蒸汽作的净功为过程曲线下所围的面积。
在等温过程c b →中 0=∆E 依热力学第一定律)(100532.12ln 102510013.16ln ln 435J V V V P V V RT M mPdV Q A bc b b b c b bc bc ⨯=⨯⨯⨯⨯=====-⎰ 循环过程水蒸汽作的净功为)(10467.53/J A A A da bc ⨯≈-=(4)此循环过程中,b a →过程是吸热的)(10039.34J E Q ab ab ⨯=∆=c b →过程吸热,)(10053.14J A Q bc ⨯==其它两个过程都是放热过程,从a d c →→过程中,故循环过程的效率为%1310082.4105455.31144≈⨯⨯-=-=吸热放热Q Q η 16. 【自测提高19】如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求:(1) 气体从体积V 1膨胀到V 2所作的功;(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比. 【参考答案】 解:由p a V/=得221V a P = (1) 依作功的定义)11(12122221V V a dV Va PdV A V V -=⋅⋅==⎰⎰(2) 根据理想气体状态方程222111T V P T V P = 17. 【自测提高20】1 mol 单原子分子理想气体的循环过程如的T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量;(2) 经一循环系统所作的净功;(3) 循环的效率.【参考答案】解:据T---V 曲线知ab 过程等压压缩,bc 过程等容升温(压强增大), ca 为等温膨胀过程。