恒等证明-第十二讲恒等变形2乘法公式学生版
代数式恒等变形法则归纳
代数式恒等变形法则归纳引言代数式是代数学中的基础概念之一,它用字母和常数通过运算符号相连而成。
在数学中,我们常常需要对代数式进行变形,以达到简化、分解、合并或者推导等目的。
代数式的变形是数学问题解决过程中重要的一环,它不仅能提高计算效率,还能揭示代数运算的本质。
在代数式的变形中,恒等变形法则是重要的基础工具,本文将对代数式的恒等变形法则进行归纳总结。
一、基本变形法则1. 加法法则:•加法结合律:a+(b+c)=(a+b)+c•加法交换律:a+b=b+a•加法零元:a+0=a #### 2. 乘法法则:•乘法结合律:$a \\cdot (b \\cdot c) = (a \\cdot b) \\cdot c$•乘法交换律:$a \\cdot b = b \\cdot a$•乘法零元:$a \\cdot 0 = 0$•乘法单位元:$a \\cdot 1 = a$二、分配律1. 左分配律:对于任意的a,b,c,有$a \\cdot (b + c) = a \\cdot b + a \\cdot c$ #### 2. 右分配律:对于任意的a,b,c,有$(a + b) \\cdot c = a \\cdot c + b \\cdot c$三、幂运算法则1. 幂运算与乘法运算:•幂运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•幂运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.幂运算的乘方法则:•幂运算的乘方法则1:$a^n \\cdot a^m = a^{n + m}$•幂运算的乘方法则2:$(a^n)^m = a^{n \\cdot m}$•幂运算的乘方法则3:$(a \\cdot b)^n = a^n \\cdot b^n$四、指数运算法则1. 指数运算与乘法运算:•指数运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•指数运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.指数运算的指数法则:•指数运算的指数法则1:$a^n^m = a^{n \\cdot m}$•指数运算的指数法则2:$(a^n)^m = a^{n \\cdot m}$•指数运算的指数法则3:$(a^m)^n = a^{m \\cdot n}$五、因式分解法则1. 公因式提取法则:•公因式提取法则1:ax+ay=a(x+y)•公因式提取法则2:$a \\cdot b + a \\cdot c = a \\cdot (b + c)$ ####2. 公式分解法则:•差的平方公式:a2−b2=(a+b)(a−b)•平方差公式:a2−b2=(a−b)(a+b)•完全平方公式:a2+2ab+b2=(a+b)2•完全平方公式:a2−2ab+b2=(a−b)2六、合并同类项法则合并同类项法则:将含有相同字母指数的项合并为一个项•合并同类项法则1:ax+bx=(a+b)x•合并同类项法则2:ax2+bx2=(a+b)x2•合并同类项法则3:ax n+bx n=(a+b)x n结论恒等变形法则在代数式的变形中起着重要的作用。
恒等证明-第十二讲恒等变形2乘法公式教师版
第十二讲 恒等变形(2)乘法公式一、 基础知识 (一)乘法公式1. 除了上一讲的几个基本公式外,乘法公式还有如下几条:①) 2222()222a b c a b c ab ac bc ++=+++++②) 222333()()3a b c a b c ab ac bc a b c abc ++++---=++- ③) 123221()().n n n n n n n a b aa b a b ab b a b ------+++++=-④) 2222221[()()()]2a b c ab ac bc a b a c b c ++±±±=±+±+±(二)配方法配方法是乘法公式应用的拓展,在恒等变形中应用十分广泛。
在配方时,还常用到拆项或补项的技巧。
在配方法中要熟悉两组关系:1. x+y 、xy ,与x 2+y 2、x 3+y 3、x 4+y 4、x 7+y 7的关系。
2. x+x -1、x-x -1,与x 2+x -2、x 2-x -2、x 4+x -4、x 4-x -4的关系。
二、名校真题回放例1.(2005~2006首师大附中初一期中测试)x 2+2ax+l6是一个完全平方式,则a 的值是______. 解:4或-4例2.(2005~2006首师大附中初一期中测试)与()()2a 1a a 1-++的积等于a 6-1的多项式是______. 解:3a 1+例3.(2005~2006首师大附中初一期中测试)若()()22223a b +c a b c +=++,则a ,b ,c 三者的关系为_________. 解: a=b=c例4.(2005~2006首师大附中初一期中测试)求证: ()()()()22x x 1x 2x 3x 3x 11+++=++-解:x(x+1)=x 2+x ,则X(x+1)(x+2)=(x 2+x)(x+2)=x 3+3x 2+2x ,所以X(x+1)(x+2)(x+3)=(x 3+3x 2+2x)(x+3)=x 4+3x 3+2x 2+3x 3+9x 2+6x=x 4+6x 3+11x 2+6x 又(x 2+3x+1)2-1=(x 2+3x+1)(x 2+3x+1)-1=x 4+3x 3+x 2+3x 3+9x 2+3x+x 2+3x+1-1 =x 4+6x 3+11x 2+6x+1-1=x 4+6x 3+11x 2+6x三、活题巧解 (一)乘法公式例1.(2000年重庆市初中竞赛题)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=__________. 解:(2000-a )2+(1998-a )2=〔(2000-a)-(1998-a)〕2+2(2000-a)·(1998-a)=4+2×1999=4002例2.(2001年武汉市中考题) 观察下列各式(x -1)(x+1)=x 2-1; (x -1)(x 2+x+1)=x 3-1; (x -1)(x 3+x 2+x+1)=x 4-1. 根据前面的规律可得(x -1)(x n+x n -1+…+x+1)=._____解:x n+1-1例3.(2002年全国初中数学竞赛题) 设a 、b 、c 、x 、y 、z 满足下列等式2222,2,2,362x a b y b c z c a πππ=-+=-+=-+则z ,y ,z 中,至少有一个值( )·(A)大于0 (B)等于0 (c)不大于0 (D)小于0 解: 222222222(1)(1)(1)30x y z a a b b c c a b c ππ++=-+-+-+=-+-+-+->则x ,y ,z 中至少有一个值大于0。
整式恒等变形
第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()()()()()222111111yz zx xy x y z ++++++的值.模块二 恒等变形→因式分解与不定方程题型一 因式分解基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________.(2)已知15x 2-47xy +28y 2=0,求x y的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式22365112x x x x ++++的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x2+2xy+2y2+4x+8=0,求x,y.【练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.【例10】已知实数a、b、c满足a-b+c=7,ab+bc+b+c2+16=0.则ba的值等于____.【练10】已知a-b=4,ab+c2+4=0,则a+b=________.模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=__________.(2)(a-b)2=__________.2、三元二次:(3)(a+b+c)2=_________.(4)a2+b2+c2+ab+bc+ca=_______.3、二元三次:(5)(a+b)3=______________.(6)a3+b3=______________.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc(9)(a+b+c)(ab+bc+ca)=a2b+b2c+c2a+ab2+bc2+ca2+3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:(11)(a+b+c)(a+b-c)(b+c-a)(c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a26、二元n次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+…-ab n-2+b n-1)(n为奇数)7、n元二次:(14)(a1+a2+…+a n)2=a12+a22+…+a n2+2a1a2+2a1a3+…+2a1a n+2a2a3+2a2a4+…+2a n-1a n.(15)a12+…+a n2+a1a2+…+a1a n+a2a3+…+a2a n+…+a n-1a n=1[(a1+a2)2+…+(a n-1+a n)2]强化挑战【例11】已知实数a、b、x、y满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.【练11】(第6届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b)的值.【例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.【练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=83,(1)求abc的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.【练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.【拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013.第8讲课后作业【习l】已知x2+x-1=0,求x8-7x4+11的值.【习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc的值.【习3】若m=20062+20062×20072+20072,则m( )A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( ) A.1个B.2个C.3个D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正B.恒负C.可正可负D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
初一数学竞赛系列讲座(6)整式的恒等变形
初一数学竞赛系列讲座(6)整式的恒等变形一、知识要点1、 整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、 整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、 乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条: ① (a+b) (a-b)=a 2-b 2② (a±b)2=a 2±2ab+b 2③ (a+b) (a 2-ab+b 2)=a 3+b 3④ (a-b) (a 2+ab+b 2)=a 3-b 3⑤ (a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca⑥ (a+b+c) (a 2+b 2+c 2-ab-bc-ca)= a 3+b 3+c 3-3abc⑦ (a±b)3= a 3±3a 2b+3a b 2±b 34、 整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、 余数定理多项式()x f 除以 (x-a) 所得的余数等于()a f 。
特别地()a f =0时,多项式()x f 能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析 要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解 因1+2+3+…+1998=()19999992199811998⨯=+⨯是一个奇数, 又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n 、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号, 即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。
全国高等学校民族预科教材 数学 第一章
于是我们猜想,是不是前n个奇数和 Sn 等于n的平方?即
Sn 1 3 5 (2n 1) n2 ?
解:当x y时,原式为零 ,于是原式有因式 x y
同理知原式还有因式 y z, z x,而原式又是关于 x, y, z 的四次齐次式,故可设
x3( y z) y3(z x) z3(x y) k(x y)( y z)( z x)( x y z)
)
k2 2(k 1)
(k 1) 1 2(k 1)
于是当n=k+1时,原式也成立。 根据1)和2)可知,对大于等于2的任何自然数都成立。
例3 证明:对于任何的自然数n, n3 5n 是6的倍数。
证 1)当n=1时,n3 5n 13 51 6 是6的倍数,所以n=1时命 题正确。 2)假设当n=k时命题正确,即 k3 5k 是6的倍数,又当n=k+1 时有 (k 1)3 5(k 1) k3 3k2 3k 1 5k 5
Байду номын сангаас齐次对称式的一般形式为
a(x3 y3 z3 ) +b(x2 y y2 x x2 z z2 x y2z z2 y) +cxyz
故可设 x y z3 =a(x3 y3 z3) +
b(x2 y y2 x x2 z z2 x y2 z z2 y) +cxyz
于是 a 1,b 0, c 5.
例4表明,有时需要给定的数学式子表示成与它恒等 的另外一种形式,这种新形式中含有待定的系数, 然后根据恒等的性质,求出这些待定系数的值,称 这种方法为待定系数法,它是数学中常用的方法。
整式恒等变形
整式恒等变形编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(整式恒等变形)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为整式恒等变形的全部内容。
第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法 强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求的值.模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x2012=__________.(2)已知15x 2-47xy +28y 2=0,求的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.()()()()()()222111111y z z x x y x y z ++++++xy题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x 2+2xy +2y 2+4x +8=0,求x ,y .【练9】已知x 2-6xy +10y 2+2x -8y +2=0,求x ,y .【例10】已知实数a 、b 、c 满足a -b +c =7,ab +bc +b +c 2+16=0.则的值等于____.22365112x x x x ++++ba【练10】已知a -b =4,ab +c 2+4=0,则a +b =________.模块四 恒等变形→乘法公式 知识点睛【常见乘法公式】 1、二元二次:(1)(a +b )(a -b )=__________.(2)(a -b )2=__________. 2、三元二次:(3)(a +b +c )2=_________.(4)a 2+b 2+c 2+ab +bc +ca =_______. 3、二元三次:(5)(a +b )3=______________.(6)a 3+b 3=______________. 4、三元三次:(7)(a +1)(b +1)(c +1)=abc +ab +bc +ca +a +b +c +1(8)(a +b )(b +c )(c +a )=a 2b +b 2c +c 2a +ab 2+bc 2+ca 2+2abc(9)(a +b +c )(ab +bc +ca )=a 2b +b 2c +c 2a +ab 2+bc 2+ca 2+3abc(10)a 3+b 3+c 3-3abc =(a +b +c )(a 2+b 2+c 2-ab -bc -ca ) 5、三元四次:(11)(a +b +c )(a +b -c )(b +c -a )(c +a -b )=-a 4-b 4-c 4+2a 2b 2+2b 2c 2+2c 2a 26、二元n 次:(12)a n -b n =(a -b )(a n -1+a n -2b +a n -3b 2+…+ab n -2+b n -1)(13)a n +b n =(a +b )(a n -1-a n -2b +a n -3b 2+…-ab n -2+b n -1)(n 为奇数) 7、n 元二次:(14)(a 1+a 2+…+a n )2=a 12+a 22+…+a n 2+2a 1a 2+2a 1a 3+…+2a 1a n +2a 2a 3+2a 2a 4+…+2a n -1a n .(15)a 12+…+a n 2+a 1a 2+…+a 1a n +a 2a 3+…+a 2a n +…+a n -1a n =[(a 1+a 2)2+…+(a n -1+a n )2] 强化挑战【例11】已知实数a 、b 、x 、y 满足a +b =x +y =3,ax +by =4,求(a 2+b 2)xy +ab (x 2+y 2)的值.【练11】(第6届希望杯初一)已知ax +by =7,ax 2+by 2=49,ax 3+by 3=133,ax 4+by 4=406,试求1995(x +y )+6xy -(a +b )的值.【例12】若a +b +c =0,a 3+b 3+c 3=0,求证:a2011+b2011+c2011=0.12172【练12】若a +b -c =3,a 2+b 2+c 2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a +b +c =0,a 2+b 2+c 2=1. (1)求ab +bc +ca 的值;(2)求a 4+b 4+c 4的值.【练13】若a +b +c =1,a 2+b 2+c 2=2,a 3+b 3+c 3=,(1)求abc 的值;(2)求a 4+b 4+c 4的值.巅峰突破【例14】若x +y =a +b ,且x 2+y 2=a 2+b 2,求证:x 2014+y 2014=a 2014+b 2014.【练14】已知a +b =c +d ,a 3+b 3=c 3+d 3,求证:a2013+b2013=c2013+d2013.【拓14】已知a +b =c +d ,a 5+b 5=c 5+d 5,求证:a2013+b2013=c2013+d2013.第8讲 课后作业【习l 】已知x 2+x -1=0,求x 8-7x 4+11的值.【习2】已知a +b +c =1,b 2+c 2-4ac +6c +1=0,求abc 的值.【习3】若m =20062+20062×20072+20072,则m ( )A .是完全平方数,还是奇数B .是完全平方数,还是偶数C .不是完全平方数,但是奇数D .不是完全平方数,但是偶数83【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( )A.1个 B.2个 C.3个 D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正 B.恒负 C.可正可负 D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.【习10】(第18届希望杯初一)有理数a,b,c满足a:b:c=2:3:5,且a2+b2+c2=abc,求a+b+c的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试1比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc 的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。
初中数学重点梳理:恒等式证明
恒等式证明 知识定位代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.知识梳理知识梳理1:由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).知识梳理2:比较法比较法利用的是:若0,则(作差法);或若1,则(作商法)。
a a b a ba b b-==== 这也是证明恒等式的重要思路之一。
知识梳理3:分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.知识梳理4:其他解题方法及技巧除了上述方法,设k 、换元等方法也可以在恒等式证明中发挥效力.例题精讲【试题来源】【题目】已知x+y+z=xyz ,证明:x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .【答案】因为x+y+z=xyz ,所以左边=x(1-z 2-y 2-y 2z 2)+y(1-z 2-x 2+x 2z 2)+(1-y 2-x 2+x 2y 2)=(x+y+z)-xz 2-xy 2+xy 2z 2-yz 2+yx 2+yx 2z 2-zy 2-zx 2+zx 2y 2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.【解析】将左边展开,利用条件x+y+z=xyz ,将等式左边化简成右边.【知识点】恒等式证明【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知1989x 2=1991y 2=1993z 2,x >0,y >0,z >0,且1111x y z++=198919911993198919911993x y z ++=++ 【答案】令1989x 2=1991y 2=1993z 2=k(k >0),则又因为所以所以【解析】令1989x 2=1991y 2=1993z 2=k(k >0),则本例的证明思路是“相向趋进”,在证明方法上,通过设参数k ,使左右两边同时变形为同一形式,从而使等式成立.【知识点】恒等式证明【适用场合】当堂例题【难度系数】4【试题来源】 【题目】求证:()()()()()()222a bcb ca abc a b a c b c b a c a c b ---+=++++++ 【答案】因为所以所以【解析】用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b 代a ,c 代b ,a 代c ,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.【知识点】恒等式证明【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知0a b c ++= ,求证()()24442222a b ca b c ++=++ 。
整式的恒等变形精品讲义
整式的恒等变形1. 乘法公式也叫作简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
⒉ 基本公式就是最常用、最基础的公式,并且可以由此而推导出其他公式。
完全平方公式:()2222a b a ab b ±=±+,平方差公式:()()22a b a b a b +-=-. 立方和(差)公式:()()2233a b a ab b a b ±+=±.⒊ 公式的推广:①多项式平方公式:()22222222222a b c d a b c d ab ac ad bc bd cd +++=+++++++++即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:()3322333a b a a b ab b ±=+±()4432234464a b a a b a b ab b ±=±+±+()554322345510105a b a a b a b a b ab b ±=±+±+±…………注意观察右边展开式的项数、指数、系数、符号的规律 ③由平方差、立方和(差)公式引伸的公式()()322344a b a a b ab b a b +-+-=-()()43223455a b a a b a b ab b a b +-+-+=+()()5432234566a b a a b a b a b ab b a b +-+-+-=-…………注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n 为正整数()()2122232222122n n n n n n n a b a a b a b ab b a b -----+-+-+-=-()()2212222122121n n n n n n n a b a a b a b ab b a b ---+++-+--+=+类似地: ()()123221n n n n n n n a b a a b a b ab b a b ------+++++=-⒋ 公式的变形及其逆运算由()2222a b a ab b +=++得()2222a b a b ab +=+-由()()3322333333a b a a b ab b a b ab a b +=+++=+++得()()3333a b a b ab a b +=+-+ 由公式的推广③可知:当n 为正整数时 n n a b -能被a b -整除, 2121n n a b +++能被a b +整除,22n n a b -能被a b +及a b -整除。
初中奥数恒等变形知识点归纳整理
初中奥数恒等变形知识点归纳整理恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.表示两个代数式恒等的等式叫做恒等式.如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的.如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).2.通过一系列的恒等变形,证明两个多项式是恒等的.如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立.x2+3x+2=(x-1)2+b(x-1)+c ①解一:∵①是恒等式,对x的任意数值,等式都成立设x=1,代入①,得12+3×1+2=(1-1)2+b(1-1)+cc=6再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6b=5∴x2+3x+2=(x-1)2+5(x-1)+6解二:将右边展开x2+3x+2=(x-1)2+b(x-1)+c=x2-2x+1+bx-b+c=x2+(b-2)x+(1-b+c)比较两边同次项的系数,得由②得b=5将b=5代入③得1-5+c=2c=6∴x2+3x+2=(x-1)2+5(x-1)+6这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.。
组合恒等式的证明方法与技巧
证明组合恒等式的方法与技巧前言组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来.1. 利用组合公式证明组合公式:mn C =n!!n m m (-)!例1. 求证:m mn C =n 11m n C --分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可.证:∵ m mn C =m n!!n m m (-)!11m n C --=n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n!!n m m (-)!∴ m mn C =n --11m n C .技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取.2. 利用组合数性质证明组合数的基本性质:(1)m n C =n mnC -(2)1mn C +=mn C +1m nC -(3)k kn C =n k 11n C --(4)++...+=012n 2nn n n n C C C C-+-+...+(-1)=00123n nn n n n n C C C C C (5)例2:求证:-++3...+n =n 123n 122n n n n n C C C C分析:等式左边各项组合数的系数与该项组合数上标相等,且各项上标是递增加1的,由此我们联想到组合数的基本性质:k kn C =n k 11n C -- ,利用它可以将各项组合数的系数化为相等,再利用性质++...+=012n 2n n n n n C C C C 可得到证明.证:由k kn C =n k 11n C -- 得123n2n n n n C C C C ++3...+n=012n 11111n n n n n n n C C C C -----++...+n =n (012n 11111n n n n C C C C -----++...+) =n n 12-.例3.求证:012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=分析: 观察到,等式左边各项的组合数的上标和下标存在联系:上标+m =下标,而且各项下标是递增+1的.由此我们想到性质(2),将左边自第二项各项裂项相消,然后整理而得到求证.证:由性质(2)可得i m i 1C ++=i m i C ++i 1m i C -+ (i ∈N ) 即im i C +=i m i 1C ++-i 1m i C -+令i =1,2,…,k -1,并将这k -1个等式相加,得12k 1m 1m 2m k 1C C C -+++-++...+ =1021k 1k 2m 2m 1m m m k m k C C C C C C --+++3+2++-1-+-+...+- =-0m 1C ++k 1m k C -+ =-0m C +k 1m k C -+∴012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=.技巧:例2和例3的证明分别利用性质(3)(5)、(2)此方法的技巧关键在于观察,分析各项组合数存在的联系,读者应在平时实践做题总结,把它们对号入座,什么样的联系用什么样的性质来解决.3. 利用二项式定理证明我们都知道二项式定理:n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++,对于某些比较特殊的组合恒等式可以用它来证明,下面以两个例子说明3.1.直接代值例4.求证:(1)-1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C (2)---1--++...+(-1)+(-1)=n n 11n 22n n 1nn n n 22221C C C 分析:以上两题左边的各项组合数都是以 i n ii n ab C - 的形式出现,这样自然会联想到二项式定理.证:设n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++ ① ⑴ 令a =1,b =3,代入①,得 -1-+)=1+3+3+...+3+3n 122n n 1n n n n (13C C C 即, -1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C(2) 令a =2,b =-1,代入①,得n n n 11n-22n 1n 1n n n n 121C C C ---(2-1)=2-2+2+...+(-)+(-)即,---1--++...+(-1)+(-1)=n n 11n 22n n 1n n n n 22221C C C .技巧:此方法的关键在于代值,在一般情况,a ,b 值都不会很大,一般都是0, 1,-1,2,-2 , 3,—3这些数,而且a ,b 值与恒等式右边也有必然的联系,如上题中1+3=22,2-1=1,在做题的时候要抓住这点.3. 2.求导代值例5.求证: -+3+...+(-1)=(-1)23nn 2n n n 212nn n n 2C C C (n ≧2)分析:观察左边各项组合数的系数发现不可以直接运用二项式定理,但系数也有一定的规律,系数都是i(i-1) i=2,3,…n 我们又知道(x i)’’=i(i-1)x i-2由此我们想到了求导的方法.证:对n 0122n n n n n n x x x x C C C C (1+)=+++...+ 两边求二阶导数,得n 223n n 2n n n n n 1x 212x n n x C C C --(-1)(+)=+3+...+(-1)令x=1得 -+3+...+(-1)=(-1)23n n 2n n n 212n n n n 2C C C (n ≧2)技巧:此方法证明组合恒等式的步骤是,先对恒等式na x (+)=i 1mnn i i C ax -=∑ 两边对x 求一阶或二阶导数,然后适当选取x 的值代入.4. 比较系数法比较系数法主要利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.例6.求证:2222++)+()+()+...+()=012m m 1m 22(n nn n C C C C C (范德蒙恒等式)分析:本题若考虑上面所讲和方法来证明是比较困难的,注意到等式左边各项恰是二项展开式中各项二项式系数的平方,考虑二项展开式 (1+)n x =+0n C ++...+122n nn n n x x x C C C 和(1+)=+++...+n 012n n n n n 2n 1111x x x xC C C C 这两个展开式乘积中常数项且好式是2222++)+()+()+...+()012m m 1m 2(n n C C C C证:∵n 0122n n n n n n x x x x C C C C (1+)=+++...+ (1+)=+++...+n 012n n nn n 2n 1111x x x xC C C C ∴n1x (1)n x+(1+)=(+++...+0122n n n nn n x x x C C C C ) (+++...+012n n nn n 2n 111x x xC C C C ) 又有,n1x (1)n x+(1+)=2nn(1+x)x 比较两边的常数项,左边常数项为2222++)+()+()+...+()012m m 1m 2(n n C C C C右边的常数项为2nn C ,根据二项展开式中对应项的唯一性得 2222++)+()+()+...+()=012m m 1m 22(n n n n C C C C C技巧:此方法关键是适当地选择一个已知的恒等式,然后比较两边x 同次幂的系数.当然,已知恒等式的选择不是唯一的,例5也可以选择已知恒等式n 2x (1)(1)n nx x +=+(1+) ,只须比较恒等式中两边含有nx 的系数即可得证,证明留给读者.5. 利用数列求和方法证明回到例2,除了利用组合数的性质,我们还可以有其他方法.观察,恒等式左边的各项组合数的系数为等差数列,现在我们仿照求和公式(1)12 (2)n n n -+++=的证明来证明例2 证:设123nn n n n s=C 2C 3C ...n C +++ ① 则nn-121n n n n s=n C n-1)C ...2C C +(++ 01n-2n-1n n n n =n C n-1)C ...2C C +(++ ② ①+②得01n-1nn n n n 2s=n C C ...n C C n +++n 01n-1nn n n n =n(C C ...C C )+++=n 2n∴ 12n s n -=技巧:此方法的证明有一定的特殊性,分析等式中组合数系数的变化规律尤其重要,知识的迁移在此方法是一个很好的见证.6. 利用数学归纳法证明我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.那么,组合恒等式的证明可不可以用数学归纳法来证明呢看下面的一个例题 例7.已知{n a }是任意的等差数列,且n ≧2,求证:123n n+1a -a +a -...+(-1)a +(-1)a =0012n-1n-1nn n n n n n C C C C C分析:由于本题恒等式左边的各项组合数系数是一个不确定的等差数列,用上面的方法处理就比较困难,又因为等式含有数列,我们不妨用数学归纳法试试.证:i) 当n =2时,因为2132a a a a -=-所以12320a a a -+=,故等式成立,ii) 假设,当n =k (k ≧2)时等式成立,即对任何等差数列{n a },有,123k k+1a -a +a -...+(-1)a +(-1)a =0012k-1k-1kk k k k k k C C C C C ① 则当n =k +1时,利用组合数性质,有+1+1+2+13+1k +1k+2a -a +a -...+(-1)a +(-1)a 012k k k k +111+1k k k k k C C C C C123-+1k +1k+2=a -(+)a +(+)a -... +(-1)(+)a +(-1)a 01021k k k 1k k k k k k k k k k C C C C C C C C 123k +1--234k +1k +2=a -a +a -...+(1)a -a -a +a -...+(1)a +(1)a 012k k 012k 1k 1k k[-][--]k k k k k k k k k C C C C C C C C C因为根据归纳假设,当n =k 时,对任意等差数列12k 123k 2a a a a a a ++,,...,与,,①式都成立,所以上式右端的两个方括号都等于零.于是我们证明了当n =k +1时等式也成立,根据(1)和(2)可知,等式对n ≧2的任何自然数都成立.技巧:用本方法证明的思路清晰,只须分两步进行即可,但归纳法的关键是由“假设n =k 成立,推导到n =k +1也成立”这一步中间的变换过程比较复杂,在“无路可走”的情况之下,归纳法也是一个好的选择.7. 利用组合分析方法证明所谓组合分析法就是通过构造具体的组合计数模型,采用了“算两次”的方法,再根据组合数的加法原理和乘法原理得到恒等式两边相等.例8.证明:--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)证明:算右边,假设有2n 个球,现要在2n 个球中任取出(n -1个,取法有 -n 12n C 种,算左边,把2n 个球分成两堆,每堆个n 个,现要 在2n 个球在中取出(n -1)个,取法是,在第一堆取0个,第二堆取(n -1)个,或第一堆取1个,第二堆 取(n -2)个,或…或第一堆取(n -1)个,第二堆 取0.再根据加法原理总的取法有 ---++...+0n 11n 2n 10n n n n n n C C C C C C 又因为---++...+0n 11n 2n 10n n n n n n C C C C C C =-++...+0112n 1nn n n n n n C C C C C C所以,左右两边都是在2n 个球中取出(n -1)个球,因此有,--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)技巧:用组合分析法证明组合恒等式的步骤是:选指出式子的一边是某个问题的解,然后应用加法原理和乘法原理等去证明式子的另一边也是该组合问题的解.用此方法也可以证明例6,证明过程非常简洁.8概率法证排列组合基本理论是古典概型计算的基石.能否用古典概型来解决某些排列组合问题我们来看下面的例子 例9证明组合数加法题推公式:.21111C C C C k n k n k n k n ----+++=分析:把特征等式经过适当变形,使之右端变为1,而左端为若干项之和,根据左端和式中各项的特点,构造以概率模型,并找到样本空间的一个特殊分化,使之相应概率等于左端和式的各项,从而得证. 证明:我们将公示变形为.11211111=+++--+--+CC CC CC k n k n k n k n k n k n下面利用超几何分布概率公式构建摸球模型来证明:设袋中有1+n 只球,其中有1只黑球,1只白球,现随机地抽取k 只球()11+≤≤n k .设事件A :“抽取的k 只球中含有黑球”,B :“抽取的k 只球中含有白球”,则()CC C kn knA P 101+= 由全概率公式得()()()()()B A P B P B A P B P A P +==CC C CC C CC C CC C knk n k n k n k nk n k n k n 1111101121111111--+---+-•+• =CC CCkn k n k n k n 111121+--+--+ 由()()1=+A P A P ,立即得证该公式技巧:利用概率对立事件发生的概率和为1,或是在某种情况下必然事件的概率也为1.可以与实际相结合,容易理解.9 几何法例10 证明nnn n n C C C 21=+++ 分析:主要是利用组合的几何意义来证明.无重组合Cn 1n +的几何意义表示平面坐标上的(0,0)点到整点(n,m )(这里n,m 都是整数)的递增路径的总和.一条从点(0,0)到点(n,m )的递增路径是 指一个有长度为1的端点为整点的线段首尾连接所组成的折线, 并且每一条线段的后一个端点的坐标或者在x 上或者在y 上,比 前一个端点增加一的单位长,水平走一步为x,垂直走一步为y,图 1中的递增路径可表示为:x,y,x,x,y,y,x,x,y,y 证明:由图2可知等式的左边,Cn0表示从(0,0)到(0,n )点的增路径,Cn1表示从(0,0)到(1,n-1)点的增路径数,┄,Cn n1-表示从(0,0)到(n-1,1)点的的增路径数,Cn n表示从(0,0)到(n,0)点的的增路径数1,而这所有的地 增路径之和就是从(0,0)点到斜边上的整点的递增路径. 另一方面,从(0,0)点到斜边上任何一整点的递增路径是 n 步步长,每一步是x 或者y ,有两种选择,由乘法法则,n 步的不同方法的总数为2n ,所以等式成立.10 用幂级数法我们知道,()1-1--n x 可展成如下幂级数: ()=---11n x k k k kn x C∑∞=+01<x现在我们用次展开式证明下列等式 例11 证明C C C C n m n n m n n n n n 111+++++=+++证明:因为 ()()()111-1-+--x x n =()21---n x左边应为:()()()1111-+---x x n =∑∑∞=∞=+•0i ikk nk n x x C右边应为:()=---21n x k k n k n x C ∑∞=+++011比较两边nx 的系数可知,原等式成立.技巧:对组合求和,当组合下标变动时,常用幂级数方法.11微积分法例11 求证:()∑∑==-=-nk kn nk k kkC 11111 分析:利用微分与积分的相互转化是问题得以解决,求导后再积回去,不改变原等式的性质. 证明:令 ()()k k nnk k x kx f C∑=--=111则 ()00=f ,()()Ck nnk k kf ∑=--=1111()()1111-=-∑-='k nk kn k xx f C =()k n k k n kx x C ∑=--111=()x x n---11=()()x x n----1111 =()()()121111--++-+-+n x x x即()()∑-=-='11n j jx x f上式两边同时求积分得 ()()C x j x f n j j +-+-=∑-=+11111所以 ()C j f n j ++-==∑-=11100 ⇒ ∑∑-===+=101111n j nk kj C 从而 ()()∑∑=-=++-+-=n k n j j kx j x f 1111111()()∑∑==-==-nk knnk k k f kC 111111 12 递推公式法上述例12是否还可以用递推公式的方法解决,我们来看一下· 证明:令()∑=--=nk k nk n Ckf 111 ( ,3,2,1=n )则 ,11=f 当2≥n 时,n f =()()C C k n k n nk k11111-k 1----=+∑=()()∑∑=-----=--+-nk k n k kn n k k CC kk1111111111=()∑=---n k k n k n C n f 1111=()⎥⎦⎤⎢⎣⎡---∑=-11101n k k n kn C n f=()1011---n f n =n f n 11+- 所以 n f f n n 11+=-=n n f n 1112+-+-=nf 131211++++==∑==++++n k kn 1113121113 生成函数法首先介绍生成函数相关定义和定理.定义1 设{}n a 是一个数列,做形式幂级数() +++++=nn x a x a x a a x f 2210称()x f 为数列{}n a 的生成函数. 定义2 对任何实数r 和整数k 有=Ck r()()!111k k r r r +-- 000>=<k k k定理1 设数列{}{}n n b a ,的生成函数为()()x B x A ,,若∑==ni i n a b 0,则()()xx A x B -=1 定理2 设m 是一个有理数,R a ∈,有()∑∞==+01k k k kmmx a ax C例13 设n ∈N,有())3)(2(11123+++++n n n n Cn n证明:设数列Ck kkn +2的生成函数A(x),即A(x)=xC k kk kn k +∞=∑02设∑==n i i n a b 1,先求A(x),由()x n --11-=xC kk kkn ∑∞=+1对上式两边求导得:()()xC k k kk n n k x n 11211-∞=+--∑=-+两边同乘x 得:()()x C kkk n k n k x n +∞=--∑=-+1211对上式两边求导得:()()()()()2311121-----++-++n n x n x x n n =xC k k k kn k 112-+∞=∑两边同乘x 得:()()()()()x x n x x n n n n 22311121-----++-++=xC kkk kn k +∞=∑12=A(x)由定理1=-=xx A x B 1)()(()()()()()x x n x x n n n n 32411121-----++-++ 由⑴式得()41---n x 中2-n x的系数为Cn n 212-+,()3-1--n x 中1-n x的系数为Cn n 112-+.因此)(x B 展开式中nx 的系数为 =n b ()()()121112212++++-+-+n n n C C n n n n =()()()3211123+++++n n n n Cn n因此Ck kkn nk +=∑12=()()()3211123+++++n n n n Cn n14 牛顿公式法相关定理及定义:定义1 设(){}0≥n n f 为任一数列,令△()()()n f n f n f -+=1 () ,2,1,0=n△()n f k =△()11+-n f k -△()n f k 1- () ,2,1,0=n这里△成为差分算子.定义2 设(){}0≥n n f 为任一数列,令()()1+=n f n Ef () ,2,1,0=n()n f E k ()()k n f n f E k +=+=-11 () ,2,1,0=n这里称E 移位算子定义3 设(){}0≥n n f 为任一数列,令()()n f n If = () ,2,1,0=n()()()n f n f I n f I k k ==-1 () ,2,1,0=n这里称I 为恒等因子.定理1 设(){}0≥n n f 为任一数列,R b a ∈,,则△()()()=+n bg n af a △()n f +b △()n g ,约定:△I I E ===000定理2 (牛顿公式)n E =(△+I )∑==nj j n n C 0△j△()()j j n jn n j n n EI E C -=∑-=-=01例14 ()l f =m m l a l a a +++ 10(其中0≠m a ,R a i ∈ ,N l ∈),有()()C kn n k k n l f ∑-=-01={nm a m n m m =<,!0,证明:由牛顿公式()()=∑-=-C j n n j j n l f 11()∑-=-n j j n 11,()=-j l f E C jj n △f n ,实际上是证明△f n ={nm a m n m m =<,!,0 ⑴对()f ∂用数学归纳法证明当()n f <∂时,有△()l f n=0 当()1=∂f 时,令()b al l f +=(0≠a )△()l f ()()=-+l f l f 1()()a b al b l a =+-++1,△()02=-=a a l f 假设()m f <∂时命题成立,当()m f =∂且n m <时,令()m m l a l a a l f +++= 10△()=l f ()()()m m m m l a l a a l a l a a +++-+++++ 101011 显然∂(△()l f )11-<-≤n m ,由归纳法设△()l f n=△1-n (△()l f )=0 ⑵设()=l f n n l a l a a +++ 10(其中0≠n a )对n 用归纳法证明△()n n a n l f !=当()1=∂f 时,令()b al l f += ()0≠a△()=l f ()()l f l f -+1=()()a b al b l a =+-++1假设()m f <∂时命题成立当()m f =∂时△()=l f ()()()=+++-+++++m m m m l a l a a l a l a a 101011()l g l ma m m +-1()2-≤∂m l g ,由⑴有 △()01=-l g m由归纳假设有 △11-m -m l =()!1-m 因此 △()=l f m △1-m (△()l f )=△()11--m m m l ma +△()l g m 1-=m ma △11--m m l =m a m !因此,命题成立.结束语关于组合恒等式的证明方法还有很多,例如,倒序求和法,二项式反演公式法,母函数等等.本文介绍的主要是几种方法中,大多是以高中知识为基础,也可以说是组合恒等式证明的初等方法,也有大学学的方法,比较深入,不是很好理解.通过学习,我们要学会具体问题具体分析和解决问题多样化的思想.顺便指出,以上例题的解法不是唯一的,本文也有提及.细心的话也可以留意到,各种方法之间也存在着一定的联系,在这里就不再累赘了.参考文献⑴陈智敏,组合恒等式新的证明方法,广州大学学报,2006(04).⑵侯为波、卓泽强,古典概型在排列组合恒等式证明中的应用,淮北师范大学学报,1996(04).⑶概率在证明组合恒等式中的应用,淮南师范大学学报,2004(02).⑷周棉刚,关于组合恒等式的几种证法,黔南民族师范学院学报,2003(3).⑸何宗祥,漫谈组合恒等式的证明,中国数学月刊1994(2).⑹几何法,数学教学,1989(01).⑺杨青文,有关组合恒等式的几种证法,青海师专学报,1995(2).⑻杜庆坤,组合恒等式的证明技巧,临沂师范学报,2003(12).⑼曹汝成,组合数学,华南理工大学出版社,广州,2011⑽卢开澄,组合数学,清华大学出版社(第二版),北京.。
恒等式的证明
恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证 ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).。
乘法公式的复习讲义(学生版)
乘法公式的复习讲义平文一、重要的乘法公式:1.平方差公式:(a+b).(a-b) =a2-b2体会:①公式的字母 a、b 可以表示数,也可以表示单项式、多项式;②要符合公式的结构特征才能运用平方差公式;③有些式子表面上不能应用公式,但通过适当变形实质上能应用公式.如:(x+y-z)(x-y-z) =[ (x-z) +y][ (x-z) -y]= (x-z) 2-y2.从图形的角度对它验证 :如图,边长为 a 的正方形。
aba b b在下边切去一个宽为 b,长为(a-b)的长方形 ,再在右边加去一个宽为 b,长为 (a-b ) 的长方形这时,红色和黄色区域的面积和是________.(a+b)(a-b)2.完全平方公式: (a+b)2=a2+2ab+b2 、(a-b)2=a2-2ab+b2体会: __________________________________________________ 3.多项式的完全平方:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac、(a-b-c)2=a2+b2+c2-2ab+2bc-2ac思考: (a+b-c)2=_______________(a-b+c)2=_______________体会: __________________________________________________ ___________________________________________.4.两个一次二项式相乘: (x+a) . (x+b) =x2+(a+b)x+ab.体会: a、b 可以是正数也可以是负数。
5.补充几个乘法公式:①立方差公式:(a-b)(a2+ab+b2)=a3-b3② 立方和公式:(a+b)(a2-ab+b2)=a3+b3体会规律: _____________________________________6. 由平方差、立方和(差)公式引伸的公式 :(a+b) (a3-a2b+ab2-b3)=a4-b4;(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5;(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6 …………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设 n 为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2 -…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2 -…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b) (a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n 二、例题分析:题型 1 :平方差公式的应用:(1) 公式中的字母 a、b 可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.例 1.计算(3x-1)(3x+1)(9x2+1)例 2.计算(2x-1)2(1+2x)2- (2x+3) 2(2x-3)2例 3.计算(x2-x+2)(x2-x-2)变式 1:计算(x+y+z)(x+y-z)变式 2:已知 z2=x2+y2 ,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z).变式 3:计算(a- 2b+c)(a+2b-c)-(a+2b+c) 2变式 4: (a+b+c)(a+b-c)(a-b+c)(-a+b+c)例4. 计算(1)899×901+1 (2) 1232-122×118变式 1:计算: 1002-992+982-972+ …+42-32+22-1例 5:计算: (2+1) (22+1) (24+1) (28+1) (216+1) (232+1)++变式:计算:+例 6.探索题:(x-1)(x+1)=x 2 1(x-1) (x 2+x+1)=x 3-1(x-1)(x 3+x 2+x+1)=x 4-1(x-1)(x 4+x 3+x 2+x+1)=x 5-1……试求 26+25+24+23+22+2+1 的值,判断 22005+22004+22003+ …+2+1 的末位数。
乘法公式与恒等变形
/56'"\2021年第 2期& 中考频•道_1、_■中学数学教学参考(中旬)a<4的整数),得出百位数字和十位数字的和为2a+5,再分别取^=1,2,3,4,计算判断即可得出结论。
4设计说明本设计充分运用深度学习具有的两个显著特征:学生的主体性与教学的深层性。
首先,学生的主体性。
深度教学虽然以教学为目标,但在教学过程的实施中更加看重学生的主体地位,以学生内在的发展与提升为重点;其次,教学的深层性。
深度教学并非简单意义上的增加知识容量,或者提升知识难度,而是在学生理解的基础上,让学生对知识、技能等学习内容产生更为深刻的认知。
通过对现实情境中问题的解决,让学生进一步领悟代数语言的简洁性,感知用字母表示数的必要性及其意义,在此基础上完善符号意识。
代数作为概括和抽象的算术,体现了具体与抽象的关系,因此具体化应成为代数推理的一项基本技能;代数推理既包括演绎推理,又包括合情推理,因此特殊化和一般化也应成为代数推理的一项基本技能;初中代数知识丰富,涉及面广,这就为代数推理提供了丰富的模型(如方程模型、不等式模型、函数模型 等),因此模型化也应成为代数推理的基本技能,而用字母表示数就是建立模型化的一个重要起点。
V乘法公式与恒等变形^王玉娟,刘同军(山东省青岛西海岸新区实验初级中学)文章编号:1002-2171 (2021)2-0056-041复习目标(1) 通过复习,使学生熟练掌握平方差公式和完 全平方公式,理解公式的几何意义,能对乘法公式进行恒等变形,能用公式法进行因式分解;(2) 能利用乘法公式进行简单的整式、分式的加、减、乘、除运算;(3) 在恒等变形及应用公式的过程中,理解公式 之间的内在联系,体会数形结合、化归、整体等数学思想方法对解决问题的重要意义,发展数学运算、逻辑推理、几何直观、数学抽象等数学素养。
教学重、难点重点:利用公式进行整式和分式的运算。
难点:乘法公式的恒等变形及灵活运用。
恒等证明-第十二讲恒等变形2乘法公式学生版
第十二讲 恒等变形(2)乘法公式一、 基础知识 (一)乘法公式1. 除了上一讲的几个基本公式外,乘法公式还有如下几条:①) 2222()222a b c a b c ab ac bc ++=+++++②) 222333()()3a b c a b c ab ac bc a b c abc ++++---=++- ③) 123221()().n n n n n n n a b aa b a b ab b a b ------+++++=-④) 2222221[()()()]2a b c ab ac bc a b a c b c ++±±±=±+±+±(二)配方法配方法是乘法公式应用的拓展,在恒等变形中应用十分广泛。
在配方时,还常用到拆项或补项的技巧。
在配方法中要熟悉两组关系:1. x+y 、xy ,与x 2+y 2、x 3+y 3、x 4+y 4、x 7+y 7的关系。
2. x+x -、x-x -,与x 2+x -2、x 2-x -2、x 4+x -4、x 4-x -4的关系。
二、名校真题回放例1.(2005~2006首师大附中初一期中测试)x 2+2ax+l6是一个完全平方式,则a 的值是______.例2.(2005~2006首师大附中初一期中测试)与()()2a 1a a 1-++的积等于a 6-1的多项式是______.例3.(2005~2006首师大附中初一期中测试)若()()22223a b +ca b c +=++,则a ,b ,c 三者的关系为_________.例4.(2005~2006首师大附中初一期中测试)求证: ()()()()22x x 1x 2x 3x 3x 11+++=++-三、活题巧解 (一)乘法公式例1.(2000年重庆市初中竞赛题)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=__________.例2.(2001年武汉市中考题) 观察下列各式(x -1)(x+1)=x 2-1; (x -1)(x 2+x+1)=x 3-1; (x -1)(x 3+x 2+x+1)=x 4-1. 根据前面的规律可得(x -1)(x n+xn -1+…+x+1)=._____例3.(2002年全国初中数学竞赛题) 设a 、b 、c 、x 、y 、z 满足下列等式2222,2,2,362x a b y b c z c a πππ=-+=-+=-+则z ,y ,z 中,至少有一个值( )·(A)大于0 (B)等于0 (c)不大于0 (D)小于0例4.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上二数之和都相等,如果13、9、3的对面的数分别为a 、b 、c ,则222a b c ab bc ac ++---的值为_____.例5.(希望杯训练题)已知a+a 1=5,则2241aa a ++=._____例6.(2000年重庆市竞赛题) 乘积(1-221)(1-231)…(1-219991)(1-220001)等于( )。
三角恒等变换 - 最全的总结· 学生版
12.(特殊值化特殊角处理) =_______
13、(tan 45°=tan(20°+25°)+多项式展开)若α=20°,β=25°,则(1+tanα)(1+tanβ)的值为_______
14、(合理组合,多项式乘法展开)(1+tan 21°)(1+tan 22°)(1+tan 23°)(1+tan 24°)的值为_______
(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”快速进行逻辑判断。注意构造两角和差因子
1、(二倍角公式)(2007重庆文)下列各式中,值为 的是()
A. B. C. D.
2、(二倍角公式+平方差公式)(2008六校联考) 的值是
A. B. C. D.
8、(互余两角正余弦互换)【四川雅安中学2014-2015学年上期9月试题,理11】若 _______.
9、(互补两角余弦互为相反数) ,则 ___________
10.(两角整体相减)若 , 则 .
11、(两角整体相减)【2015重庆高一期末】若 且 ,则 ;
12.(两角整体相减)【2015江苏高考,8】已知 , ,则 的值为______
13、(两角整体相减)(中山市2014届高三上学期期末考试)已知 , ,则
14、(两角相减)【2015湖南浏阳高一期末】已知 ,则β=。
答案:BDACB 6、 7、 8、 9、- 10、 11、 12、3 13、 14、
(3)弦切互化:1)、分子分母同时除以cos 2)注意分母还原sin2 + cos2 =1,然后分子分母同时除以cos2 ,即可化为正切3)注意期间学会使用解方程的思想4)遇到部分Asinα+ Bcosα之类求正切的,注意先两边平方后再进行相切互化
代数式恒等变形与乘法公式
代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.
1.利用因式分解方法求值
因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.
分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.
解已知条件可变形为3x2+3x-1=0,所以
6x4+15x3+10x2
=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1
=(3x2+3x-1)(2z2+3x+1)+1
=0+1=1.
说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.
例2 已知a,b,c为实数,且满足下式:
a2+b2+c2=1,①
1
PS:双击获取文档,ctrl+A,ctrl+C,然后粘贴到word即可。
未能直接提供word版本,抱歉。
著名机构六年级数学春季班第12讲 恒等变形(一)
目录 上一页 空白页
【例14】
若 x a b ,y b c ,z c a ,
ab
bc
ca
求证:(1 x)(1 y)(1 z) (1 x)(1 y)(1 z)
目录 上一页 空白页
【例15】
已知 x y 1 ,x3 3x2 3x 3y 3y2 y3 37 。求 (x 1)4 ( y 1)4 之值。
目录 上一页 空白页
【练习1】
已知 a b 3 ,代数式 2(a b) 4(a b) 的值为______
ab
a b 3(a b)
x 2x x2
目录 上一页 空白页
【练习2】
若 a b 1,a2 b2 3 ,代数式 a2b ab2 的值为______
目录 上一页 空白页
目录 上一页 空白页
【例3】
若a、b、c
满足
abc
0
,abc
8 ,求证:1 a
1 b
1 cБайду номын сангаас
0
[(6.9)]
目录 上一页 空白页
【例4】
3x2 6x 5 当x变化时,求分式 1 x2 x 1 的最小值。
2
目录 上一页 空白页
【例5】
已知 (ax n)4 ax4 bx3 cx2 dx 16(a 0) ,求 b c d 2的3 值。
1
1,求
x6
x3 m3x3
1
的值(m是实数)。
目录 上一页 空白页
【例12】
若 x, y, z 都是实数,且 ( y z)2 (z x)2 (x y)2
( y z 2x)2 (z x 2y)2 (x y 2z)2,求 ( yz 1)(x2 1)
单位矩阵恒等变形公式
单位矩阵恒等变形公式单位矩阵是一种特殊的矩阵,它在代数运算中起到了重要的作用。
在线性代数中,我们经常会遇到矩阵的乘法运算,而单位矩阵在这个运算中扮演了一个特殊的角色。
本文将介绍单位矩阵的定义、性质以及单位矩阵的恒等变形公式。
一、单位矩阵的定义与性质单位矩阵是一个n×n的方阵,其主对角线上的元素全为1,其余元素全为0。
通常用字母I表示单位矩阵。
例如,一个3×3的单位矩阵可以表示为:I = |1 0 0||0 1 0||0 0 1|单位矩阵具有以下性质:1. 单位矩阵与任何矩阵相乘,结果都是原矩阵本身。
即对于任意m×n的矩阵A,有AI = A和IA = A成立。
2. 单位矩阵具有可逆性,即单位矩阵的逆矩阵仍为单位矩阵。
即I 的逆矩阵为I。
3. 单位矩阵与矩阵的乘法满足结合律,即对于任意m×n的矩阵A和n×p的矩阵B,有(AB)I = A(BI) = AB。
二、单位矩阵的恒等变形公式单位矩阵的恒等变形公式是指通过对单位矩阵进行一系列代数运算,得到与原矩阵等价的矩阵形式。
单位矩阵的恒等变形公式可以用于简化矩阵运算,提高计算效率。
考虑一个m×n的矩阵A:A = |a11 a12 ... a1n||a21 a22 ... a2n||... ... ... ...||am1 am2 ... amn|其中,aij表示A的第i行第j列的元素。
单位矩阵的恒等变形公式可以表示为:IA = |a11 a12 ... a1n||a21 a22 ... a2n||... ... ... ...||am1 am2 ... amn|对于矩阵A的每一个元素aij,其与单位矩阵I相乘的结果等于原元素本身。
因此,单位矩阵的恒等变形公式可以简化为:IA = A这个公式表明,任何矩阵与单位矩阵相乘的结果都等于原矩阵本身。
三、应用举例1. 矩阵的乘法在矩阵的乘法运算中,单位矩阵经常用作乘法的单位元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二讲 恒等变形(2)乘法公式
一、 基础知识 (一)乘法公式
1. 除了上一讲的几个基本公式外,乘法公式还有如下几条:
①) 2
2
2
2
()222a b c a b c ab ac bc ++=+++++
②) 2
2
2
3
3
3
()()3a b c a b c ab ac bc a b c abc ++++---=++- ③) 1
23221()().n n n n n n n a b a
a b a b ab b a b ------+++++=-
④) 2222221
[()()()]2
a b c ab ac bc a b a c b c ++±±±=
±+±+±
(二)配方法
配方法是乘法公式应用的拓展,在恒等变形中应用十分广泛。
在配方时,还常用到拆项或补项的技巧。
在配方法中要熟悉两组关系:
1. x+y 、xy ,与x 2+y 2、x 3+y 3、x 4+y 4、x 7+y 7的关系。
2. x+x -、x-x -,与x 2+x -2、x 2-x -2、x 4+x -4、x 4-x -4的关系。
二、名校真题回放
例1.(2005~2006首师大附中初一期中测试)x 2+2ax+l6是一个完全平方式,则a 的值是______.
例2.(2005~2006首师大附中初一期中测试)与()()
2a 1a a 1-++的积等于a 6-1的多项式是______.
例3.(2005~2006首师大附中初一期中测试)若(
)()2
222
3a b +c
a b c +=++,则a ,b ,c 三者的关系为
_________.
例4.(2005~2006首师大附中初一期中测试)求证: ()()()()
2
2
x x 1x 2x 3x 3x 11+++=++-
三、活题巧解 (一)乘法公式
例1.(2000年重庆市初中竞赛题)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=__________.
例2.(2001年武汉市中考题) 观察下列各式
(x -1)(x+1)=x 2
-1; (x -1)(x 2
+x+1)=x 3-1; (x -1)(x 3
+x 2
+x+1)=x 4
-1. 根据前面的规律可得(x -1)(x n
+x
n -1
+…+x+1)=._____
例3.(2002年全国初中数学竞赛题) 设a 、b 、c 、x 、y 、z 满足下列等式
2222,2,2,3
6
2
x a b y b c z c a π
π
π
=-+
=-+
=-+
则z ,y ,z 中,至少有一个值( )·
(A)大于0 (B)等于0 (c)不大于0 (D)小于0
例4.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上二数之和
都相等,如果13、9、3的对面的数分别为a 、b 、c ,
则222a b c ab bc ac ++---的值为_____.
例5.(希望杯训练题)已知a+a 1
=5,则2
241a
a a ++=._____
例6.(2000年重庆市竞赛题) 乘积(1-221)(1-231)…(1-219991)(1-2
2000
1
)等于( )。
A 、
20001999 B 、20002001 C 、4000
1999 D 、40002001
例7. 已知a 3+b 3+c 3=a 2+b 2+c 2= a+b+c=1,求证:abc=0.
例8. (北京市竞赛题)若x+y=a+b,且x2+y2= a2+b2.证明:x1997+y1997=a1997+b 1997
例9.(2001年黄冈市竞赛题)
观察:1⨯2⨯3⨯4+1=52
2⨯3⨯4⨯5+1=112
3⨯4⨯5⨯6+1=192
…
(1)请写出一个具有普通性的结论,并给出证明;
(2)根据(1),计算2000⨯2001⨯2002⨯2003+1 的结果(有一个最简式子表示). (二)配方法
例10. (希望杯竞赛题)已知x、y满足x2+y2+5
4
=2x+y,则代数式
xy
x y
+
的值为()
A.1
3
B.
2
3
C.1
D.
4
3
例11.(太原市竞赛题)已知a、b满足等式x=a2+b2+20,y=4(2b-a),则x、y的大小关系是( ).A.x≤y B.x≥y C.x<y D.x>y
例12. (希望杯训练题)已知12x x +=,求221x x + 和 331
x x
+ 的值。
例13.(北京市竞赛题)已知a+b=p ,ab=q ,求55a b +的值.
例14. (西安市竞赛题)设a+b=1,a 2+b 2=2,则a 7
+b 7
的值为_____________.
四、练习
1.(第13届希望杯全国数学邀请赛试题)已知a+
1a =-2,则441a a +=_________,441
a a
-=______.
2. (2002年全国初中竞赛题)已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a 2+b 2+c 2-ab-bc-ac 的值为( )
** B.1 C.2 D.2
3.(2003年重庆市初中数学竞赛试题)若1
3x x
+=,则242
1x x x ++的值为 ( ) ** B .8 C . D .
4.(2002年全国初中竞赛题)设a <b <0 , a 2+b 2=2.5ab,则
a b
a b
+- 的值为( ) A.1.5 B.3.5 C.2 D.3
与负的场数;用x 2,y 2顺序表示第二号选手胜与负的场数;……;用x 10,y 10顺次表示第十号选手胜与负的场数.
求证:222222
12101210............x x x y y y +++=+++.
6.(希望杯训练题)已知a-b=4,ab+c 2+4=0,则a+b=( ) A .4 B .0 C .2 D .-2
7.(2001年天津市选拔赛试题) 已知2
2
2
246140x y z x y z ++-+-+=则x+y+z=_____.
8.(2003年河北省竞赛题) 已知a 满足等式a 2
-a-1=0,求代数式847a a -+的值.
五、难度系数
(1)活题巧解 题号 1 2 3 4 5 星级 ★★★ ★★★ ★★★ ★★★ ★★★ 题号 6 7 8 9 10 星级 ★★★★ ★★★★ ★★★★ ★★★★ ★★ 题号 11 12 13 14 星级 ★★★
★★★
★★★
★★★★
(2)练习 题号 1 2 3 4 星级 ★★ ★★★ ★★★ ★★★ 题号 5 6 7 8 星级 ★★★
★★★
★★★
★★★★。