一次函数图像与性质讲解
第2讲 一次函数的图像及性质(讲义)解析版
2
(1)当 x 取何值时, y = 2 ? (2)当 x 取何值时, y > 2 ? (3)当 x 取何值时, y < 2 ? (4)当 x 取何值时, 0 < y < 2 ?
2 (4)令 0 < 1 x - 3 < 2 ,解得: 6 < x < 10 .
2 【总结】本题考察了一次函数与不等式的关系,本题也可以通过函数图像求解. 例 10.已知函数 f (x) = -3x + 1 .
(1)当 x 取何值时, f (x) = -2 ? (2)当 x 取何值时, 4 > f (x) > -2 ? (3)在平面直角坐标系中,在直线 f (x) = -3x + 1 上且位于 x 轴下方所有点,它们的横 坐标的取值范围是什么?
A. x < 0
B. x > 0
C. x < 2
D. x > 2 .
【答案】A
【分析】根据题意在函数图像中寻找 y > 3 时函数图像所在的位置,发现此时函数图像对
应的 x 范围是小于零,从而得出答案
【详解】解:∵由函数图象可知,当 x<0 时函数图象在 3 的上方,
∴当 y>3 时,x<0.
故选:A.
【总结】本题考察了一次函数与一元一次不等式的关系. 例 8.已知 y = kx + b(k ¹ 0) 的函数图像如图所示:
(1)求在这个函数图像上且位于 x 轴上方所有点的横坐标的取值范围; (2)求不等式 kx + b £ 0 的解集.
一次函数函数性质和图像
中国教育培训行业十大领军品牌成都戴氏精品堂学校 1 函数性质和图像一次函数性质:1.y 的变化值与对应的x 的变化值成正比例,比值为k.K 为常数. 即:y=kx+b (k ,b 为常数,k ≠0), 当x 增加m ,k (x+m)+b=y+km,km/m=k 。
2.当x=0时,b 为函数在y 轴上的点,坐标为(0,b)。
3.、当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:(1)当两一次函数表达式中的k 相同,b 也相同时,两个一次函数图像重合;(2) 当两一次函数表达式中的k 相同,b 不相同时,两一次函数图像平行;(3)当两一次函数表达式中的k 不相同,b 不相同时,两一次函数图像相交;(4)当两一次函数表达式中的k 不相同,b 相同时,两一次函数图像交于y 轴上的同一点(0,b )。
(5)若两个变量x,y 间的关系式可以表示成y=kx+b(k,b 为常数,k 不等于0)则称y 是x 的一次函数图像性质:1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
A:一般的y=kx+b(k ≠0)的图象过(0,b )和(-b/k ,0)两点画直线即可。
B:正比例函数y=kx(k ≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k )两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x 轴和y 轴的交点分别是-k 分之b 与0,0与b ).2.性质:(1)在一次函数上的任意一点P (x ,y ),都满足等式:y=kx+b(k ≠0)。
(2)一次函数与y 轴交点的坐标总是(0,b),与x 轴总是交于(-b/k ,0)正比例函数的图像都是过原点。
3. 函数不是数,它是指某一变化过程中两个变量之间的关系。
一次函数的性质与像解析
一次函数的性质与像解析一次函数,也称为线性函数,是数学中常见的一种函数形式。
它的函数表达式为y = ax + b,其中a和b为常数,x和y为自变量和因变量。
本文将讨论一次函数的性质以及如何解析其像。
一、一次函数的性质1. 斜率一次函数的斜率表征了函数图像的倾斜程度。
斜率表示为a,它决定了函数图像是向上还是向下倾斜,以及倾斜的程度。
当a>0时,函数图像向上倾斜;当a<0时,函数图像向下倾斜;当a=0时,函数图像为水平线。
2. 截距一次函数的截距决定了函数图像与y轴的交点位置。
截距表示为b,当x=0时,对应的函数值为b,即函数图像与y轴的交点的纵坐标。
3. 定义域和值域一次函数的定义域为所有实数集R,即该函数在实数范围内都有定义。
而值域则根据斜率和截距的不同取值而有所变化。
当a>0时,值域为(-∞, +∞);当a<0时,值域也为(-∞, +∞);当a=0时,值域为{b}。
4. 单调性一次函数的单调性由斜率的正负决定。
当a>0时,函数递增;当a<0时,函数递减。
二、像解析像解析是指通过函数表达式计算出函数图像上的点的方法。
对于一次函数y = ax + b,计算像的步骤如下:1. 确定自变量的取值范围,即定义域。
2. 将自变量的值代入函数表达式,并进行计算,得到对应的因变量值。
3. 得到的结果便是函数图像上的点,其坐标为自变量和因变量的值。
举例说明:以一次函数y = 2x + 3为例,我们可以计算出函数在不同自变量取值下的因变量值,并得到相应的点坐标。
例如,当x = 0时,代入函数表达式可得y = 3,即点(0, 3);当x = 1时,代入函数表达式可得y = 5,即点(1, 5)。
通过类似的计算,我们可以得到更多的点坐标,进而描绘出一次函数的图像。
结论:一次函数具有以下性质:斜率决定了倾斜方向和程度,截距决定了与y轴的交点位置,定义域为实数集,值域根据斜率和截距的不同取值而变化,单调性由斜率的正负决定。
一次函数的图像和性质
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数图像与性质ppt课件
图
象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是
一
条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .
(完整版)一次函数图象与性质知识点
一次函数图象与性质知识点一次函数知识点〔 1〕、一次函数的形式:形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当 b=0 时, y=kx + b 即 y=kx ,所以说正比率函数是一种特其他一次函数.〔 2〕一次函数的图象是一条直线- b, 0〕〔 3〕一次函数与坐标轴的交点:与Y 轴的交点是〔0, b〕与X 轴的交点是〔k〔 4〕增减性: k>0 , y 随 x 的增大而增大;k<0, y 随 x 增大而减小 .〔 5〕图像的平移:当b>0时,将直线y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .〔 6〕一次函数y=kx + b 的图象的画法 .依照几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先采用它与两坐标轴的交点:〔0,b〕,.即横坐标或纵坐标为0 的点 .〔 7〕一次函数图象及性质b>0b<0b=0k>经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<图象从左到右下降,y 随 x 的增大而减小〔 8〕待定系数法求一次函数的剖析式例题精讲 :1、做一做,画出函数 y=-2x+2 的图象 ,结合图象答复以下问题。
(1)随着 x 的增大, y 将〔填“增大〞或“减小〞〕(2)它的图象从左到右〔填“上升〞或“下降〞〕(3) 图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是(4) 这个函数中 ,随着 x 的增大 ,y 将增大还是减小 ?它的图象从左到右怎样变化 ? (5) 当 x 取何值时 ,y=0?(6) 当 x 取何值时 ,y > 0?1: .正比率函数 y (3m 5) x ,当 m时, y 随 x 的增大而增大 .2.假设 y x 23b 是正比率函数,那么 b 的值是〔〕2C.2 3B.3D.323.函数 y=( k-1) x ,y 随 x 增大而减小,那么k 的范围是 ( )A. k0 B. k 1 C. k1 D. k14:假设关于 x 的函数 y (n1)x m 1是一次函数,那么m=, n.5.函数 y=ax+b 与 y=bx+a 的图象在同一坐标系内的大体地址正确的选项是〔 〕6 将直线 y = 3x 向下平移 5 个单位,获取直线;将直线 y = - x- 5 向上平移 5 个单位,获取直线 .7 函数 y = 3x+1,当自变量增加 m 时,相应的函数值增加〔〕A. 3m+1 B. 3m C. m D. 3m -18 假设 m < 0, n > 0,那么一次函数 y=mx+n 的图象不经过 〔 〕A. 第一象限B. 第二象限C.第三象限D. 第四象限10、一次函数 y =3x + b 的图象与两坐标轴围成的三角形面积是 24,求 b.一次函数图象和性质练习与反应 :1、函数 y=3x -6 的图象中:〔 1〕随着 x 的增大, y 将〔填“增大〞或“减小〞 〕〔 2〕它的图象从左到右〔填“上升〞或“下降〞 〕〔 3〕图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是2、函数 y=(m-3)x- 2.3(1) 当 m 取何值时 ,y 随 x 的增大而增大 ?(2) 当 m 取何值时 ,y 随 x 的增大而减小 ?3、直线 y=4x -2 与 x 轴的交点坐标是 ,与 y 轴的交点坐标是4、直线 y= 2x 2 与 x 轴的交点坐标是,与 y 轴的交点坐标是35、写出一条与直线 y=2x-3 平行的直线6、写出一条与直线 y=2x-3 平行,且经过点〔 2,7〕的直线7、直线 y=- 5x+7 可以看作是由直线 y=-5x -1 向 平移个单位获取的8. 函数y kx b 的图象与 y 轴交点的纵坐标为5 ,且当 x 1时, y 2 ,那么此函数的剖析式为.9. 在函数 y2x b 中,函数 y 随着 x 的增大而,此函数的图象经过点(2, 1) ,那么b.10. 如图,表示一次函数y mx n 与正比率函数 y mnx 〔 m , n 为常数,且 mn0 〕图象的是〔〕yyyyOOxOxOxxA.B.C .D .11. 在以下四个函数中,y 的值随 x 值的增大而减小的是〔〕A. y 2x B. y3x 6C. y2x 5D. y 3x 712. 一次函数 y kxk ,其在直角坐标系中的图象大体是〔〕yyy yO x O xOxOx13. 在以下函数中, 〔〕的函数值先到达 100.A .B . C.D.A. y 2x 6B. y 5xC. y 5x 1D. y 4x 214. 一 次函数y 3x 5 与一次函 数 y ax 6 ,假设它们 的图象是两 条互相同样 的直线, 那么a.15.一次函数 y x 3 与 y2x b 的图象交于y 轴上一点,那么 b.16.一次函数 y kx b 的图象不经过第三象限,也不经过原点,那么k、 b 的取值范围是〔〕A. k0 且 b 0B. k0 且 b 0C. k0 且 b 0D. k0 且 b 017.以以下图,正比率函数y kx(k 0) 的函数值y随 x 的增大而增大,那么一次函数 yx k 的图象大体是〔〕y y y yOxOxOxOxA .B.C. D .18.假设函数 y(m21)x m 2 与y轴的交点在 x 轴的上方,且m 10,m 为整数,那么吻合条件的m有〔〕A.8 个B.7个C.9个D.10个19.函数 y 34x ,y随 x 的增大而.20.一次函数 y(m3)x2m 1 的图象经过一、二、四象限,求m 的取值范围.21. 一次函数y (m 3) x m216 ,且y的值随 x 值的增大而增大.〔 1〕m的范围;〔 2〕假设此一次函数又是正比率函数,试求m 的值.。
一次函数的图像和性质
一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
一次函数的图象和性质知识讲解
一次函数的图象和性质知识讲解一次函数是数学中最简单的函数之一,通常表示为y = ax + b,其中a和b都是实数且a ≠ 0。
一次函数也被称为线性函数,因为它的图像是一条直线。
1.找到x轴和y轴的交点,并标记为(x1,0)和(0,y1)。
2.连接两个点,得到直线。
如果x1等于0,则直线与y轴平行;如果y1等于0,则直线与x轴平行;如果两个轴的交点都不是原点,则直线会穿过原点。
1.斜率:一次函数的斜率是直线的倾斜程度。
斜率可以通过直线上的两个点计算得出,斜率等于纵坐标的变化量除以横坐标的变化量。
在一次函数中,斜率等于a。
2.y轴截距:一次函数在y轴上的截距是直线与y轴的交点的纵坐标。
在一次函数中,截距等于b。
3.x轴截距:一次函数在x轴上的截距是直线与x轴的交点的横坐标。
在一次函数中,截距等于-x1/a(如果存在)。
4.定义域和值域:一次函数的定义域是所有实数,因为对于任何实数x,一次函数都有对应的y值。
一次函数的值域也是所有实数,因为直线可以无限延伸。
5.单调性:如果a大于0,则一次函数是增函数,意味着随着x的增加,y值也增加。
如果a小于0,则一次函数是减函数,意味着随着x的增加,y值减少。
6.对称性:一次函数的图像在直线y=x/2上对称,这意味着如果一个点(x,y)在一次函数的图像上,则另一个点(y,x)也在图像上。
7.平移:通过改变常数b的值,可以使一次函数的图像平移。
当b大于0时,图像向上平移;当b小于0时,图像向下平移。
8.相关性:一次函数的系数a和b的值决定了直线的斜率和截距。
更具体地说,a决定了直线的倾斜程度,而b决定了直线与y轴的交点的纵坐标。
总结:一次函数是数学中最简单的函数之一,其图像是一条直线,由斜率和截距决定。
一次函数具有很多重要的性质,如斜率、截距、定义域、值域、单调性、对称性、平移和相关性。
熟悉这些性质可以帮助我们更好地理解和分析一次函数的特征和行为。
一次函数的图象和性质 基础 知识讲解
一次函数的图象和性质基础知识讲解一次函数的图象和性质基础知识讲解一次函数的图象和性质(基础)知识讲解一次函数的图象与性质(基础)1.理解一次函数的概念,理解一次函数y=kx+b的图象与正比例函数y=kx的图象之间2.能够恰当图画出来一次函数y=kx+b的图象.掌控一次函数的性质.利用函数的图象化解与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3.对分段函数存有初步重新认识,能够运用所学的函数科学知识化解实际问题.要点一、一次函数的定义通常地,形似y=kx+b(k,b就是常数,k≠0)的函数,叫作一次函数.要点诠释:当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k,b的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数y=kx+b(k、b为常数,且k≠0)的图象是一条直线;当b>0时,直线y=kx+b就是由直线y=kx向上位移b个单位长度获得的;当b<0时,直线y=kx+b是由直线y=kx向下平移|b|个单位长度得到的.2.一次函数y=kx+b(k、b为常数,且k≠0)的图象与性质:3.k、b对一次函数y=kx+b的图象和性质的影响:k同意直线y=kx+b从左向右的趋势,b同意它与y轴交点的边线,k、b一起同意直线y=kx+b经过的象限.4.两条直线l1:y=k1x+b1和l2:y=k2x+b2的位置关系可由其系数确定:(1)k1≠k2⇔l1与l2平行;(2)k1=k2,且b1≠b2⇔l1与l2平行;要点三、待定系数法求一次函数解析式一次函数y=kx+b(k,b就是常数,k≠0)中存有两个未定系数k,b,须要两个单一制条件确认两个关于k,b的方程,这两个条件通常为两个点或两对x,y的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y=kx+b中有k和b两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式则表示,因此获得的函数就是形式比较复杂的分段函数.解题中要特别注意解析式对应的自变量的值域范围,分段考量问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.类型一、未定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【变式1】未知一次函数的图象与正比例函数y2x的图象平行且经过(2,1)点,则一次函数的解析式为________.【变式2】(2021春•广安校级月托福)未知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)谋出来函数图象与x轴围起三角形的面积.类型二、一次函数图象的应用2、为减轻用电紧绷的矛盾,某电力公司制订了代莱用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.根据图象求出y与x的函数关系式.【变式】大低从家骑著自行车回去学校上学,先跑上坡路抵达点a,再走下坡路抵达点b,最后走平路到达学校c,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是()a.14分钟b.17分钟c.18分钟d.20分钟类型三、一次函数的性质3、未知一次函数y=(2m+4)x+(3-n).(1)当m、n是什么数时,y随x的增大而增大;(2)当m、n就是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m、n的取值范围.4、(2021春•咸丰县期末)未知点a(4,0)及在第一象限的动点p(x,y),且x+y=5,0为座标原点,设立△opa的面积为s.(1)求s关于x的函数解析式;(2)谋x的值域范围;(3)当s=4时,求p点的坐标.举一反三:【变式】函数y=kx+k(k≠0)在直角坐标系则中的图象可能将就是().。
一次函数的图像及性质
一次函数的图象及性质1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴ 次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数和一次函数图像及性质3、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:即横坐标或纵坐标为0的点.4、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k5、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.例1:已知一次函数y=kx+b 的图象如图所示,求函数表达式.例2、直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,求直线的解析式。
例1:已知一次函数)1()14(+-+=m x m y 。
(1)m 为何值时,y 随x 的增大而减小?(2)m 为何值时,此直线与y 轴交点在x 轴下方? (3)m 为何值时,此直线不经过第三象限?(4)若1=m ,求这个一次函数与两个坐标轴的交点。
一次函数的图象和性质
一次函数的图象和性质介绍一次函数是数学中最简单的函数之一,它的图象是一条直线。
在代数中,一次函数也被称为线性函数,因为它的图象是一条直线。
一次函数的一般形式为:y=ax+b,其中a和b是常数,x和y分别表示函数的自变量和因变量。
在一次函数中,a表示直线的斜率,决定了直线的倾斜程度;b则表示直线与y轴的截距,决定了直线与y轴的交点。
在本文档中,我们将探讨一次函数的图象和性质,包括函数图象的特点、斜率的意义以及如何通过图象判断函数在不同区间的增减性。
一次函数图象的特点一次函数的图象是一条直线,它具有以下几个特点:•直线上的两点确定一条直线:对于一次函数y=ax+b,只需要确定直线上的两个点,就可以准确绘制出整条直线。
这是因为一次函数的图象是一条直线,而直线上的两点可以唯一确定一条直线。
•斜率决定直线的倾斜程度:一次函数的斜率a决定了直线的倾斜程度。
斜率为正时,直线向右上方倾斜;斜率为负时,直线向右下方倾斜;斜率为零时,直线平行于x轴。
•截距决定直线与y轴的交点:一次函数的截距b决定了直线与y轴的交点。
当x=0时,y=b,即直线与y轴交于点(0,b)。
斜率的意义斜率是一次函数图象的重要性质,它代表了函数值随自变量变化的速率。
具体来说,斜率表示了单位自变量增加时因变量增加或减少的比率。
对于一次函数y=ax+b,斜率a的意义如下:•当a>0时,斜率表示了因变量y随自变量x的增加而增加的比率。
换句话说,斜率为正时,函数图象上的点从左到右逐渐上升。
•当a<0时,斜率表示了因变量y随自变量x的增加而减少的比率。
换句话说,斜率为负时,函数图象上的点从左到右逐渐下降。
•当a=0时,斜率为零,表示函数图象是水平的,因变量y的值保持不变。
斜率可以帮助我们理解和分析一次函数的性质,包括函数的增减性以及直线的倾斜方向。
函数的增减性通过一次函数的图象,我们可以判断函数在不同区间的增减性。
根据斜率的正负,可以得出以下结论:•若a>0,则函数图象上的点从左到右逐渐上升,表示函数在该区间上是递增的。
一次函数图像及其性质
一次函数图像及其性质一、一次函数图像1、一次函数y=kx+b 的k 、b 的值对一次函数图象的影响:① ② ③ ④①k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限;②k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③k ﹤0,b ﹥0, y =kx +b 的图象在一、二、四象限;④k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。
2、一次函数的性质⑴正比例函数y=kx(k≠0)是特殊的一次函数,当k>0时,图象过一、三象限,y 随x 的增大而_增大__; 当k<0时,图象过__二、四__象限;y 随x 的增大而_减小___.⑵一次函数y=kx +b(k ≠ 0)的图象平行于直线y = kx ,可由它平移而得,当k>0时,y 随x 的增大而_增大_; 当k<0时,y 随x 的增大而__减小_k>0时,k 越大,y 增长得越快;k<0时,k 越大,减小得越快;⑴在一次函数y=kx +b 中,令y=0,得一元一次方程kx +b=0,它的根就是一次函数y=kx +b 的图象与x 轴交点的横坐标.⑵一元一次不等式kx +b>0(或kx +b<0)的解集可以看作一次函数y=kx +b 当函数值大于或小于0时相应的自变量x 值的取值范围.⑶两直线交点的坐标,就是由这两条直线的解析式组成的二元一次方程组的解.题型考点一:一次函数的增减性例1、已知关于x 的一次函数2(3)2y m x m =-++-.(1) m 为何值时,函数的图象和直线y=-x 平行? (2)m 为何值时,y 随x 的增大而减小?【变式】已知一次函数y=(3-k )x-2k 2+18. (1)k 为何值时,它的图象经过原点? (2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象与y 轴的交点在x 轴的上方? (4)k 为何值时,它的图象平行于直线y=x ? (5)k 为何值时,y 随x 的增大而减小?题型考点二:一次函数图像与象限关系例2、直线y=x+b (b>0)与直线y=kx (k<0)的交点位于()A 、第一象限B 、第二象限C 、第三象限D 、第四象限【练习】若实数a ,b 满足ab <0,且a <b ,则函数y=ax+b 的图象可能是( )题型考点三:一次函数图像的交点例3、如图,在平面直角坐标系中,线段AB 的坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是() A 、-5 B 、-2 C 、3 D 、5【练习】如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限, 则a 可能在()A 、1<a<2B 、-2<a<0C 、32a -≤≤-D 、-10<a<-4二、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
一次函数的概念、图像与性质
学科教师辅导讲义课 题 一次函数概念、图像及性质 教学内容一、【知识梳理】一次函数知识详解知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y=b 仍是一次函数. (4)当b=0,k=0时,它不是一次函数.探究交流有人说:“正比例函数是一次函数,一次函数也是正比例函数,它们没什么区别.”点拨 这种说法不完全正确.正比例函数是一次函数,但一次函数不一定是正比例函数,只有当b=0时,一次函数才能成为正比例函数.知识点2 确定一次函数的关系式根据实际问题中的条件正确地列出一次函数及正比例函数的表达式,实质是先列出一个方程,再用含x 的代数式表示y .知识点3 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点4 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点5 一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点6 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点7 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(x0,y0)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点8 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点9 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点10 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).知识点11 一次函数与一次方程(组)、不等式的关系 解一次方程(组)与不等式问题 一 次 函 数 问 题从“数”的角度 从“形”的角度解一元一次方程 kx +b=0 当一次函数y=kx +b 的函数值(y值)等于0时求自变量x 的值当直线y=kx +b 上点的纵坐标为0时,求这个点的横坐标是什么?(即求直线与x 轴的交点坐标)解一元一次方程 kx +b=c 当一次函数y=kx +b 的函数值(y 值)等于c 时求自变量x 的值 当直线y=kx +b 上点的纵坐标为c 时,求这个点的横坐标是什么?解一元一次不等式kx +b ﹥0(或﹤0)当一次函数y=kx +b 的函数值(y 值)大于0(或小于0)时求自变量x 的值 当直线y=kx +b 上的点的纵坐标大于0(或小于0)时,求这些点的横坐标在什么范围?(即求直线与x 轴的交点坐标的上方(或下方)的部分直线的横坐标的范围)解一元一次不等式kx +b ﹥m (或﹤m )当一次函数y=kx +b 的函数值(y 值)大于m (或小于m )时求自变量x 的值 当直线y=kx +b 上的点的纵坐标大于m(或小于m )时,求这些点的横坐标在什么范围?解一元一次不等式 kx +b ﹥mx +n 当一次函数y=kx +b 的值大于mx+n 的值时,对应的自变量x 的范围是多少?在相同横坐标的情况下,当直线y=kx +b 上的点的纵坐标大于直线y=mx +n 上的点的纵坐标时,求这些点的横坐标在什么范围?解二元一次方程组⎩⎨⎧+=+=n mx y b kx y 当一次函数y=kx +b 与y=mx +n的值相等时,对应的自变量x 的值是多少?这个函数值是多少? 当直线y=kx +b 与直线y=mx +n 相交时求交点坐标思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b=0时,即-kb=0时,直线经过原点; 当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当b >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行;④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合二、【典型例题】例1 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 . 【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例2 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21 D .m >21例3 已知直线y=2x+1.(1)求已知直线与y 轴交点M 的坐标;(2)若直线y=kx+b 与已知直线关于y 轴对称,求k ,b 的值.例4 已知y+2与x 成正比例,且x=-2时,y=0. (1)求y 与x 之间的函数关系式; (2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值; (5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.例5 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)? (3)k 为何值时,它的图象与y 轴的交点在x 轴的上方?(4)k 为何值时,它的图象平行于直线y=-x ?(5)k 为何值时,y 随x 的增大而减小?例6 已知直线y=kx+b 经过点(25,0),且与坐标轴围成的三角形的面积为425,求此直线的解析式.例7 (2004·沈阳)某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县.已知C ,D 两县运化肥到A ,B 两县的运费(元/吨)如下表所示.(1)设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数关系式,并写出自变量x 的取值范围; (2)求最低总运费,并说明总运费最低时的运送方案.例8 图11-30表示甲、乙两名选手在一次自行车越野赛中,路程y (千米)随时间x (分)变化的图象(全程),根据图象回答下列问题.(1)当比赛开始多少分时,两人第一次相遇? (2)这次比赛全程是多少千米?(3)当比赛开始多少分时,两人第二次相遇?例9 如图11-31所示,已知直线y=x+3的图象与x 轴、y 轴交于A ,B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1的两部分,求直线l 的解析式.三、【巩固练习】1.下列一次函数中,y 随着x 增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y2.若把直线y=2x -3向上平移3个单位长度,得到直线( ) A .y=2x B.y=2x -6 C. y=5x -3 D.y=-x -33.直线y=2x+2与x 轴的交点坐标是( )A .(0,2)B .(2,0) C.(-1,0) D.(0,-1)4. 如图,直线与y 轴的交点是(0,-3),则当x<0时, A. y<0 B. y<-3 C. y>0 D. y>-35. 已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且此函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是( ) A. m >-2B. m <1C. m <-2D. m <1且m ≠-26. 在数学25+-=x y 中,K = ,b=7.已知正比例函数y =(m -1)25m x-的图象在第二、四象限,则m 的值为_________,8.已知函数32)2(3--+=mx m y 是一次函数,则m = ;此图象经过第 象限。
一次函数的图像及其性质
一次函数的图像及其性质◆【要点1】---一次函数的图像1、一次函数通过列表、描点、连线画出来的图像是一条直线,常取两点A (kb-,0),B (0,b );因此我们也把一次函数y kx b =+(0k ≠)的图像叫做直线y kx b =+; 特例:(0)y kx k =≠的图像是经过坐标原点的一条直线。
2、一次函数y kx b =+中的k 叫做直线的斜率,b 叫做直线在y 轴上的截距;◆【要点2】---一次函数的图像性质 ◆【要点3】---直线的平移:一次函数中,自变量x 增加或减少,图像就左、右平移,其法则是:左加右减;函数值y 增加或减少,图像就上、下平移,其法则是:上加下减,反之亦然。
◆【要点4】----求直线与坐标轴的交点直线y kx b =+与x 轴的交点坐标,令0y =,得交点(kb-,0);求与y 轴的交点坐标,令0x =,得交点(0,b );◆【考点题型1】---一次函数的图像性质【例1】在同一坐标系中,分别画出下列函数的图象(1);122+==x y x y 和 (2)3212--=+-=x y x y 和 和2y x =-总结一次函数的图像性质:6x +【例2】1、已知函数:①、0.26y x =+;②、172y x =-+;③、2y x =;④、y =; 其中y 随x 的增大而增大的函数是 ;y 随x 的增大而减小的函数是 ;2、若正比例函数1352)1(---=m m x m y 的图象经过二、四象限,则这个正比例函数的解析式是 ;3、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是( )A 、12y y >B 、12y y <C 、12y y =D 、无法确定【例3】已知函数26y x =-+的图象如图所示,根据图象回答: (1)当______x =时,0y =,即方程260x -+=的解为思考:(2)当______x 时,0y >,即不等式260x -+>的解集为 ;(3)当______x 时,0y <,即不等式260x -+<的解集为 ; 总结:当0y =时,正好是图象与 轴的交点 当0y >时,图象位于 轴 方 当0y <时,图象位于 轴 方 ◆ 目标训练1:1、正比例函数x y 3=经过点(1x ,1y )与(2x ,2y ),若12x x <,则1y 2y ;2、一次函数1,=++=b a b ax y 若,则它的图象必经过点( )A 、(1-,1-)B 、(1-,1)C 、(1,1-) D 、(1,1)3、已知函数:①、4y x =;②、y x =-③、42y x =-;④、12y x =-;⑤、5y x =-;⑥、23y x =--;其中:(1)y 随x 的增大而增大的函数是 ;y 随x 的增大而减小的函数是 ; (2)图像经过原点的函数是 ;图象与y 轴的正半轴相交的有 ; ◆【考点题型2】---一次函数的平移【例4】1、 把直线x y 2=向上平移3个单位,就得到直线 ,它经过 象限 2、将直线132y x =+向左平移 个单位可得直线122y x =-;3、一次函数的图象过点A (2-,1-),且与直线23y x =-平行,则其解析式为( )A 、1y x =+B 、23y x =+C 、21y x =-D 、25y x =--◆【考点题型3】----直线与坐标轴的交点【例5】1、直线23y x =-+经过 象限,与x 轴的交点坐标是 ,直线 与y 轴的交点坐标是 ,图象与坐标轴所围成的三角形面积是 ; 2、 若直线14-=+-=x y m x y 与的图象交于y 轴上一点,则________m =;3、(12培优)若直线p x y +=3与直线q x y +-=2的图象交x 轴于同一点,则p 、q 之间的关系式为 ;目标训练2:1、(12∙重点轮动)直线2y kx =+与x 轴交于点(1-,0),则______k =;2、(桂林)直线1-=kx y 一定经过点( )A 、(1,0)B 、(1,k )C 、(0,k )D 、(0,1-)3、把一次函数23+=x y 向 平移 个单位得到x y 3=;4、将直线132y x =+向右平移1个单位,再向下平移2个单位,可得直线 ; ◆【考点题型4】---创新中考、能力拓展【例6】1、(11赤峰)已知点A (5-,a ),B (4,b )在直线23+-=x y 上,则____a b (选填“>”、“<”或“=”)2、(12预测)如果点P (2,k )在直线k x y 22+=上,那么P 到x 轴的距离为 ;3、(内蒙)已知关于x 的一次函数y mx n =+的图像,则化简_______n m -=;4、(11常州改编)已知关于x 的函数2(1)9y k x k =-+-(0k ≠).若其图象经过原点,则_______k =;5、(13内江中考改编)无论k 取何值,直线34y kx k =-+总经过一个定点,这个定点的坐标为 ;【例7】1、已知一次函数y kx b =+,当02x ≤≤,对应的函数值y 的取值范围是24y -≤≤,则kb 的值为( )A 、12B 、6-C 、6-或12-D 、6或122、函数b ax y +=与y bx a =+的图象在同一坐标系内的大致位置正确的是( )3、(雅安)已知一次函数k b kx y ,+=从2 、3-中随机取一个值,b 从1、1- 、2-中随机取一个值,求该一次函数的图象经过二、三、四象限的概率。
第11节 一次函数的图象和性质
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:
即
,
由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;
一次函数的性质和图像(一)课件
斜率和函数单调性
1 斜率为正
表示函数是递增的,随 x 的增加,y 也增加。
2 斜率为
3 斜率为0
表示直线是水平的,函数与 y 轴平行。
一次函数的图像特点
直线
一次函数的图像是直线,与 x 轴和 y 轴相交。
斜率
斜率决定了直线的倾斜程度,越大越陡峭。
截距
截距表示直线与 y 轴的交点,反映了函数值在 x = 0 时的取值。
一次函数的定义域和值域
1 定义域
一次函数的定义域为全体实数。
2 值域
值域取决于斜率,如果斜率为正,则值 域为负无穷至正无穷;如果斜率为负, 则值域为正无穷至负无穷。
一次函数与直线的关系
相同点
不同点
• 一次函数是直线的一种特殊情况。 • 都满足直线上两点确定一条直线的性质。
一次函数的性质和图像 (一) PPT课件
本次课程将讲解一次函数的定义、解析式形式以及图像的特点。我们将深入 探讨斜率、截距和函数的性质,以及在实际生活和经济学中的应用。
一次函数的定义
一次函数是指不含有次数大于等于2的项的代数式,形式为y = mx + b(其中 m 和 b 都是实数,且 m ≠ 0)。
• 一次函数具有函数性质,每个 x 对应 唯一的 y 值。
• 直线可以是一次函数,也可以是其他 类型的函数。
一次函数的应用和实际联系
一次函数的应用广泛,可以用于建模经济学中的供求关系、利润函数等。它 们也用于描述线性运动、金融领域等实际问题。
示例和总结
1
示例
一次函数的性质可以帮助我们解决实际问题,如利润最大化的方程。
2
总结
一次函数是数学中的基础概念,它们的图像和性质在现实世界中有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基础问题
例1 填空题:
(1) 有下列函数:① y 6x 5 , ② y=5x
,
③ y x 4 , ④ y 4x 3 。其中过原点的直
线是__②___;函数y随x的增大而增大的是_①__、__②__、__③__; 函数y随x的增大而减小的是__④____;图象过第一、二、 三象限的是__③___。
解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5
分别代入上式,得 b 40
解得 k 5
22.5 3.5k b
b
40
图象是包括
解析式为:Q=-5t+40 (0≤t≤8) Q (2)取点A(0,40),B(8,0),
40 然后连成 线段AB,即是所求的图形。
一、一次函数的定义:
1、一次函数的概念:函数y=_k_x__+__b_(k、b为常 数,k__≠_0___)叫做一次函数。当b_=_0___时,函数 y=_k_x__(k≠_0___)叫做正比例函数。
思考
y=k xn +b为一次函数的条件是什么?
一. 指数n=1
二. 系数 k ≠0
课前回顾
• 1.若正比例函数y=kx(k≠0)经过点(-1,2), 则该正比例函数的解析式为y=__y_=_-2_x______.
A.N处 B.P处 C.Q处 D.M处
Q
P
y
M (图1)
R
N
O
4
9
x
(图2)
1.下列函数中,不是一次函数的是
A.y x 6
B.y 1 x C.y 10 x
(C )
D.y 2(x 1)
y
3
2.如图,正比例函数图像经过点A, 该函数解析式是__y __3 _x _
2
A x
o
2
3.一次函数y=x+2的图像不经过第_四___象限
(2)、如果一次函数y=kx-3k+6的图象经过原点,那么 k的值为__k__=_2___。
(3)、已知y-1与x成正比例,且x=-2时,y=4,那么y与
x之间的函数关系式为y_________3 2___x_____1。
例2、已知一次函数y=kx+b(k≠0)在x=1时,y=5,且 它的图象与x轴交点的横坐标是6,求这个一次函数的 解析式。 解:设一次函数解析式为y=kx+b,
(1)服药后__2__时,血液中含药量最高,达到每毫升___6____毫克。
(2)服药5时,血液中含药量为每毫升__3__毫克。 (3)当x≤2时,y与x之间的函数关系式是__y_=_3_x。
(4)当x≥2时,y与x之间的函数关系式是__y_=_-_x_+_8__。
(5)如果每毫升血液中含药量3毫克 y/毫克
y
y
y
y
Ox
A.
O x
B.
Ox
C.
Ox
D.
• 5.如果点M在直线y=x-1上,则M点的坐标可以是 ( C)
A.(-1,0) B.(0,1) C.(1,0) D.(1,-1)
四、复习题
1、在函数y=2x中,函数y随自变量x的增大__________。
2、已知一次函数y=kx+5过点P(-1,2),则k=_____。
• 2.如图,一次函数y=ax+b的图象经过A、B两点,
• 则关于x的不等式ax+b<0的解集是 x<2 .
•
• 3. 一次函数的图象经过点(1,2),且y随x的增 大而减小,则这个函数的解析式可以是 y=-2x+3(等. ) (任写出一个符合题意即可)
课前回顾
• 4.一次函数y=2x-1的图象大致是( B )
3、已知一次函数y=2x+4的图像经过点(m,8),则m= ________。
4、已知y与x成正比例,且当x=1时,y=2,那么当x=3时, y=_________。
5、一弹簧,不挂重物时,长6cm,挂上重物不能超过10kg,则 弹簧总长y(cm)与重物质量x(kg)之间的函数关系式为 ___________。
两端点的线段
点评:画函数图象时,应根据函数自变量的
取值范围来确定图象的范围,比如此题中,
因为自变量0≤t≤8,所以图像是一条线段。 0
8
t
能力提升2
2.某医药研究所开发了一种新药,在实际验药时发现,如果成人按 规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时) 的变化情况如图所示,当成年人按规定剂量服药后。
把x=1时, y=5;x=6时,y=0代入解析式,得
k b 5 6k b 0
解得
k 1 b 6
∴一次函数的解析式为 y= - x+6。
方法:待定系数法:①设;②代;③解;④还原
• 二、图像辨析
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,
则在直角坐标系内它的大致图象是( ) A
或3毫克以上时,治疗疾病最有效, 6
那么这个有效时间是_4__ 小时。.
3
O2
5
x/时
能力提升3
3.如图,矩形ABCD中,AB=6,动点P以2个单位/s速度沿
图甲的边框按B→C→D→A的路径移动,相应的△ABP的面
积s关于时间t的函数图象如图乙.根据下图回答问题:
问题:(1)P点在整个的移动过程中△ABP的面积是怎样变化的?
(A)
(B)
(C)
(D)
2.一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的
图象可能是( A)
y
y
y
y
o
x
A
o
x
B
o
x
C
o
x
D
3.直线y1=kx与直线y2=kx-k在同一坐标系内的大致 图象是( C )
(A)
k>0
(B)
(C)
(D)
k<0
k<0
不平行
三、能力提升1
.1、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时) 成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时 后,油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。
A
D s(cm2)
30a
p
10cm
B
P 图甲
o 5 8 ? t(s)
C
图乙
(2)图甲中BC的长是多少?
(3)图乙中的a在图甲中具有什么实际意义?a的值是多少?
如图1,在矩形中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x, △MRN的面积为y,如果y关于x的函数图象如图2所示, 则当x=9时,点R应运动到( )C
4.点P(a,b)点Q(c,d)是一次函数y=-4x+3图像 上的两个点,且a<c,则b与d的大小关系是_b_>_d_