(完整版)同底数幂乘法、除法及配套练习题(很全哦)
(完整word版)1.1.1同底数幂的乘法练习题
1.1.1 同底数幂的乘法练习题班级 姓名 时间一、填空:(1) 叫做 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;(3) 表示________, 表示________;(4)3a =________,4a =________,因此43a a ⋅=)()()(+二、计算:(1)=⋅64a a (2)=⋅5b b (3)=⋅⋅32m m m(4)=⋅⋅⋅953c c c c (5)=⋅⋅p n m a a a (6)=-⋅12m t t(7)=⋅+q q n 1 (8)=-+⋅⋅112p p n n n 三、计算:(1)=-⋅23b b(2)=-⋅3)(a a (3)=--⋅32)()(y y(4)=--⋅43)()(a a(5)=-⋅2433(6)=--⋅67)5()5( (7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32 (10)=--⋅54)2()2( (11)=--⋅69)(b b (12)=--⋅)()(33a a 四、下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+;(3)n n n y y y 22=⨯; (4)22m m m =⋅;(5)422)()(a a a =-⋅- (6)1243a a a =⋅;(7)334)4(=-; (8)6327777=⨯⨯;(9)42-=-a ; (10)32n n n =+ 五、选择题:1.22+m a 可以写成( ).A .12+m aB .22a a m +C .22a a m ⋅D .12+⋅m a a2.x 3m+3可写成( ).A.3x m+1B.x 3m +x 3C.x 3·x m+1D.x 3m ·x 33.下列式子正确的是( ).A .4334⨯=B .443)3(=-C .4433=-D .3443=4.下列计算正确的是( ).A .44a a a=⋅ B .844a a a =+C .4442a a a =+D .1644a a a =⋅ 5.下列各式正确的是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 86.下列计算题正确的是( )A.a m ·a 2=a 2mB.x 3·x 2·x =x 5C.x 4·x 4=2x 4D.y a+1·y a-1=y 2a7.若x 2·x 4·( )=x16,则括号内应填x 的代数式为( ) A .x 10 B. x 8 C. x 4 D. x 28.在等式a 3·a 2( )=a 11中,括号里面的代数式应当是( ).A.a 7B.a 8C.a 6D.a 59.已知算式:①(-a)3·(-a)2·(-a)=a 6; ②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7; ④(-a 2)·(-a 3)·(-a)3=-a 8.其中正确的是( )A.①和②B.②和③C.①和④D.③和④10.计算a -2·a 4的结果是( )A .a -2B .a 2C .a -8D .a 811.a 16可以写成( )A .a 8+a 8B .a 8·a 2C .a 8·a 8D .a 4·a 412.下列计算中正确的是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 713. 计算2009200822-等于( )A 、20082B 、 2C 、1D 、20092-六、 计算:(1)()()m m 2224⨯⨯ (2)()()()53222---(3)231010100⨯⨯ (4)()()()352a a a -⋅-⋅--七、计算 3,2==n m a a ,求m n a +。
同底数幂的乘法练习题 含答案
同底数幂的乘法练习题含答案同底数幂的乘法练习题含答案同底数幂的乘法练习题(含答案)13.1.1同底数幂的乘法(1)x·x=2x()(2)x+x=x()(3)m·m=m()(4)x(-x)=-x()(1)mm=(2)yn-3∙y3∙y5-n=(3)(-a)(-a)(4)-x2(-x)2324533347555131326()(1)10×10(2)(-2)·(-2)·(-2)(3)a·a·a(4)(a+b)(a+b)(a+b)(5)aaa25()()x-2y∙2y-x(6)-a·a(7)(-a)·a(8)2323mn4nn+3342335若3=5,3=7,谋3mnm+n+1的值m+nmn分析:本题的切入点是同底数幂的乘法性质的逆用:a=a·a(m,n为正整数)。
运用此法则,可以把一个幂分解成两个(或两个以上)同底数幂的积。
其中,分拆税金的(两个或两个以上)同底数幂的底数与原来幂的底数相同,指数之和等同于原来幂的指数。
解:∵3=5,3=7,∴3m+n+1mn=3·3·3=5×7×3=105mnp2n3m[]=()()()x-y∙y-x∙-x-y(1)(2)未知2=m,用含m的代数式则表示2=_____2、选择:x+2x(1)以下排序中①b+b=2b②b·b=b③y·y=y④m·m=m⑤m·m=2m其中恰当的个数存有()347[1**********]34a1个b2个c3个d4个3m3m+2不等于()bx·xm2m+2ax·x2cx+2dx·x3mm+22ma+b+ca+bx=35,x=5,谋xc的值.(1)mn14x∙x∙x=x,求m+n.(2)若(3)若an+1∙am+n=a6,且m-2n=1,谋mn的值.3534(4)计算:x∙x+x∙x∙x.1.(2021年重庆市江津区)以下计算错误的就是()a.2m+3n=5mnb.a÷a=ac.(x2)3=x6d.a⋅a=a2.(2021年山西省太原市)下列计算中,结果正确的是()1、推论:本题考查同底数幂的乘法法则及分拆同类项(1)×(2)×(3)×(4)×2、填空:(1)m(2)y(3)本题要注意符号错误-a(4)注意符号-x955462423a.a·a=ab.(2a·)(3a)=6ac.a236()23=a6d.a6÷a2=a33、排序:(1)10(2)2(3)a(4)(a+b)1、填空;769m+n+1(5)a5n+4(6)-a(7)a(8)(2y-x)557p2n3m[]=-(x-y)·()()()x-y∙y-x∙-x-y(1)(x-y)p2n·(x-y)=-(x-y)3mp+2n+3mx+2x2(2)2=2·2=m,∴2x=4(1)a本题考查同底数幂的乘法性质的运用(2)c由同底数幂的乘法性质可知a、b、d运算结果均为x(1)∵xa+b+c3m+2,故挑选c=x·x=35,x=5,∴x=7a+bca+bc1+m+n14(2)由x∙x∙x=x,得x=x,∴1+m+n=14,∴m+n=13mn14(3)∵a·a=a∴n+1+m+n=6,即m+2n=5,又∵m-2n=1,∴m=3,n=1,∴m=33534888x∙x+x∙x∙x(4)=x+x=2xn+1m+n6n1、幂的运算【答案】aa=a,选项a是错的,(2a)2、解析:本题考查整式的有关运算,a·(3a)=6a2,选项235b就是错的,a()23=a6,选项c是正确的,故选c。
同底数幂、幂的乘方、积的乘方知识点及习题
幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例1: 计算列下列各题 (1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=10104、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
同底数幂四则运算练习题
同底数幂四则运算练习题一、同底数幂的加法运算1. 计算:\(2^3 + 2^3\)2. 计算:\(5^2 + 5^2 + 5^2\)3. 计算:\(3^4 + 3^4 + 3^4 + 3^4\)4. 计算:\(4^5 + 4^5 + 4^5 + 4^5 + 4^5\)5. 计算:\(10^2 + 10^2 + 10^2 + 10^2 + 10^2 + 10^2\)二、同底数幂的减法运算1. 计算:\(2^5 2^4\)2. 计算:\(3^6 3^5 3^5\)3. 计算:\(4^7 4^6 4^6 4^6\)4. 计算:\(5^8 5^7 5^7 5^7 5^7\)5. 计算:\(6^9 6^8 6^8 6^8 6^8 6^8\)三、同底数幂的乘法运算1. 计算:\(2^2 \times 2^3\)2. 计算:\(3^3 \times 3^4\)3. 计算:\(4^4 \times 4^5\)4. 计算:\(5^5 \times 5^6\)5. 计算:\(6^6 \times 6^7\)四、同底数幂的除法运算1. 计算:\(2^5 \div 2^3\)2. 计算:\(3^7 \div 3^4\)3. 计算:\(4^9 \div 4^6\)5. 计算:\(6^{13} \div 6^{10}\)五、混合运算1. 计算:\(2^3 + 2^4 2^2\)2. 计算:\(3^4 \times 3^3 \div 3^2\)3. 计算:\(4^5 + 4^6 4^4 \times 4^3\)4. 计算:\(5^7 \div 5^6 + 5^5 5^4\)5. 计算:\(6^8 \times 6^7 \div 6^6 6^5 + 6^4\)六、特殊底数幂的运算1. 计算:\(\left(\frac{1}{2}\right)^4 +\left(\frac{1}{2}\right)^4\)2. 计算:\(\left(\frac{2}{3}\right)^5\left(\frac{2}{3}\right)^5\)3. 计算:\(\left(\frac{3}{4}\right)^6 \times\left(\frac{3}{4}\right)^6\)4. 计算:\(\left(\frac{4}{5}\right)^7 \div\left(\frac{4}{5}\right)^7\)5. 计算:\(\left(\frac{5}{6}\right)^8 +\left(\frac{5}{6}\right)^8 \left(\frac{5}{6}\right)^8\)七、指数比较1. 比较:\(2^7\) 和 \(2^8\)2. 比较:\(3^5\) 和 \(3^6\)3. 比较:\(4^4\) 和 \(4^3\)4. 比较:\(5^9\) 和 \(5^{10}\)八、指数表达式简化1. 简化表达式:\(2^3 \times 2^4 \div 2^2\)2. 简化表达式:\(3^5 + 3^5 3^4\)3. 简化表达式:\(4^6 \div 4^5 \times 4^4\)4. 简化表达式:\(5^7 5^6 + 5^5\)5. 简化表达式:\(6^8 + 6^7 \div 6^6\)九、指数方程求解1. 求解方程:\(2^x = 2^3\)2. 求解方程:\(3^y = 3^4\)3. 求解方程:\(4^z = 4^5\)4. 求解方程:\(5^a = 5^6\)5. 求解方程:\(6^b = 6^7\)十、指数不等式求解1. 解不等式:\(2^x > 2^2\)2. 解不等式:\(3^y < 3^5\)3. 解不等式:\(4^z \geq 4^4\)4. 解不等式:\(5^a \leq 5^7\)5. 解不等式:\(6^b > 6^3\)十一、应用题1. 如果一个数的同底数幂是64,另一个数的同底数幂是16,这两个数相乘后的同底数幂是多少?2. 一个数的同底数幂是81,另一个数的同底数幂是27,这两个数相除后的同底数幂是多少?3. 一个数的同底数幂是125,另一个数的同底数幂是25,这两个数相加后的同底数幂是多少?4. 一个数的同底数幂是256,另一个数的同底数幂是64,这两个数相减后的同底数幂是多少?5. 一个数的同底数幂是8,另一个数的同底数幂是2,这两个数进行混合运算(加、减、乘、除)后的同底数幂是多少?答案一、同底数幂的加法运算1. \(2^3 + 2^3 = 2^4 = 16\)2. \(5^2 + 5^2 + 5^2 = 3 \times 5^2 = 75\)3. \(3^4 + 3^4 + 3^4 + 3^4 = 4 \times 3^4 = 324\)4. \(4^5 + 4^5 + 4^5 + 4^5 + 4^5 = 5 \times 4^5 = 2048\)5. \(10^2 + 10^2 + 10^2 + 10^2 + 10^2 + 10^2 = 6 \times 10^2 = 600\)二、同底数幂的减法运算1. \(2^5 2^4 = 2^4(2 1) = 2^4 = 16\)2. \(3^6 3^5 3^5 = 3^5(3 2 1) = 3^5 = 243\)3. \(4^7 4^6 4^6 4^6 = 4^6(4 3 2 1) = 4^6 = 4096\)4. \(5^8 5^7 5^7 5^7 5^7 = 5^7(5 4 3 2 1) = 5^7 = 78125\)5. \(6^9 6^8 6^8 6^8 6^8 6^8 = 6^8(6 5 4 3 2 1) = 6^8 = 1679616\)三、同底数幂的乘法运算1. \(2^2 \times 2^3 = 2^{2+3} = 2^5 = 32\)2. \(3^3 \times 3^4 = 3^{3+4} = 3^7 = 2187\)3. \(4^4 \times 4^5 = 4^{4+5} = 4^9 = 262144\)4. \(5^5 \times 5^6 = 5^{5+6} = 5^{11} = 48828125\)5. \(6^6 \times 6^7 = 6^{6+7} = 6^{13} = 130691232\)四、同底数幂的除法运算1. \(2^5 \div 2^3 = 2^{53} = 2^2 = 4\)2. \(3^7 \div 3^4 = 3^{74} = 3^3 = 27\)3. \(4^9 \div 4^6 = 4^{96} = 4^3 = 64\)4. \(5^{11} \div 5^8 = 5^{118} = 5^3 = 125\)5. \(6^{13} \div 6^{10} = 6^{1310} = 6^3 = 216\)五、混合运算1. \(2^3 + 2^4 2^2 = 2^2(2^2 + 2^2 1) = 2^2 \times 7 = 4 \times 7 = 28\)2. \(3^4 \times 3^3 \div 3^2 = 3^{4+32} = 3^5 = 243\)3. \(4^5 + 4^6 4^4 \times 4^3 = 4^5(1 + 4 4^2) = 4^5\times 9 = 1024 \times 9 = 9216\)4. \(5^7 \div 5^6 + 5^5 5^4 = 5^1 + 5^5 5^4 = 5 + 3125 625 = 3555\)5. \(6^8 \times 6^7 \div 6^6 6^5。
同底数幂的除法专项练习题(有答案)
同底数幂的除法专项练习30题1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x23.已知a m=3,a n=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果x m=5,x n=25,求x5m﹣2n的值.7.计算:a n•a n+5÷a7(n是整数).8.计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;(4)62m+3÷6m.9.33×36÷(﹣3)810.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5 11.计算:(1)(a8)2÷a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.12.(a2)3•(a2)4÷(﹣a2)513.计算:x3•(2x3)2÷(x4)214.若(x m÷x2n)3÷x m﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.15.计算:(1)m9÷m7=_________;(2)(﹣a)6÷(﹣a)2=_________;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=_________.16.已知2m=8,2n=4求(1)2m﹣n的值.(2)2m+2n的值.17.(1)已知x m=8,x n=5,求x m﹣n的值;(2)已知10m=3,10n=2,求103m﹣2n的值.18.已知a m=4,a n=3,a k=2,求a m﹣3k+2n的值._________19.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n同底数幂的除法---- 120.已知:a n=2,a m=3,a k=4,试求a2n+m﹣2k的值.21.已知5x﹣3y﹣2=0,求1010x÷106y的值.22.已知10a=2,10b=9,求:的值.23.已知,求n的值.24.计算:(a2n)2÷a3n+2•a2.25.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.26.计算:(﹣2)3•(﹣2)2÷(﹣2)8.27.(﹣a)5•(﹣a3)4÷(﹣a)2.28.已知a x=4,a y=9,求a3x﹣2y的值.29.计算(1)a7÷a4 (2)(﹣m)8÷(﹣m)3 (3)(xy)7÷(xy)4(4)x2m+2÷x m+2(5)(x﹣y)5÷(y﹣x)3(6)x6÷x2•x30.若32•92a+1÷27a+1=81,求a的值.同底数幂的除法--- 2参考答案:1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m62.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9.3.∵a m=3,a n=4,∴a2m﹣n=a2m÷a n=(a m)2÷a n=32÷4=.4.∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n=(3m)2÷(3n)3=62÷(﹣3)3=﹣.5.∵2a=3,4b=5,8c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•(23)c÷(22b)3=27×7÷125=6.∵x m=5,x n=25,∴x5m﹣2n=(x m)5÷(x n)2=55÷(25)2=55÷54=5.7.a n•a n+5÷a7=a2n+5﹣7=a2n﹣28.(1)﹣m9÷m3=﹣1×m9﹣3=﹣m6;(2)(﹣a)6÷(﹣a)3=(﹣a)6﹣3=(﹣a)3=﹣a3;(3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8;(4)62m+3÷6m=6(2m+3)﹣m=6m+39.33×36÷(﹣3)8=39÷38=310. 15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5=15(a﹣b)3×[﹣6(a﹣b)p+5](a﹣b)2÷45[﹣(a﹣b)5]=[15×(﹣6)]÷(﹣45)×(a﹣b)3+p+2+5﹣5=2(a﹣b)p+511.(1)(a8)2÷a8=a16÷a8=a16﹣8=a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1=(a﹣b)2(a﹣b)2n÷(a﹣b)2n﹣1=(a﹣b)2+2n﹣(2n﹣1)=(a﹣b)3.12.(a2)3•(a2)4÷(﹣a2)5=a6•a8÷(﹣a10)=﹣a14÷a10=﹣a4.13.x3•(2x3)2÷(x4)2=4x9÷x8=4x.14.(x m÷x2n)3÷x m﹣n=(x m﹣2n)3÷x m﹣n=x3m﹣6n÷x m﹣n=x2m﹣5n,因它与4x2为同类项,所以2m﹣5n=2,又2m+5n=7,所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)6﹣3﹣1=﹣(x﹣y)2.16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2)2m+2n=23+4=27=128.17.(1)∵x m=8,x n=5,∴x m﹣n=x m÷x n,=8÷5=;(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣2n=103m÷102n=27÷4=18.∵a m=4,a n=3,∴a m﹣3k+2n=a m÷a3k•a2n=a m÷(a k)3•(a n)2=4÷23×32=19.(﹣3x2n+2y n)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣27x6n+6y3n÷x6n y2n=﹣27x6y n20.∵a n=2,a m=3,a k=4,∴a2n+m﹣2k=a2n•a m÷a2k=(a n)2•a m÷(a k)2=4×3÷16=.21.由5x﹣3y﹣2=0,得5x﹣3y=2.∴1010x÷106y=1010x﹣6y=102(5x﹣3y)=102×2=104.故1010x÷106y的值是10422.=10 2a﹣b ==.23.∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1==()2,∴n=224.(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n.25.∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=26.(﹣2)3•(﹣2)2÷(﹣2)8=(﹣2)5÷(﹣2)8=(﹣2)5﹣8=(﹣2)﹣3=同底数幂的除法--- 327.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.故答案为:﹣a15.28.a3x﹣2y=(a x)3÷(a y)2=43÷92=29.(1)a7÷a4=a3;(2)(﹣m)8÷(﹣m)3=(﹣m)5=﹣m5;(3)(xy)7÷(xy)4=(xy)3=x3y3;(4)x2m+2÷x m+2=x m;(5)(x﹣y)5÷(y﹣x)3=﹣(y﹣x)5÷(y﹣x)3=﹣(y﹣x)2;(6)x6÷x2•x=x4•x=x5.30.原式可化为:32•32(2a+1)÷33(a+1)=34,即2+2(2a+1)﹣3(a+1)=4,解得a=3.故答案为:3.同底数幂的除法--- 4。
同底数幂乘法练习题
同底数幂乘法练习题在数学中,幂是一个重要的概念,也是数学计算中常见的操作。
当幂的底数相同时,我们可以使用同底数幂乘法的规则来简化计算。
本文将为大家提供一些同底数幂乘法的练习题,帮助大家进一步掌握这一概念。
问题一:计算下列同底数幂的乘法:1. 2² × 2³解答:根据同底数幂乘法的规则,我们知道在计算同底数幂的乘法时,只需将底数保持不变,将指数相加。
因此,2² × 2³ = 2^(2+3) = 2⁵= 32。
2. 5⁴ × 5²解答:根据同底数幂乘法的规则,我们将底数保持不变,将指数相加。
所以5⁴ × 5² = 5^(4+2) = 5⁶ = 15625。
问题二:计算下列同底数幂的乘法,结果用指数表示:1. x⁵ × x²解答:根据同底数幂乘法的规则,我们将底数保持不变,将指数相加。
所以x⁵ × x² = x^(5+2) = x⁷。
2. a³ × a⁷解答:根据同底数幂乘法的规则,我们将底数保持不变,将指数相加。
所以a³ × a⁷ = a^(3+7) = a¹⁰。
问题三:给定数据 x = 2,y = 3,计算下列同底数幂的乘法:1. x³ × x²解答:将 x 的值代入计算式,得到 2³ × 2² = 8 × 4 = 32。
2. y⁵ × y²解答:将 y 的值代入计算式,得到 3⁵ × 3² = 243 × 9 = 2187。
问题四:根据已知条件,计算下列同底数幂的乘法:1. (2⁶)² × 2³解答:根据同底数幂乘法的规则,我们将底数保持不变,将指数相乘。
所以(2⁶)² × 2³ = 2^(6×2+3) = 2¹⁵ = 32768。
(完整版)同底数幂乘法、除法及配套练习题(很全哦)
(完整版)同底数幂乘法、除法及配套练习题(很全哦)1同底数幂的乘法教学任务分析教学目标:1、经历探索同底数幂乘法运算性质的过程,发展符号感和推理意识。
2、能用符号语言和文字语言表述同底数幂乘法的运算性质,会根据性质计算同底数幂的乘法。
教学重点:同底数幂的乘法运算法则。
教学难点:同底数幂的乘法运算法则的灵活运用。
教学方法:创设情境—主体探究—应用提高。
教学过程设计一、复习旧知a n表示的意义是什么?其中a、n、a n分别叫做什么?a n= a×a×a×…a(n个a相乘)25表示什么?10×10×10×10×10 可以写成什么形式? 10×10×10×10×10 = .式子103×102的意义是什么?答:这个式子中的两个因式有何特点?答:二、探究新知1、探究算法(让学生经历算一算,说一说)让学生演算详细的计算过程,并引导学生说出每一步骤的计算依据。
103×102=(10×10×10)×(10×10)(乘方意义)=10×10×10×10×10(乘法结合律)=105(乘方意义)2、寻找规律请同学们先认真计算下面各题,观察下面各题左右两边,底数、指数有什么关系?①103×102=②23×22= ③a3×a2=提问学生回答,并以“你是如何快速得到答案的呢?”引导学生归纳规律:底数不变,指数相加。
3、定义法则①、你能根据规律猜出答案吗?猜想:a m·a n=?(m、n都是正整数)师:口说无凭,写出计算过程,证明你的猜想是正确的。
a m·a n=(aa…a)·(aa…a)(乘方意义)m个a n个a= aa…a (m+n)个a (乘法结合律)=a m+n(乘方意义)即:a m·a n= a m+n(m、n都是正整数)②、让学生通过辨别运算的特点,用自己的语言归纳法则A、a m·a n是什么运算?——乘法运算B、数a m、a n形式上有什么特点?——都是幂的形式C、幂a m、a n有何共同特点?——底数相同D、所以a m·a n叫做同底数幂的乘法。
同底数幂的乘法练习题(含答案)
13.1.1 同底数幂的乘法◆随堂检测1、判断(1) x 5·x 5=2x 5 ( ) (2) x 13+x 13=x 26 ( )(3) m ·m 3=m 3 ( ) (4) x 3(-x)4=-x 7 ( )2、填空:(1)54m m = (2)n n y y y--∙∙533= (3)()()32a a --= (4)()()22x x --= 3、计算:(1)103×104 (2)(-2)2·(-2) 3·(-2) (3)a·a 3·a 5(4) (a+b)(a+b)m (a+b)n (5) a 4n a n+3a(6)-a 2·a 3 (7) (-a )2·a 3 (8) ()()5222x y y x -∙- ◆典例分析若 3m =5, 3n =7, 求3m+n+1的值分析:本题的切入点是同底数幂的乘法性质的逆用:a m+n =a m ·a n (m,n 为正整数)。
运用此法则,可以把一个幂分解成两个(或两个以上)同底数幂的积。
其中,拆分所得的(两个或两个以上)同底数幂的底数与原来幂的底数相同,指数之和等于原来幂的指数。
解:∵3m =5, 3n =7,∴3m+n+1=3m ·3n·3=5×7×3=105 ◆课下作业●拓展提高1、填空(1)()()()[]m n p y x x y y x 32--∙-∙-= (2)已知2x+2=m,用含m 的代数式表示2x = _____2、选择: (1)下列计算中 ① b 5+b 5=2b 5 ②b 5·b 5=b 10 ③y 3·y 4=y 12 ④m·m 3=m 4 ⑤m 3·m 4=2m 7 其中正确的个数有( )A 1个B 2个C 3个D 4个(2)x 3m+2不等于( )A x 3m ·x 2B x m ·x 2m+2C x 3m +2D x m+2·x 2m3、解答题:(1)5,35==+++b a c b a x x ,求c x 的值.(2)若,14x x x x n m =∙∙求m+n. (3)若61a a a n m n =∙++,且m-2n=1,求n m 的值.(4)计算:4353x x x x x ∙∙+∙.●体验中考1.(2009年重庆市江津区) 下列计算错误的是 ( )A .2m + 3n=5mnB .426a a a =÷C .632)(x x =D .32a a a =⋅ 2. (2009年山西省太原市)下列计算中,结果正确的是( )A .236a a a =·B .()()26a a a =·3C .()326a a =D .623a a a ÷= 参考答案:随堂检测1、判断:本题考查同底数幂的乘法法则及合并同类项(1)×(2)×(3)×(4)×2、填空: (1)m 9 (2)y 5 (3)本题要注意符号错误 -a 5(4)注意符号 -x 43、计算:(1)107 (2)26 (3) a 9 ( 4)(a+b)m+n+1 (5)a 5n+4 (6) -a 5 (7) a 5 (8) (2y-x)7 拓展提高1、填空;(1)()()()[]m n p y x x y y x 32--∙-∙-=-(x-y )p ·(x-y )2n ·(x-y )3m =-(x-y)p+2n+3m(2)2x+2=2x ·22=m,∴2x=4m2、选择:(1)A 本题考查同底数幂的乘法性质的运用(2)C 由同底数幂的乘法性质可知A 、B 、D 运算结果均为x3m+2,故选 C 3、解答题(1) ∵x a+b+c =x a+b ·x c =35,x a+b =5,∴cx =7(2) 由,14x x x x n m =∙∙得x 1+m+n =x 14,∴1+m+n=14,∴m+n=13 (3)∵a n+1·a m+n =a 6 ∴n+1+m+n=6,即m+2n=5 ,又∵m -2n=1,∴m=3,n=1,∴m n =3(4) 4353x x x x x ∙∙+∙=x 8+x 8=2x 8 体验中考1、幂的运算【答案】A2、解析:本题考查整式的有关运算,235a a a =,选项A 是错的,()()226a a a =·3,选项B 是错的,()326aa =,选项C 是正确的,故选C。
同底数幂的乘法典型习题
同底数幂的乘法1、同底数幂的乘法一、知识点检测一、同底数幂相乘,底数 ,指数 ,用公式表示=n m a a (m ,n 都是正整数)二、计算32)(x x ⋅-所得的结果是( )A.5xB.5x -C.6xD.6x -3、下列计算正确的是( )A.822b b b =⨯B.642x x x =+C.933a a a =⨯D.98a a a =4、计算: (1)=⨯461010 (2)=⎪⎭⎫ ⎝⎛-⨯-6231)31( (3)=⋅⋅b b b 32 (4)2y ⋅ 5y = 五、若53=a ,63=b ,求b a +3的值二、典例分析例题:若125512=+x ,求()x x +-20092的值三、拓展提高一、下面计算正确的是( )A.4533=-a aB.n m n m +=⋅632C.109222=⨯D.10552a a a =⋅ 二、=-⋅-23)()(a b b a 。
3、()=-⋅-⋅-62)()(a a a 。
4、已知:5 ,3==n m a a ,求2++n m a 的值五、若62=-a m ,115=+b m ,求3++b a m 的值四、体验中考一、计算:a 2·a 3= ( )A .a 5B .a 6C .a 8 D.a 9 二、数学上一般把n aa a a a 个···…·记为( )A .naB .n a +C .n a D.a n二、幂的乘方一、知识点检测一、幂的乘方,底数 ,指数 ,用公式表示=n m a )( (m ,n 都是正整数)二、计算23()a 的结果是( )A .5aB .6aC .8aD .23a 3、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅4、若是正方体的棱长是2)12(+a ,则它的体积为 。
二、典例分析例题:若52=n ,求n 28的值三、拓展提高一、()=-+-2332)(aa 。
同底数幂的除法习题带答案
同底数幂的除法习题带答案同底数幂的除法习题带答案在数学学习中,我们经常会遇到同底数幂的除法运算。
这种运算需要我们了解指数的性质,并运用相应的规则进行计算。
下面,我将为大家提供一些同底数幂的除法习题,并附上详细的答案解析,希望对大家的学习有所帮助。
1. 计算:(2^5) ÷ (2^3) = ?解析:根据指数的性质,同底数幂的除法可以简化为底数不变,指数相减的形式。
所以,(2^5) ÷ (2^3) = 2^(5-3) = 2^2 = 4。
答案:42. 计算:(5^4) ÷ (5^2) = ?解析:同样地,根据指数的性质,(5^4) ÷ (5^2) = 5^(4-2) = 5^2 = 25。
答案:253. 计算:(10^6) ÷ (10^3) = ?解析:利用指数的性质,(10^6) ÷ (10^3) = 10^(6-3) = 10^3 = 1000。
答案:10004. 计算:(8^3) ÷ (8^2) = ?解析:根据指数的性质,(8^3) ÷ (8^2) = 8^(3-2) = 8^1 = 8。
答案:85. 计算:(3^7) ÷ (3^4) = ?解析:同样地,(3^7) ÷ (3^4) = 3^(7-4) = 3^3 = 27。
答案:27通过以上的习题,我们可以看到,同底数幂的除法运算可以通过简化指数的方式进行计算。
这种运算规则在解决实际问题时非常有用。
除了简单的习题,我们也可以通过复杂一些的例子来加深对同底数幂的除法运算的理解。
例题1:计算:(2^8) ÷ (2^5) = ?解析:根据指数的性质,(2^8) ÷ (2^5) = 2^(8-5) = 2^3 = 8。
答案:8例题2:计算:(6^5) ÷ (6^3) = ?解析:同样地,(6^5) ÷ (6^3) = 6^(5-3) = 6^2 = 36。
同底数幂的乘法练习题及答案
同底数幂的乘法练习题及答案1.同底数幂相乘,底数不变,指数相加。
2.A(5)·a4=a20.3.若102·10m=,则m=1.4.23·83=26,则n=6.5.-a3·(-a)5=a8;x·x2·x3y=x6y.6.a5·an+a3·an+2-a·an+4+a2·an+3=a5+n+a3+n+2-a+n+4+a2+n+3.7.(a-b)3·(a-b)5=(a-b)8;(x+y)·(x+y)4=(x+y)5.8.10m+1·10n-1=10(m+n);-64·(-6)5=11,718,624.9.x2x3+x4=x5;(x+y)2(x+y)5=(x+y)7.10.103·100·10+100·100·100-·10·10=1,000,000.11.若am=a3a4,则m=7;若x4xa=x16,则a=4;12.若am=2,an=5,则am+n=a7.13.-32×33=-3,276;-(-a)2=a2;(-x)2·(-x)3=-x5;(a+b)·(a+b)4=(a+b)5;0.510×211=107.1;a·am·an=a5m+1.14.a4·a5=a9;a4·a2=a6;a9·a-1=a8.15.(1) a·a3·a5=a9;(2) 3a·3a=9a2;(3) Xm·Xm+1·Xm-1=X2m;(4) (x+5)3·(x+5)2=(x+5)5;(5) 3a2·a4+5a·a5=8a9;(6) 4(m+n)2·(m+n)3-7(m+n)·(m+n)4+5(m+n)5=6(m+n)5.二、选择题1.A。
初二数学同底数幂相乘练习题
初二数学同底数幂相乘练习题在初中数学中,我们学习了幂的概念,即相同的底数与不同的指数进行乘法运算。
同底数幂相乘是我们接下来要重点讨论的内容。
在本文中,我们将通过一些练习题来帮助同学们更好地理解和掌握这一概念。
1. 计算下列同底数幂相乘。
题目1:3² × 3⁵ = ?解析:根据幂的乘法法则,当底数相同时,幂的指数相加。
所以,3² × 3⁵ = 3^(2+5) = 3⁷。
答案:3² × 3⁵ = 3⁷。
题目2:(-2)³ × (-2)⁴ = ?解析:同样地,(-2)³ × (-2)⁴ = (-2)^(3+4) = (-2)⁷。
答案:(-2)³ × (-2)⁴ = (-2)⁷。
2. 计算下列同底数幂相乘的值。
题目1:5⁶ × 5³ = ?解析:根据幂的乘法法则,当底数相同时,幂的指数相加,即5⁶× 5³ = 5^(6+3) = 5⁹。
答案:5⁶ × 5³ = 5⁹。
题目2:(-4)⁵ × (-4)² = ?解析:同样地,(-4)⁵ × (-4)² = (-4)^(5+2) = (-4)⁷。
答案:(-4)⁵ × (-4)² = (-4)⁷。
3. 请用幂的运算法则计算下列同底数幂相乘。
题目1:(2⁴) × (2²) × (2⁶) = ?解析:根据幂的乘法法则,相同的底数相乘,指数相加。
所以,(2⁴) × (2²) × (2⁶) = 2^(4+2+6) = 2¹²。
答案:(2⁴) × (2²) × (2⁶) = 2¹²。
题目2:(-3⁷) × (-3³) × (-3²) = ?解析:同样地,(-3⁷) × (-3³) × (-3²) = (-3)^(7+3+2) = (-3)¹²。
(完整版)同底数幂的乘法练习题与答案
同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。
2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y ≠,則下面多項式不成立の是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正確の是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.設a m =8,a n =16,則a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,則括號內應填x の代數式為( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,則a m+n =( ).A.5 B.6 C.8 D.9 8.下列計算題正確の是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括號裏面の代數式應當是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可寫成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a 、b 為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.計算a -2·a 4の結果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,則下面各式不能成立の是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以寫成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。
同底数幂乘法计算70题(试题版) - 百度版
七下数学《幂运算》易错点同底数幂乘法计算70题(试题版)学校:________ 班级:________ 姓名:________ 成绩:________一、填空题(共62小题)1.﹣b•b3=.2.若a m•a2=a7,则m的值为.3.已知a x=3,a y=9,则a x+y=.4.计算:x3•(﹣x)3=.5.计算:(b﹣a)2(a﹣b)3=(结果用幂的形式表示).6.如果2a=6,2b=5,那么2a+b=.7.计算:a2•(﹣a)4=.8.用幂的形式表示结果:(m﹣3n)3(3n﹣m)2=.9.若a m•a3=a9,则m=.10.已知10x=2,10y=5,则10x+y=.11.计算:(a﹣2b)3•(2b﹣a)2=.12.已知x m=6,x n=3,则x2m+n的值为.13.若23•2y=28,则y=.14.计算:﹣x2•(﹣x)3=.15.若a4•a2m﹣1=a11,则m=.16.若2a=6,2b=5,则22a+b=.17.若a m=4,a n=8,则a m+n=.18.计算:a2•a3=.19.计算:(﹣2)2n+1+2•(﹣2)2n=.20.计算a3•a的结果是.21.(﹣b)4•(﹣b)3=22.计算x5•x的结果等于.23.计算:(﹣2)2×23=.24.计算:(﹣p)2•(﹣p)2=.25.若x+y=2,则3x•3y的值为.26.计算:(﹣c)3•(﹣c)2m+1=.27.计算:y•y n=.28.计算a4•a3的结果等于.29.2a2﹣a•a=.30.已知3x=5,3y=8,则3x+2y=.31.计算x3•x2的结果等于.32.计算(﹣x)2•x3所得的结果是.33.化简(﹣a2)•a5所得的结果是.34.计算:x4•x2=.35.﹣a2•(﹣a)3=.36.计算:x•x2=.37.计算(x﹣y)2(y﹣x)3(x﹣y)=38.计算:(﹣x)2(﹣x)3=.39.计算:x5•x3的结果等于.40.计算:﹣x2•x3=.41.化简:(﹣a2)•a5=.42.计算:a4•a﹣3=.43.计算:105×(﹣10)4×106=.44.已知2m•2m•8=211,则m=.45.计算:﹣22•(﹣23)=46.计算:﹣b3•b2=.47.计算:a3•a4=.48.计算:x2•x=.49.若a+b﹣2=0,则3a•3b=.50.计算(﹣a)3•a2的结果等于.51.计算a2•a4的结果等于.52.计算a4•a的结果等于.53.计算:(﹣2)•(﹣2)2•(﹣2)5=.54.计算﹣x2•x5的结果等于.55.计算:结果用幂的形式来表示(b﹣a)2(a﹣b)5=.56.计算:(﹣a﹣b)4(a+b)3=57.计算:(﹣p)2•p3=.58.计算x2•(﹣x)3=.59.计算(x﹣y)2(x﹣y)3(y﹣x)4(y﹣x)5=.60.计算a﹣3•a5的结果等于.61.化简:(a﹣b)6(b﹣a)3=.62.计算:(﹣x)3•x2=.二、解答题(共8小题)63.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;64.计算:(m﹣n)2×(n﹣m)3×(m﹣n)665.计算:y3•(﹣y)•(﹣y)5•(﹣y)266.计算:(﹣x)3•x•(﹣x)2.67.计算:(a﹣b)2(b﹣a)4.68.计算:a+2a+3a+a2•a5+a•a3•a3.69.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.70.(x﹣y)3•(x﹣y)4•(x﹣y)2.七下数学《幂运算》易错点同底数幂乘法计算70题(答案版)学校:________ 班级:________ 姓名:________ 成绩:________一、填空题(共62小题)1.﹣b•b3=.【答案】-b4【解答】解:﹣b•b3=﹣b1+3=﹣b4.2.若a m•a2=a7,则m的值为.【答案】5【解答】解:根据题意得m+2=7解得m=5.3.已知a x=3,a y=9,则a x+y=.【答案】27【解答】解:a x+y=a x•a y=3×9=27,4.计算:x3•(﹣x)3=.【答案】-x6【解答】解:x3•(﹣x)3=x3•(﹣x3)=﹣x6.5.计算:(b﹣a)2(a﹣b)3=【答案】(a-b)5【解答】解:(b﹣a)2(a﹣b)3=(a﹣b)2(a﹣b)3=(a﹣b)2+3=(a-b)5.6.如果2a=6,2b=5,那么2a+b=.【答案】30【解答】解:∵2a=6,2b=5,∴2a+b=2a•2b=6×5=30.7.计算:a2•(﹣a)4=.【答案】a6【解答】解:a2•(﹣a)4=a2•a4=a6.8.用幂的形式表示结果:(m﹣3n)3(3n﹣m)2=.【答案】(m-3n)5【解答】解:(m﹣3n)3(3n﹣m)2=(m﹣3n)3(m﹣3n)2=(m﹣3n)5.9.若a m•a3=a9,则m=.【答案】6【解答】解:∵a m•a3=a9,∴m+3=9,解得m=6.10.已知10x=2,10y=5,则10x+y=.【答案】10【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.11.计算:(a﹣2b)3•(2b﹣a)2=.【答案】(a-2b)5【解答】解:(a﹣2b)3•(2b﹣a)2=(a﹣2b)3•(a﹣2b)2=(a﹣2b)5.12.已知x m=6,x n=3,则x2m+n的值为.【答案】108【解答】解:∵x m=6,x n=3,∴x2m+n=(x m)2•x n=62×3=36×3=108.13.若23•2y=28,则y=.【答案】5【解答】解:∵23•2y=28,∴3+y=8,解得y=5.14.计算:﹣x2•(﹣x)3=.【答案】x5【解答】解:﹣x2•(﹣x)3=﹣x2•(﹣x3)=x2+3=x5.15.若a4•a2m﹣1=a11,则m=.【答案】4【解答】解:∵a4•a2m﹣1=a11,∴4+(2m﹣1)=11,解得m=4.16.若2a=6,2b=5,则22a+b=.【答案】180【解答】解:∵2a=6,2b=5,∴22a+b=22a•2b=(2a)2•2b=62×5=36×5=180.17.若a m=4,a n=8,则a m+n=.【答案】32【解答】解:∵a m=4,a n=8,∴a m+n=a m×a n=4×8=32.18.计算:a2•a3=.【答案】a5【解答】解:a2•a3=a2+3=a5.19.计算:(﹣2)2n+1+2•(﹣2)2n=.【答案】0【解答】解:(﹣2)2n+1+2•(﹣2)2n,=﹣22n+1+2•22n,=﹣22n+1+22n+1,=0.20.计算a3•a的结果是.【答案】a4【解答】解:a3•a=a4,21.(﹣b)4•(﹣b)3=【答案】-b7【解答】解:(﹣b)4•(﹣b)3=(﹣b)7=﹣b7,22.计算x5•x的结果等于.【答案】x6【解答】解:x5•x=x6.23.计算:(﹣2)2×23=.【答案】32【解答】解:(﹣2)2×23=4×8=32.24.计算:(﹣p)2•(﹣p)2=.【答案】p4【解答】解:(﹣p)2•(﹣p)2=(﹣p)4=p4,25.若x+y=2,则3x•3y的值为.【答案】9【解答】解:∵x+y=2,∴3x•3y=3x+y=32=9.26.计算:(﹣c)3•(﹣c)2m+1=.【答案】c2m+4【解答】解:(﹣c)3•(﹣c)2m+1=(﹣c)2m+4=c2m+4.27.计算:y•y n=.【答案】y1+n【解答】解:y•y n=y1+n.28.计算a4•a3的结果等于.【答案】a7【解答】解:a4•a3=a7.29.2a2﹣a•a=.【答案】a2【解答】解:2a2﹣a•a=2a2﹣a2=a230.已知3x=5,3y=8,则3x+2y=.【答案】320【解答】解:∵3x=5,3y=8,∴3x+2y=3x•3y•3y=5×8×8=320.31.计算x3•x2的结果等于.【答案】x5【解答】解:x3•x2=x5,32.计算(﹣x)2•x3所得的结果是.【答案】x5【解答】解:原式=x2.x3=x2+3=x5.33.化简(﹣a2)•a5所得的结果是.【答案】-a7【解答】解:(﹣a2)•a5=﹣a7,34.计算:x4•x2=.【答案】x6【解答】解:x4•x2=x6,35.﹣a2•(﹣a)3=.【答案】a5【解答】解:原式=a2•a3=a5.36.计算:x•x2=.【答案】x3【解答】解:原式=x3,37.计算(x﹣y)2(y﹣x)3(x﹣y)=【答案】-(x-y)6【解答】解:(x﹣y)2(y﹣x)3(x﹣y)=﹣(x﹣y)2(x﹣y)3(x﹣y)=﹣(x﹣y)6.38.计算:(﹣x)2(﹣x)3=.【答案】-x5【解答】解:(﹣x)2(﹣x)3=x2•(﹣x)3=﹣x5.39.计算:x 5•x 3的结果等于 .【答案】x 8【解答】解:x 5•x 3=x 5+3=x 840.计算:﹣x 2•x 3= .【答案】-x 5【解答】解:﹣x 2•x 3=﹣x 2+3=﹣x 5.41.化简:(﹣a 2)•a 5= .【答案】-a 7【解答】解:原式=﹣a 2•a 5=﹣a 7.故答案为:﹣a 7.42.计算:a 4•a ﹣3= .【答案】a【解答】解:a 4•a ﹣3=()a a =-+3443.计算:105×(﹣10)4×106= .【答案】1015【解答】解:原式=105×104×106=1015.44.已知2m •2m •8=211,则m = .【答案】4【解答】解:2m •2m •8,=2m •2m •23,=2m +m +3,∵2m •2m •8=211,∴m +m +3=11,解得m=4.45.计算:﹣22•(﹣23)=【答案】25【解答】解:﹣22•(﹣23)=25.46.计算:﹣b3•b2=.【答案】-b5【解答】解:原式=﹣b3+2=﹣b5,47.计算:a3•a4=.【答案】a7【解答】解:a3•a4=a3+4=a7,48.计算:x2•x=.【答案】x3【解答】解:x2•x=x3,49.若a+b﹣2=0,则3a•3b=.【答案】9【解答】解:∵a+b﹣2=0,∴a+b=2,原式=3a+b=32=9,50.计算(﹣a)3•a2的结果等于.【答案】-a5【解答】解:(﹣a)3•a2=﹣a3•a2=﹣a5,51.计算a2•a4的结果等于.52.计算a4•a的结果等于.【答案】a5【解答】解:a4•a=a5.53.计算:(﹣2)•(﹣2)2•(﹣2)5=.【答案】28【解答】解:(﹣2)•(﹣2)2•(﹣2)5=(﹣2)8=28,54.计算﹣x2•x5的结果等于.【答案】-x7【解答】解:原式=﹣x2+5=﹣x7,55.计算:结果用幂的形式来表示(b﹣a)2(a﹣b)5=.【答案】(a-b)7【解答】解:(b﹣a)2(a﹣b)5=(a﹣b)2•(a﹣b)5=(a﹣b)7,56.计算:(﹣a﹣b)4(a+b)3=【答案】(a+b)7【解答】解:(﹣a﹣b)4(a+b)3,=(a+b)4(a+b)3,=(a+b)4+3,=(a+b)7.57.计算:(﹣p)2•p3=.【答案】p5【解答】解:(﹣p)2•p3=p5.58.计算x2•(﹣x)3=.59.计算(x﹣y)2(x﹣y)3(y﹣x)4(y﹣x)5=.【答案】-(x-y)14【解答】解:原式=﹣(x﹣y)2(x﹣y)3(x﹣y)4(x﹣y)5=﹣(x﹣y)2+3+4+5=﹣(x﹣y)14,60.计算a﹣3•a5的结果等于.【答案】a2【解答】解:a﹣3•a5=a﹣3+5=a2,61.化简:(a﹣b)6(b﹣a)3=.【答案】(b-a)9【解答】解:原式=(b﹣a)6(b﹣a)3=(b﹣a)6+3=(b﹣a)9,62.计算:(﹣x)3•x2=.【答案】-x5【解答】解:原式=(﹣x3)•x2=﹣x5.二、解答题(共8小题)63.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;【解答】解:原式=(a﹣b)7•[﹣(a﹣b)5]=﹣(a﹣b)12.64.计算:(m﹣n)2×(n﹣m)3×(m﹣n)6【解答】解:原式=(n﹣m)2×(n﹣m)3×(n﹣m)6=(n﹣m)2+3+6=(n﹣m)11.65.计算:y3•(﹣y)•(﹣y)5•(﹣y)2【解答】解:原式=y3•(﹣y)•(﹣y)5•y2=y3+1+5+2=y11.66.计算:(﹣x)3•x•(﹣x)2.【解答】解:原式=﹣x3•x•x2=﹣x6.67.计算:(a﹣b)2(b﹣a)4.【解答】解:原式=(a﹣b)2(a﹣b)4=(a﹣b)6.68.计算:a+2a+3a+a2•a5+a•a3•a3.【解答】解:原式=(a+2a+3a)+(a7+a7)=6a+2a7.69.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.【解答】解:原式=a9+a9=2a9.70.(x﹣y)3•(x﹣y)4•(x﹣y)2.【解答】解:原式=(x﹣y)3+4+2=(x﹣y)9.。
同底数幂的乘法专项练习50题(有答案)
同底数幂的乘法专项练习50题(有答案)一、 知识点:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+(5)若m 、n 均为正整数,则a m ·a n =_______,即同底数幂相乘,底数______,指数_____.二、专项练习: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n(9)=-⋅23b b (10)=-⋅3)(a a(11)=--⋅32)()(y y (12)=--⋅43)()(a a(13)=-⋅2433 (14)=--⋅67)5()5((15)=--⋅32)()(q q n(16)=--⋅24)()(m m(17)=-32 (18)=--⋅54)2()2((19)=--⋅69)(b b (20)=--⋅)()(33a a(21) 111010m n +-⨯= (22) 456(6)-⨯-=(23)234x x xx += (24)25()()x y x y ++=(25)31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=(26) 若34ma a a =,则m=________; 若416ax x x =,则a=__________;若2345yxx x x x x =,则y=______; 若25()x a a a -=,则x=_______.(27) 若2,5m na a ==,则m na +=________.(28)19992000(2)(2)-+-=(29)2323()()()()x y x y y x y x -⋅-⋅-⋅- (30)23()()()a b c b c a c a b --⋅+-⋅-+(31)2344()()2()()x x x x x x -⋅-+⋅---⋅; (32)122333m m m x xx x x x ---⋅+⋅-⋅⋅。
同底数幂的乘法练习题及答案(同名5029)
同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。
2.A ( )·a 4=a 20.〔在括號內填數〕 3.假设102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·〔-a 〕5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b 〕3·〔a-b 〕5= ; 〔x+y 〕·〔x+y 〕4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 假设34m a a a =,則m=________;假设416a x x x =,則a=__________; 12. 假设2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 假设x y≠,則下面多項式不成立の是( )A.22-= D.222()+=+()y yx y x y-=- C.22()x xy x x y()()-=- B.334.以下各式正確の是〔〕A.3a2·5a3=15a6 B.-3x4·〔-2x2〕=-6x6C.3x3·2x4=6x12 D.〔-b〕3·〔-b〕5=b8 5.設a m=8,a n=16,則a n m+=〔〕A.24 B.32 C.64 D.128 6.假设x2·x4·〔〕=x16,則括號內應填xの代數式為〔〕A.x10B. x8C. x4D. x2 7.假设a m=2,a n=3,則a m+n=( ).A.5 B.6 C.8 D.98.以下計算題正確の是( )A.a m·a2=a2m B.x3·x2·x=x5 C.x4·x4=2x4 D.y a+1·y a-1=y2a 9.在等式a3·a2( )=a11中,括號裏面の代數式應當是( )A.a7B.a8 C.a6D.a510.x3m+3可寫成( ).A.3x m+1 B.x3m+x3 C.x3·x m+1 D.x3m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a、b為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+213.計算a-2·a4の結果是()A.a-2 B.a2C.a-8 D.a814.假设x≠y,則下面各式不能成立の是()A.(x-y)2=(y-x)2 B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x) D.(x+y)2=(-x-y)215.a16可以寫成()A.a8+a8 B.a8·a2C.a8·a8 D.a4·a416.以下計算中正確の是()A.a2+a2=a4 B.x·x2=x3C.t3+t3=2t6 D.x3·x·x4=x717.以下題中不能用同底數冪の乘法法則化簡の是()A.(x+y)(x+y)2 B.(x-y)(x+y)2C.-(x-y)(y-x)2 D.(x-y)2·(x-y)3·(x-y)18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√〞,錯誤打“×〞)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。
同底数幂的乘法练习题(含答案)
七年级下册同底数幂的乘法基础练习1.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+2.计算: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n3.计算: (1)=-⋅23b b(2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5((7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a4.下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+;(3)nnny y y 22=⨯; (4)22m m m =⋅;(5)422)()(a a a =-⋅-; (6)1243a a a =⋅;(7)334)4(=-; (8)6327777=⨯⨯;(9)42-=-a ; (10)32n n n =+.5.选择题: (1)22+m a 可以写成( ).A .12+m aB .22a am+ C .22a a m ⋅ D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=- C .4433=- D .3443=(3)下列计算正确的是( ).A .44a a a =⋅ B .844a a a =+C .4442a a a =+D .1644a a a =⋅综合练习1.计算:(1)=++⋅⋅21n n na a a (2)=⋅⋅n n nb b b 53 (3)=+-⋅⋅132m m b b b b(4)=--⋅4031)1()1((5)=⨯-⨯672623 (6)=⨯+⨯543736 (7)=++⋅⋅⋅5334232x x x x x x (8)=-+⋅⋅⋅2563427x x x x x x(9)=++++⋅⋅121133n n n x x x x(10)=+-+⋅x y x y x a a a 23(11)=+---⋅⋅⋅656233)()()(a a a a a (12)=-++⋅12322n n n(13)=-⋅⋅m c c c53)(2.计算:(结果可以化成以)(b a +或)(b a -为底时幂的形式).(1)=---⋅⋅432)()()(b a b a b a(2)=+++++⋅⋅+21)()()()(b a b a b a b a m m(3)=----⋅⋅12)()()(n a b b a a b(4)=----+⋅⋅131)()()(n n a b a b b a(5)=++-++⋅⋅--3212)()(3)()(2b a b a b a b a n n (6)32212)()(2)()(3b a a b b a b a m m --+--⋅⋅+(7)=++++++-+⋅⋅⋅12)()(3)()()(p n p n mb a b a b a b a b a(8)=---⋅⋅532)(5)(4)(3a b b a a b3.填空题: (1)1243)(a a a=⋅.(2)1042)()(a a a==⋅⋅.(3)45)(63)()()()()()(y x y x y x y x y x --=--=--⋅⋅⋅.(4)已知3=mb ,4=nb ,则nm b+=________.(5))(3221)(212121⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-⋅=________.(6))()(5432)()()()()()()(a b b a b a a b b a a b b a --=-=-----⋅⋅⋅⋅4.选择题: 1.n mb a b a )2()2(++⋅等于().A .2)2(b a + B .nm b a ++)2( C .nm b a ⋅+)2( D .nm b a -+)2(2.12+m a可写成( ).A .12+⋅m a aB .a m a +2C .m a a 2⋅D .1m 2+a3.32)()(c a b c b a --+-⋅等于().A .2)(c b a +- B .5)(c a b -- C .5)(c b a +-- D .5)(c a b ---4.把下列各题的计算结果写成10的幂的形式,其中正确的选项是( ). A .6310101000=⨯ B .2001001010100=⨯C .n m m n+=⋅10010102 D .881001010=⋅5.解答题: (1)如果1313y y yn nm =+-⋅,且641x x x n m =--⋅的值.(2)设p m =+++ 321,计算:m m m mxy y x y x y x ⋅⋅⋅⋅⋅-- 3221.拓展练习1.下面的算式是按一定规律排列的:1211999735,,,++++,……你能找出其中的规律吗?试一试,算出它的第90个算式的得数.2.某商店一种货物售价目表如下:数量x (千克)售价c (元) 1 14+1.2 2 28+2.4 370+6(1)写出用x 表示c 的公式;(2)计算3千克的售价.3.观察下列等式: 23333233323323104321632132111,,,=+++=++=+=,……想一想等式左边各项幂的底数与右边幂的底数有什么关系?猜一猜可以引出什么规律,并把这种规律用等式写出来.4.下列各个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有)1(>n n 盆花,每个图案花盆的总数是s .按此规律推算,求出s 与n 的关系式.参考答案 基础1.(1)底数,指数 (2)3c (3)4个-2相乘,4个2相乘的积的相反数 (4)a a a ⨯⨯ a a a a ⨯⨯⨯,a ,3,4,7 2.(1)10a (2)2)(2++m b a (3)6)(b a -- (4)32)()1(+--n n b a(5)1)(++-n b a (6)32)(5+-m b a (7)pn m b a +++)(4 (8)10)(60a b --3.(1)5b - (2)4a - (3)5y - (4)7a - (5)-729 (6)135- (7)32+-n q(8)6m - (9)-8 (10)-512 (11)15b - (12)6a 4.(1)应改为123223=⨯ (2)改为633a a a =⋅ (3)改为n n n y y y 2=⨯(4)改为32m m m =⋅ (5)改为422)()(a a a -=--⋅ (6)改为743a a a =⋅(7)改为334)4(-=- (8)对 (9)对 (10)改为32n n n =⋅5.(1)C (2)B (3)C综合1.(1)33+n a(2)n b 9 (3)22+m b(4)-1 (5)0 (6)73 (7)66x (8)76x (9)24+3n x(10)x a24 (11)114a (12)22+-n (13)8+-m c2.(1)9)(b a - (2)2)(2++m b a (3)6)(b a -- (4)32)()(+--n nb a b(5)1)(++-n b a (6)32)(5+-m b a (7)pn m b a +++)(4 (8)10)(60a b --3.(1)5a (2)8a ,6a (3)8,x y - (4)12 (5)101,5,321- (6)15,15 4.(1)B (2)C (3)C (4)A 5.(1)3=n ,6=m (2)ppy x拓展1.453 2.x c 2.15= 3.23333)321(321n n +++=++++ 4.)1(3-=n x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1同底数幂的乘法教学任务分析教学目标:1、经历探索同底数幂乘法运算性质的过程,发展符号感和推理意识。
2、能用符号语言和文字语言表述同底数幂乘法的运算性质,会根据性质计算同底数幂的乘法。
教学重点:同底数幂的乘法运算法则。
教学难点:同底数幂的乘法运算法则的灵活运用。
教学方法:创设情境—主体探究—应用提高。
教学过程设计一、复习旧知a n表示的意义是什么?其中a、n、a n分别叫做什么?a n= a×a×a×…a(n个a相乘)25表示什么?10×10×10×10×10 可以写成什么形式? 10×10×10×10×10 = .式子103×102的意义是什么?答:这个式子中的两个因式有何特点?答:二、探究新知1、探究算法(让学生经历算一算,说一说)让学生演算详细的计算过程,并引导学生说出每一步骤的计算依据。
103×102=(10×10×10)×(10×10)(乘方意义)=10×10×10×10×10(乘法结合律)=105(乘方意义)2、寻找规律请同学们先认真计算下面各题,观察下面各题左右两边,底数、指数有什么关系?①103×102=②23×22= ③a3×a2=提问学生回答,并以“你是如何快速得到答案的呢?”引导学生归纳规律:底数不变,指数相加。
3、定义法则①、你能根据规律猜出答案吗?猜想:a m·a n=?(m、n都是正整数)师:口说无凭,写出计算过程,证明你的猜想是正确的。
a m·a n=(aa…a)·(aa…a)(乘方意义)m个a n个a= aa…a (m+n)个a (乘法结合律)=a m+n(乘方意义)即:a m·a n= a m+n(m、n都是正整数)②、让学生通过辨别运算的特点,用自己的语言归纳法则A、a m·a n是什么运算?——乘法运算B、数a m、a n形式上有什么特点?——都是幂的形式C、幂a m、a n有何共同特点?——底数相同D、所以a m·a n叫做同底数幂的乘法。
引出课题:这就是这节课咱们要学习的内容《同底数幂的乘法》师:同学们觉得它的运算法则应该是什么?生:同底数幂相乘,底数不变,指数相加。
教师强调:幂的底数必须相同,相乘时指数才能相加。
例如:43×45=43+5=484、知识应用例1、计算(1)32×35(2)(-5)3×(-5)5解:师生共同分析:公式中的底数和指数可以代表一个数、字母、式子等。
练习一计算:(抢答)(1) 105×106(2) a 7 ·a 3 (3) x5·x 5 (4) b 5 · b当三个或三个以上同底数幂相乘时,是否也具有这一性质呢? 怎样用公式表示?例2:计算 (1) a 8· a 3· a(2)(a+b )2(a+b )3 解:例3:世界海洋面积约为3.6亿平方千米,约等于多少平方米?练习二下面的计算对不对?如果不对,怎样改正?(1)b 5 · b 5= 2b 5 ( ) (2)b 5 + b 5 = b 10 ( )(3)x 5 ·x 5 = x 25 ( ) (4)y 5 · y 5 = 2y 10 ( ) (5)c · c 3 = c 3 ( ) (6)m + m 3 = m 4 ( ) 闯关游戏 第一关 1.(1)x 5 .( )= x2008(2)x 4· x 3= 27 求X的值第二关2.计算 a 2‧a 3+ a ‧a 4第三关 .3.如果a n-2‧a n+1 ‧a 2=a 11,则n= 第四关4.已知:a m=2,a n=3. 求 : am+n师生共同分析存在问题。
四、归纳小结、布置作业小结:同底数幂的乘法法则。
答:同底数幂的乘法练习题1.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+2.计算: (1)=⋅64a a(2)=⋅5b b (3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a(6)=-⋅12m t t (7)=⋅+q q n 1 (8)=-+⋅⋅112p p n n n3.计算:(1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n (8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2( (11)=--⋅69)(b b (12)=--⋅)()(33a a4.下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+; (3)nnny y y 22=⨯; (4)22m m m =⋅; (5)422)()(a a a =-⋅-(6)1243a a a=⋅; (7)334)4(=-; (8)6327777=⨯⨯;(9)42-=-a ; (10)32n n n =+5.选择题:(1)22+m a可以写成( ). A .12+m aB .22a am+C .22a am⋅ D .12+⋅m a a(2)下列式子正确的是( ). A .4334⨯= B .443)3(=-C .4433=-D .3443= (3)下列计算正确的是( ).A .44a a a =⋅ B .844a a a =+C .4442a a a =+D .1644a a a =⋅4.下列各式正确的是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.设a m =8,a n =16,则a n m +=( ) A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,则括号内应填x 的代数式为( ) A .x 10B. x 8C.x 4 D. x 27.若a m =2,a n =3,则a m+n=( ). A.5 B.6 C.8 D.9 8.下列计算题正确的是( ) A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括号里面的代数式应当是( ). A.a 7 B.a 8 C.a 6 D.a 510.x 3m+3可写成( ). A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 3 11已知算式:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正确的算式是( ) A.①和② B.②和③ C.①和④ D.③和④13.计算a -2·a 4的结果是( )A .a -2B .a 2C .a -8D .a 815.a 16可以写成( ) A .a 8+a 8 B .a 8·a 2 C .a 8·a 8 D .a 4·a 416.下列计算中正确的是( ) A .a 2+a 2=a 4 B .x ·x 2=x 3 C .t 3+t 3=2t 6D .x 3·x ·x 4=x 7 18. 计算2009200822-等于( )A 、20082B 、 2C 、1D 、20092-6、 计算:34a a a ⋅⋅ ()()()53222--- 231010100⨯⨯ ()()()352a a a -⋅-⋅--()()mm2224⨯⨯7、计算 3,2==n m a a ,则m n a +=幂的乘方与积的乘方1,下列各式中,填入a 3能使式子成立的是( ) A .a 6=( )2 B. a 6=( )4 C.a 3=()0 D. a 5=()22,下列各式计算正确的( )A.xa·x 3=(x 3)a B.xa·x 3=(x a )3 C.(x a )4=(x 4)a D. xa· xa· xa=xa+33,如果(9n)2=38,则n 的值是( ) A.4 B.2 C.3 D.无法确定 4,已知P=(-ab 3)2,那么-P 2的正确结果是( )A.a 4b 12B.-a 2b 6C.-a 4b 8D.- a 4b 125,计算(-4×103)2×(-2×103)3的正确结果是( )A .1.08×1017B.-1.28×1017C.4.8×1016D.-1.4×10166,下列各式中计算正确的是( )A .(x 4)3=x 7B.[(-a )2]5=-a 10C.(a m)2=(a2)m =am2 D.(-a2)3=(-a 3)2=-a 67,计算(-a 2)3·(-a 3)2的结果是( ) A .a 12 B.-a 12 C.-a 10 D.-a368,下列各式错误的是( ) A .[(a+b )2]3=(a+b )6 B.[(x+y )n2]5=(x+y )52+nC. [(x+y )m ]n=(x+y )mnD. [(x+y )1+m ]n=[(x+y )n]1+m1.计算1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11X4117)、-81994X(-0.125)19958)、20019911323235.0⎪⎭⎫ ⎝⎛⨯-⋅⎪⎭⎫⎝⎛⨯ 9)、(-0.125)3X2910)、(-a 2)2·(-2a 3)2 11)、(-a 3b 6)2-(-a 2b 4)3 12)、-(-x m y)3·(xy n+1)2 13)、2(a n b n )2+(a 2b 2)n14)、(-2x 2y )3+8(x 2)2·(-x 2)·(-y 3) 15)、-2100X0.5100X(-1)1994+129, 计算: (-2a 2b )3+8(a2)2·(-a )2·(-b )3;10,若(91+m )2=316,求正整数m 的值. 11,若 2·8n ·16n =222,求正整数m的值.12,化简求值:(-3a 2b )3-8(a2)2·(-b )2·(-a2b ),其中a=1,b=-1.13,计算: [(-32)8×(23)8]7; 81999·(0.125)2000;()__________10211042335=⎪⎭⎫⎝⎛⨯-⨯⨯(3a2)3+(a2)2·a2=______2 同底数幂的除法一、教学目标:1、了解同底数幂的除法的运算性质,并会用其解决实际问题。