烧结矿质量及其对高炉冶炼主要操作指标的影响
高炉配吃落地烧结矿的实际操作
高炉配吃落地烧结矿的实际操作摘要:我国钢铁工业得到了前所未有的发展,而钢材是现代建筑工程最主要的结构材料和工程材料,其质量直接关系到工程的结构质量和安全。
烧结矿是高炉炼铁的主要原料之一,其质量直接影响到钢铁的质量。
烧结原料、烧结性能不同,烧结矿中矿物的组成和结构也不同,而烧结矿的组成和结构是影响其质量的最主要因素。
因此,研究烧结矿的组成和结构对其质量的影响具有非常重要的现实意义。
关键词:高炉;配吃落地烧结矿;实际操作1 前言邯钢西区1号高炉炉容3200m3,设有32个风口,4个出铁场,于2008年4月18日点火开炉。
主要工艺如下:(1)设置独立的矿槽和焦槽,并列式布置;烧结矿分级入炉,采用焦丁回收入炉技术;(2)采用PW型并罐无钟炉顶;(3)冷却系统采用软水密闭循环,实现全软水冷却;(4)采用INBA渣处理装置;(5)采用改进型高温内燃式热风炉;(6)TRT炉顶余压回收装置。
邯钢西区1号高炉是邯钢首个开炉的大型高炉,投产初期各项经济技术指标与国内同类型高炉有很大的差距。
09年10月后,1号高炉去除中心焦,采用平台+漏斗布料模式。
历经近一年时间,摸索出适应自身炉况的操作制度,炉缸工作状态逐渐改善,各方面技术指标不断进步。
尤其在进入2012年以后,通过实施加强入炉原燃料管理、优化高炉操作制度、稳定高炉操作炉型、强化炉前生产管理、降低高炉休慢风率、四班统一稳定操作等有效措施,实现了高炉长期稳定生产,燃料比长期保持在500kg/t以下。
2 高炉配吃落地烧结矿的原料烧结矿作为高炉炼铁的主要原料,直接影响着高炉冶炼过程的经济技术指标,除要求其具有较高的品位外,还需对其中脉石成分进行分析。
现在广泛为各实验室采用的方法为以碳酸钠熔融法进行SiO2-CaO-MgO-Al2O3的系统分析,由于贵金属铂坩埚的使用,不仅提高了分析成本,同时对日常管理提出了更高的要求,完成上述系统分析约需2小时左右。
近年来发展起来的X荧光分析技术,初步实现了烧结矿试样分析的仪器化,但因该方法所用设备昂贵,对标样的依赖性强等因素,不仅使分析成本大大提高,同时试样成分的差异性造成的制备条件限制,使其广泛应用受到一定的局限。
配加落地烧结矿对高炉冶炼影响
矿入炉增加了多次倒运过程,必然影响落地烧结 矿的含粉率和粒度组成结构。
截取同一筛网直送烧结矿与落地烧结矿粒度 组成分析如表]所示。落地烧结矿与直送烧结矿 在筛上物粒度组成上存在较大差别:落地烧结矿 平均粒度较直送烧结矿偏小1 ~2mm。粒度组成 上,10 - 16mm小粒级比例增多约3% -6%, 25 ~40mm大粒级比例降低约2% -3%, 40mm以 上大粒级比例降低约2% ~3%
<5mm/% 2. 52 2. 49 2. 46 2. 39 2. 39 2. 38
平均粒度/ mm 17. 95 17. 73 17. 68 19. 35 19. 17 19. 08
12.0 10.0 &0进 6.0§
4.0蚁 2.0 0.0
图1 2月份落地烧结矿占比与矿筛返粉率关系
1.2低温还原粉化率分析 在高炉上部低温区(约500〜600兀),烧结
Vol. 40 No. 3
冶金能源
May. 2021
ENERGY FOR METALLURGICAL INDUSTRY
33
矿种 落地烧结矿
直送烧结矿
表1落地烧结矿与直送烧结矿筛上粒度组成对比
> 40 mm/ % 4. 02 3.27 4. 02 6. 08 6.44 6. 03
25 ~ 40mm/% 14. 82 14. 93 14. 38 1& 29 16. 74 17. 14
唐钢3号高炉1998年开炉,设计炉容为 2560m3, 2007年推移大修扩容至3200m30自 2019年以后,采暖季环保响应进入常态化,烧 结工艺长期限产甚至停产。高炉大量配吃自产和 外购落地烧结矿,配加比例长期在50%左右, 最高短期配加100%落地烧结矿。长期大量配吃 落地烧结矿对炉况长期稳定顺行带来较大压力, 通过采取一系列针对性措施,维持了高炉的长期 稳定顺行,取得了较好的经济技术指标。
烧结配矿优化及高炉生产应对实践
M etallurgical smelting冶金冶炼烧结配矿优化及高炉生产应对实践张利波摘要:近些年,高炉炼铁一直是冶炼生铁过程中应用的最重要的技术,居于主导地位。
最近几年,全球的学者即使研究出许多高炉炼铁技术,不过在制作成本的经济性方面,依旧不能和以往的高炉制造技术进行比较。
国内,因为历史条件与制造成本的干预,非高炉炼铁技术的发展速度较慢,超过百分之九十五的生铁依旧借助高炉进行制作。
高炉生产期间,入炉原料重点是烧结矿、球团矿和块矿,而且烧结矿的比例高于百分之八十。
所以,烧结矿的品质高低在高炉生产过程中占据着主导作用,提升烧结矿品质对于缩减制作成本、保证高炉良好的运行具备着较高的作用。
关键词:烧结配矿优化;高炉生产;应对实践对策现如今使用的矿粉、矿石以及含铁工业物料等,使得烧结原料逐渐繁杂,如何通过原料的优化搭配实现品质最优、成本最优是钢铁生产重点关注的问题。
烧结矿是高炉的主要“口粮”,其质量的好坏直接影响高炉生产稳定和各项经济技术指标的完成。
为了确保烧结矿质量稳定,工作人员运用智能化手段,提升烧结配料精度,改善烧结矿质量,为高炉高效生产筑牢保障。
1 研究背景1.1 铁矿粉市场行情在我国环保政策高效实施的环境下,钢铁公司开始限制产量,铁矿石的需求数目逐渐下降。
不过在2017年~2018年鉴因为钢铁利润空间的变化,个别产能被释放,导致铁矿石的需求数目逐渐提升。
身为铁矿石的出产地澳大利亚与巴西境内铁矿石的出产量也随之增加,不过市场依然处于供需不平衡的状态,导致铁矿石的流通价格较高。
并且,因为持续的挖掘与应用优质资源,导致地球上的优质铁矿石数量逐步的减少,铁矿石供需框架的调节会是后期国际上需要一起面临与开展的工作。
我国铁矿石的存储数量位于世界前列,大约为整体存储量的百分之十二,整体的应用潜力较高。
由于铁矿的开采、加工工艺的提升,铁矿资源的整体应用会呈现出良好的经济性。
1.2 烧结配矿结构优化的理论基础低品矿粉为减少烧结资金投入最为重要的方式,不过品味下降可能导致非铁元素的高效提升,造成烧结矿品质降低,为后续高炉生产留下隐藏的危害,科学的应用铁矿粉高温特性展开烧结配矿,能够提升烧结配矿的效果。
烧结矿质量及其对高炉冶炼主要操作指标的影响
烧结矿质量及其对高炉冶炼主要操作指标的影响摘要:烧结矿质量对高炉炼铁产量、能耗、生铁质量、高炉寿命起着决定性的作用。
基于此,本文重点分析了烧结矿质量及其对高炉冶炼主要操作指标的影响。
关键词:烧结矿质量;高炉冶炼;操作指标;影响目前,在高炉炼铁过程中,烧结矿的质量作为影响炼铁燃料消耗的重要因素之一,应进行有效的优化完善,以有效提高烧结矿的性能,为高炉炼铁过程奠定坚实的物质基础,从而在一定程度上促进炼铁工艺节能降耗的发展。
一、烧结矿产量与质量的影响因素1、燃料粒度影响。
合适的固体燃料粒度等级和粒度分布能提烧结机利用系数,使烧结矿成品率、转鼓指数、平均粒径等指标明显改善,同时也能降低固体燃料消耗和高炉返矿率。
2、烧结熔剂结构影响。
自熔性烧结矿要满足高炉所需各项理化指标,必须在混合料中配加一定量生石灰、石灰石和白云石等熔剂。
配加熔剂结构的不同会对烧结矿强度、碱度、还原性、低温还原粉化率和混匀料粒级分布等各项理化指标产生影响,这些指标会直接关系到高炉冶炼的稳定顺行,从而对生铁产量及炼铁成本产生影响。
二、烧结矿质量对高炉冶炼主要操作指标的影响1、烧结矿主要化学成分的影响①品位及SiO2含量影响。
在正常情况下,入炉矿品位1%变动将导致高炉燃料比1~1.5%变动,产量2~2.5%变动,一旦确定了烧结矿在炉料结构中比例,就可计算出烧结矿品位变动1%对高炉燃料比及产量的影响。
入炉矿SiO2含量1%变动将影响30~35kg/t渣铁比,100kg渣量将影响3.0~3.5%燃料、产量。
有了烧结矿入炉比例,乘以该比例将决定烧结矿SiO2含量变动对高炉主操作指标的影响。
②烧结矿碱度的影响。
生产实践表明,烧结矿最佳碱度范围为1.9~2.3,当低于1.85时,碱度每降低0.1,燃料比与产量将分别影响3.0~3.5%。
据了解,实际生产中,降低碱度对高炉燃料比影响远高于3.5%的比例。
近年来,一些生产企业的烧结矿碱度低于1.80甚至低于1.70,应该认识到,碱度对烧结矿质量和高炉主要操作指标都有影响。
【精品完整版】毕业论文:烧结矿质量对高炉冶炼的影响
【精品完整版】毕业论文:烧结矿质量对高炉冶炼的影响吉林电子信息职业技术学院毕业论文烧结矿质量对高炉冶炼的影响摘要烧结矿是高炉炼铁生产的主要原料之一,烧结矿的性能和质量直接影响高炉冶炼的顺行、操作制度和技术经济指标。
本论文通过对烧结矿的还原,滴落实验,验证不同粒度的半焦、无烟煤代替焦粉作燃料的铁矿烧结技术的比较优势。
以及改变其粒度等方面对烧结进行分析、研究。
本项研究内容包括:原、燃料的物理化学性质、燃料的性能及反应性、烧结矿质量指标的评价;在不同原料配比条件下改变燃料粒度的烧结实验;烧结矿的物理化学性能和冶金性能等检测;对燃料种类和配比对烧结矿生产指标、烧结矿化学成分、矿物组成、还原性能、还原粉化性能、软熔滴落性能的影响进行评价,实验结果及其分析。
实验结果证明:半焦在>5mm粒级控制在15%的粒度下是很好的烧结燃料。
无烟煤相对做烧结燃料效果不好;<3mm粒级控制在70%左右为宜。
关键词:烧结矿,无烟煤,焦粉,半焦,矿物组成,烧结矿冶金性能,改变粒度I吉林电子信息职业技术学院毕业论文目录第一章绪论·············································································································· - 6 -1.1烧结生产的目的·············································································································- 6 -1.2烧结用原料条件·············································································································- 7 -1.3燃料的粒7 -1.4燃料的基本性质·············································································································- 8 -1.4.1燃料的工业分析、元素分析 ......................................................................... - 8 -1.4.2燃料的灰成分和灰熔点·······························································································- 10 -第二章烧结的作用·································································································- 11 -2.1烧结矿的作用···············································································································- 11 -2.2烧结机的作用···············································································································- 12 -2.3烧结矿中MgO 作用机理····························································································- 12 -第三章烧结生成工艺及生产的工艺流程·························································- 13 -3.1烧结生成工艺···············································································································- 13 -3.2烧结生产的工艺流程··································································································- 13 -3.2.1烧结原料的准备 ..................................................................................... - 14 -3.2.2配料与混合............................................................................................... - 14 -3.2.3烧结生产 ................................................................................................... - 15 - 第四章烧结矿对高炉冶炼的影响·····································································- 18 -4.1烧结矿指标对高炉冶炼过程的影响·······································································- 18 -4.2烧结矿指标和冶金性能的影响因素·······································································- 20 -第五章结文献·················································································································- 25 -致谢·································································································错误!未定义书签。
烧结实业部质量指标影响因素
烧结内部控制要求:
成分 TFe FeO MgO R2 Pb Zn Na2O+k2O 转鼓 粒度 要求 ≥55% 9%-11.5% 2.2%-2.5%
1.8%±0.1%
备注
原料稳定后考虑1.8%±0.08%
≤0.02% ≤0.02% ≤0.1 ≥77.33% 5-10≤23%
烧 结 品 质
凝 聚 成 才
好,但是流动性差,不易排出炉外,从而影响高炉顺行。相反,如果酸性氧化
物含量高,炉渣的流动性好,凝固后的固态炉渣呈现玻璃状,一般称为玻璃渣 或者长渣,这样的炉渣脱硫效果很差,但是流动性好。所以高炉操作者要调整 炉渣的成分,也就是炉渣的碱度,既保持优良的流动性,也能有很好的脱硫效 果,使生铁达到一类要求。
的之接还原;
烧 结 品 质
凝 聚 成 才
烧结分厂
烧结矿对高炉冶炼的影响及质量的要求 一般烧结矿碱度在1.85±0.1条件下,软化的开始温度在1200-1220, 软化终了温度在1320-1330,软化温度区间在110-120,凡软化温度区 间(T2-T1)变小,对降低高炉软熔带的区间是有利的。反之,如果软 化开始温度降低,软化温度区间自然变大,不利于软熔带透气性改善, 一般影响烧结矿荷重软化性能的主要因素有: 一是烧结矿的还原性能:烧结矿还原性能的改善有利于烧结矿在升温过 程中形成液相,温度升高,导致烧结矿的软化开始温度升高。 二是烧结矿中脉石的熔点:在烧结矿碱度基本不变的条件下,烧结矿中 脉石的熔点不变,碱度低熔点低,碱度高熔点高;
因为磷化物是催性物质,冷凝时聚集于钢的晶界周围,减弱晶粒间的结 合力,使钢材在冷却时产生很大的脆性,从而造成钢的冷脆现象。由于
磷早烧结和选矿过程中不易脱除,在高炉冶炼过程中几乎全部还原进入
烧结知识问答
烧结高级1.简述铁矿粉烧结的意义和作用。
答:铁矿粉烧结具有如下重要意义和作用:⑴通过烧结,可为高炉提供化学成分稳定、粒度均匀、还原性好、冶金性能高的优质烧结矿,为高炉优质、高产、低耗、长寿创造良好的条件;⑵可去除硫、锌等有害杂质;⑶可利用工业生产的废弃物,如高炉炉尘、炼钢炉尘、轧钢皮、硫酸渣、钢渣等;⑷可回收有色金属和稀有、稀土金属。
2.烧结矿质量对高炉冶炼有哪些方面影响答:⑴烧结矿品位每升高1%,高炉焦比降低2%、产量提高3%;⑵烧结矿FeO变动,影响高炉焦比和产量,同时影响烧结矿的还原性和软容性能;⑶烧结矿碱度稳定是稳定高炉炉况的重要条件之一;⑷烧结矿强度对高炉冶炼有较大影响。
入炉矿含粉率升高,将导致高炉焦比升高、产量降低;⑸烧结矿还原性对高炉的影响,主要体现在烧结矿FeO含量,FeO高低影响着高炉冶炼的直接还原度(rd)。
直接还原度增加,焦比升高、产量降低;⑹烧结矿的低温还原粉化率(RDI)升高,高炉产量下降、焦比升高;⑺烧结矿荷重软化温度升高,高炉的透气性改善,产量提高;⑻熔滴性能直接影响高炉内熔滴带的位置和厚度,影响Si、Mn等元素的直接还原,从而影响生铁的成分和高炉技术经济指标。
3.简述烧结方法的分类。
答:按照烧结设备和供风方式的不同,烧结方法可分为:⑴鼓风烧结:烧结锅、平地吹。
属于小型厂的土法烧结,逐渐被淘汰。
⑵抽风烧结:①连续式:带式烧结机和环式烧结机等;②间歇式:固定式烧结机,如盘式烧结机和箱式烧结机;移动式烧结机,如步进式烧结机。
⑶在烟气中烧结:回转窑烧结和悬浮烧结。
目前普遍采用的是带式烧结机。
4.烧结生产工艺流程包括那几大系统各系统的主要作用是什么答:⑴原料准备系统:包括含铁原料的中和混匀、燃料破碎和熔剂破碎等;⑵配料系统:将匀料。
燃料、熔剂、循环返矿等按一定比例进行配合;⑶混匀制粒系统:将配合后的物料进行混匀并造球,保证成分均匀并具备一定的粒度组成,满足烧结过程和烧结矿质量的需要;⑷烧结系统:将准备好的烧结料铺在烧结台车上,点火、抽风烧结。
武钢烧结矿质量高炉指标
通过提高烧结矿的强度及冶金性能,加之炼铁厂加大对烧结矿筛的改造力度,减少入炉烧结矿的粉末,高炉技术经济指标逐年提升。
关键字:烧结矿质量高炉指标1概述近年来,随着武钢高炉的大型化和设备的更新换代,精料工作更加显得突出和重要。
高炉指标能否上一个台阶,首先看精料搞得好不好。
烧结矿是高炉炼铁的主要原料,其质量直接关系到高炉的技术经济指标。
高炉要求烧结矿的含铁品位高,化学成分稳定,有害杂质少,常温强度好,粒度均匀,粉末少,并具有还原度高,还原粉化率低,软化温度区间窄等良好的冶金性能。
2 提高烧结矿品位,有利于高炉增铁降焦入炉矿石品位每提高1%,产量提高3%,焦比降低2%。
因此提高入炉烧结矿品位对高炉增铁降焦的效果是十分明显的。
入炉烧结矿品位提高后,高炉渣量大幅下降,为进一步增大喷煤量创造了条件。
当高炉渣量降到300kg/t左右时,高炉喷煤量可达180kg/t,甚至更高。
高炉喷煤量增大后,风口前理论燃烧温度会下降,促使高炉进一步提高风温水平和富氧率,高炉指标的优化从此走上良性循环的轨道。
武钢烧结矿的品位呈逐年上升的趋势。
由1995年的54.28%上升到2005年的59%,烧结矿化学成分见表1。
提高烧结矿品位,主要靠大量采用高铁低硅矿粉。
烧结矿品位提高后,由于总粘结相减少,烧结矿的转鼓强度有所下降。
烧结厂采用整粒铺底料、厚料层烧结等技术来改善烧结矿的转鼓强度。
表1 2002~2005年武钢烧结矿化学成分3 提高烧结矿碱度,提高炉渣脱硫能力由于矿石品位提高后,高炉渣量减少,从而影响了炉渣脱硫能力。
提高烧结矿的碱度来提高炉渣碱度,未增强炉渣的脱硫能力。
2004年以前,武钢烧结矿碱度基本维持在1.70~1.80之间。
2004年以后,烧结矿碱度提高到1.80~1.90之间,甚至经常性地出现1.90~2.00的超高碱度。
碱度提高后,烧结矿中以铁酸钙为主的粘结相增加。
另外,由于高碱度烧结矿的使用,高炉使用球团矿的比例增加,导致入炉品位提高,而且熟料率也相应提高到90%以上。
烧结矿质量的影响及分析(最新整理)
张爽 首钢矿业公司烧结厂
摘 要 高炉炼铁所使用的主要含铁原料是烧结矿,近几年,我国生铁产量不断上升,烧结矿用量 大幅增加。烧结生产是一个复杂的物理化学过程,这就决定了烧结过程具有工艺参数变化大,影响 烧结矿质量的因素多,各参数和变量之间的关系极其复杂的特性。因此,难以用数学模型的方法来 达到优化控制的目的,只能借助人工智能和专家系统来实现对烧结过程的优化控制。提高烧结矿的 质量、降低消耗、节约能源、保护环境在烧结生产中显得越来越重要,也是烧结生产工艺技术发展 的永恒课题和方向。本文介绍了烧结工业的发展概况及首钢 360 平大型烧结机的建设背景,详细阐 述了烧结的定义和烧结工艺概况,论述了正确认识烧结工艺参数对搞好烧结生产的意义,介绍了烧 结工艺参数及其相互关系和烧结主要工艺参数对其烧结矿质量的影响,提出了对烧结工艺参数认识 的几点结论性意见以及改进工艺流程,优化烧结矿质量的措施。 关键词 烧结 工艺参数 相互关系 烧结矿质量
配碳的高低对烧结矿的质量有明显影响。配碳过高,会扩大燃烧带,增加烧结层的 阻力,致使产量降低;同时,还会因还原气氛增强,是 Fe2O3 分解,铁酸钙含量下降, 直接影响烧结矿质量。反之,配碳过低,将造成烧结带温度不足,成品率下降,影响烧 结矿的质量。 3.3 抽风负压对烧结矿质量的影响
在影响烧结生产的几种工艺参数中,料层的透气性是关键。在料层增厚的同时,提 高抽分负压和减慢机速,虽然不能增加产量,但可使烧结矿质量明显改善,且能耗降低, 成品烧结矿 FeO 降低,转鼓指数提高。
4 结论性意见
由以上论证和分析,可以得出如下结论性意见: (1)在烧结主要工艺参数中,厚料层是基础,适宜的水、碳是保证,混合料透气 性是保证烧结矿质量的关键。 (2)厚料层是烧结生产实现低碳、低 FeO、高强度、高还原性的基础。 (3)混合料适宜的水分和配碳取决于矿种、碱度、料层厚度和返矿的粒度及数量, 适宜的水分随料层厚度的提高而下降,厚料层、低水分才能实现低 FeO。 (4)高抽风负压、高机速有利于产量的提高,而不利于强度的改善;厚料层、低 负压、低机速有利于固体燃耗和 FeO 的降低,也有利于转鼓强度的改善。 (5)FeO 是衡量一个企业烧结技术水平的重要标志,厚料层、低配碳和低水分有利 于降低 FeO。
烧结矿指标对炼铁的影响
烧结矿质量对炼铁的影响
1、烧结矿含铁品位下降1%,高炉焦比上升2%,产量下降3%。
2、烧结矿亚铁变动1%,影响焦比1%--1.5%,影响产量1%--1.5%。
3、碱度在1.2以下时,每变动0.1,影响高炉焦比和产量3%--5%。
4、强度对高炉的影响主要表现在返矿上,强度差,返矿(<5)含量上升,且返矿含量每变动1%,影响焦比0.5%,影响产量0.5%--1%。
5、烧结矿的还原性对焦比和产量的影响:烧结矿在高炉内的直接还原度增加10%,焦比上升8%--9%产量下降8%--9%,烧结矿在60min,1000℃条件下,间接还原度每升高5%,高炉煤气的利用率提高0.66%。
6、烧结矿的低温还原度没提高5%,高炉焦比上升1.55%,产量下降1.5%,煤气利用率下降0.5%。
烧结矿中有害元素对高炉的危害和抑制
烧结矿中有害元素对高炉的危害和抑制高炉是冶金炼铁工艺中的重要设备,能够把原料如铁矿石炼制成铸铁和钢铁,具有重要的经济和社会意义。
然而,在高炉生产过程中,烧结矿中的有害元素会对炉内的化学反应产生影响,造成炉料堵塞、炉墙侵蚀、炉渣品质下降等问题,对炉子运行、产量及铁水质量带来危害,其对高炉的抑制也是十分重要的。
一、高炉生产中烧结矿有害元素的来源高炉炼铁的原料主要是矿石和焦炭,其中矿石中的有害元素是炼铁行业所面临的主要问题之一。
在高炉生产过程中,烧结矿中的有害元素会对炉内的化学反应产生影响,造成炉料堵塞、炉墙侵蚀、炉渣品质下降等问题,对炉子运行、产量及铁水质量带来危害。
烧结矿中的有害元素的来源一般是矿石中所含的有害元素,如硫、磷、铜、锌、镍等,还有烧结过程中吸附的有害元素,如氯、碱金属等。
二、烧结矿中有害元素对高炉的危害1、硫硫是烧结矿中最主要的有害元素之一。
当硫进入高炉中,它会与铁、焦炭发生反应,形成铁硫化物,交互作用会导致炉内温度下降,燃烧失调,炉渣流动性差等问题。
同时,硫还会造成铁水质量下降,甚至导致铸造中铁铸件断裂、孔洞等问题,严重影响了炼铁质量。
2、磷磷在烧结矿中常以磷酸化合物的形式存在,当烧结矿中的磷含量超过一定的限制时,容易对产生偏铁鱼、振落、炉墙侵蚀及炉气特性发生影响。
另外磷含量超过限制时,也会导致炼铁成本增加,因为过多的磷需要通过钙、镁等不含磷的材料来削减。
3、铜、锌、镍等烧结矿中还含有一些其他有害元素,如铜、锌、镍等,它们能够影响生铁的质量,因为这些元素会妨碍所需的化学反应的进行和生铁的结晶行为。
如果烧结矿中含有太多的这些元素,那么将会导致生铁中这些元素的含量增加,这将会影响这些元素的终末用途,从而限制产生符合标准的产品。
三、抑制烧结矿中有害元素的措施为了减少烧结矿中有害元素对高炉带来的危害,需要采取措施,抑制这些元素的含量,以确保高炉的正常运行和冶炼质量。
目前,常用的方法是采取改善烧结的工艺条件、精选矿石、还原剂等,以及加入一些抑制剂来减少有害元素的含量。
烧结矿的质量评价及检验方法
烧结矿的质量评价及检验方法摘要:由粉矿和高品位铁精矿生产的烧结矿是目前高炉炼铁的优选原料;随着高炉炉料中烧结矿比例的增加以及高炉不断的大型化,对烧结矿质量的要求越来越高;尤其需要生产粒度尽可能大和机械强度高的烧结矿;关键词:烧结矿质量评价;烧结矿质量的检验方法;1、前言:21世纪钢铁工业将继续发展和进步,钢铁材料仍是最主要的结构材料和用量最大的工程材料;烧结矿作为我国高炉的主要原料,随着钢铁产量的日益增加,对烧结矿的质量要求越来越大,因此烧结矿的质量就显得尤为重要,烧结矿的质量要求主要包括化学成分、物理性能与冶金性能三方面内容;2、烧结矿的质量评价及检验指标:具体的质量评价与检验指标主要有:化学成分及其稳定性、粒度组成与筛分指数、转鼓强度、落下强度、低温还原粉化性、还原性、软化-软熔特性等;化学成分及其稳定性:化学成分主要检测:TFe,FeO,CaO,SiO2,MgO,Al2O3,MnO,TiO2,S,P等,要求有效成份高,脉石成份低,有害杂质P、S等少;烧结矿化学成分稳定是高炉顺行的前提条件;烧结矿含铁量和碱度波动会引起高炉炉温和造渣制度波动,严重时会引起悬料、崩料等现象,使冶炼过程难以操作,导致焦比升高,生铁产、质量下降;烧结矿品位高低及波动大小,对高炉冶炼的影响很大;品位提高,单位炉容装入的铁量增加,高量减少,有利于提高高炉利用系数和焦比降低;鞍钢高炉生产实践证明,烧结矿品位提高1%,可降低焦比2%,高炉增产3%;粒度组成与筛分指数:筛分指数:取100Kg试样,等分为5份,用筛孔为5X5的摇筛,往复摇动10次,以lt;5mm出量计算筛分指数:C=100-A/100100,其中C为筛分指数,A为大于5mm粒级的量;粒度组成:烧结矿中小于5毫米粉末每增加10%,高炉减产6%~8%,焦比升高;烧结矿均匀,可以增加料柱空隙度,增加透气性和改善气流分布,有利于增产节焦;落下强度:评价烧结矿冷强度,测量其抗冲击能力,试样量为20±,落下高度为2m,自由落到大于20mm钢板上,往复4次,用10mm筛分级,以大于10mm的粒级出量表示落下强度指标;F=m1/m2X100,其中F为落下强度,m1为落下4次后,大于10mm的粒级出量,m2为试样总量;F=80~83为合格烧结矿,F=86~87为优质烧结矿;强度好的烧结矿有利于强化高炉的冶炼;烧结矿在运往炼铁,装入高炉的过程中及在炉内的运动都受到冲击、摩擦、挤压等作用而使其破碎;强度差的烧结矿产生大量的粉末,使炉料透气性恶化,破坏顺行,影响生产;转鼓强度:转鼓强度反映了烧结矿耐冲击、耐挤压、耐磨的能力;a.高碱度烧结矿的转鼓强度随FeO含量的增加而降低,采取低配炭烧结,把焦粉配比控制在5%一6%之间.以降低烧结还原气氛;b.改善熔剂和焦粉的粒度,使粒度在3一ornm达90%以上;C.稳定返矿圆盘的热返矿量,加强圆筒混合制粒,严格控制混合料水分;d.严格布料工艺,做到料面平整,不拉钩,布料不宜过紧过松,以反射板1/3锉料适宜;及时清理混合料仓四周粘料,保证料仓2/3仓料以上;e.加强同燃调的联系,保证点火煤气的发热值不低于6500kJ/m3,保证点火温度在11;;士5;C,以提高烧结矿表层质量;f.配加少量钢渣、轧钢皮等,提高液相量;还原性:是模拟炉料自高炉上部进入高温区的条件,用还原气体从烧结矿中排除与铁结合的样的难易程度的一种度量;是评价烧结矿冶金性能的主要质量标准;烧结矿中FeO含量的高低,是高炉原料能好坏的重要标志;一般来说,在同一原料和生产工艺条件下生产的烧结矿,FeO越低,还原性越好;通常情况下,烧结矿FeO降低1%,而强度变化不大时,可降低焦比1%;但烧结矿的FeO含量降低至一定范围后会使烧结矿强度变差;所以不能单一追求降低FeO含量;软化-软熔特性:一般以软化温度及软化区间,熔融带透气性,熔融滴下物的性状作为评价指标;评价烧结矿软化性有3项指标:1软化开始温度;表示软化开始的判据、无统一规定,一般以开始收缩时的温度或收缩率为4%或10%时的温度为软化开始温度;2软化终了温度;也无统一的判据;20%和25%收缩率曾被用作软化终了的判据,后来改为40%的收缩率;一般认为,软化终了即为熔化开始,由于铁矿石是一个含多种氧化物的复杂体系,不存在明确的熔化温度,只有一个温度区间,所以熔化开始温度常以通过试样层的气流压差陡升时的温度来表示;3软化区间;即软化终了温度和软化开始温度之间的温度差;温差大表示软化区间长,软熔带的透气性不好;影响铁矿石还原荷重软化性的因素:1矿石还原程度低,软化前矿石FeO含量高,会促使低熔点渣相形成,软化开始温度即低;若矿石还原程度高,矿石中FeO低,并可能还原成部分金属铁则软化开始温度高;2碱度升高,软化温度一般升高;3增加MgO,形成高熔点镁浮士体和含MgO的硅酸盐,软化温度则提高;4提高矿石品位和降低SiO2含量,可以减少低熔点渣相,使软化温度提高;5矿石中含有K2O 和Na2O时,形成渣相的温度下降,软化温度会大幅度降低;低温还原粉化性:根据烧结矿显微结构分析结果,认为产生低温还原粉化的主要原因是烧结矿中200一500微米的骸晶状菱形赤铁矿;在烧结料中配加米砂,可使烧结反应进行得比较充分时形成Mgo·Fe3O4抑制Fe3O4在冷却过程中再氧化成FeZO3骸晶,从而降低了烧结矿的低温还原粉化率;3、结论:以上说明了烧结矿的质量评价及检验方法;总结上述内容,现提出提高烧结矿质量的几种方法:机烧结系统点多、面广、线长,整个工艺线路上下工序衔接紧密,相似于“流水线”,任何一个环节、一个设备出现故障,哪怕是一个皮带机的托辊损坏,全系统都必须停机;停机就会打破整个工艺系统的稳定和平衡,影响烧结矿的质量;这一因素主要包括故障停机、检修开停机、设备精度等方面,是影响烧结矿质量的主要因素之一;料烧结系统使用的原料主要有混合矿2机为直供料、燃料焦粉、生石灰、内返、除尘灰等五种原料;其中除尘灰通过气力输送在配料室添加,配比一般在~1%,对水分和烧结矿的质量影响很小,基本不予考虑;返矿是系统自身循环,配比在20~25%,化学成分与烧结矿成分一致,只是在碱度调整过程中有影响,对其它指标影响不大;混合矿是烧结过程中最主要的原料,配比在70%左右,对烧结矿的质量影响最大,混合矿的化学成分TFe、SiO2、MgO、CaO及其稳定性,原料结构及其变化频率,直接影响烧结矿的品位、碱度、MgO、转鼓指数、粒度组成、FeO等指标,是影响烧结矿质量最主要的因素;燃料的质量、粒度、用量对烧结过程的顺利进行和烧结矿的质量影响很大,配比%~4%,虽然配比不大,但直接影响烧结矿转鼓指数、粒度组成、FeO等指标,是影响烧结矿质量的主要因素之一;生石灰是烧结过程主要的熔剂,直接影响烧结矿碱度的稳定,配比~5%,所以生石灰的质量、粒度直接影响烧结矿的碱度、转鼓指数、粒度组成,是影响烧结矿质量的主要因素之一;法烧结生产的各种管理制度都比较健全;工艺技术规程、作业指导书、烧结矿质量标准、工序控制要求等都很详细,是保证烧结矿质量稳定的基本保证;其中工艺操作参数、检验标准、原料质量验收对烧结矿的质量影响最大,是影响烧结矿质量的主要因素之一;测烧结矿质量的各项指标是指导烧结和高炉生产操作的依据和基础,所以质检数据的科学性、代表性尤为关键;质量检验方法和精度是反映质检数据科学性、代表性的关键手段,影响后续生产的调整和稳定;收稿日期:20年12月1日编辑:。
TiO2对烧结生产和高炉冶炼的影响
TiO2对烧结生产和高炉冶炼的影响摘要本文分析TiO2对烧结利用系数、转鼓强度以及冶金性能的影响,采取提高SiO2/TiO2比值、提高料层厚度和配碳量、配加氧化锰、氧化硼、萤石等措施,改善烧结矿质量和利于高炉稳定顺行。
关键词TiO2烧结矿质量转鼓强度冶金性能1 前言随着钒钛磁铁精矿粉用于烧结,需要了解掌握高钛矿粉对烧结生产的影响,找出烧结矿矿物组成随TiO2含量变化的规律,以及高钛烧结矿对高炉冶炼的影响,为综合利用高钛矿石资源和提高烧结矿质量提供理论依据。
2 钛烧结矿的质量问题2.1 钛烧结矿利用系数和转鼓强度低钛磁精粉烧结,利用系数和转鼓强度低源于TiO2对矿物组成和显微结构的影响。
钛磁精粉成球性和可烧性差于普通磁精粉,且形成的钙钛矿CaO·TiO2黏结相黏度大,料层阻力大,垂烧速度慢,利用系数低;TiO2极易与CaO反应生成熔点高、硬度大而脆的钙钛矿和钛榴石物质,使混合料熔化温度上升,液相量减少,混合料烧结性能差;渣相熔化温度上升,流动性变差,影响液相扩散与同化;钙钛矿阻碍磁铁矿氧化,使磁铁矿增加赤铁矿减少,且TiO2消耗大量CaO减少游离CaO,降低铁酸钙;钙钛矿结构致密还原性差,减少烧结矿孔隙结构,不利于其它反应的进行以及液相形成和流动,这是TiO2影响利用系数和转鼓强度的主因。
某试验研究表明碱度2.45的烧结矿中,铁酸盐液相较多,钙钛矿液相减少;随着TiO2含量升高,转鼓强度和成品率呈降低趋势,TiO2含量低于9%时降低较快,9%~10%时降低幅度趋于平缓。
烧结过程实质是铁矿粉与CaO、SiO2、MgO、Al2O3等组分同化的过程,铁矿粉同化性是低熔点矿物生成液相的基础,同化性好则生成液相能力强,利于增加液相黏结相提高固结强度,同时铁酸钙生成能力强。
研究表明钛磁精粉同化性差于普通磁精粉,且生成钙钛矿不利于液相流动;钛磁精粉连晶强度低于普通磁精粉,所以钛磁精粉烧结不利于提高转鼓强度和还原度。
烧结实业部质量指标影响因素(ppt 35页)
微量元素对高炉影响
磷(P): 磷也是钢材的有害成分,以Fe2P、Fe2P形态溶于铁水: 因为磷化物是催性物质,冷凝时聚集于钢的晶界周围,减弱晶粒间的结 合力,使钢材在冷却时产生很大的脆性,从而造成钢的冷脆现象。由于 磷早烧结和选矿过程中不易脱除,在高炉冶炼过程中几乎全部还原进入 生铁。所以控制生铁含磷含磷的唯一途径就是控制原料的含磷量。
烧结矿粒级: 影响因素: 2)精粉和矿粉配比:精粉比例失衡(30%-45%为宜),精粉比例偏高, >40mm比例上升,<10mm比例下降;精粉比例偏低,>40mm比例下 降,<10mm比例上升; 3)焦粉配比调整:燃料用量偏高,>40mm比例上升,<10mm比例下 降,10-40mm比例基本保持不变;燃料用量偏低,>40mm比例下降, <10mm比例上升; 4)混合料水分:混合料水分偏低,成球率下降,料层透气性、垂直烧 结速度降低,液相粘结面积增加,>40mm比例上升,<10mm比例下 降,整体烧结矿比例粒级偏大,10-40mm粒级比例下降;混合料水分偏 高,整体烧结矿粒级偏碎,<10mm比例上升趋势明显;
烧结矿对高炉冶炼的影响及质量的要求
熔融滴落 资料研究表明,含铁炉料熔滴带的阻力损失占整个高炉阻力损失的三分 之二以上,熔滴性能直接影响高炉内熔滴带的位置和厚度,影响硅、锰等元素
的之接还原;
烧结矿对高炉冶炼的影响及质量的要求
一般烧结矿碱度在1.85±0.1条件下,软化的开始温度在1200-1220, 软化终了温度在1320-1330,软化温度区间在110-120,凡软化温度区 间(T2-T1)变小,对降低高炉软熔带的区间是有利的。反之,如果软 化开始温度降低,软化温度区间自然变大,不利于软熔带透气性改善, 一般影响烧结矿荷重软化性能的主要因素有: 一是烧结矿的还原性能:烧结矿还原性能的改善有利于烧结矿在升温过 程中形成液相,温度升高,导致烧结矿的软化开始温度升高。 二是烧结矿中脉石的熔点:在烧结矿碱度基本不变的条件下,烧结矿中 脉石的熔点不变,碱度低熔点低,碱度高熔点高;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高炉主要操作指标
利用系数
燃料比
1.228
813
1.998
559.4
2.412
535.0
2.153
496.7
2.28
478.0
0.788
793.2
0.463
878.0
1.519
556.9
1.719
547.6
2.147
538.0
0.472
986
1.234
610
2.04
601
2.20
550
近几年有不少钢铁企业采用低品位、大渣量的做法,主观愿望想降低成本,实际适得其反,造
2 烧结矿质量的内涵和价值
烧结矿的质量由化学成分、物理性能和冶金性能三部分组成,它们三者间的关系是:化学成分是基 础,物理性能是保证,冶金性能是关键。
2.1 烧结矿的主要化学成分及其价值
烧结矿的主要化学成分包括品位和SiO2、碱度、MgO、Al2O3和FeO,还有S、P、Ka2O、ZnO和Cl等有 害元素。 2.1.1 含铁品位对烧结矿质量的价值
900℃还原/% 80.75 80.10 77.12 85.51 81.56 79.12
烧结生产之所以要配MgO是为了满足高炉炼铁炉渣流动性、脱硫和脱碱(K2O+Na2O)的需 求。
2.1.6 FeO含量对烧结矿质量的价值 FeO含量也是烧结矿的一个重要内容,FeO含量的高低直接影响烧结矿的强度、粒度和冶金
SiO2是烧结矿质量的一个重要元素,在烧结生产中SiO2是烧结生成渣相的主要组分,也是烧结生 产生成铁酸钙粘结相的重要组分。在烧结矿生产中,SiO2含量既不能太低也不能过高,最佳含量为 4.6~5.3%[7],0.1~0.3的Al2O3/SiO2是形成复合铁酸钙的重要条件。当SiO2含量低于4.6%,会因为渣相 不足影响烧结矿的强度;当SiO2高于5.3%后,随硅酸盐渣相增大将影响烧结矿的强度和冶金性能。 SiO2含量对鞍钢烧结矿的质量影响列表列于表5, SiO2含量对鞍钢和太钢高炉操作指标的影响列于表 6。
5~7
40
7~8
5~7
3~5
太钢
1.31
10~15
7~10
50~55
20
3~5
未见
1.78
35~40
10~15
30~35
3~5
10
3
1.96
40
15
25~30
2~3
10
3~5
2.15
45
7~10
30
1~2
10~15
3~5
几个企业烧结矿强度与碱度的关系列于表3,几个企业烧结矿的冶金性能与碱度的关系列于
4 对改善烧结矿质量的几点结论性意见
1 烧结矿在高炉炼铁中的地位和作用
自上世纪八十年代以来,高碱度烧结矿一直是我国高炉炼铁的主要原料,近几十年来,铁原料占高 炉炼铁成本接近70%,烧结矿占高炉炼铁炉料的70%以上,占吨钢能耗指标的10%以上,是钢铁生产能耗 的第二大户,也是废气物排放的大户,因此不论从炉料组成比例、生铁成本、还是废弃物排放及环境保 护,烧结矿生产对高炉炼铁都有着举足轻重的影响。 1.1 烧结矿的物理性能对高炉上部块状带的透气性起决定性的作用(強度、粒度、低温还原強度) 1.2 烧结矿的荷重还原软化性能对高炉软化带的透气性起决定性的作用 1.3 烧结矿的熔滴高能对高炉下部熔融带的透气性起决定性的作用 1.4 烧结矿的品位、碱度和脉石含量对高炉冶炼的主要指标(包括产量、燃料比、生铁质量和成本)起 着决定性的作用
表2 莱钢、太钢不同碱度烧结矿的矿物组成[4]
企业名称 莱钢
烧结矿碱度 1.35
SFCA 10~12
Fe2O3 7~12
Fe3O4 50~55
玻璃相 20~25
2CaO/SiO2 3
未矿化化熔剂 1~2
1.6
15
7~10
50
15~17
6~8
2~3
1.80
25
7~10
45
12
6~8
1~2
2.10
35
8.62
73.29
RDI+3.15 79.5 78.5 77.3 ---
2.1.5 MgO含量对烧结矿质量的价值
MgO含量对烧结矿质量而言是一个负能量元素,它有利于改善烧结矿的低温还原粉化性能还是建
立 在 降 低 烧 结 矿 还 原 性 上 得 到 的 。 MgO 含 量 在 烧 结 过 程 中 易 与 Fe3O4 反 应 生 成 镁 磁 铁 矿 (MgO ·Fe3O4),阻碍Fe3O4在烧结过程中氧化为Fe2O3,降低铁酸钙相的生成,造成成品烧结矿的冷 强度和还原性降低。MgO 含量对首钢和梅钢烧结矿质量的影响列于表8和表9.
68.2
8.2 1043 1226 183 1486
1519
八
1.72
-
-
-
- 1185 1347 162 1382
1488
钢
1.99
-
-
-
- 1215 1389 174 1435
1505
2.02
-
-
-
- 1183 1347 164 1370
1518
酒
0.48
61.0 63.96 80.15
7.9 1085 1140 55 1180
宣钢 74.33(1.82) 76.17(1.97) 78.54(2.08)
烧结 CaO/SiO2 900℃ 矿
RI/%
表4 几个企业烧结矿的冶金性能与碱度的关系
500℃还原粉化/%
软化性能/℃
熔融滴落性能
RDI+6.3 RDI+3.15 RDI-_0.5 T10 T40 ΔT
Ts
Tdபைடு நூலகம்
ΔPm·9.8pa
表6 SiO2含量对鞍钢太钢高炉操作指标的影响
企业 年份 烧结矿质量
TFe
SiO2
入 炉 矿 品 渣铁比 位
高炉主要操作指标 利用系数(t/m3·d)燃料比/kgt-1
鞍钢 2000 52.68 7.57
54.79
470
1.887
577.0
2006 57.54 5.07 太钢 2000 55.17 6.70
表1 首钢等企业烧结矿品位、SiO2含量与高炉炼铁技术经济指标的关系[1][2][3]
年份
1961 1978 1990 2000 2010 1967 1977 1997 2000 2010 1975 1986 1990 2000 2010
TFe 43.72 53.29 57.20 56.98 56.19 46.78 45.75 53.24 56.97 57.16 43.08 49.35 49.67 48.39 49.378
含铁品位是烧结矿质量的核心,我国自解放后至今半个多世纪以来,提高烧结矿质量的 一个核心问题就是不断提高烧结矿的品位、降低烧结矿的SiO2含量,由于品位的提高,渣量的 降低、高炉炼铁的产量提高,燃料比降低,表1列出了首钢、包钢和酒钢的烧结矿质量与高炉 主要技术经济指标的关系。
含
企业名称 首钢
包钢
酒钢
成大排放、高燃料比和低效的结果,总结历史的经验,应继续走精料之路,才能实现低成本、低燃
料比和高效炼铁的目标。
2.1.2 碱度对烧结矿质量的价值 理论研究和多年来的生产实践证明,高碱度是烧结矿质量的基础。由于烧结矿的质量取决于
其矿物组成,而烧结矿的矿物组成取决于碱度还配碳。对高炉炼铁而言,烧结矿的最佳碱度范围为 1.90~2.30,莱钢、太钢不同碱度烧结矿矿物组成列于表2,在生产实践中,烧结矿的强度和粒度, 烧结矿的冶金性能均与其碱度直接相关。
烧结矿质量及其对高炉冶炼主要操作指标的影响
许满兴 (北京科技大学)
摘 要:本文阐述了烧结矿在高炉炼铁中的地位和作用,阐明 了烧结矿质量的内涵,分析了烧结矿的化学成分、物理性能和 冶金性能对高炉冶炼主要操作指标的影响,提出了烧结生产改 善烧结矿质量的几点结论性意见。 关键词:烧结矿质量、主要化学成分、强度和粒度、冶金性能 高炉冶炼主要操作指标
1300
钢
1.84
85.9
39.5
73.13
7.4 1170 1280 110 1320
1520
102 130
188 246
292 310 338
900 1180
33.63 11.76
21.64 63.39
251.39 178.36 417.72
999.60 2214.80
由表2~表4可见,烧结矿的质量与碱度密切相关,烧结生产必须坚持高碱度的方向。 2.1.3 SiO2含量对烧结矿质量的价值
2006 58.46 4.75
59.69
290
56.51
380
59.45
285
2.155 2.070 2.193
501.2 512.0 492.4
2.1.4 Al2O3含量对烧结矿质量的价值 对烧结矿的质量而言,Al2O3含量也是影响质量的一个重要元素,首先,一定的Al2O3/SiO2,是
烧结生成针状复合铁酸钙的重要条件,在常态下,高碱度烧结矿的化学分子式是:5 CaO·2SiO2·9 (FeAl)2O3,烧结矿没有Al2O3就不能生成SFCA,但含量不能太高,超过了2%就会影响烧结矿的冷 强度和RDI指数,烧结矿的Al2O3含量一般控制在1.0~2.0%的范围内,Al2O3对杭钢烧结矿强度和RDI指 数的影响列于表7。