2019年七年级下册数学期末考试模拟试题NE

合集下载

2019年七年级数学下期末模拟试卷(含答案)

2019年七年级数学下期末模拟试卷(含答案)

2019年七年级数学下期末模拟试卷(含答案) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )A.20o B.30o C.40o D.60o 3.计算2535-+-的值是()A.-1B.1C.525-D.255-4.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.25.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)6.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.57.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE8.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩9.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,810.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角11.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 12.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.15.某小区地下停车场入口门栏杆的平面示意图如图所示,垂直地面 于点 , 平行于地面 ,若 ,则 ________.16.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是_______________.17.化简(2-1)0+(12)-2-9+327-=________________________. 18.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.19.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.如图,直线AB 与CD 相交于点O ,∠BOE=∠DOF=90°.(1)写出图中与∠COE 互补的所有的角(不用说明理由).(2)问:∠COE 与∠AOF 相等吗?请说明理由;(3)如果∠AOC=15∠EOF ,求∠AOC 的度数. 22.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足2(8)c 40a ++=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B 的坐标,AO 和BC 位置关系是;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S ∆∆=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.23.已知△ABC 是等边三角形,将一块含有30°角的直角三角尺DEF 按如图所示放置,让三角尺在BC 所在的直线上向右平移.如图①,当点E 与点B 重合时,点A 恰好落在三角尺的斜边DF 上.(1)利用图①证明:EF =2BC .(2)在三角尺的平移过程中,在图②中线段AH =BE 是否始终成立(假定AB ,AC 与三角尺的斜边的交点分别为G ,H)?如果成立,请证明;如果不成立,请说明理由.24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠Q 与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒Q (已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b Q (已知),得13∠=∠( ).3∴∠=________(等量代换).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个, 故选C .【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB ∥CE所以∠B=∠3=30o故选B【点睛】熟练运用平行线的判定和性质.3.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】 解:2535+-(253525351-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 4.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m 的值即可.【详解】解:276359632713x y x y +=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A .【点睛】考查了解二元一次方程组,解关于x ,y 二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.5.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.6.D解析:D【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0,解得a =5.故选D .7.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C =∠ABE 不能判断出EB ∥AC ,故A 选项不符合题意;B 、∠A =∠EBD 不能判断出EB ∥AC ,故B 选项不符合题意;C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意.故选:D .【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.D解析:D【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.9.C解析:C【解析】【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B (-4,-1)的对应点D 的横坐标为-4+4=0,点D 的纵坐标为-1+2=1,故D (0,1).故选C .【点睛】此题考查了坐标与图形的变化----平移,根据A (-2,3)变为C (2,5)的规律,将点的变化转化为坐标的变化是解题的关键.10.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 11.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.12.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C (32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.15.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得C D∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.16.4【解析】【分析】先估算的范围然后确定ab的最小值即可计算a+b的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b<b为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】∴2<3,∵a,a为正整数,∴a的最小值为3,∴1<2,∵b,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.17.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键解析:-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.18.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺, 依题意得 4.5112x y x y -=⎧⎪⎨=-⎪⎩, 故答案为: 4.5112x y x y -=⎧⎪⎨=-⎪⎩. 【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.19.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB ⊥lPB=5cm ∴P 到l 的距离是垂线段PB 的长度5c m 故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB ⊥l ,PB=5cm ,∴P 到l 的距离是垂线段PB 的长度5cm ,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.20.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O 则直线与坐标轴围成的三角形是以OAOB 为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =,∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.三、解答题21.(1) ∠DOE ,∠BOF ;(2) 相等;(3) ∠AOC=30°.【解析】试题分析:(1)由题意易得∠COE+∠DOE=180°,由∠BOE=∠DOF=90°可得∠DOE=∠BOF ,从而可得∠COE 的补角是∠DOE 和∠BOF ;(2)由∠BOE=∠DOF=90°易得∠AOE=∠COF=90°,从而可得∠COE=∠AOF ;(3)设∠AOC=x ,则可得∠EOF=5x ,结合∠COE=∠AOF 可得∠COE=2x ,由∠AOC+∠COE=∠AOE=90°列出关于x 的方程,解方程求得x 的值即可.试题解析;(1)∵直线AB 与CD 相交于点O ,∴∠COE+∠DOE=180°,即∠DOE 是∠COE 的补角,∵∠BOE=∠DOF=90°,∴∠BOE+∠BOD=∠DOF+∠BOD ,即:∠DOE=∠BOF ,∴与∠COE 互补的角有:∠DOE ,∠BOF ;(2)∠COE 与∠AOF 相等,理由:∵直线AB 、CD 相交于点O ,∴∠AOE+∠BOE=180°,∠COF+∠DOF=180°,又∵∠BOE=∠DOF=90°,∴∠AOE=∠COF=90°,∴∠AOE ﹣∠AOC=∠COF ﹣∠AOC ,∴∠COE=∠AOF ;(3)设∠AOC=x ,则∠EOF=5x ,∴∠COE+∠AOF=∠EOF-∠AOC=5x-x=4x ,∵∠COE=∠AOF ,∴∠COE=∠AOF=2x ,∵∠AOE=90°,∴x+2x=90°,∴x=30°,∴∠AOC=30°.点睛:(1)有公共顶点,且部分重合的两个直角,其公共部分两侧的两个角相等(如本题中的∠COE=∠AOF );(2)解第3小题的关键是:当设∠AOC=x 时,利用已知条件把∠COE 用含“x ”的式子表达出来,这样即可由∠AOC+∠COE=∠AOE=90°,列出关于“x ”的方程,解方程即可得到所求答案了.22.(1)(-4,-4) ,BC ∥AO ;(2)P (−4,0);(3)∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【解析】【分析】(1)由2(8)40a c +++=解出c ,得到B 点,易知BC ∥AO ;(2)过B 点作BE ⊥AO 于E ,设时间经过t 秒,AP =2t ,OQ =t ,CQ =4-t ;用t 表示出PAB S ∆与QBC S ∆,根据2PAB QBC S S ∆∆=列出方程解出t 即可;(3)要分情况进行讨论,①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图1所示,利用平行线的性质可得到∠PQB =∠OPQ +30°;②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图2所示,同样利用平行线的性质可得到,∠BQP +∠OPQ =150°【详解】(1)由2(8)40a c +++=得到c+4=0,得到c=-4(-4,-4) ,BC ∥AO(2)过B 点作BE ⊥AO 于E设时间经过t 秒,则AP =2t ,OQ =t ,CQ =4-t∵BE =4,BC =4,∴APB 1AP 2S V =·1BE 2442t t =⨯⨯= ()BCQ 11 S CQ?BC 448222t t ==⨯-⨯=-V ∵APB BCQ 2S S =V V∴()4282t t =-解得t =2∴AP =2t =4∴P(−4,0)(3) ①当点Q在点C的上方时;过Q点作QH∥AO如图一所示,∴∠OPQ=∠PQH.又∵BC∥AO,QH∥AO∴QH∥BC∴∠HQB=∠BCQ=30°.∴∠OPQ+∠BCQ=∠PQH+∠BQH.∴即∠PQB =∠OPQ+∠CBQ.即∠PQB =∠OPQ+30°②当点Q在点C的下方时;过Q点作HJ∥AO如图二所示,∴∠OPQ=∠PQJ.又∵BC∥AO,QH∥AO∴QH∥BC∴∠HQB=∠BCQ=30°.∴∠HQB+∠BQP+∠PQJ=180°,∴30°+∠BQP+∠OPQ=180°即∠BQP+∠OPQ=150°综上所述∠PQB =∠OPQ+30°或∠BQP+∠OPQ=150°【点睛】本题重点考察非负项的性质、三角形面积的计算、平行线的性质等知识点,综合程度比较高,第三问对Q点进行分情况讨论,作出辅助线是解题关键23.(1)详见解析;(2)成立,证明见解析.【解析】【分析】(1)根据等边三角形的性质,得∠ACB =60°,AC =BC .结合三角形外角的性质,得∠CAF =30°,则CF =AC ,从而证明结论;(2)根据(1)中的证明方法,得到CH =CF .根据(1)中的结论,知BE +CF =AC ,从而证明结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC ,∴CF =AC =BC ,∴EF =2BC .(2)成立.证明如下:∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CHF =60°-30°=30°,∴∠CHF =∠F ,∴CH =CF .∵EF =2BC ,∴BE +CF =BC .又∵AH +CH =AC ,AC =BC ,∴AH =BE .【点睛】本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF =2BC 是解题的关键.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a ∥b (已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.。

2019年初一数学下期末模拟试卷附答案

2019年初一数学下期末模拟试卷附答案

2019年初一数学下期末模拟试卷附答案一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( ) A .1600名学生的体重是总体 B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本3.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A .(-2,-3) B .(-2, 3) C .(2, 3) D .(-3, 2)4.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( )A .B .C .D .5.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°6.下面不等式一定成立的是( ) A .2aa < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >7.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩8.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)9.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE10.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2B .2C .3D .﹣311.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.12.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______.14.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为_____.15.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .16.64的立方根是_______.17.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.18.已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________.19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.三、解答题21.某运输公司现将一批152吨的货物运往A ,B 两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A ,B 两地的运费如下表所示:目的地(车型)A地(元/辆)B地(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A地,其余货车前往B地,设前往A地的大货车为x辆,前往A,B两地总费用为w元,试求w与x的函数解析式.22.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?23.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO 的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.24.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.25.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样)(1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.4.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.5.D解析:D 【解析】 【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】 ∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D . 【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.7.C解析:C 【解析】 【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案. 【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩,故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.8.C解析:C 【解析】 【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50. 故选:C .本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.9.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.10.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.11.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.二、填空题13.m >-3【解析】【分析】首先解方程利用m 表示出x 的值然后根据x 是正数即可得到一个关于m 的不等式即可求得m 的范围【详解】2x=3+m 根据题意得:3+m >0解得:m>-3故答案是:m>-3【点睛】本题考解析:m >-3 【解析】 【分析】首先解方程,利用m 表示出x 的值,然后根据x 是正数即可得到一个关于m 的不等式,即可求得m 的范围. 【详解】33x x m +=- 2x=3+m ,根据题意得:3+m >0, 解得:m>-3. 故答案是:m>-3. 【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4解析:4a <【解析】3+=1,33x y a x y +⎧⎨+=⎩①②由①+②得4x+4y=4+a , x+y=1+4a , ∴由x+y<2,得 1+4a <2, 即4a <1, 解得,a<4.故答案是:a<4.15.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.16.【解析】【分析】根据立方根的定义即可求解【详解】∵43=64∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义解题的关键是熟知立方根的定义解析:【解析】【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.17.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 18.【解析】【分析】首先确定不等式组的解集先利用含a 的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解:解得不等式组的解集为:且∵不等式组只有2 解析:4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤<∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键19.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.20.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.三、解答题21.(1)中大货车用8辆,小货车用7辆;(2)w =100x +9400(3≤x ≤8,且x 为整数).【解析】【分析】(1)根据表格列出二元一次方程,再根据二元一次方程的解法计算即可.(2)根据费用的计算,列出费用和大货车x 的关系即可.【详解】(1)设大货车用x 辆,小货车用y 辆,根据题意得:15128152x y x y +=⎧⎨+=⎩, 解得:87x y =⎧⎨=⎩. 故这15辆车中大货车用8辆,小货车用7辆.(2)设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,则w 与x 的函数解析式:w =800x +900(8﹣x )+400(10﹣x )+600[7﹣(10﹣x )]=100x +9400(3≤x ≤8,且x 为整数).【点睛】本题主要考查二元一次方程组的应用,关键在于设出合适的未知数,再根据条件列出方程.22.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.23.(1)C(5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.∠=∠+∠,理由见解析;24.(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【解析】【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠CPE -∠DPE =∠β-∠α;当点P 在B 、O 两点之间时,∠CPD =∠α-∠β.理由:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.25.(1)每本文学名著45元,每本自然科学书20元;(2)方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【解析】【分析】(1)设每本文学名著x 元,每本自然科学书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,列出不等式组,解答即可.【详解】解:(1)设每本文学名著x 元,每本自然科学书y 元,可得:305023502020500x y x y +=⎧⎨-=⎩, 解得:4520x y =⎧⎨=⎩. 答:每本文学名著45元,每本自然科学书20元;(2)设学校要求购买文学名著z 本,自然科学书为(z+30)本,根据题意可得:30804520(30)2400z z z z ++⎧⎨++⎩…„, 解得:36025z 13≤≤, 因为x 取整数,所以x 取25,26,27;方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【点睛】此题主要考查了二元一次方程组的应用,一元一次不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.。

2019年七年级数学下期末模拟试题(含答案)

2019年七年级数学下期末模拟试题(含答案)

17.如图,已知 AB、CD 相交于点 O,OE⊥AB 于 O,∠EOC=28°,则∠AOD=_____度;
18.已知 a>b,则﹣4a+5_____﹣4b+5.(填>、=或<) 19.在开展“课外阅读”活动中,某校为了解全校 1200 名学生课外阅读的情况,随机调查了 60 名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该 校 1200 名学生一周的课外阅读时间不少于 7 小时的人数是_______.
12.D
解析:D 【解析】 【分析】
两式相加得,即可利用 a 表示出 x y 的值,从而得到一个关于 a 的方程,解方程从而求
得 a 的值. 【详解】 两式相加得: 3x 3y 3a 6 ; 即 3(x y) 3a 6, 得 x y a 2 即 a 2 0, a 2 故选:D. 【点睛】 此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析. 二、填空题
9.B
解析:B 【解析】 【分析】
直接化简二次根式,得出 3 的取值范围,进而得出答案.
【详解】
∵m= 4 + 3 =2+ 3 ,
1< 3 <2,
∴3<m<4, 故选 B. 【点睛】
此题主要考查了估算无理数的大小,正确得出 3 的取值范围是解题关键. 10.A
解析:A 【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故 正确; 根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确; 根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A. 点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说 明即可.

2019年初一数学下期末模拟试卷(及答案)

2019年初一数学下期末模拟试卷(及答案)

2019年初一数学下期末模拟试卷(及答案) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==3.计算2535-+-的值是()A.-1B.1C.525-D.255-4.如图已知直线//AB CD,134∠=︒,272∠=︒,则3∠的度数为()A.103︒B.106︒C.74︒D.100︒5.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=106.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩8.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1 B .-1 C .2 D .-29.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个10.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-311.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3B .5C .7D .9 12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.不等式71x ->的正整数解为:______________.14.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.15.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 16.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a ﹣b=______. 17.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (﹣3,2),点B (5,﹣8)平移到点D ,则D 点的坐标是________.18.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________ 19.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.20.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=___________,n=_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?22.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.23.如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图②中∠END与∠CFI的度数;(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.24.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样)(1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.25.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个1,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】解:23+-(23231-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 4.B解析:B【解析】【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案.【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补),∴318018074106BAC ∠=︒-∠=︒-︒=︒,故选B .【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.5.A解析:A【解析】【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键. 6.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 7.A解析:A【解析】【分析】【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩, 故选D .考点:由实际问题抽象出二元一次方程组. 8.B解析:B【解析】把代入x-ay=3,解一元一次方程求出a值即可.【详解】∵是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.9.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.10.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.11.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.14.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.15.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为3 解析:3【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.16.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x ay b=⎧⎨=⎩代入方程组3354x yx y+=⎧⎨-=⎩,得:3354a ba b+=⎧⎨-=⎩①②,①+②,得:4a﹣4b=7,则a﹣b=74,故答案为74.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值.17.(3﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的而点A (-14)的对应点为C(-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B(5-8)的对应点D的坐标【详解】解析:(3,﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B(5,-8)的对应点D的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),∴由A平移到C点的横坐标减小2,纵坐标减小2,则点B(5,-8)的对应点D的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.18.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a <【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.20.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF 然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC 沿BC 方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF ,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【解析】【分析】(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,根据题目中的等量关系:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a、b为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组为:3217 2318 x yx y+=⎧⎨+=⎩解得34 xy=⎧⎨=⎩答:1辆A型车辆装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b-∵a、b都是整数∴92ab=⎧⎨=⎩或55ab=⎧⎨=⎩或18ab=⎧⎨=⎩答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A型车1辆,B型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解. 23.(1)20,70;(2)80°;(3)90°;【解析】【分析】(1)由PM∥AB根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM∥CD,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD∥BC,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI的度数;(3)由(2)可得,∠CFI=180°-2β,由AB∥CD,可得∠END=2α,当FI∥EH时,∠END=∠CFI,据此即可得α+β=90°.【详解】(1)∵PM∥AB,α=20°,∴∠EPM=∠AEP=20°,∵AB∥CD,PM∥AB,∴PM∥CD,∴∠MPF=∠CFP=50°,∴∠EPF=20°+50°=70°,故答案为20,70;(2)∵PE平分∠AEH,∴∠AEH=2α=40°,∵AD∥BC,∴∠END=∠AEH=40°,又∵FG平分∠DFI,∴∠IFG=∠DFG=β=50°,∴∠CFI=180°-2β=80°;(3)由(2)可得,∠CFI=180°-2β,∵AB∥CD,∴∠END=∠AEN=2α,∴当FI∥EH时,∠END=∠CFI,即2α=180°-2β,∴α+β=90°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键. 24.(1)每本文学名著45元,每本自然科学书20元;(2)方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【解析】【分析】(1)设每本文学名著x 元,每本自然科学书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,列出不等式组,解答即可.【详解】解:(1)设每本文学名著x 元,每本自然科学书y 元,可得:305023502020500x y x y +=⎧⎨-=⎩, 解得:4520x y =⎧⎨=⎩. 答:每本文学名著45元,每本自然科学书20元;(2)设学校要求购买文学名著z 本,自然科学书为(z+30)本,根据题意可得:30804520(30)2400z z z z ++⎧⎨++⎩…„, 解得:36025z 13≤≤, 因为x 取整数,所以x 取25,26,27;方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【点睛】此题主要考查了二元一次方程组的应用,一元一次不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.25.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x 台,则乙种型号的电视机y 台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x 台,则乙种型号的电视机(50-x )台.则 1500x+2100(50-x )≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.。

2019年七年级数学下期末模拟试题带答案

2019年七年级数学下期末模拟试题带答案

2019年七年级数学下期末模拟试题带答案一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A .1个B .2个C .3个D .4个 2.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 5.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4 D .56.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =17.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -= B .321a b += C .491b a -=- D .941a b +=8.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°9.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 10.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角11.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题13.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________ 14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.64立方根是__________.16.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.17.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.18.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .19.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.20.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________. 三、解答题21.(1)(感知)如图①,//AB CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,试说明AEC A DCE ∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)22.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).23.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?24.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.25.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.3.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.5.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.6.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.7.D解析:D 【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.8.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.9.C解析:C【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.10.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角, 同旁内角,解题关键在于掌握各性质定义.11.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D .【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.12.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.6【解析】【分析】把x 与y 的值代入方程组求出a 的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x 与y 的值代入方程组求出a 的值,代入原式计算即可求出值.【详解】解:把21x y =⎧⎨=-⎩,代入得239a -=, 解得:6a =故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】64,再计算8的立方根即可.【详解】6438=2,64 2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.16.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.17.a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.18.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.19.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】 设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.20.5【解析】【分析】先根据在轴上计算出m 的值根据纵坐标的绝对值即是线段长度可得到答案【详解】∵在轴上∴横坐标为0即解得:故∴线段长度为故答案为:5【点睛】本题只要考查了再y 轴的点的特征(横坐标为零)在 解析:5【解析】【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.【详解】∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.三、解答题21.(1)见解析;(2)证明见解析;(3)70°. 【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E 作//EF AB ,根据平行线的性质、平行公理的推论解答即可; (3)由(2)题的结论可求出∠AEC 的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E 作//EF AB ,1A ∴∠=∠(两直线平行,内错角相等),//AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),2DCE ∴∠=∠(两直线平行,内错角相等),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD Q (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.22.(1)∠1=40°;(2)∠AEF+∠GFC =90°;(3)60°﹣α.【解析】【分析】(1)依据AB ∥CD ,可得∠1=∠EGD ,再根据∠2=2∠1,∠FGE =60°,即可得出∠EGD 13=(180°﹣60°)=40°,进而得到∠1=40°; (2)根据AB ∥CD ,可得∠AEG +∠CGE =180°,再根据∠FEG +∠EGF =90°,即可得到∠AEF +∠GFC =90°;(3)根据AB ∥CD ,可得∠AEF +∠CFE =180°,再根据∠GFE =90°,∠GEF =30°,∠AEG =α,即可得到∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB ∥CD ,∴∠1=∠EGD .又∵∠2=2∠1,∴∠2=2∠EGD .又∵∠FGE =60°,∴∠EGD 13=(180°﹣60°)=40°,∴∠1=40°; (2)如图2.∵AB ∥CD ,∴∠AEG +∠CGE =180°,即∠AEF +∠FEG +∠EGF +∠FGC =180°. 又∵∠FEG +∠EGF =90°,∴∠AEF +∠GFC =90°;(3)如图3.∵AB ∥CD ,∴∠AEF +∠CFE =180°,即∠AEG +∠FEG +∠EFG +∠GFC =180°. 又∵∠GFE =90°,∠GEF =30°,∠AEG =α,∴∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.23.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(50-x)台.则1500x+2100(50-x)≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.24.(1)C(0,2),D(4,2),S四边形ABDC=8;(2)M(0,4)或(0,-4);(3)∠CPA=∠BAP+∠DCP或∠CPA= ∠BAP-∠DCP.【解析】【分析】(1)由题意根据非负数的性质求出A 、B 坐标,进而分析得出C 、D 坐标,继而即可求出四边形ABDC 的面积;(2)由题意可知以AB 为底边,设点M 到AB 的距离为h 即三角形MAB 的高,求得h 的值即可得出点M 的坐标;(3)根据题意分当点P 在线段BD 上时以及当点P 在BD 延长线上时,利用平行线的性质进行分析即可.【详解】解: (1)由()()22130a b ++-=得a=-1,b=3,则A(-1,0),B(3,0),∵点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,如图,∴C(0,2),D(4,2),∴S 四边形ABDC =AB×OC=4×2=8. (2)存在.设点M 到AB 的距离为h ,S △MAB =12×AB×h=2h , 由S △MAB =S 四边形ABDC ,得2h=8,解得h=4,可知这样的M 点在y 轴上有两个,∴M(0,4)或(0,-4).(3) ①当点P 在线段BD 上时:∠CPA=∠DCP+∠BAP ,理由如下:过P 点作PE ∥AB 交OC 与E 点,∵AB ∥CD , PE ∥AB ,∴AB ∥PE ∥CD ,∴∠DCP=∠CPE , ∠BAP=∠APE ,∵∠CPA=∠CPE+∠APE ,∴∠CPA=∠DCP+∠BAP ;②当点P 在BD 延长线上时:∠CPA= ∠BAP-∠DCP ,理由如下:过P 点作PE ∥AB ,∵AB ∥CD ,PE ∥AB ,∴AB ∥PE ∥CD ,∴∠DCP=∠CPE ,∠BAP=∠APE ,∵∠CPA= ∠APE-∠CPE 。

2019学年度人教版七年级数学下册期末模拟试题题(含解析答案)

2019学年度人教版七年级数学下册期末模拟试题题(含解析答案)

2019学年度人教版七年级数学下册期末模拟试题题(含解析答案)一、单选题二、1.下列调查中,适合采用全面调查(普查)方式的是()A对某班50名同学视力情况的调查B.对元宵节期间市场上汤圆质量情况的调查C.对某类烟花爆竹燃放质量情况的调查D.对重庆嘉陵江水质情况的调查2.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=36°,则∠2的大小为()A.34°B.54°C.56°D.66°3.如图,已知∠1+∠2=180°,∠3=55°.那么∠4的度数是()A.45°B.125°C.35°D.55°4.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2B.a>﹣b C.a>b D.|a|>|b|5.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是()A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)6.已知是二元一次方程组的解,则m+3n的值是()A.4B.6C.7D.87.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()A .B.C . D .8.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则1a<1bC.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d9.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF 的位置,下面正确的平移步骤是【】A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位10.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()1 / 11A.①②③B.①②④C.①③④D.①②③④11.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有_____(填写所有正确的序号).12.的算术平方根是_____.13.如果是方程6x+by=32的解,则b=________.14.若关于x 的一元一次不等式组无解,则m的取值范围为_____.三、解答题四、15.解方程组(1)(2)16.解不等式组:,并把解集在数轴上表示出来.17.计算:(1)2+++|﹣2| (2)+﹣.18.已知:如图,∠CDG=∠B,AD⊥BC于点D,EF⊥BC于点F,试判断∠1与∠2的关系,并说明理由.19.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.20.如图中标明了小英家附近的一些地方,以小英家为坐标原点建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2)→(3,-1)→(0,-1)→(-1,-2)→(-3,-1)的路线转了一下,又回到家里,写出路上她经过的地方.3 /1121.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?22.为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元. (1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?23.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1; (2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?24.(题文)已知AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B.(1)如图1,直接写出∠A 和∠C 之间的数量关系 ;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD=∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB+∠NCF=180°,∠BFC=3∠DBE ,求∠EBC 的度数.参考答案1.A【解析】考查调查的两种方式:抽查和普查。

2019年七年级数学下期末模拟试卷含答案

2019年七年级数学下期末模拟试卷含答案

2019年七年级数学下期末模拟试卷含答案一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70°2.下列各式中计算正确的是( ) A .93=± B .2(3)3-=- C .33(3)3-=±D .3273= 3.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 4.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1 B .-1 C .2 D .-25.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE 6.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b=⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=8 7.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -= B .321a b += C .491b a -=- D .941a b +=8.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°9.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 10.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-11.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .212.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.14.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 15.若3的整数部分是a ,小数部分是b ,则3a b -=______.16.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____.17.已知1a -+5b -=0,则(a ﹣b )2的平方根是_____.18.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.19.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 20.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =_____.三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?22.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.25.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解.【详解】∵OE 平分∠BON ,∴∠BON =2∠EON =40°,∴∠COM =∠BON =40°,∵AO ⊥BC ,∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°.故选B .【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A、93=,此选项错误错误,不符合题意;B、2(3)3-=,此选项错误错误,不符合题意;C、33(3)3-=-,此选项错误错误,不符合题意;D、3273=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.3.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.4.B解析:B【解析】【分析】把代入x-ay=3,解一元一次方程求出a值即可.【详解】∵是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.5.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.7.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,8.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.9.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.10.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.11.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.12.D解析:D【解析】解:∵直线l 1∥l 2,∴∠3=∠1=44°.∵l 3⊥l 4,∠2=90°-∠3=90°-44°=46°.故选D .二、填空题13.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能 解析:25【解析】【分析】【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.14.3【解析】解:由题意可得:①-②得:4m+2n=6故2m +n=3故答案为3 解析:3【解析】解:由题意可得:3731m n n m +=⎧⎨-=⎩①②,①-②得:4m +2n =6,故2m +n =3. 故答案为3.15.【解析】【详解】若的整数部分为a 小数部分为b ∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a ,小数部分为b ,∴a =1,b1,-b1)=1.故答案为1.16.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.17.±4【解析】【分析】根据非负数的性质列出方程求出ab 的值代入所求代数式计算即可【详解】根据题意得a-1=0且b-5=0解得:a=1b=5则(a-b)2=16则平方根是:±4故答案是:±4【点睛】本题解析:±4.【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】根据题意得a-1=0,且b-5=0,解得:a=1,b=5,则(a-b)2=16,则平方根是:±4.故答案是:±4.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822<≤x【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x>8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.19.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.20.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x的值是40或80点睛:本题考查了两条解析:40或80【解析】当这两个角是对顶角时,(2x-10) =(110-x),解之得x=40;当这两个角是邻补角时,(2x-10) +(110-x) =180,解之得x=80;∴x的值是40或80.点睛:本题考查了两条直线相交所成的四个角之间的关系及分类讨论的数学思想,两条直线相交所成的四个角或者是对顶角的关系,或者是邻补角的关系,明确这两种关系是解答本题的关键.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120+=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(Ⅰ)50、32;(Ⅱ)4;3;3.2;(Ⅲ)420人.【解析】【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人),∵1650×100=32%,∴图①中m的值为32.故答案为50、32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3,∴这组数据的中位数是3;由条形统计图可得142103144165650x ⨯+⨯+⨯+⨯+⨯==3.2, ∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人). 答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.安排25人加工甲部件,则安排60人加工乙部件,共加工200套.【解析】试题分析:首先设安排甲部件x 个人,则(85-x )人生产乙部件,根据甲零件数量的3倍等于乙零件数量的2倍列出方程进行求解.试题解析:设甲部件安排x 人,乙部件安排(85-x )人才能使每天加工的甲、乙两种部件刚好配套由题意得:3×16x=2×10(85-x ) 解得:x=25 则85-x=85-25=60(人)答:甲部件安排20人,乙部件安排60人才能使每天加工的甲、乙两种部件刚好配套. 考点:一元一次方程的应用.24.(1)C(0,2),D(4,2),S 四边形ABDC =8;(2)M(0,4)或(0,-4);(3)∠CPA= ∠BAP+∠DCP 或∠CPA= ∠BAP-∠DCP .【解析】【分析】(1)由题意根据非负数的性质求出A 、B 坐标,进而分析得出C 、D 坐标,继而即可求出四边形ABDC 的面积;(2)由题意可知以AB 为底边,设点M 到AB 的距离为h 即三角形MAB 的高,求得h 的值即可得出点M 的坐标;(3)根据题意分当点P 在线段BD 上时以及当点P 在BD 延长线上时,利用平行线的性质进行分析即可.【详解】解: (1)由()()22130a b ++-=得a=-1,b=3,则A(-1,0),B(3,0),∵点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,如图,∴C(0,2),D(4,2),∴S四边形ABDC=AB×OC=4×2=8.(2)存在.设点M到AB的距离为h,S△MAB=12×AB×h=2h,由S△MAB=S四边形ABDC,得2h=8,解得h=4,可知这样的M点在y轴上有两个,∴M(0,4)或(0,-4).(3)①当点P在线段BD上时:∠CPA=∠DCP+∠BAP,理由如下:过P点作PE∥AB交OC与E点,∵AB∥CD, PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA=∠CPE+∠APE,∴∠CPA=∠DCP+∠BAP;②当点P在BD延长线上时:∠CPA= ∠BAP-∠DCP,理由如下:过P点作PE∥AB,∵AB∥CD,PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA= ∠APE-∠CPE。

2019年七年级数学下期末模拟试卷及答案

2019年七年级数学下期末模拟试卷及答案

2019年七年级数学下期末模拟试卷及答案一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A .1个B .2个C .3个D .4个 2.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1 B .0 C .-2 D .-13.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-4.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°5.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 8.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .329.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( ) A .B .C .D .10.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,4 11.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______.14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .15.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).16.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 17.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.18.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?22.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积23.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?24.如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4,求证:AD ∥BE.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.3.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.4.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.6.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.7.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.8.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ABD S A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点. 9.B解析:B【解析】【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.【详解】解:3(1)112123x x x x -->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x <2,解不等式②得:x≥-1,在数轴上表示解集为:,故选:B.【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.10.C解析:C【解析】【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.11.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】x x m+=-332x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.15.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m -2=0即m=2∴P(50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 16.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21x y =⎧⎨=⎩代入方程组得:25{21a b b a ++=①=②, ①×2-②得:3a=9,即a=3, 把a=3代入②得:b=-1,则a-b=3+1=4,17.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点 解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 18.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.19.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.20.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O 则直线与坐标轴围成的三角形是以OAOB 为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(1)详见解析;(2)A1(4,−2), B1(1,−4), C1(2,−1);(3)7 2【解析】【分析】(1)直接利用平移的性质得出A,B,C平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A1B1C1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A 1 (4,−2), B 1 (1,−4), C 1 (2,−1);(3) △A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5 【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则23.(1)a 的取值范围是﹣2<a≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.【解析】【分析】 (1)先解方程组得342x a y a =-+⎧⎨=--⎩,再解不等式组30420a a -+≤⎧⎨--⎩p ;(2)由不等式的解推出210a +p ,再从a 的范围中确定整数值.【详解】(1)由方程组:713x y a x y a +=--⎧⎨-=+⎩,得 342x a y a =-+⎧⎨=--⎩, 因为x 为非正数,y 为负数.所以30420a a -+≤⎧⎨--⎩p , 解得23a -≤p .(2) 不等式221ax x a ++f 可化为()2121x a a ++f ,因为不等式的解为1x <,所以210a +p ,所以在23a -≤p 中,a 的整数值是-1.故正确答案为(1)2a 3-<≤;(2)a=-1.【点睛】此题是方程组与不等式组的综合运用.解题的关键在于求出方程组的解,再解不等式组;难点在于从不等式的解推出未知数系数的正负.24.证明见解析.【解析】试题分析:先根据平行线的性质得出∠4=∠BAE.再根据∠3=∠4可知∠3=∠BAE.由∠1=∠2,得出∠1+∠CAE=∠2+∠CAE即∠BAE=∠CAD,故∠3=∠CAD,由此可得出结论.试题解析:证明:∵AB∥CD,∴∠4=∠BAE.∵∠3=∠4,∴∠3=∠BAE.∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD,∴AD∥BE.25.(1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.【解析】【分析】(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q在C点左侧时;②当Q在C点右侧时.【详解】解:(1)1l∥2l.理由如下:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l∥2l(同旁内角互补,两直线平行)(2)①当Q在C点左侧时,过点P作PE∥1l.∵1l∥2l(已证),∴PE∥2l(同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ,∴∠BAC=∠CQP +∠CPQ(等量代换)②当Q在C点右侧时,过点P作PE∥1l.∵1l∥2l(已证),∴PE∥2l(同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.【点睛】本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.。

【期末复习】人教版2019年 七年级数学下学期 期末模拟试卷(含答案)

【期末复习】人教版2019年 七年级数学下学期 期末模拟试卷(含答案)

2019年七年级数学下学期期末模拟试卷一、选择题(本大题共12小题)1.在下列生活现象中,不是..平移现象的是 ( )A.小亮荡秋千的运动B.左右推动的推拉窗帘C.站在运行的电梯上的人D.坐在直线行驶的列车上的乘客2.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)3.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414B.C.﹣D.04.二元一次方程2x+y=7的正整数解有()A.一组B.二组C.三组D.四组5.不等式组的解集是( )A.x>﹣1B.x≤1C.x<﹣1D.﹣1<x≤16.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.80B.90C.144D.2007.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B;④AD∥BE,且∠D=∠B.其中能说明AB∥DC的条件有()A.4个B.3个C.2个D.1个8.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°9.已知Q(2x+4,x2-1)在y轴上,则点Q的坐标为( )A.(0,4)B.(4,0)C.(0,3)D.(3,0)10.食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是A.6013060120x yx y+=⎧⎨-=⎩B.6013060120x yx y-=⎧⎨+=⎩C.6013060120y xy x+=⎧⎨-=⎩D.6013060120y xy x-=⎧⎨+=⎩11.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A.22厘米B.23厘米C.24厘米D.25厘米12.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A ﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,0)B.(-1,1)C.(-1,-2)D.(1,-2)二、填空题(本大题共6小题)13.把命题“同角的余角相等”改写成“如果…那么…”的形式.14.已知,如图6×6的网格中,点A的坐标为(﹣1,3),点C的坐标为(﹣1,﹣1),则点B的坐标为 .15.已知(x-3)2+│2x-3y+6│=0,则x=________,y=_________.16.不等式3(x+1)≥5x﹣9的正整数解是.17.某校为了丰富学生的课外体育活动,欲增购一批体育器材,为此该校对一部分学生进行一次题为“你喜欢的体育活动”的问卷调查(每人限选一项).根据所收集的数据,绘制成如下统计图(不完整):根据图中提供的信息得出“跳绳”部分的学生共有__________人.18.如图,已知AB∥CD,∠1=55°,∠2=45°,点G为∠BED内一点,∠BEG:∠DEG=2:3,EF 平分∠BED,则∠GEF= .三、解答题(本大题共8小题)19. 求x 的值:(2x-1)2-169=020.计算:21)2(18725.023------.21.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy ,按要求解答下列问题:(1)写出△ABC 三个顶点的坐标;(2)画出△ABC 向右平移6个单位后的图形△A 1B 1C 1;(3)求△ABC 的面积.22.如图,已知AB ∥CD ,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB 与EF 的位置关系,并说明理由.解: ,理由如下:∵AB ∥CD ,∴∠B=∠BCD ,( )∵∠B=70°,∴∠BCD=70°,( )∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴+ =180°,∴EF∥,()∴AB∥EF.()23.我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B 级)有多少份?24.已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y的平方根.25.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?26.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的五分之二,求点M的坐标。

2019年七年级下册数学期末考试模拟试题NI

2019年七年级下册数学期末考试模拟试题NI

解析:75° 55. 如图,在图①中,互不重叠的三角形共有 4个,在图②中,互不重叠的三角形共有7个,在图③中,互不重叠的三角形共有10个,… ,则在第 n 个图形中,互不重叠的三角形 共有 个(用含 n 的代数式表示).
解析: 3n 1
56. 如图,从左图到右图的变换是
.
解析:轴对称变换
57.在正数范围内定义一种运算☆,其规则为 a ☆ b =1 1 ,根据这个规则 x ☆ b
解析:13
49.如图,在△ABC中,∠BAC= 45 ,现将△ABC绕点A逆时针旋转 30
至△ADE的位置.则∠DAC= . 解析:15° 50.如图,AE=AD,请你添加一个条件: (图形中不再增加其他字母).
,使△ABE≌△ACD
解析:答案不唯一,如AB =AC
51.已知: a 2b 5, 2b c 7 ,则代数式 a2 2ac c2 的值是 .
答案:C
10.已知三角形的三边长分别是3,8,x,若 x 的值为偶数,则 x 的值有( )
A. 6 个
B. 5 个
C. 4 个
D. 3 个
答案:D
11.如图,将四边形AEFG变换到四边形ABCD,其中E ,G分别是AB、AD
的中点,下列叙述不正确的是( )
A.这种变换是相似变换
B.对应边扩大到原来到2倍
(填空)
解:∵AF=DC(已知)
E
∴AF+ =DC+
即 在△ABC和△ 中 BC=EF( )
A
FC
D
B
∠ =∠ ( )
∴△ABC≌△ ( )
∴AB=DE( )
解析:FC,FC,AC=DF,DEF,已知,DFE,ACB,已知,AC=DF,DEF,SAS, 全等三角形的对应边相等. 66.(1)观察下列各式: 62 42 4 5 ,112 92 4 10 ,17 2 152 4 16 …… 试用你发现的规律填空: 512 492 4 ___ , 662 642 4 ___ ; (2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所 写式子的正确性.

2019年初一数学下期末模拟试卷(含答案)

2019年初一数学下期末模拟试卷(含答案)

2019年初一数学下期末模拟试卷(含答案)一、选择题1.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤52.点M(2,-3)关于原点对称的点N的坐标是: ( )A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)3.116的平方根是( )A.±12B.±14C.14D.124.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩5.在实数0,-π,3,-4中,最小的数是()A.0B.-πC.3D.-46.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°7.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个8.不等式4-2x>0的解集在数轴上表示为()A.B.C.D .9.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)10.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <6 11.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135° 12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤: ①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.不等式组有3个整数解,则m 的取值范围是_____.14.27的立方根为 .15.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.16.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.17.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.18.二项方程32540x +=在实数范围内的解是_______________19.若不等式组1x x a⎧⎨⎩><有解,则a 的取值范围是______. 20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.(1)计算:2020011(1)(2019)3sin 60()2π---+--+o (2)解不等式组:34223154x x x x +≥⎧⎪⎨+--≥⎪⎩①②,并求整数解。

2019 年人教版七年级数学下册期末模拟测试卷

2019 年人教版七年级数学下册期末模拟测试卷

2019 年七年级数学下册期末模拟测试卷(注意:所有答案必须做在答题卡上 考试用时:120分钟 满分120分)一、填空题(本大题共6个小题,每小题3分,满分18分)1.在2,31-,π,0,722,2.101010…(相邻两个1之间有1个0),4,0.1212212221…(相邻两个1之间2的个数逐次加1)这些数中无理数的个数是 。

2.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A 、B 两岛的视角∠ACB= 度。

3.如图,将周长为10的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为 。

4.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3= 。

5.当x 时,代数式-2x+5的值不大于零。

6.如图,在平面直角坐标系中,已知点A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一根长为2013个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A →B →C →D →A …的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是 。

二、选择题(本大题共8个小题,每个小题只有一个正确选项,每小题4分,满分32分)7.如图,数轴上点P 表示的数可能是( )A.10B.5C.3D.2 8.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( )A .1B .2C .3D .49.在世界无烟日(5月31日),某学习小组为了解本地区大约有多少成年人在吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( ) A.调查的方式是普查 B.本地区只有85个成年人不吸烟 C.样本是15个吸烟的成年人 D.本地区约有15%的成年人吸烟10.已知点M (2m ﹣1,1﹣m )在第四象限,则m 的取值范围在数轴上表示正确的是( )11.方程x+3y=5与下列哪个方程组合,使得方程组的解是⎩⎨⎧==12y x ( )A.3x+2y=7B.-2x+y=-3C.6x+y=8D.以上都不对 12.以下展示四位同学对问题“已知a<0,试比较2a 和a 的大小”的解法,其中正确的解法个数是( ) ①方法一:∵2>1,a<0,∴2a<a ; ②方法二:∵a<0,即2a-a<0,∴2a<a ; ③方法三:∵a<0,∴两边都加a 得2a<a ;④方法四:∵当a<0时,在数轴上表示2a 的点在表示a 的点的左边,∴2a<a 。

2019年七年级数学下期末模拟试卷及答案(1)

2019年七年级数学下期末模拟试卷及答案(1)
23.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多 万元;购买 台甲型机器人和 台乙型机器人共需 万元.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型、乙型机器人每台每小时分拣快递分别是 件、 件,该公司计划最多用 万元购买 台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?
由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.
【详解】
∵点P(a,a-1)在x轴上,
∴a-1=0,即a=1,
则点Q坐标为(-1,2),
∴点Q在第二象限,
故选:B.
【点睛】
此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.
二、填空题
13.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>
A. B. C. D.
12.若点 在 轴上,则点 在第( )象限.
A.一B.二C.三D.四
二、填空题
13.若关于x、y的二元一次方程组 的解满足x+y>0,则m的取值范围是____.
14.若关于x,y的二元一次方程组 的解满足x+y<2,则a的取值范围为_____.
15.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.
14.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4

2019学年七年级数学第二学期期末模拟试卷及答案(一)

2019学年七年级数学第二学期期末模拟试卷及答案(一)

2019学年七年级数学第二学期期末模拟试卷及答案(一)一、选择题(本大题共10个小题;每小题3分,共30分)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣2.下列各式中运算正确的是()A.6a﹣5a=1 B.a2+a2=a4C.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b3.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定4.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类5.小明做了以下4道计算题:①(﹣1)2008=2008;②0﹣(﹣1)=1;③;④.请你帮他检查一下,他一共做对了()A.1题 B.2题 C.3题 D.4题6.2009年7月22日,在我国中部长江流域发生了本世纪最为壮观的日食现象,据统计,观看本次日食的人数达到了2580000人,用科学记数法可将其表示为()A.2.58×107人 B.0.258×107人C.2.58×106人 D.25.8×106人7.上午9点30分,时钟的时针和分针成的锐角为()A.105°B.90°C.100° D.120°8.若2x+1=8,则4x+1的值为()A.15 B.16 C.17 D.199.下列图形中,不是正方体表面展开图的图形的个数是()A.1个 B.2个 C.3个 D.4个10.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元二、填空题(共10小题,每小题3分,满分30分)11.单项式的系数是,次数是.12.﹣2x与3x﹣1互为相反数,则x=.13.一副三角板按如图所示方式重叠,若图中∠DCE=35°25′,则∠ACB=.14.为了解江苏电视台《南京零距离》节目的收视率,宜采用的调查方式是.15.的倒数是.数轴上与点3的距离为2的点是.16.已知x=3是方程ax﹣6=a+10的解,则a=.17.如图,C、D是线段AB的三等分点,P为CD的中点,CP=2,则AB=.18.掷一枚骰子,朝上的数字比5小的可能性朝上的数字是奇数的可能性(填“<”“=”“>”).19.若2x+1=8,则4x+1的值是.20.小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是.三、解答题(共计60分)21.(8分)计算题:(1)(﹣2)2+[18﹣(﹣3)×2]÷4(2)(1﹣+)×(﹣48)22.(6分)先化简,再求值:x2+2x﹣2(x2﹣x),其中x=1.23.(8分)解下列方程:(1)4﹣3(2﹣x)=5x(2)﹣=1.24.(8分)我县各学校九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为°;(4)若全校有3000名学生,请估算出全校“其他”部分的学生人数.25.(8分)如图,O是直线AB上一点,OC是一条射线,OD平分∠AOC,∠BOC=70°(1)画出∠BOC的平分线OE;(2)求∠COD和∠DOE的度数.26.(6分)甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为45千米/时,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为60千米/时,(1)快车开出几小时后与慢车相遇?(2)相遇时快车距离甲站多少千米?27.(8分)某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?28.(8分)某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?参考答案与试题解析一、选择题(本大题共10个小题;每小题3分,共30分)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列各式中运算正确的是()A.6a﹣5a=1 B.a2+a2=a4C.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b【考点】合并同类项.【分析】根据同类项的定义及合并同类项法则解答.【解答】解:A、6a﹣5a=a,故A错误;B、a2+a2=2a2,故B错误;C、3a2+2a3=3a2+2a3,故C错误;D、3a2b﹣4ba2=﹣a2b,故D正确.故选:D.【点评】合并同类项的方法是:字母和字母的指数不变,只把系数相加减.注意不是同类项的一定不能合并.3.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【考点】平行线;垂线.【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.4.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类【考点】直线、射线、线段;角的概念.【分析】根据线段、射线和角的概念,对选项一一分析,选择正确答案.【解答】解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选A.【点评】考查线段、射线和角的概念.解题的关键是熟练运用这些概念.5.小明做了以下4道计算题:①(﹣1)2008=2008;②0﹣(﹣1)=1;③;④.请你帮他检查一下,他一共做对了()A.1题 B.2题 C.3题 D.4题【考点】有理数的混合运算.【分析】此题可直接对给出的4道计算题进行计算来验证小明的计算是否有误即可.【解答】解:①(﹣1)2008=0,错误;②0﹣(﹣1)=1,正确;③,正确;④,正确.所以他一共做对了3题.故选C.【点评】本题考查了有理数的混合运算,关键是注意运算顺序,同学们要熟练掌握.6.2009年7月22日,在我国中部长江流域发生了本世纪最为壮观的日食现象,据统计,观看本次日食的人数达到了2580000人,用科学记数法可将其表示为()A.2.58×107人 B.0.258×107人C.2.58×106人 D.25.8×106人【考点】科学记数法—表示较大的数.【分析】把一个绝对值大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:将2580000人用科学记数法表示为2.58×106人.故选C.【点评】本题考查用科学记数法表示较大的数.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.上午9点30分,时钟的时针和分针成的锐角为()A.105°B.90°C.100° D.120°【考点】钟面角.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:上午9点30分,时针与分针相距3.5份,上午9点30分,时钟的时针和分针成的锐角为30°×3.5=105°,故选:A.【点评】本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数.8.若2x+1=8,则4x+1的值为()A.15 B.16 C.17 D.19【考点】解一元一次方程.【分析】已知关于x的方程2x+1=8,实际就可以求出x的值,把解得的x的值代入所要求的式子就可以求出代数式的值.【解答】解:方程2x+1=8得:x=,把x的值代入4x+1得:15;故本题选A.【点评】代数式的值是由字母的取值来确定的,因而正确求出x的值是解决本题的基本思路.9.下列图形中,不是正方体表面展开图的图形的个数是()A.1个 B.2个 C.3个 D.4个【考点】几何体的展开图.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:第一个图形:折叠后可以组成正方体;第二个图形:折叠后可以组成正方体;第三个图形:折叠后第一行两个面无法折起来,不能折成正方体.第四个图形:不能围成正方体.综上所述,不是正方体表面展开图的图形的个数是2个.故选:B.【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况,)判断也可.10.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元【考点】一元一次方程的应用.【分析】通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.【解答】解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%解这个方程得:x=125则这种服装每件的成本是125元.故选:B.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(共10小题,每小题3分,满分30分)11.单项式的系数是,次数是2.【考点】单项式.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式的数字因数是﹣π,所有字母指数的和是2,∴此单项式的系数是﹣π,次数是2.故答案为:﹣π,2.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.12.﹣2x与3x﹣1互为相反数,则x=1.【考点】解一元一次方程.【分析】根据相数的定义列出关于x的方程,﹣2x+3x﹣1=0,解方程即可.【解答】解:根据题意,﹣2x+3x﹣1=0,解之得x=1.故答案为:1.【点评】本题考查了相反数的概念和一元一次方程的解法.若两个数互为相反数,则它们的和为零,反之也成立.13.一副三角板按如图所示方式重叠,若图中∠DCE=35°25′,则∠ACB= 144°35′.【考点】余角和补角.【分析】因为∠ACB=∠ACD+∠DCB,∠ACD=90°,而∠DCB和∠DCE互余,利用互余的关系求得∠DCB解决问题.【解答】解:∵∠DCB和∠DCE互余,∴∠DCB=90°﹣35°25′=54°35′,∠ACD=90°,∴∠ACB=∠ACD+∠DCB=90°+54°35′=144°35′.故答案为:144°35′.【点评】此题考查角的和与差,注意利用三角板中的直角和两角互余的关系计算得出答案.14.为了解江苏电视台《南京零距离》节目的收视率,宜采用的调查方式是抽样调查.【考点】全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:了解江苏电视台《南京零距离》节目的收视率,进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可,故答案为:抽样调查.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.15.的倒数是5.数轴上与点3的距离为2的点是1或5.【考点】倒数;数轴;绝对值.【分析】首先计算绝对值,然后根据倒数的定义求解.注意两种情况:要求的点可以在已知点3的左侧或右侧.【解答】解:∵|﹣|=,的倒数是5,∴|﹣|的倒数是5.若点在3的左面,则点为1;若点在3的右面,则点为5.故答案为:5;1或5.【点评】此题主要考查了绝对值及倒数的定义.绝对值的定义:正数和0的绝对值是它本身,负数的绝对值是它的相反数;倒数的定义:乘积为1的两个数互为倒数.注意0没有倒数.同时考查了两点的距离公式.注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.16.已知x=3是方程ax﹣6=a+10的解,则a=8.【考点】一元一次方程的解.【分析】将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.【解答】解:∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为:8.【点评】本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.17.如图,C、D是线段AB的三等分点,P为CD的中点,CP=2,则AB=12.【考点】比较线段的长短.【分析】根据中点的概念以及三等分点的概念可得.【解答】解:∵P为CD的中点,CP=2,∴CD=2CP=4,∵C、D是线段AB的三等分点,∴AB=3CD=12.【点评】理解中点的概念以及三等分点的概念,能够用几何式子表示.18.掷一枚骰子,朝上的数字比5小的可能性>朝上的数字是奇数的可能性(填“<”“=”“>”).【考点】可能性的大小.【分析】比较比5小的数字个数,与数字是奇数的数字的个数大小即可.【解答】解:比5小的数字有:1,2,3,4共4个数,奇数有1,3,5共3个.因而朝上的数字比5小的可能性>朝上的数字是奇数的可能性.【点评】此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.19.若2x+1=8,则4x+1的值是15.【考点】代数式求值.【分析】由已知等式求出x的值,代入原式计算即可得到结果.【解答】解:由2x+1=8,得到x=3.5,则原式=14+1=15,故答案为:15【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.20.小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.【考点】规律型:数字的变化类.【分析】根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.【解答】解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.【点评】此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.三、解答题(共计60分)21.计算题:(1)(﹣2)2+[18﹣(﹣3)×2]÷4(2)(1﹣+)×(﹣48)【考点】有理数的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果.【解答】解:(1)原式=4+24÷4=4+6=10;(2)原式=﹣48+8﹣36=﹣76.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.先化简,再求值:x2+2x﹣2(x2﹣x),其中x=1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+2x﹣2x2+x=﹣x2+3x,当x=1时,原式=﹣1+3=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解下列方程:(1)4﹣3(2﹣x)=5x(2)﹣=1.【考点】解一元一次方程.【分析】(1)根据解一元一次方程的方法可以解答此方程;(2)根据解一元一次方程的方法可以解答此方程.【解答】解:(1)4﹣3(2﹣x)=5x去括号,得4﹣6+3x=5x移项及合并同类项,得﹣2x=2系数化为1,得x=﹣1;(2)﹣=1去分母,得4(2x﹣1)﹣3(2x﹣3)=12去括号,得8x﹣4﹣6x+9=12移项及合并同类项,得2x=7系数化为1,得x=3.5.【点评】本题考查解一元一次方程,解题的关键是明确解一元一次方程的方法.24.我县各学校九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有30名学生;(2)补全条形统计图;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为115.2°;(4)若全校有3000名学生,请估算出全校“其他”部分的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形图可得跳绳人数为15人,根据扇形图可得跳绳人数占30%,然后利用15÷30%可得总人数;(2)首先计算出跳远人数和其它人数,然后再补全图形即可;(3)利用360°乘以“排球”部分在总体中所占的比例即可;(4)利用样本估计总体的方法,用3000乘以调查的“其他”部分的人数所占百分比.【解答】解:(1)15÷30%=50(名).故答案为:30;(2)跳远人数:50×18%=9(名),其它人数:50﹣15﹣16﹣9=10(名).如图所示:(3)“排球”部分所对应的圆心角度数为:360°×=115.2°.故答案为:115.2°;(4)3000×=600(人).答:全校“其他”部分的学生人数为600人.【点评】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,O是直线AB上一点,OC是一条射线,OD平分∠AOC,∠BOC=70°(1)画出∠BOC的平分线OE;(2)求∠COD和∠DOE的度数.【考点】作图—基本作图.【分析】(1)以点O为圆心,任意长为半径画弧,交OC,OB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于点E,射线OE即为所求的角平分线;(2)利用平角定义可得∠AOC的度数,利用角平分线定义可得∠COD的度数,同理可得∠COE的度数,相加即为∠DOE的度数.【解答】解:(1);(2)∵∠BOC=70°,OE平分∠BOC,∴∠AOC=180°﹣∠BOC=110°,∠COE=∠COB=35°,∵OD平分∠AOC,∴∠COD=∠AOC=55°,∴∠DOE=∠COD+∠COE=90°.【点评】角平分线把一个角分成2个相等的角;关键是利用角平分线定义得到和所求角相关的角的度数.26.甲、乙两站相距510千米,一列慢车从甲站开往乙站,速度为45千米/时,慢车行驶两小时后,另有一列快车从乙站开往甲站,速度为60千米/时,(1)快车开出几小时后与慢车相遇?(2)相遇时快车距离甲站多少千米?【考点】一元一次方程的应用.【分析】(1)设快车开出x小时后与慢车相遇,等量关系为:慢车(x+2)小时的路程+快车x小时的路程=510,把相关数值代入求值即可;(2)总路程﹣快车行驶的路程即为相遇时快车距离甲站路程.【解答】解:(1)设快车开出x小时后与慢车相遇,则45(x+2)+60x=510,解得x=4,(2)510﹣60×4=270(千米).答:4小时后快车与慢车相遇;相遇时快车距离甲站270千米.【点评】考查一元一次方程的应用,得到相遇问题中的路程的等量关系是解决本题的关键.27.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?【考点】规律型:图形的变化类.【分析】能够根据桌子的摆放发现规律,然后进行计算判断.【解答】解:(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是6+4(n﹣1)=4n+2.第二种中,有一张桌子是6人,后边多一张桌子多2人,即6+2(n﹣1)=2n+4.(2)中,分别求出两种对应的n的值,或分别求出n=25时,两种不同的摆放方式对应的人数,即可作出判断.打算用第一种摆放方式来摆放餐桌.因为,当n=25时,4×25+2=102>98当n=25时,2×25+4=54<98所以,选用第一种摆放方式.【点评】关键是通过归纳与总结,得到其中的规律.28.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【考点】一元一次方程的应用.【分析】(1)根据随身听和书包单价之和是452元,列方程求解即可;(2)根据两商家的优惠方式分别计算是否两家都可以选择,比较钱数少的则购买更省钱.【解答】解:(1)设书包单价为x元,则随身听的单价为(4x﹣8)元.根据题意,得4x﹣8+x=452,解得:x=92,4x﹣8=4×92﹣8=360.答:书包单价为92元,随身听的单价为360元.(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A购买.在超市B可花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计花费现金:360+2=362(元).因为362<400,所以也可以选择在B超市购买.因为362>361.6,所以在超市A购买更省钱.【点评】本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.。

2019年七年级数学下期末一模试卷带答案

2019年七年级数学下期末一模试卷带答案

2019年七年级数学下期末一模试卷带答案一、选择题1.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒2.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间3.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩4.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .55.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣36.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠8 7.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°8.如图所示,下列说法不正确的是( )A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角9.下列图中∠1和∠2是同位角的是( )A.(1)、(2)、(3)B.(2)、(3)、(4)C.(3)、(4)、(5)D.(1)、(2)、(5)10.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)11.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°12.已知a,b为两个连续整数,且191<b,则这两个整数是()A.1和2B.2和3C.3和4D.4和5二、填空题13.如图8中图①,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.14.若3的整数部分是a ,小数部分是b ,则3a b -=______.15.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是_______________.16.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.17.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________. 18.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.19.已知方程1(2)(3)5m n m x n y --+-=是二元一次方程,则mn =_________;20.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =_____.三、解答题21.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比.(2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.22.(1)(感知)如图①,//AB CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,试说明AEC A DCE ∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.如图1,点A 、B 在直线1l 上,点C 、D 在直线2l 上,AE 平分∠BAC ,CE 平分∠ACD ,∠EAC+∠ACE=90°.(1)请判断1l 与2l 的位置关系并说明理由;(2)如图2,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(不与点C 重合)∠CPQ+∠CQP 与∠BAC 有何数量关系?请说明理由.24.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示: 体积(立方米/件) 质量(吨/件)A 型商品 0.8 0.5B 型商品 21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?25.如图,已知在ABC ∆中,FG EB P ,23∠∠=,说明180EDB DBC ∠+∠=︒的理由.解:∵FG EB P (已知),∴_________=_____________(____________________).∵23∠∠=(已知),∴_________=_____________(____________________).∴DE BC ∥(___________________).∴180EDB DBC ∠+∠=︒(_________________________).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案.【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补),∴318018074106BAC ∠=︒-∠=︒-︒=︒,故选B .【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.2.B解析:B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.3.A解析:A【解析】【分析】【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩, 故选D .考点:由实际问题抽象出二元一次方程组.4.D解析:D∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.5.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4 3 13ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.6.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.7.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.8.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.11.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.C解析:C【解析】试题解析:∵4195,∴319<4,∴这两个连续整数是3和4,故选C.二、填空题13.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+E G+OE=A′D′+CD=1+1=2即可解析:2【解析】【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【详解】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为2.14.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】3a,小数部分为b,∴a=1,b31,3-b331)=1.故答案为1.15.4【解析】【分析】先估算的范围然后确定ab的最小值即可计算a+b的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b <b为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】∴2<3,∵a,a为正整数,∴a的最小值为3,∴1<2,∵b,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.16.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5112x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5112x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5112x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.17.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a 的不等式组求出即可【详解】解不等式3x -5≤2x -2得:x≤3解不能等式2x+3>a 得:x >∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a 的不等式组,求出即可.【详解】解不等式3x-5≤2x -2,得:x≤3,解不能等式2x+3>a ,得:x >32a -, ∵不等式组有且仅有4个整数解, ∴-1≤32a -<0, 解得:1≤a <3, ∴整数a 的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩,解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.19.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.20.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x 的值是40或80点睛:本题考查了两条解析:40或80【解析】当这两个角是对顶角时,(2x -10) =(110-x ),解之得x =40;当这两个角是邻补角时,(2x -10) +(110-x ) =180,解之得x =80;∴x 的值是40或80.点睛:本题考查了两条直线相交所成的四个角之间的关系及分类讨论的数学思想,两条直线相交所成的四个角或者是对顶角的关系,或者是邻补角的关系,明确这两种关系是解答本题的关键.三、解答题21.(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪(2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比【详解】解:(1)∵(252+104+24)÷1000=38%,∴这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人),∴本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人),∴该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人),∴该市小学生患“中度近视”的约有1.04万人.22.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E作//EF AB,根据平行线的性质、平行公理的推论解答即可;(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E作//EF AB,1A∴∠=∠(两直线平行,内错角相等),//AB CDQ(已知),EF//AB(辅助线作法),//EF CD∴(平行于同一条直线的两直线互相平行),2DCE∴∠=∠(两直线平行,内错角相等),12AEC∠=∠+∠Q,AEC A DCE∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E作//EF AB,180A AEF∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD Q (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.23.(1)1l ∥2l ;(2)①当Q 在C 点左侧时,∠BAC=∠CQP +∠CPQ ,②当Q 在C 点右侧时,∠CPQ+∠CQP+∠BAC=180°.【解析】【分析】(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.【详解】解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l∥2l(同旁内角互补,两直线平行)(2)①当Q在C点左侧时,过点P作PE∥1l.∵1l∥2l(已证),∴PE∥2l(同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ,∴∠BAC=∠CQP +∠CPQ(等量代换)②当Q在C点右侧时,过点P作PE∥1l.∵1l∥2l(已证),∴PE∥2l(同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.【点睛】本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.24.(1)A种型号商品有5件,B种型号商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元【解析】【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.25.1∠;2∠;两直线平行,同位角相等;1∠;3∠;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】先根据FG ∥EB 得出12∠=∠,进而推导出13∠=∠,证明DE ∥BC ,从而得出同旁内角互补.【详解】解:∵FG ∥EB (已知),∴12∠=∠(两直线平行,同位角相等).∵23∠∠=(已知),∴13∠=∠(等量代换).∴DE ∥BC (内错角相等,两直线平行).∴180EDB DBC ∠+∠=︒(两直线平行,同旁内角互补).【点睛】本题考查平行线的性质和证明,需要注意仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.。

2019年七年级数学下期末模拟试题(带答案)

2019年七年级数学下期末模拟试题(带答案)

2019年七年级数学下期末模拟试题(带答案)一、选择题1.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 2.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒3.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y -=⎧⎨-=⎩C .8374x y x y +=⎧⎨-=⎩D .8374x y x y -=⎧⎨+=⎩ 5.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩6.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角7.下列说法正确的是( )A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.8.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度9.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行10.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( )A .()5,2-B .()2,5-C .()5,2-D .()2,5--11.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②12.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).14.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.15.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.16.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n 个图案中有白色地面砖________ 块.17.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .18.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.19.用不等式表示x 的4倍与2的和大于6,________;此不等式的解集为________.20.______.三、解答题21.解方程组:(1)用代入法解342 25 x yx y+=⎧⎨-=⎩(2)用加减法解5225 3415 x yx y+=⎧⎨+=⎩22.一个正数x的两个平方根是2a-3与5-a,求x的值.23.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?24.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?25.已知关于,x y的方程组354522x yax by-=⎧⎨+=-⎩和2348x yax by+=-⎧⎨-=⎩有相同解,求(a)b-值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.B解析:B【解析】【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案.【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补),∴318018074106BAC ∠=︒-∠=︒-︒=︒,故选B .【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.3.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a 、b 的符号,进而判断点B 所在的象限即可.【详解】∵点A(a ,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a ,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.5.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.6.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义.7.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.8.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.9.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.10.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B在第四象限内,∴点B的横坐标为正数,纵坐标为负数∵点B到x轴和y轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的:第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.11.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键. 14.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能 解析:25【解析】【分析】【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.15.100【解析】【分析】根据对顶角相等求出∠AOC 再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC ,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.16.18;4n+2【解析】【分析】根据所给的图案发现:第一个图案中有6块白色地砖后边依次多4块由此规律解决问题【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=1解析:18;4n+2【解析】【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.17.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.18.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主解析:抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案.【详解】为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查,故答案为抽样调查.【点睛】本题主要考查了抽样调查的定义,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,这种调查方式叫抽样调查.19.4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式进而求解即可【详解】解:由题意得4x+2>6移项合并得:4x>4系数化为1得:x>1故答案为:4x+2>6x>1【点睛】本题主解析:4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式,进而求解即可.【详解】解:由题意得,4x+2>6,移项、合并得:4x>4,系数化为1得:x>1,故答案为:4x+2>6,x>1.【点睛】本题主要考查列一元一次不等式,解题的关键是抓住关键词语,弄清运算的先后顺序和不等关系,列出不等式.20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)21x y =⎧⎨=-⎩;(2)50x y =⎧⎨=⎩ 【解析】【分析】(1)根据代入法解方程组,即可解答;(2)根据加减法解方程组,即可解答.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由②得25y x =- ③把③代入①得34(25)2x x +-=解这个方程得2x =把2x =代入③得1y =-所以这个方程组的解是21x y =⎧⎨=-⎩(2)5225? 3415?x y x y +=⎧⎨+=⎩①② ①×②得10450x y += ③③—②得735x =,5x =把5x =代入①得0y =所以这个方程组的解是50 xy=⎧⎨=⎩【点睛】此题考查解二元一次方程组,解题的关键是明确代入法和加减法解方程组.22.x=49【解析】试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a-3+5-a=0,可求出a=2-,即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x.试题解析:因为一个正数x的两个平方根是2a-3与5-a,所以2a-3+5-a=0,解得a=2-,所以2a-3=7-,所以49x=.23.(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.【解析】【分析】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,根据“若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元”即可列方程组求解;(2)设购进电脑机箱z台,根据“可用于购买这两种商品的资金不超过22240元,所获利润不少于4100元”即可列不等式组求解.【详解】解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000 254120x yx y+=⎧⎨+=⎩,解得:60800 xy=⎧⎨=⎩,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50-m)台,根据题意得:60800(50)22240 10160(50)4100m mm m+-≤⎧⎨+-≥⎩,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400,方案二的利润:25×10+25×160=4250,方案三的利润:26×10+24×160=4100,∴方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元.【点睛】考点:方案问题,方案问题是初中数学的重点,在中考中极为常见,一般难度不大,需熟练掌握.24.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥ 14333m ≥ 14333m ≥的最小整数是434答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元.则3235023370a b c a b c ++=⎧⎨++=⎩∴ 444720a b c ++=∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x y x y -=⎧⎨+=-⎩ 和方程组②45228ax by ax by +=-⎧⎨-=⎩ , 解方程组①,得12x y =⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析:5
53. 有四张不透明的卡片的正面分别写有 2, 22 , , 2 7
,除正面的数不同外,其余都相同. 将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为 .
解析: 1 2
54. 如图,一块等腰直角的三角板ABC,在水平桌面上绕点 C按顺时针方向旋转到A′B′C 的位置,使A,C,B′三点共线,那么旋转角度的大小为 .
1000 39.光的速度约为3×105千米/秒,太阳光照射到地球上大约需要5×102秒,则地球与太 阳间的距离为__________千米(用科学记数法表示).
解析:1.5 108
40.如图,AD是线段BC的垂直平分线.已知△ABC的周长为14cm,BC=4cm,则AB=___
_______cm.
解析:5
答案:D
23.以下列各组数为长度的线段,能组成三角形的是( )
A.1cm, 2cm , 3cm
B.2cm , 3cm , 6cm
C.4cm , 6cm , 8cm D.5cm , 6cm , 12cm
答案:C
24.已知某种植物花粉的直径约为 0.000 35米,用科学记数法表示是( )
A. 3.5104 米
A.ASA
B.SAS
C.SSS
D.AAS
答案:B
33. 将如图所示图形旋转 180。后,得到的图形是( )
A.
B.
C.
D.
答案:D
34.甲、乙两人进行百米跑比赛,当甲离终点还有
1米时,乙离终点还有2米,那么,当甲到达终点时,乙离终点还有(假设甲、乙的速度保
持不变) ( )
A. 98 米 99
B. 100 米 99
D. 3.0 105
答案:A
18.已知方程 x 2 3 有增根,则这个增根一定是( ) x3 3x
A. x 2
B. x 3
C. x 4
D. x 5
答案:B
19.在△ABC中,∠A=1O5°,∠B-∠C=15°,则∠C的度数为( )
A. 35°
B.60°
C.45°
D.30°
答案:D
20.同时抛掷两枚 1 元硬币,其中正面同时朝上的概率是( )
解析:2
60.若分式
1
b2 4
无意义,
的值为 0,则 ab =
.
a3
b2
解析:-6
61.观察下列顺序排列的等式: a1
1
1 3
, a2
1 2
1 4
, a3
1 3
1 5
, a4
1 4
1 6
,….试猜想第 n 个等式( n 为正整数):
.
解析: 1 1 n n2
62.在△ABC中,∠A=60°, ∠C=52°, 则与∠B相邻的一个外角为 °.
解析:(1)50, 65;(2) (n 2)2 n2 (n 2 n)(n 2 n) 4(n 1) . 66.尺规作图(不写作法,保留作图痕迹) 已知: 、 和线段 a .
求作: ABC 使 CAB ,∠ABC= ,AB= a .
a
解析:作图略. 67.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出 发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍,求两人的速度.
C.12个馒头比 9 杯豆浆少 1 元
D.12个馊头比 9杯豆浆多 1 元
答案:B
31. 下列长度的三条线段不能组成三角形的是( )
A.1,2,3
B.2,3,4
C.3,4,5
D.4,5,6
答案:A
32.如图,已知点 B,F,C,E在同一直线上,若
AB=DE,∠B=∠E,且BF=CE,则要使△ABC≌△DEF的理由是( )
5.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是( )
答案:C
6.下列说法中,正确的是( ) A.买一张电影票,座位号一定是偶数 B.投掷一枚均匀的硬币,正面一定朝上 C.三条任意长的线段可以组成一个三角形 D.从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大
B. 3.5104 米
C. 3.5105 米 D. 3.5106 米
答案:B
25.如图,将四边形AEFG变换到四边形ABCD,其中E ,G分别是AB、AD
的中点,下列叙述不正确的是( )
A.这种变换是相似变换
B.对应边扩大到原来到2倍
C.各对应角度数不变 D.面积是原来2倍
答案:D
26.下列图案中是轴对称图形的是( )
A.1
B. 1 2
C. 1 3
D. 1 4
答案:D
21.下列多项式中,不能运用平方差公式分解因式的是( )
A. m2 4
B. x2 y2 C. x2 y2 1 D. (m a)2 (m a)2
答案:B
22.如图,从图(1)到图(2)的变换是( )
A.轴对称变换
B.平移变换
C.旋转变换
D.相似变换

A.48 B.24 C.12 D.6
答案:C
3.下列事件是必然事件的是( )
A.明天是晴天
B.打开电视,正在播放广告
C.两个负数的和是正数D.三角形三个内角的和是180°
答案:D
x 2
4.已知
y
m
是二元一次方程5x+3y=1的一组解,则m的值是(

A.3
答案:B
B. 3
11
C.
3
D. 11 3
的是( )
A.AD=AE
B.AB=AC
C.BE=CD
D.∠AEB=∠ADC
答案:D
16.一只狗正在平面镜前欣赏自已的全身像 (如图所示),此时,它看到的全身像是(

答案:A
17.把0.000295用科学计数法表示并保留两个有效数字的结果是( )
A. 3.0 104
B. 30 105
C. 2.9 104
()
答案:B
11.下列方程中,是二元一次方程的是( )
A. x y 5
B. 3x y 2 1 C. xy 3
答案:A
3x 2 y 7 12.方程组 4x y 13 的解是( )
A.
x
y
1 3
B.
x
y
3 1
答案:B
C.
x
y
3 1
D. 1 y 2 x
D.
x
y
1 3
13.如图,将平行四边形AEFG变换到平行四边形ABCD,其中E,G分别是AB,AD的中
2019年七年级下册数学期末考试模拟试题
一、选择题
1.下列事件中,属于不确定事件的是( )
A.2008年奥运会在北京举行
B.太阳从西边升起
C.在1,2,3,4中任取一个数比5大
D.打开数学书就翻到第10页
答案:D
2.如图,△ABC中,AD是BC的中垂线,若BC=8,AD=6,则图中阴影部分的面积是(
9.不改变分式 1.3x 1 的值,把它的分子、分母的系数化为整数,其结果正确的是( )
2x 0.7 y
A. 13x 1 2x 7y
B. 13x 10 2x 7y
C. 13x 10 20x 7 y
D. 13x 1 20x 7 y
答案:C
10.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形和△ABC全等的图形是
解析:80°,2 57.一副三角板如图所示叠放在一起,则图中α的度数是 .
解析:75° 58.如图,在△ABC中,∠A=90°,BE平分∠ABC,DE⊥BC,垂足为 D,若DE= 3cm,则AE=
cm.
解析:3 59.
在如图所示的方格纸中,已知△DEF是由△ABC经相似变换所得的像,则△DEF的每条边 都扩大到原来的 倍.
解析:112
三、解答题
63.(1)解方程 2 x 3 2 ; x3 3x
(2)先化简,再求值: (3x 1)(3x 1) (3x 1)2 ,其中 x 1 . 6
解析:(1) x 1 (2) 6x 2 ,-3
64.已知∠α和线段a、b.用圆规和直尺作△ABC,使∠C=∠α, AC=b,BC=a.(不写作法,保留作图痕迹)
解析:4
50.如图,是由四个形状大小完全相同的长方形拼成的图形,利用面积的不同表示法,写
出一个代数恒等式:
.
解析: (a b)2 (a b)2 4ab ,或 (a b)2 4ab (a b)2 或 (a b)2 (a b)2 4ab
51. 计算 y x = . xy xy
解析:-1 52. 如图,△ABD≌△ACE,点B和点C是对应顶点,AB=8 cm,BD=7cm,AD=3 cm,则DC= cm.
解析:135° 55.一只袋中有红球m个,白球7个,黑球n个,每个球除颜色外都相同,从中任取一个, 取得的是白球的可能性与不是白球的可能性相同,那么 m与n 的关系是 .
解析: m n 7
56. 如图,△ABC向右平移 3个单位长度后得到△DEF,已知∠B= 35°,∠A= 65°,BC=5,则∠F= ,CE= .
g,用科学记数法表示3只卵蜂的质量是
g.
解析: 1.5 105
37.一只口袋里共有 3个红球,2 个黑球,1个黄球,现在小明任意模出两个球,则摸出一个红球和一个黑球的概率是 .
解析: 2
5 38.某网站开展“北京2008年奥运会中国队能获多少枚金牌”的网络调查,共有100000人 参加此次活动,现要从中抽取100名“积极参与奖”,那么参加此活动的小华能获奖的概率 是__________. 解析: 1
y
x
41.: - =__________. x-y x-y
相关文档
最新文档