分式不等式放缩裂项证明
笔记(高考数学—“放缩法”证明不等式)
12、迭代放缩 1 例 26. 设 S sin 1! sin 2! sin n! ,求证:对任意的正整数 k,若 k≥n 恒有:|Sn+k-Sn|< n n 1 2 n
2 2 2
六、借助数列递推关系 例27.求证: 1 1 3 1 3 5 1 3 5 (2n 1) 2n 2 1 例 28. 求证: 1 1 3 1 3 5 1 3 5 (2n 1) 2n 1 1
1 ,求证:数列 {an } 单调递增且 a n a n (1 ) n n
4.
n 1 ln 2 . )1,a>0,b>0,求证: a n b n 21 n. 例 48.求证: ln 3 ln 2 ln(1
例 42. 已 知 函 数 y f ( x), x N* , y N* , 满 足 : ① 对 任 意 a, b N* , a b , 都 有 af (a) bf (b) af (b) bf (a) ;②对任意 n N* 都有 f [ f (n)] 3n . (I)试证明: f ( x) 为 N+上的单调增函数;(II)求 f (1) f (6) f (28) ; (III)令 an f (3n ), n N* ,试证明:.
1 1 1 7 a 4 a5 am 8
例 31. 设函数 f ( x) 2 x 1 .若对一切 x R , 3 af ( x) b 3 ,求 a b 的最大值。 2
x 2
14、均值不等式放缩 例 32.设 S n 1 2 2 3 n(n 1). 求证 n(n 1) S
2
n
裂项相消与放缩法解数列专题
裂项相消与放缩法解数列专题数列专题3一、裂项求和法裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:通项为分式结构,分母为两项相乘,型如:11+∙n na a , }{na 是0≠d 的等差数列。
常用裂项形式有: ;111)1(1+-=+n n n n 1111()()n n k k n n k =-++;)121121(211)12)(12()2(2+--+=+-n n n n n ;])2)(1(1)1(1[21)2)(1(1++-+=+-n n n n n n n ;)(11b a ba b a --=+;)(11n k n kn k n -+=++特别地:nn nn -+=++111二、用放缩法证明数列中的不等式将不等式一侧适当的放大或缩小以达证题目的方法,叫放缩法。
1.常见的数列不等式大多与数列求和或求积有关,其基本结构形式有如下4种:①1nii a k =<∑(k 为常数);②1()nii a f n =<∑;③1()nii a f n =<∏;④1nii a k=<∏(k 为常数).放缩目标模型→可求和(积)→等差模型、等比模型、裂项相消模型2.几种常见的放缩方法(1)添加或舍去一些项,如:a a >+12;n n n >+)1( (2)将分子或分母放大(或缩小)①n n n n n 111)1(112--=-< ; 111)1(112+-=+>n n n n n(程度大) ②)1111(21)1)(1(111122+--=+-=-<n n n n n n )2(≥n (程度小)③1111111121312111<+=++++++≤+++++++n n n n n n n n n或21221212121312111==+++≥+++++++n n n n n n n n n ④nnnn n nn==+++>++++111131211⑤平方型:)121121(2144441222+--=-<=n n n n n ; )111(41)1(41441)12(122nn n n n n n --=-=-<-⑥立方型:])1(1)1(1[21)1(1123+--=-<n n n n n n n )2(≥n⑦指数型: )1()(111≥>-≤--b a b a a b a n n n;)1()(111≥>-≤--b a b a ab a n n⑧kkk k k 21111<++=-+;⑨利用基本不等式,2)1()1(++<+n n n n ,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅(一)放缩目标模型可求和—等比数列或等差数列例如:(1)求证:)(121212121*32N n n∈<++++ .(2)求证:)(1121121121121*32N n n∈<++++++++ .(3)求证:)(22323222121*32N n nnn∈<++++++++ .总结:放缩法证明与数列求和有关的不等式,若1ni i a =∑可直接求和,就先求和再放缩;若不能直接求和的,一般要先将通项na 放缩后再求和.问题是将通项na 放缩为可以求和且“不大不小”的什么样的nb 才行呢?其实,能求和的常见数列模型并不多,主要有等差模型、等比模型、错位相减模型、裂项相消模型等. 实际问题中,nb 大多是等比模型或裂项相消模型.(1)先求和再放缩例1.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a n +12-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:2145a a =+(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1223111112n n a a a a a a++++<.(2)先放缩再求和 例如:求证:)(2131211*222N n n ∈<++++ .例如:函数xx x f 414)(+=,求证:)(2121)()2()1(*1N n n n f f f n ∈-+>++++ .例2.设数列{an}的前n项和为S n,满足,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.总结:一般地,形如nnnb a a -=或b a a nn-=(这里1≥>b a )的数列,在证明k a a a n<+++11121 (k 为常数)时都可以提取出na 利用指数函数的单调性将其放缩为等比模型. 练习:1.设数列}{na 满足0≠na ,11=a ,)2()21(11≥+-=--n a a a n a n n n n ,数列}{na 的前n 项和为nS .(1)求数列}{na 的通项公式; (2)求证:当2≥n 时,21<<+nS n n ; (3)试探究:当2≥n 时,是否有35)12)(1(6<<++nS n n n?说明理由.(3)形如1()ni i a f n =<∑例如:设)1(3221+++⋅+⋅=n n Sn,求证:)(2)2(2)1(*N n n n Sn n n∈+<<+.根据所证不等式的结构特征来选取所需要的不等式,不等式关系:2211222ba b a ab ba+≤+≤≤+注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放缩成1)1(+<+n n n ,则得2)1(2)3)(1(121+>++=+<∑=n n n k S ni i n ,就放过“度”了。
放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)
47
3n 2
04、分类放缩
15.求证:1 1 1
23
1 2n 1
n 2
.
16.在平面直角坐标系 xoy 中, y 轴正半轴上的点列An 与曲线 y 2x x 0 上的点列Bn 满足
OAn
OBn
1 n
,直线
An Bn
在
x
轴上的截距为
an
.点
Bn
的横坐标为
bn
,
n N
.
(1)证明 an > an1 >4, n N ;
1 a2n
7n 11 36 .
05、迭代放缩
19.已知 xn1
xn xn
4 1
,
x1
1 ,求证:当
n
2
时,
n i 1
xi 2
2 21n .
20.设
Sn
sin1! 21
sin 2! 22
sin n! 2n
,求证:对任意的正整数
k,若
k≥n
恒有:|Sn+k-Sn|<
1 n
.
06、借助数列递推关系
21.求证: 1 13 135 135 (2n 1) 2n 2 1 .
2 24 246
246 2n
22.求证: 1 13 135 135 (2n 1) 2n 1 1
2 24 246
2 46 2n
(一)、经典试题
01、裂项放缩
1.(1)求
n k 1
4k
2 2 1
的值;
(2)求证:
n k 1
1 k2
5 3
.
2.求证:1
1 32
1 52
放缩法技巧全总结
放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析n35 (12) 11)1()1()1)(1(23--+⋅⎪⎪⎭ ⎝+--=+-<⋅=n n n n n n n n n n n n (13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ (4) 求证:)112(2131211)11(2-+<++++<-+n n n Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(21112131(211)12(112--+>+-+>-∑=n n i nin1+例解所以当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.n++-m k 11]例例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++ΛΛ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ解析例-in i n -取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案题) 例13.证明:)1*,()1(ln 4ln 3ln 2ln >∈-<++++n N n n n n Λ 例解析即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n来放缩:.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明解析:设函数()()(),(0)g x f x f k x k =+->∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减.∴)(x g 的最小值为)2(k g ,即总有).2()(kg x g ≥而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=即.2ln )()()(k k f x k f x f -≥-+令,,b x k a x=-=则.b a k +=例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >⋅在0>x)n x +令2)1(n x n +=,有 所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n nn n ∈++>++++++Λ(方法二)⎪⎭⎫ ⎝⎛+-+=++≥+++>++21114ln )2)(1(4ln )2)(1()1ln()1()1ln(222n n n n n n n n n 所以)2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2122222222+=⎪⎭⎫ ⎝⎛+->++++++n n n n n Λ 又1114ln +>>n ,所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n n n n ∈++>++++++Λ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:121211()511)(311)(11(+>-++++n n Λ和121211()611)(411)(211(+<+---n n Λ也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 ⇒例2)21n n > 例{}n B 满足OA . 解析:(1) 依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得: 2*212,1,n n n b b b n N n +=∴=∈,又直线nnA B 在x 轴上的截距为n a 满足 显然,对于1101nn >>+,有*14,nn a a n N +>>∈(2)证明:设*11,n n nb c n N b +=-∈,则设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,212311112222222k k k -->⋅+⋅++⋅=L 。
不等式证明几种方法
同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。
高考数学 数列压轴题放缩法技巧
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r rr n r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n(8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++ΛΛ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111 例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++=Λ212,求证:23321<++++n T T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n n T -+-=-----=+++-++++=ΛΛ 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T ΛΛ 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n xn,求证: *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ. 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ΛΛ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ2ααα 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:32]1)1(ln[->++n n ,叠加之后就可以得到答案:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n nΛ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n na a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+nnn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
几种常见的放缩法证明不等式的方法
几种常见的放缩法证明不等式的方法一、 放缩后转化为等比数列。
例1. {}n b 满足:2111,(2)3n n n b b b n b +≥=--+(1) 用数学归纳法证明:n b n ≥ (2) 1231111...3333n n T b b b b =++++++++,求证:12n T < 解:(1)略(2)13()2(3)n n n n b b b n b ++=-++ 又 n b n ≥132(3)n n b b +∴+≥+ , *n N ∈迭乘得:11132(3)2n n n b b -++≥+≥*111,32n n n N b +∴≤∈+ 234111111111...2222222n n n T ++∴≤++++=-< 点评:把握“3n b +”这一特征对“21(2)3n n n b b n b +=--+”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。
这道题如果放缩后裂项或者用数学归纳法,似乎是不可能的,为什么?值得体味!二、放缩后裂项迭加例2.数列{}n a ,11(1)n n a n +=-,其前n 项和为n s 求证:22n s <解:2111111...234212n s n n =-+-++-- 令12(21)n b n n =-,{}n b 的前n 项和为n T 当2n ≥时,1111()2(22)41n b n n n n ≤=--- 2111111111111()()...()2123043445641n n s T n n∴=≤+++-+-++--712104n =-< 点评:本题是放缩后迭加。
放缩的方法是加上或减去一个常数,也是常用的放缩手法。
值得注意的是若从第二项开始放大,得不到证题结论,前三项不变,从第四项开始放大,命题才得证,这就需要尝试和创新的精神。
例3.已知函数()(0)b f x ax c a x=++>的图象在(1,(1))f 处的切线方程为 1y x =-(1)用a 表示出,b c(2)若()ln f x x ≥在[1,)+∞上恒成立,求a 的取值范围 (3)证明:1111...ln(1)232(1)n n n n ++++>+++ 解:(1)(2)略 (3)由(II )知:当)1(ln )(,21≥≥≥x x x f a 有时 令).1(ln )1(21)(,21≥≥-==x x xx x f a 有 且当.ln )1(21,1x xx x >->时 令)],111()11[(21]11[211ln ,1+--+=+--<++=k k k k k k k k k x κ有 即.,,3,2,1),111(21ln )1ln(n k k k k k =++<-+ 将上述n 个不等式依次相加得,)1(21)13121(21)1ln(++++++<+n n n 整理得 .)1(2)1ln(131211+++>++++n n n n 点评:本题是2010湖北高考理科第21题。
证明数列不等式的常用放缩方法技巧(含答案)
证明数列不等式的常用放缩方法技巧(含答案)work Information Technology Company.2020YEAR证明数列不等式的常用放缩方法技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:aa >+12;n n n >+)1(⑵将分子或分母放大(或缩小)⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3lg 2=<=+<⋅; 2)1()1(++<+n n n n⑷二项式放缩: n n n n n n C C C +++=+= 10)11(2,1210+=+≥n C C n n n , 2222210++=++≥n n C C C n n n n )2)(1(2≥->n n n n(5)利用常用结论:Ⅰ.的放缩 <Ⅱ. 21k 的放缩(1) : 2111(1)(1)k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ.21k 的放缩(3):2214112()412121kk k k <=+--+(程度更小)Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b ma mb ab 和)0,0(>>>++<m b a ma mb ab 记忆口诀“小者小,大者大”。
解释:看b ,若b 小,则不等号是小于号,反之亦然. Ⅵ.构造函数法 构造单调函数实现放缩。
数列放缩技巧
数列放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:nn412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++ΛΛ(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到 nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n nΛΛ当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnna a a T +++=Λ212,求证:23321<++++nT T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T ΛΛ例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++Λ.解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn +++--<++++ΛΛ因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ 例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
板块一:数列与不等式——二次分式与裂项放缩
数列不等式证明专题——二次分式与裂项放缩一、分式的可直接裂项型(一)二次式的直接裂项累加型【例题1】. 正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(Ⅰ)数列{}n a 的通项公式; (Ⅱ)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B【例题2】. 已知公差不为零的等差数列{}n a ,满足13512a a a ++=,且前7项和735S =.(1)求数列{}n a 的通项公式;(2)若2211n n n a b a +=-,数列{}n b 的前n 项和为n T ,求证:32n T n -<.二、分式的放缩的裂项型(一)二次式的放缩(裂项累加型)【例题3】. 2008.辽宁卷.理.21在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列.(Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论;(Ⅱ)证明:1122111512n n a b a b a b +++<+++.放缩的度的不同,精确度也不同【例题4】. 对于数列{}n a ,已知21n a n =,设数列{}n a 的前n 项的和为n S ,则根据傅里叶级数,可得22221111 1.6449340668236n S n π=++++=≈.结合高中考试要求,如作以下的证明,因为知识欠缺,不能象傅里叶级数那般可计算出精确值,那就只能运用高中知识,调整放缩的方式证明命题,那么可以得出一种放缩核心:放缩方式不同,精确度不同,证明方法不唯一,适当即可。
(1)求证:2221111223n ++++<;(2)求证:22211171234n ++++<;(3)求证:22211151233n ++++<.【例题5】. 调整放缩的方式证明以下的命题:(1)求证:2221113135(21)2n ++++<-;(2)求证:2221115135(21)4n ++++<-.【例题6】. 已知数列{}n a 的前n 项的和为n S ,且满足21(21)n a n =+,求证:14n S <【例题7】. 2008.辽宁卷.理.21.改编在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:112211125n n a b a b a b +++<+++.【例题8】. 求证:33311151234n ++++<.。
放缩法证明不等式的基本策略
5
ak 2k 1 1 1 1 1 1 1 1 证明: k 1 k . k , k 1, 2,..., n, k 1 k ak 1 2 1 2 2(2 1) 2 3.2 2 2 2 3 2
a a1 a2 n 1 1 1 1 n 1 1 n 1 ... n ( 2 ... n ) (1 n ) , a2 a3 an1 2 3 2 2 2 2 3 2 2 3
“放缩法”证明不等式的基本策略
近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的 一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提 的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基 本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知 识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往 往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试 题,例谈“放缩”的基本策略,期望对读者能有所帮助。 用放缩法证明不等式的方法与技巧
1
(8) 1
1 1 1 1 1 1 n n 等等 2 3 n n n n n
1、添加或舍弃一些正项(或负项) 例 1、已知 an 2n 1(n N * ). 求证:
a n 1 a1 a2 ... n (n N * ). 2 3 a2 a3 an1
2
例 3、已知 an=n ,求证: ∑ 证明:∑
n
n
2 k=1 ak
k
n
<3.
k a
2 k
k=1
=∑
(完整版)裂项相消和放缩法解数列专题
数列专题3一、裂项求和法裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:通项为分式结构,分母为两项相乘,型如:11+•n n a a , }{n a 是0≠d 的等差数列。
常用裂项形式有: ;111)1(1+-=+n n n n 1111()()n n k k n n k =-++;)121121(211)12)(12()2(2+--+=+-n n n n n ; ])2)(1(1)1(1[21)2)(1(1++-+=+-n n n n n n n ; )(11b a ba b a --=+; )(11n k n k n k n -+=++特别地:n n nn -+=++111 二、用放缩法证明数列中的不等式将不等式一侧适当的放大或缩小以达证题目的方法,叫放缩法。
1.常见的数列不等式大多与数列求和或求积有关,其基本结构形式有如下4种:①1n i i ak =<∑(k 为常数);②1()n i i a f n =<∑;③1()n i i a f n =<∏;④1ni i a k =<∏(k 为常数). 放缩目标模型→可求和(积)→等差模型、等比模型、裂项相消模型2.几种常见的放缩方法(1)添加或舍去一些项,如:a a >+12;n n n >+)1((2)将分子或分母放大(或缩小) ①n n n n n 111)1(112--=-< ; 111)1(112+-=+>n n n n n(程度大) ②)1111(21)1)(1(111122+--=+-=-<n n n n n n )2(≥n (程度小) ③1111111121312111<+=++++++≤+++++++n n n n n n n n n 或21221212121312111==+++≥+++++++n n n n n n n n n ④n n n n n n n ==+++>++++111131211 ⑤平方型:)121121(2144441222+--=-<=n n n n n ; )111(41)1(41441)12(122nn n n n n n --=-=-<- ⑥立方型:])1(1)1(1[21)1(1123+--=-<n n n n n n n )2(≥n ⑦指数型: )1()(111≥>-≤--b a b a a b a n n n ;)1()(111≥>-≤--b a b a a b a n n ⑧kk k k k 21111<++=-+; ⑨利用基本不等式,2)1()1(++<+n n n n ,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅(一)放缩目标模型可求和—等比数列或等差数列例如:(1)求证:)(121212121*32N n n ∈<++++ .(2)求证:)(1121121121121*32N n n ∈<++++++++ .(3)求证:)(22323222121*32N n n n n ∈<++++++++ .总结:放缩法证明与数列求和有关的不等式,若1n i i a =∑可直接求和,就先求和再放缩;若不能直接求和的,一般要先将通项n a 放缩后再求和.问题是将通项n a 放缩为可以求和且“不大不小”的什么样的n b 才行呢?其实,能求和的常见数列模型并不多,主要有等差模型、等比模型、错位相减模型、裂项相消模型等. 实际问题中,n b 大多是等比模型或裂项相消模型.(1)先求和再放缩例1.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a n +12-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:2a =(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<.(2)先放缩再求和例如:求证:)(2131211*222N n n∈<++++.例如:函数x x x f 414)(+=,求证:)(2121)()2()1(*1N n n n f f f n ∈-+>++++ .例2.设数列{a n }的前n 项和为S n ,满足,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有.总结:一般地,形如n n n b a a -=或b a a n n -=(这里1≥>b a )的数列,在证明k a a a n<+++11121。
例谈证明不等式的四种常用措施
=
cos2 a, a
∈
(0,
π 2
)
,
æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2
,
( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β
≤
π 2
,
由α, β
∈
(0,π2 )可得0
<
α
≤
π 2
-
β
≤
π 2
,
则
cos
α
≥
cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+
放缩法技巧全总结
放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k nk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)1111(1)1132132(1)n n n n +<+++++<⨯⨯-(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n (11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i1.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n n n2.35191411)12)(1(62<++++≤++n n n n3.已知nn na 24-=,nn n a a a T +++= 212,求证:23321<++++n T T T T .二、函数放缩)0(ln x 1><+x x )( xx11ln ->(x>1) xxx x x 11ln 1ln -≤⇒-≤. (x>1)例.求证:nn n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n 2.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之.例 姐妹不等式:12)1211()511)(311)(11(+>-++++n n 和121)211()611)(411)(211(+<+---n n解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 >-⋅⋅122563412n n =+⋅⋅nn 212674523 )12(212654321+⋅-⋅⋅n n n⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n 1.证明:.13)2311()711)(411)(11(3+>-++++n n四、分类放缩例。
谈谈证明数列不等式的三种方法
解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。
数学所有不等式放缩技巧及证明方法
文档收集于互联网,已重新整理排版word 版本可编辑•欢迎下载支持.高考数学所有不等式放缩技巧及证明方法一、裂项放缩畀 2 15例1.⑴求芥门 --------- 7的值; (2)求证:>2 7T V —・A=1 4* — 1Ar = l k3例2・⑴求证:1 +丄+丄+・・・+ —>1-一!一> 2)32 52⑵Li ), 6 2(2n-1)1 1 1 1 114 16 364n 2 2 4n⑶求证丄+12+空+」"•…⑵i2 2-4 2-4-6 2-4-6••…2n例 3•求证: ---- - ---- <i + l +l + ... + -L<-(n +1)( 2/1 + 1)4 9 ir 3例4・(2008年全国一卷)设函数f ⑴二X-H1U.数列仇}满足0<q<l ・% 明:畋+】>b.例 5.已知",加 e 他,兀 > -1,S,” 二 r n + T +3川 + …+ 心求证:/严 < (m +1)5,, <(〃 + 1严 -1例 6.已知® = 4" - T , T n= ------ 二 ----- ,求证:£+◎+◎人 < —.a { + a 2 + ・• • + a n2例7.已知坷=1, £ = < W (mi,"Z),求证:亠*亠+ •..+亠>逅(耐®訓) W - l(n = 2k 、k wZ) 护2 ・x 3 化・x 5.. 4丁 /、 In 2a In 3a In n a hr -n-l例 9.求证——<^—^^>2)例 10.求证:—+ - + ・・・ + —< ln(n + 1) < 1 + —4-・・• +」■2 3 77 + 1 2 n例 11.求证:(1 + \(1 +、•….(1 + ^-Xe 和(1 + ;)(1 + 厶)•….(1 + 点)<辰 2! 3! n\ 9 81 3" 例 12•求证:(1 +1 x 2) • (1 + 2 x 3) ••…[1 + n(n +1)] > 严I12例14.已知4=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放缩法的常见技巧
(1)舍掉(或加进)一些项(2)在分式中放大或缩小分子或分母。
(3)应用基本不等式放缩(例如均值不等式)。
(4)应用函数的单调性进行放缩(5)根据题目条件进行放缩。
(6)构造等比数列进行放缩。
(7)构造裂项条件进行放缩。
(8)利用函数切线、割线逼近进行放缩。
使用放缩法的注意事项
(1)放缩的方向要一致。
(2)放与缩要适度。
(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。
(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。
所以对放缩法,只需要了解,不宜深入。
先介绍工具
柯西不等式(可以通过向量表示形式记住即摸摸大于向量乘积)
均值不等式
调和平均数≤几何平均数≤算术平均数≤平方平均数
绝对值三角不等式
定理1:|a|-|b|≤|a+b|≤|a|+|b|?
推论1:|a1+a2+a3|≤|a1|+|a2|+|a3|?
此性质可推广为|a1+a2+…+an|≤|a1|+|a2|+…+|an|.
推论2:|a|-|b|≤|a-b|≤|a|+|b|?
定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.
常用放缩思想
这几个务必牢记
不常见不常用的不等式
这几个一般用不到,放的太大了,知道有印象就好了下面就是常用思路了,主要就是裂项部分
二项平方和
f(x)=(a1x-b1)^2+(a2x-b2)^2+……(anx-bn)^2 由f(x)≥0可得△小于等于0
1.分式不等式中的典范,典范中的典范,放缩、裂项、去等,步步精彩
解析:
步步经典,用笔化化就能明白思想,换元或许更直观,即令
t=1/(x+2)
第一步意义--开不了方的,开方,并且可取等号
第二步意义--开不了方的,开方,裂项,并且可取等号
个人认为这俩个放缩,很犀利,没见过,看似难实则简单,
看似简单实则难
2.构造+三角形★★★★
平面内三点A、B、C,连接三点,令AB=c,
AC=b,BC=a,求
解析:
构造,主要就是构造,b/c就是很
明显的提示。
三角形中两边之和大于第三边,两
边之差小于第三边。
构造★★★★
为了方便观察,没有采用换元,直接写更清楚,这题应该是一直在向目标上凑得题目了3.反证法典例★★
解析:
4.柯西不等式典例★★★
有些方法就是那么气人,神奇的气人
或者用三角函数也可以不过要用到三角恒等式:
令x+2y+3z=t则(t-3z)^2/√5≤√(5-z^2)
即14z^2-6tz+t^2-25≤0△=-20t^2+1400≤0
所以tmax=√70
5.。