8年级上数学第7讲轴对称讲义

合集下载

八年级数学复习考点1 轴对称及轴对称图形的意义

八年级数学复习考点1 轴对称及轴对称图形的意义

ABCDP八年级数学复习考点1 轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。

4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。

二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。

变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。

变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。

三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2.(2006 山西省3分)下列图形中是轴对称图形的是( )。

3.(2006河南省3分)下列图形中,是轴对称图形的有( )ABABlB A CDA.4个B.3个C.2个D.1个4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.(2006苏州市3分)如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1100.那么∠BCD 的度数等于 ( ) A. 400B.500C .60D.7006.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )7.(2006 湛江市6分)如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.(2006宜昌市3分)从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。

轴对称专业知识讲座

轴对称专业知识讲座

第十四章 轴对称
嗨!对称 轴在这 儿呢!
假如一种图形沿一条直线折叠,直线两
旁旳部分能够相互重叠,这个图形就叫做轴 对称图形,这条直线即折痕所在直线就是它 旳对称轴。
八年级 数学
12.1 轴对称(1)
第十二章 轴对称
下面四幅图中是轴对称旳有几种?
八年级 数学
12.1 轴对称(1)
第十二章 轴对称
下面这些图形是不是轴对称图形?
右边
实际图形和镜中旳像有何关系?
实际图形和镜中旳像能够构成轴对称 关系
ቤተ መጻሕፍቲ ባይዱ
1、 轴对称变换后旳像
原来旳图形
2.
轴对称变换后旳像
原来旳图形
请欣赏
m
n
请你用所学旳知识来欣赏下列漂亮旳图案
大自然中旳轴对称
生活中旳轴对称
A A′
B C
B′ C′
把一种图形沿着某一条直线 折叠 ,假如 它能够 与另一种图形重叠 ,那么就说这两个 图形有关这条直线对称,这条直线叫做对称轴, 折叠后重叠旳点是相应点,叫做 对称点。
MN⊥AF于P AP = AF
1、图中旳对称点有哪些? 2、点A和F旳连线与直线



不是
12.1 轴对称(1)
下面是几家银行旳标志,其中是轴对称 图形旳是?
12.1 轴对称(1)
下面这些图形各有几条对称轴?
12.1 轴对称(1)
画出下面每个轴对称图形旳对称轴
车标设计
12.1 轴对称(1)
想一想:能否用剪刀,利用轴
对称旳知识,剪出某些你喜欢旳 图案来?
八年级 数学
12.1 轴对称(1)
把一圆形纸片两次对折后,得到

人教版八年级数学上专题讲座第7讲 角平分线问题的处理方法

人教版八年级数学上专题讲座第7讲 角平分线问题的处理方法

第7讲角平分线问题的处理方法【板块一】角的平分线的性质与判定的应用题型一角平分线性质应用【例1】如图,已知AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,BD=CD,求证:BE=CF.题型二角平分线判定应用(一)直接用角平分线判定【例2】如图,△ABC中,D,E分别是边AB,AC延长线上的点,P A平分∠BAC,PB平分∠CBD.求证:PC平分∠BCE.(二)隐藏角平分线【例3】如图,在△ABC中,AC=BC,∠ACB=90°,点D为BC上一点,E为AD延长线上一点,且∠CBE=∠CAE.求∠AEC的度数针对练习11.如图,在四边形ABCD中,∠B=∠C=90°,点E为BC中点,且AE平分∠BAD.(1)求证:DE平分∠ADC;(2)求证:AE⊥DE;(3)求证:AD=AB+CD.2.如图,AB=AC,AD=AE,∠BAC=∠DAE,BD,CE交于点P,求证:AP平分∠BPE.【板块二】角平分线问题常用处理方法方法技巧做垂直作对称(截长补短)作平行延长方法一作垂直原理:作角平分线上的点到角两边的距离,得距离相等.其原理是角平分线的基本性质.【例4】如图,四边形ABCD中,AC平分∠DAB,∠ADC+∠B=180°,求证:BC=CD.【例5】如图,AD是△ABC的角平分线,求证:BD ABCD AC.方法二作对称(截长补短)以角平分线为轴进行翻折,其原理是轴对称性质,实际操作中可以通过截取实现.【例6】如图,四边形ABCD中,AC平分∠DAB,BC=CD,求证:∠ADC+∠B=180°.方法三作平行原理:角平分线十平行→等腰三角形.【例7】如图,△ABC中,∠BAC=2∠ABC,I为△ABC的三条角平分线的交点.求证:BC=AI+AC.方法四延长原理:补全图形,构造等腰三角形三线合一定理基本图形,从而运用定理解题.【例8】如图,△ABC中,AB=AC,∠BAC=90°.(1)如图1,CF平分∠ACB交AB于F,BE⊥CF于E,探究CF,BE之间的数量关系;(2)如图2,若D为线段BC上一点,∠EDB=12∠ACB,BE⊥DE,垂足为E,DE交AB于F,线段DF,BE的数量关系是否发生变化?请说明理由.针对练习21.如图,在四边形ABCD中,∠BAC=∠BDC=36°,∠ADB=72°求证:AB=AC.2.在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE相交于点F.(1)请写出FE与FD之间的数量关系并证明;(2)如果∠ACB不是直角,其他条件不变,①中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.3.如图,△AOB为等腰直角三角形,点A,点B分别在x轴,y轴的正半轴上,点P为动点,P A⊥PB.(1)如图1,当P点在第一象限时,求∠OP A的度数;(2)如图2,当P点在第四象限时,求∠OP A的度数,4.如图,已知BD为△ABC的外角∠ABE的平分线.(1)求证:AD+CD>AB+BC;(2)若AD=CD,求证:∠ADC=∠ABC;(3)若AD=CD,作DH⊥CE于H,若AB=6,BC=4,求BH的长.。

八年级数学上册13.1.1轴对称(共21张PPT)

八年级数学上册13.1.1轴对称(共21张PPT)

课前准备:
正方形纸片、剪刀.
一、引出新知
二、探究新知
【问题1】如图,把一张纸对折,剪出一个图案(折 痕处不要完全剪断),再打开这张对折的纸,就得到 了美丽的窗花.观察得到的窗花,你能发现它们有什 么共同的特点吗?
(一)轴对称图形
如果一个平面图形沿一条直线折叠,直线两旁的部分能 够互相重合,这个图形就叫做轴对称图形,这条直线就 是它的对称轴. 这时,我们也说这个图形关于这条直线 (成轴)对称.
B
B'
C
C'
N
(四)两个图形成轴对称的性质
思考:如果将其中的“三角形”改为“四边形”“五边形”…
其他条件不变,前面的结论还成立吗?
M
l
l
A
A'
P
B C
B' C'
N
性质:如果两个图形关于某条直线对称,那么对称轴是任何一 对对应点所连线段的垂直平分线.(即对称点所连线段被对称 轴垂直平分;对称轴垂直平分对称点所连线段.)
四边形ABCD是轴对称图形
B
3
30°
C
30°
A
3
D
∆ABC ∆ADC
AC垂直平分BD
轴对称图形
课堂小结
轴对称
重要内容 线段的垂直 平分线
概念 性质
两个图形 成轴对称
概念 性质
本节课知识点对应数学课本P58-60
课后作业
完成课本P64-65习题13.1第1、2、3、4、5题.
谢谢!
B
点C'是点C的对称点. 能成轴对称,
B′
那么它们是全
C
C′
等图形吗?
做一做
2.下列每副图形中两个图案是轴对称的吗?如果是,

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点在初中数学中,轴对称是一个非常重要的知识点。

轴对称是指在一个平面上,如果有一条直线,把这个平面分成两个对称的部分,那么我们就说这个平面是轴对称的。

八年级上册的数学课程中,轴对称被涉及到了,下面我们来详细地探讨一下轴对称的相关知识点。

一、轴对称的定义和性质轴对称的定义如上所述,即沿着一条直线进行对称,这条直线就称为轴线或者对称轴。

在轴对称的情况下,通过轴对称得到的镜像图形和原图形完全重合,这也就是轴对称的性质。

轴对称有如下的性质:(1)轴对称图形共有或自成一类轴对称得到的镜像图形和原图形完全重合,因此当把某个图形做轴对称后,得到的图形和原图形形状相同,只是位置不同。

所以,轴对称得到的镜像图形和原图形共有或自成一类。

(2)轴对称的两个对称图形的距离等于轴到这两个图形的距离我们知道,轴对称的求法是以轴线为轴进行对称,而轴线到对称位置不同的点的距离不同,因此,轴对称的两个对称图形的距离等于轴到这两个图形的距离。

(3)轴对称保持长度、角度不变轴对称能够保持长度和角度不变的原因是,轴对称的两个对称图形都是完全重合的,所以它们的长度和角度是相同的。

二、轴对称的基本步骤下面我们来看轴对称的基本步骤:(1)确定轴对称的轴线首先,要确定轴对称的轴线,它必须是平面内的一条直线。

(2)确定轴对称的中心点确定轴对称的中心点,这个点一般都在轴线上,它是轴线的中点。

(3)确定轴对称的象限确定轴对称的象限,即确定轴对称得到的镜像图形和原图形的位置关系。

(4)确定轴对称的顺序确定轴对称的顺序,从哪一端开始进行对称。

一般情况下,我们可以从离中心点近的位置开始对称。

三、轴对称的应用轴对称的应用十分广泛,下面我们来看一下轴对称在实际生活中的应用:(1)轮子的轴对称自行车、汽车等车辆的轮子都采用了轴对称的原理。

(2)建筑物的轴对称建筑物在建造过程中也采用了轴对称的方法,比如古希腊罗马建筑中的神殿、半圆形壳体建筑等。

人教版八年级数学上册《轴对称》PPT优秀课件

人教版八年级数学上册《轴对称》PPT优秀课件
阴影部分的面积和为6
3.如图,已知△ABC中,AH⊥BC于H,∠C=35°, 且AB+BH=HC,求∠B的度数。
解:在CH上截取DH=BH,连接 AD,如图 ∵BH=DH,AH⊥BC,AH=AH ∴△ABH≌△ADH(SAS)∴AD=AB
D
∵AB+BH=HC,而BH=DH 又∵CD+DH=HC ∴AD=CD ∴∠C=∠DAC, 又∵∠C=35° ∴∠B=∠ADB=70°.
M
如果两个图形关于某条直线对称,那么 对称轴是任何一对对应点所连线段的垂 直平分线。
轴对称图形的对称轴,是任何一对对应 点所连直线的垂直平分线。
N
做一做 : 1.(1)图中三角形④与哪些三角形成轴对称?
(2)整个图形是轴对称图形吗?它们共有几 条对称轴?
12
43
(1)1和3 (2)是 2条
2.如图,△ABC是轴对称图形,且直线AD是 △ABC的对称轴,点E,F是线段AD上的任意两 点,若△ABC的面积为12,求图中阴影部分的 面积之和.
轴对称。
◆ 这条直线叫做对称轴。
◆ 折叠后重合的点叫对应点,也叫对称点。
对比:
定义 联系 区别 注意
轴对称图形
两个图形成轴对称
如果一个平面图形延一条直线折叠 ,直线两旁的部分可以相互重合,
这个图形就叫做轴对称图形
把一个图形沿着某一条直线折 叠,如果它能够与另一个图形 重合,那么称这两个图形关于
这条直线成轴对称
第13章 轴对称
轴对称
目录
01 观察发现 02 得出结论 03 产生思考 04 再得结论 05 练习巩固 06 头脑风暴
观察这些图像有什么共同特点?
结论:如果一个平面图形延 一条直线折叠,直线两旁的 部分可以相互重合,这个图

初中数学轴对称教案

初中数学轴对称教案

初中数学轴对称教案初中数学轴对称教案作为一名默默奉献的教育工作者,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么教案应该怎么写才合适呢?下面是小编收集整理的初中数学轴对称教案,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学轴对称教案1教学目标:1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。

2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。

3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。

教学重点:认识对称现象和轴对称图形的特点。

教学难点:掌握识别轴对称图形的方法。

教具准备:多媒体课件、实物图片等。

教学过程:一、谈话引入,激发兴趣1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。

2、从蝴蝶形状的风筝引出“对称”二、合作探究,学习新知(一)观察图形,认识对称1、观察几幅对称图形,引导学生感悟对称。

2、说一说生活中的对称现象(二)动手操作,认识轴对称图形1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。

2、动手操作,剪出轴对称图形(1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。

(2)生动手剪出自己喜欢的轴对称图形。

(3)交流展示学生的作品3、认识对称轴(1)看一看,摸一摸,说一说(2)画一画:师示范画出对称轴,然后学生自己画,再交流。

4、初步理解轴对称图形(1)说一说轴对称图形的特点,初步理解轴对称图形。

(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。

(3)举一举身边的轴对称图形的例子。

三、巩固练习,拓展延伸1、判一判:哪些是轴对称图形。

2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。

3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。

四、课堂总结通过这节课的学习,你有什么收获?五、欣赏轴对称图形的美丽初中数学轴对称教案2教学目标:1.知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。

初中数学讲义初二上册轴对称 知识讲解

初中数学讲义初二上册轴对称   知识讲解

轴对称【学习目标】1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.4.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.【要点梳理】【高清课堂 389298 轴对称知识要点】要点一、轴对称图形轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质轴对称、轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.要点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.【典型例题】类型一、判断轴对称图形1、(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【思路点拨】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.【答案】D;【解析】轴对称图形即能找到对称轴,使对称轴两边的图形重合.【总结升华】找对称轴要注意从不同的角度去观察,做到不重复、不遗漏.举一反三:【变式】(2014春•太谷县校级期末)将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A. B.C.D.【答案】C.【高清课堂389298 轴对称例2】2、将一个正方形纸片依次按图,a b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图中的()【答案】D;【解析】【总结升华】只需要根据对称轴补全图形就能找到答案.举一反三:【变式】将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()【答案】A;类型二、轴对称或轴对称图形的应用【高清课堂389298 轴对称例3】3、如图,将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F (如图③);(3)将纸片收展平,那么∠AEF的度数为()A.60°B.67.5°C.72°D.75°【答案】B;【解析】∠AEF=(180°-45°)÷2=67.5°.【总结升华】折叠所形成的图形是轴对称图形,对应角相等.举一反三:【变式1】如图,△ABC中,AB=BC,△ABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BD A'的度数.【答案】100°;∵AB =BC ,∴∠A =∠C =70°,∠B =40°又∵ΔABC 沿DE 折叠后,点A 落在BC 边上的A '处,点D 为AB 边的中点, ∴BD =D A ',∠B =∠D A 'B =40°,∴∠BD A '=180°-40°-40°=100°.【变式2】将矩形ABCD 沿AE 折叠,得到如图所示图形. 若'CED ∠=56°,则∠AED 的大小是_______.【答案】62°;类型三、线段的垂直平分线的应用4、(2014•上城区校级模拟)数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A 、B ,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P 的位置.(作图不写作法,但要求保留作图痕迹.)【思路点拨】先画角的平分线,再画出线段AB 的垂直平分线,两线的交点就是P .【答案与解析】解:【总结升华】本题考查了角的平分线、线段垂直平分线的性质.。

八年级数学上册《轴对称》讲义

八年级数学上册《轴对称》讲义

轴对称知识点一、轴对称图形轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点二、轴对称1.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形与轴对称的区别:轴对称是指两个图形,而轴对称图形是一个图形.知识点三、轴对称与轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.类型一、轴对称变换1.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为(1,6)A -,(5,3)B -,(3,1)C -.(1)ABC ∆关于y 轴对称的图形△111A B C (其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点(1,0),且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形△222A B C (其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标.类型二、线段垂直平分线知识点① 线段垂直平分线的性质2. 如图,已知ABC ∆,AB 、AC 的垂直平分线的交点D 恰好落在BC 边上.(1)判断ABC ∆的形状;(2)若点A 在线段DC 的垂直平分线上,求AC BC的值.知识点② 线段垂直平分线的判定3. 如图所示,在ABC ∆中,AB AC =,BE CD =,且BD 与CE 相交于点O ,求证:点O 在线段BC 的垂直平分线上.类型三、利用轴对称的性质求图形的面积4. 在ABC ∆中,90BAC ∠=︒,点A 关于BC 边的对称点为A ',点B 关于AC 边的对称点为B ',点C 关于AB 边的对称点为C ',若1ABC S ∆=,求A B C S '''.类型四、“将军饮马”问题5. 如图,点P、Q为MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.类型五、角平分线与线段垂直平分线的综合6. 如图,在△ABC中,AD是∠BAC平分线,线段AD的垂直平分线分别交AB于点F,交BC的延长线于E(1)在图①中,连接DF,证明DF//AC(2)在图①中,连接AE,证明∠EAC=∠B(3)如图②,若线段CD上存在一点M,使∠MPD=∠ACD,AM与EF交于点P,连接DP 并延长与AC交于点N,求证:AN=DM.①②【复习巩固】一.选择题(共7小题)1.如图,ABC ∆中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求EAF ∠的度数为何?( )A .113︒B .124︒C .129︒D .134︒2.如图所示,在四边纸片ABCD 中,//AD BC ,//AB CD ,将纸片沿EF 折叠,点A ,D 分别落在A ',D '处,且A D ''经过点B ,FD '交BC 于点G ,连接EG ,若EG 平分FEB ∠,//EG A D '',80D FC '∠=︒,则A ∠的度数是( )A .65︒B .70︒C .75︒D .80︒3.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .AP BN =C .M AP M BP ∠=∠D .ANM BNM ∠=∠4.如图,在ABC ∆中,AB 边的中垂线DE ,分别与AB 边和AC 边交于点D 和点E ,BC 边的中垂线FG ,分别与BC 边和AC 边交于点F 和点G ,又BEG ∆周长为16,且1GE =,则AC 的长为( )A .13B .14C .15D .165.如图,50∠的平分线BE交AD于点E,连接∠=︒,AD垂直平分线段BC于点D,ABCABC∠的度数是()EC,则AECA.115︒B.75︒C.105︒D.50︒6.如图,四边形ABCD中,AB AD=,点B关于AC的对称点B'恰好落在CD上,若110∠=︒,BAD则ACB∠的度数为()A.40︒B.35︒C.60︒D.70︒7.如图,P是AOB∠两边上的点,点P关于OA的对称点Q恰∠外的一点,M,N分别是AOB好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若 2.5PN=,PM=,3 MR=,则线段QN的长为()7A.1 B.1.5 C.2 D.2.5二.解答题(共3小题)8如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得PA PB+的值最小,画出图形并证明.9.如图,OBC ∆中,BC 的垂直平分线DP 交BOC ∠的平分线于D ,垂足为P .(1)若60BOC ∠=︒,求BDC ∠的度数;(2)若BOC α∠=,则BDC ∠= (直接写出结果).10.如图,ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .(1)若60A ∠=︒,24ABD ∠=︒,求ACF ∠的度数;(2)若5BC =,:5:3BF FD =,10BCF S ∆=,求点D 到AB 的距离.。

初中数学人教版八年级上册:第13章《轴对称》全章教案(22页,含反思)

初中数学人教版八年级上册:第13章《轴对称》全章教案(22页,含反思)

初中数学人教版八年级上册实用资料第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.重点轴对称图形和两个图形关于某直线对称的概念.难点轴对称图形和两个图形关于某直线对称的区别和联系.一、作品展示1.让部分学生展示课前的剪纸作品.2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教材第60页练习第1题.(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1.观察教材中的图13.1-3,思考:图中的每对图形有什么共同的特点?2.两个图形成轴对称的定义.观察右图:把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.(三)轴对称的性质观察教材中图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PA=PA′,∠MPA=∠MPA′=90°.类似的,点B和点B′,点C和点C′是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书.对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线.三、归纳小结主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点;(2)找轴对称图形的对称轴.四、布置作业教材习题13.1第1,2,3题.数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.13.1.2线段的垂直平分线的性质(2课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.难点灵活运用线段的垂直平分线的性质和判定解题.一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它.二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知,求证,自己证明.学生证明完后教师板书证明过程供学生对照.已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果…那么…”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果…那么…”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论.原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”.此时,逆命题就很容易写出来.“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”写出逆命题后,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成.学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法一过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC ≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.证法四过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.”师生共析:如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的.从同学们的推理证明过程可知线段的垂直平分线的性质的逆命题是真命题,我们把它称为线段的垂直平分线的判定.要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.例1 尺规作图:经过已知直线外一点作这条直线的垂线. 已知:直线AB 和AB 外一点C.(如下图) 求作:AB 的垂线,使它经过点C.作法:(1)任意取一点K ,使点K 和点C 在AB 的两旁. (2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和点E.(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF 就是所求作的垂线.师:根据上面作法中的步骤,想一想,为什么直线CF 就是所求作的垂线?请与同伴进行交流.生:从作法的第(2)(3)步可知CD =CE ,DF =EF ,∴C ,F 都在AB 的垂直平分线上(线段的垂直平分线的判定).∴CF 就是线段AB 的垂直平分线(两点确定一条直线).师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB 的中点,所以我们也用这种方法找线段的中点.三、课堂练习教材第62页练习第1,2题.四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线.五、布置作业1.教材习题13.1第6题. 2.补充题:(1)下图是某跨河大桥的斜拉索,图中PA =PB ,PO ⊥AB ,则必有AO =BO ,为什么?(2)如左下图,△ABC 中,AC =16 cm ,DE 为AB 的垂直平分线,△BCE 的周长为26 cm .求BC 的长.(3)有A ,B ,C 三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等.第2课时 画对称轴会画轴对称图形的对称轴.重点轴对称图形的对称轴的画法. 难点轴对称图形的对称轴的画法.一、提出问题如果两个平面图形成轴对称,你能用什么办法验证?不经过折叠,你能用什么方法画出它的对称轴? 二、探究新知 我们已经学过,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,所以我们只要找到两个图形的一对对应点,然后画出以对应点为端点的线段的垂直平分线即可,如何作线段的垂直平分线呢?例1 如图(1),已知点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴,为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线.教师具体分析画法、写出画法,根据画法作出图形. 学生模仿教师的画法,边写画法,边画图.作法:如图(2).(1)分别以点A ,B 为圆心,以大于12AB 的长为半径作弧(想一想,为什么),两弧相交于C,D两点;(2)作直线CD.CD就是所求作的直线.这个作法实际上就是线段的垂直平分线的尺规作图.教师引导学生思考:(1)在作法中为什么有CA=CB,DA=DB?(2)可以用这种方法找线段的中点吗?四等分点呢?三、举例分析例2如图(1),△ABC和△A′B′C′是两个成轴对称的图形,请画出它的对称轴.教学方法:启发学生把问题转化为已解决问题,只要画出点A、点A′连线的垂直平分线即可,如图(2).例3图(1)是一个五角星,请画出它的对称轴.教学方法:引导学生思考五角星有几条对称轴,点A可以和哪些点成对应点?最后化归到例2,由学生自己完成.四、巩固练习教材第64页练习第1,2,3题.五、课堂小结本节课你有什么收获?还有哪些不懂的地方吗?六、布置作业教材习题13.1第7,8题.通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2画轴对称图形(2课时)第1课时作轴对称图形通过实际操作,掌握作轴对称图形的方法.重点能够按要求作出简单平面图形经过一次对称后的图形.难点较复杂图形的轴对称图形的画法.一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.二、探究新知[活动]在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.认真观察,左脚印和右脚印有什么关系?(成轴对称)对称轴是折痕所在的直线,即直线l,它与图中的线段PP′是什么关系?(直线l垂直平分线段PP′)[思考1]如何画一个点的对称图形?例1画出点A关于直线l的对称点A′.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A′,使得BA′=AB.点A′就是点A关于直线l的对称点.[思考2]如何画一条直线的对称图形?例2已知线段AB,画出AB关于直线l的对称线段.画法:(1)画出点A关于直线l的对称点A′.(2)画出点B关于直线l的对称点B′.(3)连接点A′和点B′成线段A′B′.线段A′B′即为所求.[思考3]如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA,A′就是点A 关于直线l的对称点.(2)同理,分别画出点B,C关于直线l的对称点B′,C′.(3)连接A′B′,B′C′,C′A′,则△A′B′C′即为所求.三、课堂练习1.教材第68页练习第1,2题2.下列图形中,点P与P′关于直线MN对称的图形是()四、小结与作业1.归纳:几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形.2.作业:教材习题13.2第1题.几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.第2课时用坐标表示轴对称1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.重点用坐标表示点关于坐标轴对称的点的坐标.难点找对称点的坐标之间的关系.一、问题导入教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知【探究1】(1)在直角坐标系中画出下列已知点A(2,-3),B(-1,2),C(-6,-5),D(3,5),E(4,0),F(0,-3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.已知点A(2,-3) B(-1,2) C(-6,-D(3,5) E(4,0) F(0,-3)5)关于x轴的对称点关于y轴的对称点【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?【归纳】关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数.【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标.观察点P经过两次轴对称所得点P2的坐标有什么规律?【归纳】一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数.在以后学了“中心对称”后,两点被称为关于原点对称.三、举例分析【例1】已知A(2,a),B(-b,4),分别根据下列条件求a,b的值.(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称.【解析】(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a=4,b=2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a=-4,b=-2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a=-4,b=2.【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.学生独立完成,教师用多媒体出示出正确答案并讲评.四、课堂巩固1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点P(-2,3)关于y轴对称点为Q(a,b),则a+b的值为()A.1B.-1C.5D.-53.点P(a,b)关于x轴对称的点为P1,点P1关于y轴的对称点为P2,则P2的坐标为() A.(a,b) B.(a,-b)C.(-a,b) D.(-a,-b)4.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于()对称.A.x轴B.y轴C.x轴或y轴D.不确定五、拓展思维如图,点A(1,4),B(4,1),l为第一、三象限角∠xOy的平分线.(1)求证:l垂直平分AB;(2)A,B关于l成轴对称吗?(3)如果点A,B的坐标分别为(6,8)和(8,6),它们还关于l对称吗?(4)如果你发现了对称点的坐标规律,写出点P(m,n)关于第一、三象限角平分线的对称点Q的坐标.六、小结与作业小结:(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求.(2)点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y)即横坐标互为相反数,纵坐标相等.作业:教材习题13.2第3,4题.本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.13.3等腰三角形13.3.1等腰三角形(2课时)第1课时等腰三角形的性质和应用1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.重点等腰三角形的性质及应用.难点等腰三角形的性质的证明.一、情境导入【活动1】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.二、探究新知如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.在△ABC中,若AB=AC,则△ABC是等腰三角形,AB,AC是腰,BC是底边,∠A 是顶角,∠B和∠C是底角.【活动2】把活动1中剪出的△ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.教师活动:引导学生归纳.性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).【活动3】你能用所学知识验证上述性质吗?如图,在△ABC中,AB=AC.求证:∠B=∠C.学生活动:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B=∠C,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC边上的中线AD,证明△ABD和△ACD全等即可,根据条件利用“边边边”可以证明.教师活动:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC边上的中线AD,如图.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,所以△ABD ≌△ACD(SSS ),所以∠B =∠C. 这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由△ABD ≌△ACD ,还可得出∠BAD =∠CAD ,∠ADB =∠ADC =90°. 从而AD ⊥BC ,这也就证明了等腰△ABC 底边上的中线平分顶角∠A 并垂直于底边BC. 添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2. 三、应用提高例1 如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.学生活动:小组合作,分组讨论、交流.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)发现:(1)∠ABC =∠ACB =∠CDB =∠A +∠ABD ; (2)∠A =∠ABD ; (3)∠A +2∠C =180°.若设∠A =x ,则有x +4x =180°,得到x =36°,进一步得到两个底角的度数.四、小结与作业请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己的语言归纳,教师适时点评,并关注以下几个问题:小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).作业:教材习题13.3第1,3,7题.本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.第2课时 等腰三角形的判定1.理解并掌握等腰三角形的判定方法. 2.运用等腰三角形的判定进行证明和计算.重点等腰三角形的判定方法. 难点等腰三角形的判定方法的证明.一、提出问题出示教材第77页“思考”. 学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系? 学生猜想它们所对的边相等.即如果一个三角形有两个角相等,那么这两个角所对的边也相等. 如何证明? 二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证. 已知:在△ABC 中,∠B =∠C.求证:AB =AC.与学生一起回顾等腰三角形中常添加的辅助线:高、顶角平分线、底边上的中线.让学生逐一尝试,发现可以作AD ⊥BC ,或AD 平分∠BAC ,但不能作BC 边上的中线.学生口头证明后,选一种方法写出证明过程.如图,在△ABC 中,∠B =∠C ,作△ABC 的角平分线AD.在△BAD 和△CAD 中,⎩⎨⎧∠1=∠2,∠B =∠C ,AD =AD ,∴△BAD ≌△CAD(AAS ),∴AB =AC.归纳等腰三角形的判定方法: 如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”. 三、应用举例 1.出示教材例2.引导学生根据命题画出图形,利用角平分线的性质及“等边对等角”来证明. 学生讨论后,自己完成证明过程.例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC.(如图所示)求证:AB =AC.分析:要证明AB=AC.可先证明∠B=∠C.因为∠1=∠2,所以可以设法找出∠B,∠C与∠1,∠2的关系.证明:∵AD∥BC,∴∠1=∠B(______________________),∠2=∠C(______________________).而已知∠1=∠2,所以∠B=∠C.∴AB=AC(______________).2.出示教材例3.让学生自学例3.例3已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.四、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题.学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识.因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想.13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定。

《轴对称》 ppt课件

《轴对称》  ppt课件

PPT课件
16
国旗是国家的一个象征,观察下面的国旗, 哪些是轴对称图形?试找出它们的对称轴。
加拿大
瑞典
以色列
摩P洛PT哥课件
英国
17
试一试
你能举出日常生活中常见的 轴对称图形的例子吗?
PPT课件
18Βιβλιοθήκη 字游戏在艺术字中,有些汉字是轴对称的,你能猜一猜 下列是哪些字的一半吗?
PPT课件
19
轴对称
观察下面的图形,你能发现它们有 什么共同的特征吗?
20
PPT课件
轴对称
A
A′
B C
B′
C′
21
PPT课件
定义
1.把_一_个__图__形_沿着某一条直线折叠,如果 它能够与另__一__个_图形_重__合_,那么就说这 两个图形_关__于__这_条__直_线__对_称__或者说这两 个图形成轴对称。
喜喜 FF
(A)
(B) (C)
25
(D)
PPT课件
四. (分组讨论)
1.成轴对称的两个图形全等吗?( 全等 ) 2.如果把一个轴对称图形沿对称轴分成两
个图形,那么这两个图形全等吗?( 全等 ) 这两个图形对称吗?( 对称 )
PPT课件
26
轴对称
想一想:轴对称图形与两个图形成轴 对称图形有什么区别和联系?
PPT课件
28
八年级 数学
12.1 轴对称(1)
第十二章 轴对称
做一做:
如图,△ABC与△DEF关于直线a对称,
若AB=2cm,∠C=55°,则DE= 2cm,∠F= 55° 。
a
A
D
F
C
B
E

八年级数学常考点 第07讲 勾股定理与几何最值问题突破技巧(学生版+解析版)

八年级数学常考点 第07讲 勾股定理与几何最值问题突破技巧(学生版+解析版)

第07讲勾股定理与几何最值问题突破技巧(学生版)第一部分专题典例剖析及针对训练类型一立体图形表面的最短路线问题典例1:如图,正四棱柱的底面边长为1.5cm,侧棱长为4cm,求一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处的最短路程的长。

典例2 在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为(π取3)针对训练1:1.如图所示,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C 1处,问怎样走路线最短?最短路线长为多少?2.(2020秋•罗湖区校级期末)如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.3.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么A1B1C1D1DA BC所用细线最短需要cm .类型二将军“饮马问题”中的最短路线典例3 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?类型三求一条线段的最小值典例4 (2020秋•遂宁期末)如图,OC平分∠AOB,点P是OC上一点,PM⊥OB于点M,点N是射线OA上的一个动点若OM=4,OP=5,则PN的最小值为()A.2B.3C.4D.5针对训练34.(2020秋•仪征市期中)如图,在△ABC中,AB=6,BC=8,∠B=90°,若P是AC上的一个动点,则AP+BP+CP的最小值是()A.14.8B.15C.15.2D.16类型四利用配方法求最值典例5 (2021•南通)平面直角坐标系xOy中,已知点P(m,3n2﹣9),且实数m,n满足m﹣n2+4=0,则点P到原点O的距离的最小值为.针对练习45.(2020秋•江都区期末)已知点P(3m,4﹣4m)为平面直角坐标系中一点,若O为原点,则线段PO 的最小值为()AB小河东北牧童小屋A.2B.2.4C.2.5D.3第二部分专题培优训练1.(2021•柳南区校级模拟)如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE的中点,若AB=4,则线段MN的最小值为()A.√32B.3√34C.√3D.3√322.(2021春•饶平县校级期中)如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为()A.12B.1C.√2D.√33.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3√2+3√6)cm.4.(2021秋•青岛期末)如图,点M为线段AB上的一个动点,在AB同侧分别以AM和BM为边作等边△AMC 和等边△BMD,若AB=12,则线段CD的最小值为.5.(2021秋•锦江区校级期末)如果一个直角三角形的两边长分别是3,4,那么这个直角三角形斜边上的高长最小值为.6.(2020秋•霸州市期末)如图,在△ABC中,BA=BC,BH平分∠ABC,点P,D分别是BH和AB上的任意一点,设P A+PD=m.(1)连接CD交BH于点E,则m CD(填表示相等或大小关系的符号);(2)若BA=BC=5,AC=6,BH=4,则m的最小值是.7.(2021秋•大东区期中)如图,三角形ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC,则线段PC的最小值是.8.(2021•永嘉县校级模拟)如图,AB=1,以AB为斜边作直角△ABC,以△ABC的各边为边分别向外作正方形,EM⊥KH于M,GN⊥KH于N,则图中阴影面积和的最大值为.9.(2021春•海淀区校级期末)A(0,a),B(3,5)是平面直角坐标系中的两点,线段AB长度的最小值为.10.如图所示,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿着圆柱侧面爬行的最短路程是多少?(π的值取3)11.(2021秋•吉安期中)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=3,DE=2,BD=12,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问点C满足什么条件时,AC+CE的值最小,并求出此时AC+CE的最小值.(3)根据(2)中的规律和结论,重新构图求出代数式√x2+1+√(8−x)2+25的最小值.12.(2021秋•长丰县期末)如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AB=4,BC=12,AD=3,若点P在BC上运动.(1)求线段DP的最小值;(2)当DP最小时,求△CDP的面积.第07讲 勾股定理与几何最值问题突破技巧(解析版)第一部分 专题典例剖析及针对训练类型一 立体图形表面的最短路线问题典例1:如图,正四棱柱的底面边长为1.5cm ,侧棱长为4cm ,求一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到C 1处的最短路程的长。

八年级数学上册《_轴对称》课件_人教版

八年级数学上册《_轴对称》课件_人教版

A E C D H
B F
试一试
1、如图:点A和点B关于直线MN 对称,则: (1)MN 垂直平分线段AB 。 A (2)点D是MN上的一点,则 ABD是 等腰 三角形 。 (3)由图中,你还能得到哪些结论? OA=OB, MNAB, ∠A=∠B, ∠ADO=∠BDO, AODBOD….
M
D
O N
B
(4)对称轴MN在 ABD中有什么特殊性?
2、如图,线段AB与线段CD关于直线 MN对称,则: A、C是一对 对称点 AB ;
M
A
C
= CD;
BD ; 。
B
N
D
AC与BD 的关系是 AC 四边形ABDC是
等腰梯形
例题讲解
如右图:点P在∠ AOB的内部,点M、N分 别是点P关于OA、OB的对称点,MN与OA、 OB分别交于E、F,若PEF的周 长为20,求 MN的长? 解: ∵ 点P和点M关于OA对称 ∴ OA是PM的垂直平分线 ∴ PE=ME ∵ 点P和点N关于OB对称 ∴ OB是PN的垂直平分线, O F M A
两个图形成轴对称的性质 : 如果两个图形关于某条直线对称,那么对称 轴是任何一对对应点 所连线段的垂直平分线。
观察右图,思考后回答
直线GH垂直平分 线段AB 。
G
直线GH垂直平分 线段CD 。 直线GH垂直平分 线段EF 。
归纳:轴对称图形的性质 轴对称图形的对称轴, 是任何一对对应点所连 线段的垂直平分线。再 见EPB
N
∴ PF=NF
∵ PEF的周长是20 ∴ MN=ME+EF+FN =PE+EF+PF=20
比一比
1、判断 (1)角的两边关于角平分线对称。 ( ) (2)两个全等图形一定关于某条直线对称。 ( ) (3)关于某条直线对称的两个图形一定全等。( ) (4)直角三角形一定不是轴对称图形 。 ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲轴对称
、知识点精讲:
(一)基本概念
1. 轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做_________ , 这条直线就叫做. 折叠后重合的点是对应点,叫做.
2. 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的 __________
3. 等腰三角形:_____________ 叫做等腰三角形•相等的两条边叫做_________ ,另一条边叫做_______ ,两腰所夹的角叫做 ______ ,底边与腰的夹角叫做.
4. 等边三角形:三条边都相等的三角形叫做_•
(二)主要性质
1. 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的. 或者说轴对称图
形的对称轴,是任何一对对应点所连线段的
2. 线段垂直平分钱的性质:线段垂直平分线上的点与这条线段两个端点的距离__
3. 通过画出坐标系上的两点观察得出:
(1 )点P( x,y)关于x轴对称的点的坐标为P'( x,-y ).
(2)点P (x,y )关于y轴对称的点的坐标为P"(-x , y).
4. 等腰三角形的性质
(1 )等腰三角形的两个底角_______ (简称“等边对等角”).
(2)______________________________________ 等腰三角形的顶角平分线、底边上的、底边上的相互重合.
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的.
(4 )等腰三角形两腰上的高、中线分别相等,两底角的平分线也_—
(5)等腰三角形一腰上的高与底边的夹角是顶角的___________ 。

(6 )等腰三角形顶角的外角平分线平行于这个三角形的—」
5. 等边三角形的性质
(1)____________________________ 等边三角形的三个内角都,并且每一个角都等于——
(2)__________________________________ 等边三角形是轴对称图形,共有条对称轴.
(3)________________________ 等边三角形每边上的、和该边所对内角的平分线互相重合 ___________________________ .
三、有关判定
1. 与一条线段两个端点距离相等的点,在这条线段的 ________ 上.
2. 如果一个三角形有两个角相等,那么这两个角所对的边 __________ (简写成“等角对等边”).
3. 三个角都相等的三角形是_______ 三角形.
4. 有一个角是60°的 ______ 三角形是等边三角形.
A

B.
M-
2.如图所示,一牧人带马群从 A 点出发,先到草地边缘 MN 放牧,再带马群到河边缘 PQ 去给马饮水,试问:
牧人应走哪条路线才能使总路程最短?
专题二:线段垂直平分线性质的运用
1.如图所示,在厶ABC 中,AB=AC / A=120°, AB?的垂直平分线 MN 分别交BC AB 于点 M N,求证:CM=2BM
2.如图所示,AD 是厶ABC 的角平分线,EF 是AD 的垂直平分线,交 BC 的延长线于点F ,连结AF . 求证:/ BAF=Z ACF
专题三:等腰三角形边与角计算中的分类讨论思想与方程思想 1. 已知等腰三角形的一个内角是 800,则它的另外两个内角是
2. 已知等腰三角形的一个内角是
1000,则它的另外两个内角是
3•已知等腰三角形有两边的长分别为 6, 3,则这个等腰三角形的周长是 _________ °
4•已知等腰三角形的周长为 24, 一边长为6,则另外两边的长是 ___________ ° 5•已知等腰三角形的周长为 24, 一边长为10,则另外两边的长是 ____________ °
6.等腰三角形的周长是
16,其中两边之差为 2,则它的三边的长分别为 ___________ °7.等腰三角形一腰上的高
与另一腰的夹角为 30°,则它的顶角度数为 ____________ ° &一等腰三角形一腰上的中线把这个三角形的周长分成 15cm 和18cm 两部分,则这个等腰三角形的底边长
是 ____________________
9.如图,/ DEF =36°, AB=BC=CD=DE=EF 求/ A
、例题讲解:
专题一:根据轴对称及线段垂直平分线性质的作图题
1如图所示,EFGH 是 一矩形的弹子球台面,有黑、白两球分别位于
球,使白球先撞击边 EF 反弹后再击中黑球?
A B 两点的位置上,试问:怎样撞击白
B
专题四•关于等腰三角形证明题
1.如图所示,F 、C 是线段BE 上的两点,A 、D 分别在线段 QC RF 上,AB=DE BF=CE / B=Z E , QR/ BE 求
证:△ PQR 是等腰三角形.
(1)下列说法中,正确的个数是(
①轴对称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,〕 等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形
F 列图案是几种名车的标志,在这几个图案中是轴对称图形的共有(
顶角,则/ B= ________ °
(8) 小强站在镜前,从镜中看到镜子对面墙上挂着的电子表, 其读数如图所示,则电子表的实际时刻是 _____________ 。

(9) 若厶 ABC 与△ A /B /C /关于直线 MNX 寸称,/ A = 50°,/ B / = 70°,则/ C (10) 在矩形 ABCD 中,将△ ABC 绕AC 对折至△ AEC 位置,
(11) 如图,己知 AB=AC DE 垂直平分 AB 交AC AB 于D 、
E 两点,若 AB=12cm BC=10cm,/ A=49o,求厶 BCE
课堂练习
(A )
(B ) 2 个
(C )
(D )
(2) 轴对称图形的对称轴的条数(
(A ) 只有一条
(B ) 2 条
(C )
(D )至少一条
(3) F 列图形中,不是轴对称图形的是(
(A ) 两条相交直线
(B ) 线段
(C ) 有公共端点的两条相等线段
(D )有公共端点的两条不相等线段
(4) (5) △ ABC 中, AB=AC 点D 在AC 边上,且
雪佛兰
三菱
雪铁 丰田
(A )
(B ) 2 个
(C )
BD=BC=AD 则/ A 的度数为(
(A) 300
(B) 360
(C) 450
(D) 700
(6) 到三角形三个顶点距离相等的是( (A ) 三边高线的交点
(B )三条中线的交点 (C )三条垂直平分线的交点
(D ) 三条内角平分线的交点
(7)等腰△ ABC 中/ A=80° 若/ A 是顶角,则/ B=
;若/ B 是顶角,则/
B=
;若/ C 是
CE 与AD 交于点F ,如图.试说明EF=DF.
(D ) 4
的周长和/ EBC的度数.
课后练习
(1)在厶ABC中,AB=AC BC=5cm作AB的中垂线交另一腰AC于D,连结BCD的周长是17cm,则腰长为( )
(A) 12cm ( B) 6cm ( C)7cm ( D) 5cm
(2)已知/ AOB=40, OM平分/ AOB MAL OA于A, MBL OB 于B,则/ MAB
( )
(A) 500(B) 400( C) 300( D) 20°A
BD,如果△
的度数为
(3) _____________________________________________________________________________________
A ABC中,BC= 10 ,边BC的垂直平分线分别交A
B AC于点E、F , BE= 7 , △ BCE的周长为___________
(4) 已知△ ABC中/BAC=140 , AB AC的垂直平分线分别交BC于E、F ,你能求出/ EAF的度数吗?
(5)在课外活动中,小明发明了一个在直角三角形中画锐角方法,
他的方法是:如图所示,在斜边AB上取一点E ,使BE=BC 丄AB,交
AC于D,那么BD就是/ ABC的平分线,你认为对吗?为什么?
补充作业
1.下列轴对称图形中,对称轴最多的是( )
(A)等腰直角三角形(B)线段(C)正方形
2.下列图形中不是轴对称图形的有( )
(D)
(1) *
(6)
(A) 1 个 (B) 2 个 (C) 3 个(D) 4 个
3.以下汽车标志中,和其他三个不同的是( )
<A> ® ® @
(A) (B) (C) (D)
4.画出下图中△ ABC关于直线MN的轴对称图形。

5.在Rt△ ABC中,/ C=90), BD平分/ ABC交AC于点D,
DE
①试找出图中相等的线段,并说明理由。

②若DE=1cm 垂直平分线段AB, BD=2cm 求AC的长。

r。

相关文档
最新文档