1.2 导数的计算(一)
第一章1.2-1.2.2基本初等函数的导数公式及导数的运算法则(一)
1.几个常用函数的导数
原函数 导函数 f(x)=c f′(x)=0 f(x)=x f′(x)=1 f(x)=x2 f′(x)=2x
f(x)=1x
1 f′(x)=_2__x__
f(x)= x f′(x)=_-__x1_2__
2.基本初等函数的导数公式
原函数
导函数
y=c y=xn(n∈Q) y=sin x y=cos x y=ax(a>0,a≠1) y=ex
2.遇到含有根式的函数求导数一般先化为幂函数的 形式再求导.
程为 y-1=-xln 2,即 xln 2+y-1=0. 答案:xln 2+y-1=0.
5.曲线 y=13x3 在 x=1 处切线的倾斜角为________. 解析:由 y=13x3 得 y′=x2,y′|x=1=1,所以切线的倾 斜角 α 满足 tan α=1,因为 0≤α<π,所以 α=π4. 答案:π4
=-13. 1
(2)因为 f(x)=ln x(x>0), 所以 f′(x)=1x, 所以 f′(x0)=x10=x120,所以 x0=1. 答案:(1)-13 (2)1
类型 3 求切线方程(互动探究)
[典例 3] 已知曲线 y=1x,求曲线在点 P(1,1)处的 切线方程.
1
1
解:y=x,y′=-x2.显然 P(1,1)是曲线上的点,
即质点在 t=π3时的速度为12. (2)因为 v(t)=cos t, 所以加速度 a(t)=v′(t)=(cos t)′=-sin t.
归纳升华 1.速度是路程对时间的导数,加速度是速度对时间 的导数. 2.求函数在某定点(点在函数曲线上)的导数的步骤 是:(1)求函数的导函数;(2)把对应点的横坐标代入导函 数,求相应的导数值.
1.2.2导数运算法则1
我们今后可以直接使用的基本初等函数的导数公式 n n 1
公式2.若f ( x) x , 则f '( x) nx ; 公式 ,则 '( xf) '( x0; 公式1. 3.若 若f f( (x x) ) c sin xf, 则 ) cos x;
n n 1 公式 2. 若 f ( x ) x , 则 f '( x ) nx ; x; 公式 4. 若 f ( x ) cos x , 则 f '( x ) sin 公式1.若f ( x) c, 则f '( x) 0; x 公式 3. 若 f ( x ) sin x, 则 f x'( x )a xcos x ; n, 则 n 1a 公式 5. 若 f ( x ) a f '( ) ln ( 公式2.若f ( x) x , 则f '( x) nx ; a 0); 公式 4.若 若f f( (x x) ) e cos x,f则 f '( x)e x x sin x; 公式6. , 则 '( x ) 3. sin x, 则f '( x) ;cos x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 1 公式 4. 若 f ( x ) cos x , 则 f '( x ) sin x;( a 0, 且a 1); 公式7.若f ( x) log x , 则 f '( x ) a 公式6.若f ( x) e xx, 则 f '( x) e xx; x ln a 公式5.若f ( x) a , 则f '( x) a ln a( a 0); 1 1 x x ln x则 ,则 f'('( x'( ) 公式7. ,则 f) ) ( a 0, 且a 1); 6.若f ( x) log e , x x e ;; a xf x x ln a 1 公式8.若f ( x) log a x, 则f '( x) 1 ( a 0, 且a 1); 公式8.若f ( x) ln x, 则f '( x) ; x ln a x 1 公式8.若f ( x) ln x, 则f '( x) ;
1.2.1几个常用函数的导数及基本初等函数导数公式(教学设计)
1.2导数的计算(教学设计)(1)1.2.1几个常用函数的导数;1.2.2基本初等函数的导数公式教学目标:知识与技能目标:(1)能够用定义求五个常用函数的导数,并熟悉求导数的三个步骤。
(2)使学生应用由定义求导数的三个步骤推导五种常见函数y c =、y x =、2y x =、1y x=、y =的导数公式;并能运用这四个公式正确求函数的导数. 过程与方法目标:通过本节的学习,掌握利用导数的定义求导数的方法。
情感、态度与价值观目标:(1)通过本节的学习,进一步体会导数与物理知识之间的联系,提高数学的应用意识。
(2)通过本节的学习,培养学生对问题的分析能力与认识能力,进一步明白数学在研究整个自然科学中的重要位置。
教学重点: 五种常见函数y c =、y x =、2y x =、1y x =、y =的导数公式及应用教学难点: 五种常见函数y c =、y x =、2y x =、1y x=、y =的导数公式教学过程: 一、复习回顾:1.求f(x)在x 0年的导数的步骤为: 1)求增量:∆y=f(x+∆x)-f(x)2)算比值:()()y f x x f x x x∆+∆-=∆∆ 3)求极限:y ’=0lim x yx∆→∆∆2.导数的几何意义。
二.创设情景,新课引入我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数. 三.师生互动,新课讲解: 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆ 所以00limlim 00x x yy ∆→∆→∆'===0y '=表示函数y 0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆ 所以00limlim 11x x yy x ∆→∆→∆'===∆以解释为某物体做瞬时速度为1的匀速运动. 3.函数2()y f x x ==的导数因为22()()()y f x x f x x x x x x x∆+∆-+∆-==∆∆∆ 2222()2x x x x x x x x +∆+∆-==+∆∆所以00limlim (2)2x x yy x x x x ∆→∆→∆'==+∆=∆ 2y x '=表示函数y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .4.函数1()y f x x==的导数因为11()()y f x x f x x x x x x x-∆+∆-+∆==∆∆∆ 2()1()x x x x x x x x x x -+∆==-+∆∆+⋅∆ 所以220011limlim ()x x y y x∆→∆→∆'==-=-∆5.函数()y f x =因为()()y f x x f xx x ∆+∆-==∆∆==所以0lim lim x x y y x ∆→∆→∆'===∆(2)推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'= 小结:基本初等函数的导数公式:例1(课本P14例1)假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.变式训练1:(课本P15思考)如果上式(例1)中某种商品的P 0=5,那么在第10个年头,这种商品的价格上涨的速度大约是多少?例2 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2.解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5;(3)y ′=⎝⎛⎭⎫1x 3′=(x -3)′=-3x -4; (4)y ′=(4x 3)′=(x 34)′=1434x -=344x;(5)y ′=(log 3x )′=1x ln 3;(6)y =1-2sin 2x2=cos x ,y ′=(cos x )′=-sin x .反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 变式训练2:(1)下列函数求导运算正确的个数为( )①(3x )′=3x log 3e ;②(log 2x )′=1x ln 2;③1(ln x )′=x ;④若y =1x 2,则y ′|x =3=-227.A .1B .2C .3D .4(2) ①已知f (x )=5x ,则f ′(2)=________. ②已知f (x )=ln x ,且f ′(x 0)=1x 20,则x 0=________.答案 (1)C (2)①25ln 5 ②1解析 (1)①中(3x )′=3x ln 3,②③④均正确. (2)①f ′(x )=5x ln 5,f ′(2)=25ln 5. ②f ′(x )=1x ,∴f ′(x 0)=1x 0=1x 20,解得x 0=1.例3:求过曲线y=cosx 上点P 132π(,)且与在这点的切线垂直的直线方程。
导数的计算1
c=0(c 为常数), (xn)=nxn-1(nR);
[f(x)+g(x)]=f(x)+g(x), [f(x)-g(x)]=f(x)-g(x), [cf(x)]=cf(x).
典型例题
求下列函数的导数: (1)y=3x(x2+2); (2)y=(2+x3)2; (3)y=(x-1)(2x2+1); (4)y=(2x2+3)(3x-2).
谢谢!
5. 函数 y f x x 的导数
Dy f x Dx f x 因为 Dx Dx
x Dx x Dx
x Dx x x Dx x Dx x Dx x
1 , x Dx x
Dy 1 1 所以 y` lim lim . Dx 0 Dx Dx 0 x Dx x 2 x
x x Dx 1 2 , x x Dx x x Dx Dx
1 4. 函数 y f x 的导数 x
Dy 1 1 所以 y` lim lim 2 2. Dx 0 Dx Dx 0 x x x Dx
Dy 有极限, 就说函数 y=f(x) 在点 x0 处可导, Dx 并把这个极限叫做 f(x) 在点 x0 处的导数(或瞬时变化率), 记作:
2.导数的概念
如果当 Dx0 时,
f(x0+Dx)-f(x0) Dy . Dx f(x0) 或 y | x=x0, 即: f(x0)=lim Dx =lim Dx0 Dx
Dy f x Dx f x 因为 Dx Dx x Dx x 1, Dx Dy 所以 y` lim lim 1 1. Dx 0 Dx Dx 0
1.2.2 导数的运算法则(一)
1.2.2 导数的运算法则(一)知识要点1,两个函数的和(或差)的导数,等于这两个函数的导数的 ,即()()'u x v x ±=⎡⎤⎣⎦2,两个函数的积的导数,等于 ,加上 ,即()()'u x v x ⋅=⎡⎤⎣⎦ 。
特别地,()'cu x =⎡⎤⎣⎦ (其中c 为常数)。
3,两个函数的商的导数,等于 减去 ,再除以 。
即知识点一,直接求导例1,求下列函数的导数(1)23cos y x x x =+ (2)1x y x=+ (3)tan y x = (4)lg x y x e =-变式训练1,求下列函数的导数(1)23y x =(2)5314353y x x x =-++(2)2sin cos y x x x =+ (4)ln 1x y x =+知识点二,先变形再求导例2,求下列函数的导数(1)y =(2)cos 2sin cos x y x x =+(3))22sin cos 22x x y =- 变式训练2,求下列函数的导数 (1)2311y x x x x ⎛⎫=++ ⎪⎝⎭ (2)44sin cos 44x x y =+知识点三,导数的综合应用例3,已知函数21nx y x ⎛⎫= ⎪+⎝⎭过点11,9P ⎛⎫ ⎪⎝⎭,求函数在点P 处的切线方程。
变式训练3,某质点的运动规律是322s t t t =-+,求其最小速度m v水平基础题1.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒2.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -23.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2B .0C .钝角D .锐角4.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________.5.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x-1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x. 水平提升题6.曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( )A.π22B .π2C .2π2 D.12(2+π)2 7.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x8.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数9.曲线y =cos x 在点P ⎝⎛⎭⎫π3,12处的切线的斜率为______.10.已知函数f (x )=ax +b e x 图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.11.已知两条曲线y =sin x 、y =cos x ,是否存有这两条曲线的一个公共点,使在这个点处,两条曲线的切线互相垂直?并说明理由.12.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. 提升拓展题13.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0;(2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.14,求下列函数()f x 的导数(其中是可导函数)1(1)(2)y f y f x ⎛⎫== ⎪⎝⎭知识要点1,和(或差) ()()''u x v x ±2,第一个函数的导数乘第二个函数 第一个函数乘第二个函数的导数()()()()''u x v x u x v x ⋅+⋅ ()'cu x3,分子的导数与分母的积 分母的导数与分子的积 分母的平方()()()()()()()()()2'''0f x g x f x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦典型例题例1,答案:(1)'6cos sin y x x x x =+-(2)()21'1y x =+(3)21'cos y x=(4)1'ln10x y e x =- 变式训练1,(1)'6y x =(2)42'43y x x =-+(3)()2'21sin cos y x x x x =-+(4)()2ln 1'1x x x y x x -+=+例2,答案:(1)21y x==- ()22'1y x =-(2)cos 2cos sin sin cos x y x x x x==-+ 'sin cos y x x =--(3))212sin cos 4sin 222x x y x x =-=--1'1cos 2y x x =-- 变式训练2,(1)232'3y x x =-(2)1'sin 4y x =-例3,答案:因为1921n ⎛⎫= ⎪+⎝⎭,所以2n =,221x y x ⎛⎫= ⎪+⎝⎭()32'21x y x =+,12'|27x y == 所以切线方程为22710x y -+=变式训练3,53m v = 作业练习1.[答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.2.[答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.3.[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.4.[答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3.5.[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x2, ∴y ′=3x 2-2x3;(3)∵y =sin 4x 4+cos 4x 4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x ; (4)∵y =1+x 1-x +1-x 1+x=(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.6.[答案] A[解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22. 7.[答案] D[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x ,f 2(x )=f 1′(x )=(cos x )′=-sin x ,f 3(x )=f 2′(x )=(-sin x )′=-cos x ,f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2011(x )=f 3(x )=-cos x .故选D.8.[答案] B[解析] 令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数.9.[答案] -32[解析] ∵y ′=(cos x )′=-sin x ,∴切线斜率k =y ′|x =π3=-sin π3=-32. 10.[答案] f (x )=-52x -12e x +1 [解析] 由题意可知,f ′(x )|x =-1=-3,∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e , 故f (x )=-52x -12e x +1. 11.[解析] 因为y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的,∴两条曲线不存有公共点,使在这个点处的两条切线互相垂直.12.[解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4.② ∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0.∴直线l 的方程为y =0或y =4x -4.13.则f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0,由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧ f ′(1)=3a +2b =-3f ′(2)=12a +4b =0, 解得⎩⎪⎨⎪⎧a =1b =-3, 所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数,则可设f (x )=ax 2+bx +c (a ≠0)f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1整理得(a -b )x 2+(b -2c )x +c =1若想对任意x 方程都成立,则需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧ a =2b =2c =1, 所以f (x )=2x 2+2x +1.14,()()()2112222211111(1)'''''(2)''''11'11''1222'y f f f x x x x x y f f f x x f x x f --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==•=-• ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤==•⎢⎥⎣⎦=•++=•+•=解:。
1.2 导数的计算
探究一
探究二
探究三
探究四
当堂检测
课堂篇探究学习
变式训练 2 求下列函数的导数: (1)y=14cos22������;(2)y=ln2x. 解:(1)因为 y=14cos2���2��� = 18(1+cos x)=18 + 18cos x,所以 y'=-18sin x. (2)因为 y=ln2x=ln x·ln x, 所以 y'=(ln x·ln x)'=1������·ln x+ln x·1������ = 2l���n��� ������.
[f1(x)±f2(x)±…±fn(x)]'=f1'(x)±f2'(x)±…±fn'(x).
课前篇自主预习
【做一做 3】 (1)函数 y=x2-ln x 的导数为
;
(2)函数 y=xcos x 的导数为
;
(3)函数 y=e������������的导数为
.
解析:(1)y'=(x2-ln x)'=(x2)'-(ln x)'=2x-1������;
当堂检测
解:(1)设 y=u2,u=4-3x,则 yu'=2u,ux'=-3, 于是 yx'=yu'·ux'=-6(4-3x)=18x-24,即 y'=18x-24. (2)设 y=cos u,u=2x-π4,则 yu'=-sin u,ux'=2,
于是 yx'=yu'·ux'=-2sin 2x-π4 ,即 y'=-2sin 2x-π4 . (3)设 y=ln u,u=4x-1,则 yu'=���1���,ux'=4,于是 yx'=yu'·ux'=4���4���-1, 即 y'=4���4���-1. (4)设 y=eu,u=x2,则 yu'=eu,ux'=2x,于是 yx'=yu'·ux'=e������2·2x, 即 y'=2xe������2.
1.2 导数的计算
2、积的导数
法则2:两个函数的积的导数,等于第一个函数的导数 乘第二个函数,加上第一个函数乘第二个函数的导数 , 即: f ( x)g ( x) f ( x) g ( x) f ( x) g ( x) 常数与函数的积的导数,等于常数乘函数的导数, 即 (Cf(x))=Cf (x)
1.2 导数运算
复1Biblioteka 函数在某点导数'习
f ( x0 x ) f ( x0 ) y y x x0 f ( x0 ) lim lim x 0 x x 0 x
2.导数的意义 (1)物理意义 ----- 瞬时速度,瞬时加速度 (2)函数 ----- 瞬时变化率 (3)几何意义 -----曲线在该点的切线斜率
2 2
2.判断下列求导是否正确,如果不正确,加 以改正: [(3+x )(2-x )]'=2x(2-x )+3x (3+x ). [(3+x )(2-x )]'=2x(2-x )-3x (3+x ).
2 3 3 2 2 2 3 3 2 2
3.下列函数在点x=0处没有切线的是( D ) (A)y=x3+sinx (B)y=x2-cosx (C)y=xsinx (D)y= x +cosx 4、P18 习题A组5,6 B组 3
公式1: C 0 (C为常数) .
静止物体的瞬时速度总是为0
请同学们求下列函数的导数:
2) y f ( x) x, y ' 1 3) y f ( x) x , y ' 2 x
2
P13探究 P13曲线变化状态
1 1 4) y f ( x) , y ' 2 x x
6.求切线方程的步骤: (1)求出函数在点x0处的变化率 f ( x0 ) ,得到曲线 在点(x0,f(x0))的切线的斜率。 (2)根据直线方程的点斜式写出切线方程,即
高中数学 选修2-2 第一章 1.2 导数的计算 1.2.1 1.2.2讲解
3 2.
不正确.因为sin 6π = 12 是一个常数,而常数的导
数为零,所以sin6π′=0.
指数函数、对数函数的导数公式的记忆对于公式(ln
x)′=
1 x
,(ex)′=ex很好记,但公式(logax)′=
1 xln
a
,(ax)′
=axln a的记忆比较难,设平行于直线y=x的直线与曲线y =ex相切于点P(x0,y0),该切点即为与y=x距离最近的点, 如图所示.
则在点P(x0,y0)处的切线斜率为1,即y′|x=x0=1. ∵y′=(ex)′=ex, ∴ex0=1,
得x0=0,代入y=ex,得y0=1,即P(0,1).
利用点到直线的距离公式得最小距离为|0-1|= 2
5.一质点沿直线运动的路程和时间的关系是s= 5 t , 求质点在t=4时的速度.
解:∵s=5 t=t51,∴s′=(t15)′=15t-45.
t=4时,s′=15·4-54=
1 5
.
10 8
即质点在t=4时的速度为 1 . 5
10 8
∴y′=(x32)′=32x21=32
x .
(2)y=x5,∴y′=(x5)′=5x4.
求曲线y=lg x在点M(10,1)处的切线的斜率 和切线方程.
【分析】 M(10,1)在曲线上,故所求切线斜率就是 函数y=lg x在x=10处的导数.
【解】 ∵y′=(lg x)′=xln110,∴y′|x=10=10l1n 10. ∴曲线y=lg x在点M(10,1)处的切线的斜率为k=10l1n 10. ∴切线方程为y-1=10l1n 10(x-10), 即x-(10ln 10)y+10(ln 10-1)=0.
(x0,x02).
高中数学(人教A版,选修22)1.2 导数的计算 课件+同步练习(9份)22 1.2.1
求函数y=1x在点-3,-13处的切线方程.
[解析] y′=1x′=-x12, 切线的斜率k=y′|x=-3=-19. 又切线过点-3,-13. 所以切线方程为y--13=-19(x+3), 即x+9y+6=0.
∴-x120=-1 x20=b
,解得xb0==21 或xb0==--21 .
即当b=2时,切点为(1,1);
当b=-2时,切点为(-1,-1).
典例探究学案
常用函数的导数
(1)求函数f(x)=π的导数. (2)求函数y=1x在点(1,1)处的切线方程.
[解析] (1)∵π为常数,∴f ′(x)=0. (2)∵k=y′=-x12, 当x=1时,k=-1, ∴切线方程为:y-1=-(x-1), 即x+y-2=0.
5.若直线 y=-x+b 为函数 y=1x的图象的切线,求 b 及 切点坐标.
[解析] 设切点坐标为(x0,y0), 因为 y′=1x′=-x12,所以切线斜率为 k=-x120. 所以切线方程为 y-x10=-x120(x-x0) 即 y=-x120x+x20 .
又切线方程为y=-x+b,
∴切线与x轴交点为(32,0),与直线x=2的交点为(2,2).
∴S=12×(2-32)×2=12.
规范答题样板
如图,已知曲线f(x)=2x2+a(x≥0)与曲线g(x)= x(x≥0)相切于点P,且在点P处有相同的切线l.求点P的坐标 及a的值.
[解题思路探究] 第一步,审题. 一审结论探索解题方向.求点P坐标和a值,需利用条件建 立坐标及a的方程求解; 二审条件找解题突破口.两曲线相切于点P,在点P处有相 同切线表明切点是关键,切点在两曲线上和切线上,这是解题 的突破口. 第二步,建联系确定解题步骤. 只要设出切点坐标,则过点P的两曲线切线的斜率相等, 由此可求出切点坐标,代入f(x)解析式中可求出a. 第三步,规范解答.
新人教A版高中数学(选修22)1.2《导数的计算》word教案4篇
§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =-(1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。
1.2导数的计算(1)
3.2导数的计算(1)班别:____ 组别:____ 姓名:____ 评价:____【学习目标】1.(重点)掌握几个常见函数的导数2.(重点)掌握基本初等函数的导数公式及运算法则☆预习案☆ (约 分钟)依据课前预习案通读教材,进行知识梳理,完成预习自测题目,并将预习中不能解决的问题填写到后面“我的疑惑”处。
【知识要点】 (阅读课文第12-16页,完成导学案)1.导数的几何意义是:2.几个常用函数的导数3.基本初等函数的导数公式及导数运算法则函数导数f (x )=c (常数)f ′(x )= f (x )=*x Q αα∈()f ′(x )= f (x )=sin x f ′(x )= f (x )=cos x f ′(x )= f (x )=a x f ′(x )= f (x )=e x f ′(x)= f (x )=log a x f ′(x)= f (x )=ln xf ′(x)=4.导数的运算法则(1)[f (x )±g (x )]′= (2)[f (x ) ∙g (x )]′= (3)[f (x )g (x )]′= (4)[cf(x)]′= 【预习自测】1.求下列函数的导数函数 导数f (x )=c (常数) f ′(x )= f (x )=x f ′(x )= f (x )=x 2 f ′(x )= f (x )=1xf ′(x )= f (x )=x f ′(x )=(1)2y=log x (2)x y=2e (3) 52y=2x 3x 5x 4-+- (4)y=3cos x 4sin x -2.函数y =x 2x +3的导数是( )A.x 2+6x (x +3)2B.x 2+6x x +3C.-2x (x +3)2D.3x 2+6x (x +3)23. 已知曲线y =3x上有一点A (1,3),则曲线在A 处的切线斜率是( ) A .3 B .-3 C.32D .-32【我的疑惑】☆探究案☆ (约 分钟)【典型例题】例题1.求下列函数的导数(1)y =2x 2+1x -3x 3; (2)y =x +3x 2+3; (3)y =e x cos x +sin x ; (4)y =x 3+lg x☆训练案☆ (约 分钟)【基础训练】——把最简单的题做好就叫不简单!1.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( )请你将预习中未能解决或有疑惑的问题写下来,等待课堂上与老师和同学探究解决。
1.2 导数的计算
练习:若直线y=3x+1是曲线y=ax3的切线,试求a的值.
解:设直线y=3x+1与曲线y=ax3相切于点P(x0,y0),则有: y0=3x0+1①,y0=ax03②,3ax02=3.③ 由①,②得3x0+1=ax03,由③得ax02=1,代入上式可得: 3x0+1=x0,x0=-1/2. 所以a•(-1/2)3=1,a=4.
公式1.若f ( x) c, 则f '( x) 0;
我们今后可以直接使用的 基本初等函数的导数公式
公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
例 用两种方法求 y (2x 3)(3x 2)
2
的导数
2 2 解: 法一:y (2x 3)(3x 2) (2x 3)(3x 2)
4 x ( 3 x 2) ( 2 x 3) 3
2
18 x 8 x 9 3 2 法二: y (6 x 4 x 9 x 6)
公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
1.2.1导数的计算
′(2) = 3×(2)2 =12 ∴f
′ = ( x−2 )′ = −2x−2−1 = −2x−3 Q 解: y
1 (2已 y= 2 ,求′( ) ) 知 f 3. x
−3
1 2 ∴ f ′(3) = −2 × (3) = −2 × = − 27 27
公 3 ( i x =c sx 式 sn ) o .
y
O
1 y= x
x
归纳各题的结果
( x )′ = 2 x
2
2 −1
= 2x
1 1 −1 −1−1 ( )′ = ( x )′ = (−1) x =− 2 x x
可以归纳出它们的规律,即幂函数y=xa的求导 可以归纳出它们的规律,即幂函数 公式为
( x )′ = αx
α
α−1
(α是任意实数)
练习: 练习:求下列幂函数的导数 −2 5 y=3 x (1) y = x (2) y = x (3) 利用幂函数的导数公式, 解: 利用幂函数的导数公式,得
D.(3 )' = 3 ln 3
x x
三、小结
1.导函数的概念: 导函数的概念: 导函数的概念
函 数 y = f ( x )在 任 意 一 点 x处 的 导 数 f '( x ) (或 记 作 y ')称 为 f ( x )的 导 函 数 , 简 称 导 数 。
f ( x+∆x ) − f ( x ) f '( x ) = y ' = lim ∆x → 0 ∆x
1.2导数的计算 导数的计算(1) 导数的计算
基本初等函数的导数
温故知新
• 导数的定义
∆y f ( x o + ∆x ) − f ( x o ) f ′( x 0 ) = lim = lim ∆x → 0 ∆ x ∆x → 0 ∆x
1.2 导数的计算 导学案(教师版)
§1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)内容要求 1.能根据定义,求函数y=c,y=x,y=x2,y=1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数. 3.会使用导数公式表.知识点1几个常用函数的导数原函数导函数f(x)=c f′(x)=0f(x)=x f′(x)=1f(x)=x2f′(x)=2xf(x)=1x f′(x)=-1x2f(x)=x f′(x)=1 2x【预习评价】思考根据上述五个公式,你能总结出函数y=xα的导数是什么吗?提示y=xα的导数是y′=αxα-1.知识点2基本初等函数的导数公式原函数导函数f(x)=c f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x f′(x)=a x ln__a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1x ln a(a>0,且a≠1)f (x )=ln xf′(x )=1x求下列函数的导数:(1)f (x )=4x 5;(2)g (x )=cos π4;(3)h (x )=3x . 解 (1)f (x )=x 54,∴f ′(x )=54x 14; (2)g (x )=cos π4=22,∴g ′(x )=0; (3)h ′(x )=3x ln 3.题型一 利用导数定义求函数的导数【例1】 利用导数的定义求函数f (x )=2 019x 2的导数. 解 f ′(x )=0limx ∆→2 019(x +Δx )2-2 019x 2x +Δx -x=0lim x ∆→2 019[x 2+2x ·Δx +(Δx )2]-2 019x 2Δx=0lim x ∆→4 038x ·Δx +2 019(Δx )2Δx =0lim x ∆→(4 038x +2 019Δx )=4 038x .规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤.(2)当Δx 趋于0时,k ·Δx (k ∈R ),(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 【训练1】 利用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=0lim x ∆→(x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx=0lim x ∆→x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -bΔx=0lim x ∆→2x ·Δx +a ·Δx +(Δx )2Δx=0lim x ∆→ (2x +a +Δx )=2x +a .题型二 利用导数公式求函数的导数 【例2】 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3; (5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4; (4)y ′=(4x3)′=(x 34)′=34x -14=344x; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较烦琐;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【训练2】 求下列函数的导数: (1)y =x 13; (2)y =4x ; (3)y =sin x ; (4)y =15x 2.解 (1)y ′=(x 13)′=13x 13-1=13x 12; (2)y ′=(4x )′=(x 14)′=14x 14-1=14x -34;(3)y ′=(sin x )′=cos x ; (4)y ′=(15x 2)′=(x -25)′=-25x -25-1=-25x -75.方向1 利用导数求曲线的切线方程【例3-1】 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与在这点处的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23(x -π6),即2x +3y -32-π3=0. 方向2 切线方程的综合应用【例3-2】 设P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 解 如图,设l 是与直线y =x 平行,且与曲线y =e x 相切的直线,则切点到直线y =x 的距离最小.设与直线y =x 平行的直线l 与曲线y =e x 相切于点P (x 0,y 0). 因为y ′=e x ,所以e x 0=1,所以x 0=0. 代入y =e x ,得y 0=1,所以P (0,1). 所以点P 到直线y =x 的最小距离为|0-1|2=22. 规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.【训练3】 (1)求曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程;(2)求曲线y =sin ⎝ ⎛⎭⎪⎫π2-x 在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线方程.解 (1)∵y =cos x ,∴y ′=-sin x ,y ′|x =π6=-sin π6=-12.∴曲线在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即6x +12y -63-π=0. (2)∵sin ⎝ ⎛⎭⎪⎫π2-x =cos x ,∴y ′=(cos x )′=-sin x .∴曲线在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线的斜率为k =-sin ⎝ ⎛⎭⎪⎫-π3=32.∴切线方程为y -12=32⎝ ⎛⎭⎪⎫x +π3,即33x -6y +3π+3=0.课堂达标1.已知f (x )=x 2,则f ′(3)等于( ) A.0B.2xC.6D.9解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 答案 C2.函数f (x )=x ,则f ′(3)等于( ) A.36B.0C.12xD.32解析 ∵f ′(x )=(x )′=12x ,∴f ′(3)=123=36.答案 A3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角α的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B.[0,π)C.⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 解析 ∵(sin x )′=cos x ,∴k l =cos x ,∴-1≤tan α≤1,又∵α∈[0,π), ∴α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案 A4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×|-e 2|=12e 2. 答案 12e 25.已知f(x)=52x2,g(x)=x3,若f′(x)-g′(x)=-2,则x=________.解析因为f′(x)=5x,g′(x)=3x2,所以5x-3x2=-2,解得x1=-13,x2=2.答案-13或2课堂小结1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y=1-2sin2x2的导数.因为y=1-2sin 2x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.基础过关1.函数y=3x在x=2处的导数为()A.9B.6C.9ln 3D.6ln 3解析y′=(3x)′=3x ln 3,故所求导数为9ln 3.答案 C2.下列结论中,不正确的是()A.若y=1x3,则y′=-3x4B.若y=3x,则y′=3x3C.若y=1x2,则y′=-2x-3D.若f(x)=3x,则f′(1)=3 解析由(x n)′=nx n-1知,选项A,y=1x3=x-3,则y′=-3x-4=-3x4;选项B ,y =3x =x 13,则y ′=13x -23≠3x3;选项C ,y =1x 2=x -2,则y ′=-2x -3; 选项D ,由f (x )=3x 知f ′(x )=3, ∴f ′(1)=3.∴选项A ,C ,D 正确.故选B. 答案 B3.已知f (x )=cos x ,f ′(x )=-1,则x 等于( ) A.π2B.-π2C.π2+2k π,k ∈ZD.-π2+2k π,k ∈Z解析 ∵f ′(x )=-sin x ,则sin x =1, ∴x =π2+2k π,k ∈Z . 答案 C4. 曲线y =x 2+1x 在点(1,2)处的切线方程为________. 解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +15.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 解析∵y =x -12,∴y ′=-12x -32,∴曲线在点(a ,a -12)处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ).令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 答案 646.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1. 由f ′(x )+g ′(x )≤0, 得-sin x +1≤0, 即sin x ≥1, 但sin x ∈[-1,1],∴sin x =1,∴x =2k π+π2,k ∈Z .7.求下列函数的导数:(1)y =5x 3;(2)y =1x 4;(3)y =-2sin x 2(1-2cos 2x 4);(4)y =log 2x 2-log 2x .解 (1)y ′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x2. (2)y ′=⎝⎛⎭⎫1x 4′=(x -4)=-4x -4-1=-4x -5=-4x 5. (3)∵y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4 =2sin x 2⎝⎛⎭⎫2cos 2x 4-1=2sin x 2cos x2=sin x , ∴y ′=(sin x )′=cos x .(4)∵y =log 2x 2-log 2x =log 2x ,∴y ′=(log 2x )′=1x ·ln 2. 能力提升8.函数f (x )=x 3的斜率等于1的切线有( ) A.1条 B.2条 C.3条D.不确定解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处分别有斜率为1的切线.答案 B9.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B.-1e C.-eD.e解析y ′=e x,设切点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=kx 0,y 0=e x0,k =e x 0,∴e x 0=e x 0·x 0,∴x 0=1,∴k =e. 答案 D10.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 解析 ∵y ′=1x ,∴y ′|x =a =1a =1. ∴a =1. 答案 111.若y =10x ,则y ′|x =1=________. 解析 y ′=10x ln 10,∴y ′|x =1=10ln 10. 答案 10ln 1012.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离d =⎪⎪⎪⎪⎪⎪12-14-22=728, 所以抛物线上的点到直线x -y -2=0的最短距离为728.创新突破13.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,试求f 2 019(x ). 解 ∵f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=f 1(x ),f 6(x )=f 2(x ),…,∴f n +4(x )=f n (x ),可知f (x )的周期为4,∴f 2 019(x )=f 3(x )=-cos x .。
导数的计算
2 处的导数. (2)求函数f(x)=cos x在 ( , ) 4 2
【解题指南】(1)适当进行化简,再运用导数公式判
断. (2)先求函数的导函数,然后把对应点的横坐标代入
导函数求相应的导数值.
3 【解析】(1)选A.cos = 为常数,则 (cos )′=0, 6 6 2 1 1 , 所以①错误;y′=(ln x)′= 所以②正确;因 xlne x
过程,降低运算难度.
结论:导数的描述
原函数 f(x)=c(c为 常数) f(x)=xα (α ∈Q*) 用文字语言描述导数 常数的导数为0 用符号语言描述 导数 0 f′(x)=__
α -1 α x f′(x)=______
幂函数的导数等于幂指 数与原幂函数(指数少1) 的积
原函数 f(x)=sin x
用文字语言描述导数 以e为底数的指数函数的 导数不变 对数函数的导数为真数 1 的倒数与 ln a 的积 自然对数的导数是真数 的倒数
用符号语言描 述导数 ex f′(x)=__
1 f′(x)= xln a _____
1 f′(x)= _____ x
f(x)=logax
f(x)=ln x
【对点训练】
解得n=3.
2.给出下列命题:
1 ①y=ln 2,则y′= ; 2 1 ②y= 2 ,则y′= 23 ; x x
③y=2x,则y′=2xln 2;
1 ④y=log2x,则y′= . xln 2
其中正确命题的个数为 (
A.1 B.2 C.3
)
D.4
【解析】选C.对于①,y′=0,故①错;显然②③④
以解释为某物体的瞬时速度始终为0,即一直处于静
止状态. (2)若y=x表示路程关于时间的函数,则y′=1可以解
1.2导数的计算(1)
求函数y f ( x ) x 2的导数。 例3:
y
y x2
O
x
从几何的角度理解: y ' 2 x表示y x 2图象上各点处的切线的斜率都为2 x; 且随x的变化,斜率在变化; 当x 0时,x ,y x 2减小得越来越慢; 当x 0时,x ,y x 2增加得越来越快。 从物理的角度理解:
(或记作y '), 称为f ( x )的导函数,简称导数。 f ( x + x ) f ( x ) f '( x ) y ' lim x 0 x
思考: 如何由导数定义求函数的导数? 根据导数的概念,求函数导数的过程可以 用下面的流程图来表示
给定函数y f x) (
y (x x) (x) f f 计算 x x
1 1 1 ① y ' 2 表示y 图象上各点处切线的斜率都为 2 ; x x x
且随x的变化,斜率在变化; 1 当x 0时,x ,y 减小得越来越快; x 当x 0时,x ,y x 2减小得越来越慢。 1 ② y ' |x 1 2 |x 1 1, 斜率k 1 所求方程为:x y 2 0 x
一、知识回顾
1.导数的几何意义 函数y f ( x )在x x0处的导数就是过其
图象上点(x0 , f ( x0 ))处的切线的斜率(k )
f ( x 0 + x ) f ( x 0 ) k lim f '( x0 ) x 0 x
2.导函数的概念 函数y f ( x )在任意一点x处的导数f '( x )
若y x 2,则y ' 2 x 1 若y x,则y ' 2 x
1.2 导数的计算(一)
• 求下列函数的导数: • (1)y=x-2;(2)y=cosx;(3)y=log3x; • (4)y=e0.
二.新课 新课
导数的运算法则 (1)函数的和或差的导数 )
[ f ( x) ± g ( x)]′ = f ′( x) ± g ′( x).
推广: 推广 ( f1(x) ± f2(x) ±K± fn(x))′ = f1′(x) ± f2′(x) ±K± fn′(x) (2)函数的积的导数 )
练习与思考:已知两条曲线 练习与思考 已知两条曲线y=sinx,y=cosx,问是否存在 已知两条曲线 问是否存在 这两条曲线的一个公共点,使在这一点处 使在这一点处,两条曲线的 这两条曲线的一个公共点 使在这一点处 两条曲线的 切线互相垂直?并说明理由 并说明理由. 切线互相垂直 并说明理由 设存在一个公共点P(x0,y0)满足题设条件 满足题设条件. 解:设存在一个公共点 设存在一个公共点 满足题设条件 由 y ′ = (sin x )′ = cos x , 得 y ′ | x = x 0 = cos x 0 ;
x =1
2 '
'
(x )= 2 x
1 =− 2 x x
( x) = 2
1 x
函数y=f(x)=1/x的导数: 1 的导数: 函数 的导数 (2):
(xn )′ = nxn−1 (n∈Q) .
练习:求下列函数的导数,并讨论( )( )(3) 练习:求下列函数的导数,并讨论(1)( )在x=0处 处 的切线情况。 的切线情况。
(1) y = x
3
(3):
( 2) y =
1 x
(3) y = x
3
. (sin x)′ = cos x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)函数②③④⑤的导数分别是什么?
提示:由导数的定义得:(x)′=1,(x ( x)′= 1 2 x .
α
2
1 1 )′=2x, ′=- x x2,
(3)函数②③⑤均可表示为 y=x (α∈Q )的形式,其 导数有何规律?
y (3)求极限,得导函数y f ( x) lim . x 0 x
练习:若函数f(x)在R上可导,
(1)求f(-x)在x=a处的导数与f(x)在x=-a处的导 数的关系; (2)证明:若f(x)为偶函数,则f/(x)为奇函数.
思考: 已知函数:
2
①y=f(x)=c, ②y=f(x)=x, ③y=f(x)=x , 1 ④y=f(x)=x,⑤y=f(x)= x. (1)函数 y=f(x)=c 的导数是什么?
3 y x , 例3.已知曲线
(1)求该曲线与直线y=2x-4平行的切线的方程; (2)求过点P(0,1)且与曲线相切的切线方程
小结:过一点求曲线的切线方程的方法,先要验 证所过的点是否在曲线上
(1)若点在曲线上,则切线方程为:
y f ( x0 ) f ( x0 )( x x0 ).
x
解答 如图,当曲线 y=ex 在点 P(x0,y0)处的切线与 直线 y=x 平行时,点 P 到直线 y=x 的距离最近.
则曲线 y=ex 在点 P(x0,y0)处的切线斜率为 1, 又 y′=(ex)′=ex, ∴ex0=1,得 x0=0,代入 y=ex,得 y0=1,即 P(0, 1). 2 利用点到直线的距离公式得最小距离为 2 .
2 3 即2 x 3 y 0. 3 2
注:满足条件的直线称为曲线在P点的法线.
练习1:已知两条曲线y=sinx,y=cosx,问是否存在这两 条曲线的一个公共点,使在这一点处,两条曲线的切线 互相垂直?并说明理由. 解:设存在一个公共点P(x0,y0)满足题设条件. 由y (sinx) cos x, 得y | x x0 cos x0 ;
x ' x
(6)(e ) e
x '
'
x
1 (7)( log a x) (a 0, 且a 1) xlna 1 ' (8)(lnx) x
例1.(书本P14例)假设某国家在20年期间的 年均通货膨胀率为5%,物价p(单位:元)与时间 t(单位:年)有如下函数关系p(t)=p0(1+5%)t,其中 p0为t=0时的物价.假定某种p0=1,那么在第10个 年头,这种商品的价格上涨的速度大约是多 少?(精确到0.01)
由y (cos x) sinx, 得y | x x0 sinx0 ;
由两条曲线的切线在点P互相垂直,则cosx0(-sinx0) =-1,得sinx0cosx0=1,即sin2x0=2. 这不可能,所以不存在满足题设条件的一个点.
练习 2: 点 P 是曲线 y=e 上任意一点, 求点 P 到直线 y=x 的最小距离.
1 例2:求过曲线y=cosx上点P( 3 , 2 )且与过这点的切线垂 直的直线方程. 3 解: y cos x, y sinx, y | sinx . x 2 3 1 3
, )处 的 切 线 斜 率 为 , 3 2 2 2 从而过 P点 且 与 切 线 垂 直 的 直 的 线斜率为 ; 3 1 2 所求的直线方程为 y ( x ), 2 3 3 故曲线在点 P(
五、课后作业
作业本1.2
课外《成才之路》
四、小结
1.要切实掌握四种常见函数的导数公式:(1) c 0 (c为常 数;(2)( x ) x 1 ( R);(3) (sinx ) cos x;(4) (cos x ) sinx. 2.对于简单函数的求导,关键是合理转化函数关系式为 可以直接应用公式的基本函数的模式. 3.能结合直线的知识来解决一些与切线有关的较为综 合性问题.
3.导函数
由函数f(x)在x=x0处求导数的过程可以看到,当 时,f’(x0) 是一个确定的数.那么,当x变化时,便是x 的一个函数,我们叫它为f(x)的导函数.即:
y f ( x x) f ( x) f ( x) y lim lim x 0 x x 0 x 在不致发生混淆时,导函数也简称导数.
1.2.1 几种常见函数的导数
1.函数 y=f(x)在点x0处的导数的几何意义,就是 曲线y=f(x)在点P(x0 ,f(x0))处的切线的斜率. 2.求切线方程的步骤: (1)求出函数在点x0处的变化率 f ( x0 ) ,得 到曲线在点(x0,f(x0))的切线的斜率。 (2)根据直线方程的点斜式写出切线方程, 即 y f ( x0 ) f ( x0 )( x x0 ).
(2)若点不在曲线上,则应先设切点坐标,再 用待定系数法解
归纳:解决有关切线问题的关注点 (1)此类问题往往涉及切点、切点处的导数、切线方程三 个主要元素.其他的条件可以进行转化,从而转化为这三个 要素间的关系. (2)准确利用求导法则求出导函数是解决此类问题的第 一步,也是解题的关键,务必做到准确. (3)分清已知点是否在曲线上,若不在曲线上,则要设 出切点,这是解题时的易错点.
函数y f ( x)在点x0处的导数f ( x0 ) 等于函数f ( x)的导(函)数f ( x)在点x0处的 函数值.
如何求函数y=f(x)的导数?
(1)求函数的增量y f ( x x) f ( x);
(2)求函数的增量与自变量的增量的比值 : y f ( x x) f ( x) ; x x
提示:∵(x)′=1· x = 1 2 x ,∴(x )′=αx
α
*
1-1
,(x )′=2· x
2
2-1
,(
1 1 1 x)′= x2 ′=2x2-1
α-1
.
问: (1)常数函数的导数为 0 说明什么?
提示: 说明常数函数 f(x)=c 图象上每一 点处的切线的斜率都为 0,即每一点处的切 线都平行(或重合)于 x 轴.
(2)对于公式“若f(x)=x (α∈Q ),则 f′(x)=αx
α -1
α
*
”,若把“α∈Q ”改为
*
“α∈R”,公式是否仍然成立?
提示:当α∈R时,f′(x)=αx 立.
α-1
仍然成
几种常见函数的导数(必记)
根据导数的定义可以得出一些常见函数的导数公式. (1):
C 0 (C为常数)
.
(2):
( x ) nx (n Q)
n
.
n1
练习:求下列函数的导数,并讨论(1)(3)在x=0处 的切线情况。
(1) y x
(3):
3
(2) y
1 xBiblioteka (3) y x3
. (sin x) cos x
(4):
(cos x ) sin x
指数对数函数的导数
(5)(a ) a lna(a 0, 且a 1)