植物基因克隆

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

来自dxy 22003luocong 植物基因全长克隆几种方法的比较

基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。

1 RACE技术

1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3‟RACE和5‟端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5‟RACE 跟3‟RACE原理基本一样,但是相对于3‟RACE来说难度较大。

5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。

笔者主要介绍两种比较新的RACE技术,基于…模板跳转‟的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。

1.1基于‘模板跳转’的SMART RACE技术[7,12]

SMART-RACE技术的最大特点是5′ RACE过程中的“模板跳转”现象,即当反转录进行到mRNA模板的5′末端时,反转录酶表现出末端转移酶活性,在第一链cDNA的3′端加上3-5 个残基(主要是dC) ,随后第一链cDNA与3′端含几个dG的寡核苷酸引物退火,使反转录反应发生跳移,以引物中寡核苷酸为模板继续进行,最终反转录所得产物必然包含完整的mRNA5′末端序列及引物序列,可直接用于RACE-PCR获得完整地5′ cDNA末端。由于上述过程无需接头连接,而且直接以第一链cDNA作为模板进行RACE-PCR ,因此更加简便、快捷。另外,SMART -RACE还采用了降落PCR、抑制PCR、LD - PCR 等先进扩增技术,提高了PCR扩增的敏感性和真实性,降低了非特异的产物背景,因此该技术已被广泛应用于cDNA末端快速扩增,尤其是5‟端的克隆。

1.2末端脱氧核苷酸转移酶( TdT)加尾技术

传统的5′RACE反应是以TdT对第一链cDNA进行同聚物加尾来引发第二链cDNA的合成[12] ,这种方法经常会导致RACE反应失败或产生一些副产品。其主要原因是同聚物加尾反应难以控制,TdT 加尾时不能区分cDNA是否是全长,非全长cDNA分子被加尾后将在随后的PCR反应中得到优先扩增,从而产生大量的非特异性产物背景,并且TDT的加尾效率比较低[13]。目前许多研究这对其进行了改进。

夏瑞等[11]提出了一种改良的TDT加尾克隆基因5‟端的方法。其首先用1个15 bp左右的特异反转录引物代替通用反转录引物Olig( dT) n对模板cDNA 进行初步筛选,使合成的cDNA更靠近目的基因的5′端。其次, 两个上游引物采取巢式策略取代一般的poly( dG)n或poly ( dC)n,从而控制第二轮PCR的退火温度, 保证扩增的特异性。并且在PCR过程中采用了如锚定PCR、巢式PCR、降落PCR等方法增加扩展产物的特异性。这些新的改进使得到目的条带的概论增加,并且反转录引物不需要磷酸化, 从而大大节约实验成本。

2染色体步移法

染色体步行(chromosome walking)是指由生物基因组或基因组文库中的已知序列出发逐步探知其旁邻的未知序列或与已知序列呈线性关系的目的序列核苷酸组成的方法和过程14]。对于基因组测序已经完成的少数物种(水稻、拟南芥等)来说,可以轻松地从数据库中找到已知序列的侧翼序列。但是这毕竟只是研究少数模式植物时的情况,对于自然界中种类繁多的其植物而言,在不知道它们的基因组DNA序列以前,想要知道一个已知区域两侧的DNA序列,只能采用染色体步移技术。因而,染色体步移技术在现代分子生物学研究中占有举足轻重的地位,是结构基因组研究以及功能基因组研究的基础[15]。

目前,分离侧翼序列的染色体步移方法主要有两种,一是结合基因组文库为主要手段的染色体步移技术,构建基因组文库进行染色体步移尽管步骤比较繁琐,但是适于长距离步移,可以获得代表某一特定染色体的较长连续区段的重叠基因组克隆群。随着亚克隆文库条件构建条件的优化及测序技术的进步,这种方法也将

相关文档
最新文档