几种常用无线收发芯片性能比较.

合集下载

五大无线技术比较(ZigBee、UWB、Wi-Fi、蓝牙、NFC)

五大无线技术比较(ZigBee、UWB、Wi-Fi、蓝牙、NFC)

五大无线技术比较(ZigBee、UWB、Wi-Fi、蓝牙、NFC)ZigBee:巨头力挺前途难料ZigBee联盟成立于2001年8月。

但作为该项技术发展过程中具有里程碑意义的是,2002年下半年,英国Invensys公司、日本三菱电气公司、美国摩托罗拉公司以及荷兰飞利浦半导体公司四大巨头共同宣布,它们将加盟「ZigBee联盟」,以研发名为「ZigBee」的下一代无线通信标准。

到目前为止,除了Invensys、三菱电子、摩托罗拉和飞利浦等国际知名的大公司外,该联盟大约已有27家成员企业,并在迅速发展壮大。

Zigbee联盟负责制定网络层以上协议。

ZigBee的芯片和产品已经面市,每个Zigbee通信模块的成本将有望控制在1.5美元到2.5美元之间。

分析家认为,到2006年,ZigBee设备将会达到每年4亿台的市场规模。

预计4~5年内,每个家庭将会安装大约50个ZigBee设备,最终达150个ZigBee设备6~7年内占据家庭自动化市场的三分之二。

但是也有人认为:ZigBee几年前刚出现时,它的支持者曾设想这种基于IEEE 802.15.4规范的无线技术拥有潜在的巨大市场。

但现在看来当初的设想并没有成为现实,目前有消息称由于芯片厂商推迟出货,因而ZigBee的前景并不像先前设想的那样一帆风顺。

UWB:前途无量受困争战UWB是一种无载波通信技术,它不采用正弦载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。

UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。

由于UWB可以利用低功耗、低复杂度发射/接收机实现高速数据传输而在近年来得到迅速发展。

它在非常宽的频谱范围内采用低功率脉冲传送数据而不会对常规窄带无线通信系统造成大的干扰,并可充分利用频谱资源。

基于UWB技术而构建的高速率数据收发机有着广泛的用途,从无线局域网到Ad hoc网络,从移动IP计算到集中式多媒体应用等。

短距离无线通讯(芯片)技术概述

短距离无线通讯(芯片)技术概述

短距离无线通讯(芯片)技术概述一、各种短距离无线通信使用范围与特性比较无线化是控制领域发展的趋势,尤其是工作于ISM频段的短距离无线通信得到了广泛的应用,各种短距离无线通信都有各自合适的使用范围,本文简介几种常见的无线通讯技术。

关键字:短距离无线通信,红外技术,蓝牙技术,802.11b,无线收发工业应用中,现阶段基本上都是以有线的方式进行连接,实现各种控制功能。

各种总线技术,局域网技术等有线网络的使用的确给人们的生产和生活带来了便利,改变了我们的生活,对社会的发展起到了极大的推动作用。

有线网络速度快,数据流量大,可靠性强,对于基本固定的设备来说无疑是比较理想的选择,的确在实际应用中也达到了比较满意的效果。

但随着射频技术、集成电路技术的发展,无线通信功能的实现越来越容易,数据传输速度也越来越快,并且逐渐达到可以和有线网络相媲美的水平。

而同时有线网络布线麻烦,线路故障难以检查,设备重新布局就要重新布线,且不能随意移动等缺点越发突出。

在向往自由和希望随时随地进行通信的今天,人们把目光转向了无线通信方式,尤其是一些机动性要求较强的设备,或人们不方便随时到达现场的条件下。

因此出现一些典型的无线应用,如:无线智能家居,无线抄表,无线点菜,无线数据采集,无线设备管理和监控,汽车仪表数据的无线读取等等。

1.几种无线通信方式的简介生产和生活中的控制应用往往是限定到一定地域范围内,比如:主机设备和周边设备的互联互通,智能家居房间内的电器控制,餐厅或饭店内的无线点菜系统,厂房内生产设备的管理和监控等0~200米的范围内,本文着重探讨短距离无线通信实用技术,主要有:红外技术,蓝牙技术,802.11b无线局域网标准技术,微功率短距离无线通信技术,现简介如下:1.1 红外技术红外通信技术采用人眼看不到的红外光传输信息,是使用最广泛的无线技术,它利用红外光的通断表示计算机中的0-1逻辑,通常有效作用半径2米,发射角一般不超过20度,传统速度可达4 Mbit/s,1995年IrDA(InfraRed Data Association)将通信速率扩展到的高达16Mbit/s ,红外技术采用点到点的连接方式,具有方向性,数据传输干扰少,速度快,保密性强,价格便宜,因此广泛应用于各种遥控器,笔记本电脑,PDA,移动电话等移动设备,但红外技术只限于两台设备通讯,无法灵活构成网络,而且红外技术只是一种视距传输技术,传输数据时两个设备之间不能有阻挡物,有效距离小,且无法用于边移动边使用的设备。

无线网卡芯片性能分析与比较

无线网卡芯片性能分析与比较

无线网卡芯片性能分析与比较无线终端的进入门槛越来越低,市场上公版方案外加一个壳就能DIY。

除了做工对产品有影响外,成品性能很大程度上依赖于所采用的方案。

因此,只要了解产品所采用的芯片,整机性能就能掌握个大概。

目前市场上主流无线芯片厂商有Intel(英特尔)、Ralink(雷凌)、Realtek(瑞昱)、Atheros(创锐讯通)、Broadcom(博通)等,其中外置无线网卡市场采用Ralink、Realtek 的芯片比较多;Atheros、Broadcom、Intel三家主要耕耘于笔记本电脑内置无线网卡市场。

Ralink最出名的芯片当属RaLink 3070系列,其中有3070L和3070两个版本,都支持802.11b/g/n。

3070可支持300Mb/s的最大速度,3070L可以看作是3070的降速版,最大速度150Mb/s。

Ralink的芯片通常来说品质都比较不错,信号强度好,连接要求低。

由于RaLink 3070系列只能做成单功放方案,所以功耗相对较小,辐射强度相对于其他采用多功放方案的芯片要小。

而RaLink 5370芯片的特点在于体型小,许多厂商的mini USB无线网卡都是采用这颗芯片。

Realtek作为业界老牌IC芯片厂商在业界享有很高的声誉,其产品分布可谓雅俗共赏,特别在中低端领域口碑颇佳。

比较出名的芯片当属Realtek 8187L,其成熟度相当高,虽然Realtek 8187L芯片规格相对落后,但可以做成多功放方案,网络覆盖能力出色,这是RaLink 3070芯片无法比拟的。

Realtek 8187L目前最大支持三功放方案,缺点是功率和辐射相对于单功放芯片就要大得多。

Realtek的另一枚芯片Realtek 8188也比较常见,特点在于支持惠普很多机型。

众所周知,惠普和联想ThinkPad系列的笔记本是电脑很挑网卡的,而Realtek 8188则能提供很好的支持。

另外Realtek8188也经常用于miniUSB无线网卡上。

zigbee芯片厂家对比概况

zigbee芯片厂家对比概况

zigbee 芯片厂家对比主要 ZigBee 芯片供应商 ZigBee 方案竞争能力比较目前市场上主要 ZigBee 芯片提供商 (2.4GHZ , 主要有:TI/CHIPCON、EMBER(ST、 JENNIC(捷力、 FREESCALE 、 MICROCHIP 四家。

目前 ZigBee 技术提供方式有三种:1 ZigBee RF+MCU 例如 :TI CC2420+MSP430 、 FREESCLAEMC13XX+GT60 、 MICROCHIP MJ2440+PIC MCU。

2 单芯片集成 SOC 如:TI CC2430/CC2431(8051内核、 FREESCALEMC1321X 、 EM250。

3 单芯片内置 ZIGBEE 协议栈+外挂芯片 JENNIC SOC+EEPROM、 EMBER 260+MCU。

主要四个公司按上述几方面分析如下:A 微处理器:除了 CC2430/CC2431外 , 其他四家公司都是采用自己的微处理器。

只有 CC2430/CC2431采用标准的 8051处理器。

该项评分:CC2430/CC2431胜出因为:8051微处理器诞生 30多年,目前在国内最为普及。

大学中专,都有广泛的课程,各种参考书,到处都有。

开发软件 KEIL 、 IAR已被大家熟悉,用起来最顺手。

有言论说8051“老了” 怕不能担当此重任, 也有言论说 8051会产生数字噪声, 影响无线通讯… 以专家的眼光看,这些都是没有科学依据的说法。

随着芯片科技的发展, 今天的 8051早已经脱胎换骨, 只是片上系统 (SoC的一小部分, 而且在低功耗、高速度、低噪声等方面,有了质的飞跃。

CC2430/CC243的 8051内核经过特别设计,可以和 2.4GHZ 的 ZigBee 无线收发电路完美的配合工作,绝不会因为其 8051内核的高速运行而对高频无线通讯有任何影响。

采用从 8051对用户而言好处如下 :1、无需重新学习微处理器结构原理 , 无需重新熟悉编译 /调试工具;2、对片上系统的 I/O,定时器, A/D, PWM ,看门狗等等,也无需重新学习;3、如果你没有单片机的基础,学起来也非常容易,也容易找到人请教、交流;从技术眼光看, ZigBee 技术的核心是软件。

wifi模块开发 芯片选型对比

wifi模块开发 芯片选型对比

Wifi模块开发调研本文对几款主流的wifi芯片进行对比,包括TI公司的cc3200,乐鑫的esp8266,联发科的mt7681。

通过了解它们的特点和开发环境等方面的需求,选取适用于自己使用的芯片来进行物联网wifi模块的开发。

1CC32001.1芯片简介CC3200是TI无线连接SimpleLink Wi-Fi和物联网(IoT)解决方案最新推出的一款Wi-Fi MCU,是业界第一个具有内置Wi-Fi的MCU,是针对物联网应用、集成高性能ARM Cortex-M4的无线MCU。

客户能够使用单个集成电路开发整个应用,借助片上Wi-Fi、互联网和强大的安全协议,无需Wi-Fi经验即可实现快速的开发。

CC3200是一个完整平台解决方案,其中包括软件、示例应用、工具、用户和编程指南、参考设计以及TI E2E支持社区。

CC3200采用易于布局的四方扁平无引线(QFN)封装。

有人科技的USR-C322模块采用的是TI的CC3200方案,基于ARM Cortex-M4内核,运行频率高达80MHz;超低功耗:低功耗,在网待机低至3.5mA,深度休眠最低25uA;Simplelink 功能:实现一键联入Wi-Fi网络;另外支持自定义网页、websocket、httpd client等功能。

1.2特点Wi-Fi网络处理器(CC3200)包含一个Wi-Fi片上互联网和一个可完全免除应用MCU处理负担的专用ARM MCU。

Wi-Fi片上互联网包含802.11b/g/n射频、基带和具有强大加密引擎的MAC,可以实现支持256位加密的快速安全的互联网连接。

Wi-Fi片上互联网还包括嵌入式TCP/IP和TLS/SSL协议栈、HTTP服务器和多种互联网协议。

CC3200支持站点、接入点和Wi-Fi直连3种模式,支持WPA2个人和企业安全性以及WPS2。

1.3开发支持官方提供的SDK包含用于CC3200可编程MCU的驱动程序、40个以上的示例应用以及使用该解决方案所需的文档。

433M、2.4G无线模块特性对比

433M、2.4G无线模块特性对比

433M、2.4G无线模块特性对比
无线模块(RF wireless Module),是数字数传电台(Digitalradio)的模块化产品,是指借助单片机技术和无线电技术实现的高性能专业数据传输模块。

无线模块在实际应用中比有线通讯如下优点:
1.成本低
2.建设工程周期短
3.适应性好
4.扩展性好
无线模块的重要用途就是配合单片机来实现数据通讯,但是在操作的时候需要一定知晓以下的技巧:
⏹合理的空中速率(无线模块的空中速率与接口串口波特率是两个概念)
⏹合理的信息码格式
⏹单片机对接收模块的干扰
现如今无线模块市场日益繁杂,但是大体可以分为三个大类别,
1.ASK超外差模块:我们可以作为一个简单的遥控和数据传输;
2.无线收发模块:主要运用一款单片机来控制无线模块收发数据,常用的调制模式有FSK,GFSK;
总而言之,我们可以根据不同的组网方式而选择不同频率的模块。

如果组网方式比较容易,要求也比较简单,一个主机多个从机,成本要求低,使用环境比较复杂,我们就可以使用433MHz的无线模块;相对的来说,如果是网络拓扑比较复杂、功能繁多、网络健壮性强、低功耗要求、开发简单、2.4GHz带组网功能的产品会是您是不二的选择。

三种主流RF方案及其优缺点比较

三种主流RF方案及其优缺点比较

三种主流RF方案及其优缺点比较一:主流的三种RF方案及其优缺点比较1):蓝牙方案(IEEE802.15)蓝牙,是一种支持设备短距离通信(一般10m内)的无线电技术。

能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。

利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。

蓝牙采用分散式网络结构以及快跳频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段。

其数据速率为1Mbps.采用时分双工传输方案实现全双工传输。

信息时代最大的特点便是更加方便快速的信息传播,正是基于这一点,技术人员也在努力开发更加出色的信息数据传输方式。

蓝牙,对于手机乃至整个IT业而言已经不仅仅是一项简单的技术,而是一种概念。

当蓝牙联盟信誓旦旦地对未来前景作着美好的憧憬时,整个业界都为之震动。

抛开传统连线的束缚,彻底地享受无拘无束的乐趣,蓝牙给予我们的承诺足以让人精神振奋。

蓝牙协议允许数据在1个主设备和最多7个从设备,最高传输速率为723kbit/s.不过,实际实际的速率会比这个数值小。

高斯频移键控(GFSK)调制模式,在2.4G频段内使用83个1Mbps的频道。

在送到载波之前,GFSK在基带信号上使用高斯过滤。

可以平滑高电平(“1”)低电平(“0”)。

与频移键控(FSK)的直接方法相比,可以给传输信号提供一个较狭和“更干净”的频谱。

蓝牙设备有三种基本功率电平:1级(100米线视距)、2级(10米)和3级(2-3米)。

目前常用的设备为2级。

在蓝牙网络中的每一个设备都有一个独一无二的48比特识别号码。

第一个识别设备(通常在2秒钟内)成为主设备,接着设定为在频段中每秒使用1600次,所有网络中的其他设备将与这个主设备锁定并与其同步。

主设备以偶时隙传送,从设备以奇时隙响应。

通讯设备常用芯片

通讯设备常用芯片

通讯设备常用芯片1. 介绍通讯设备常用芯片是指在通讯设备中广泛使用的集成电路芯片,它们负责处理和控制通讯信号的传输和处理。

随着通讯技术的发展,通讯设备常用芯片在实现高速、高效、可靠通讯的同时,也在不断创新和进化。

本文将介绍一些常见的通讯设备常用芯片及其特点。

2. 无线通讯芯片2.1 蓝牙芯片蓝牙芯片是一种短距离无线通讯技术,广泛应用于手机、耳机、音箱等设备中。

蓝牙芯片通过无线方式传输音频、数据和图像,具有低功耗、低成本、简单易用的特点。

常见的蓝牙芯片有CSR、Nordic、TI等。

2.2 Wi-Fi芯片Wi-Fi芯片是一种无线局域网技术,用于实现电子设备之间的无线通讯。

Wi-Fi芯片通过无线方式传输数据,具有高速、稳定的特点,广泛应用于路由器、智能家居、物联网等领域。

常见的Wi-Fi芯片有Broadcom、Realtek、Marvell等。

2.3 射频芯片射频芯片是一种用于无线通讯中的射频信号处理芯片,用于将数字信号转换为射频信号或将射频信号转换为数字信号。

射频芯片广泛应用于手机、无线电、卫星通讯等设备中,具有高频率、高速率的特点。

常见的射频芯片有Skyworks、RF Micro Devices、Qorvo等。

3. 有线通讯芯片3.1 以太网芯片以太网芯片是一种用于有线网络通讯的芯片,常用于计算机、网络交换机、路由器等设备中。

以太网芯片通过有线方式传输数据,具有高速、稳定、可靠的特点。

常见的以太网芯片有Broadcom、Intel、Realtek等。

3.2 光纤通讯芯片光纤通讯芯片是一种用于光纤通讯的芯片,常用于光纤传输设备中。

光纤通讯芯片通过光信号传输数据,具有高带宽、抗干扰、长距离传输的特点。

常见的光纤通讯芯片有Broadcom、Finisar、Lumentum等。

3.3 USB芯片USB芯片是一种用于通用串行总线(USB)通讯的芯片,常用于计算机、外部设备等设备中。

USB芯片通过有线方式传输数据,具有插拔方便、高速传输的特点。

常用无线收发芯片性能比较与典型应用

常用无线收发芯片性能比较与典型应用
3s m
切换时间 ( 发射—接收 )
切换时间 ( 接收—发射 ) 三总线控制
3s m
l ms 无
1u 0 s 0
10 s 0 u 无 九总线
6u (s )
1u 5s 有
1 u 0 s 0
10 0m 有
同步位元器
使用晶振

4 z MH

外Hale Waihona Puke 锁相环 6 mA9 kp .bs 6
1m 8A
发射电流
唤醒 时 间
2 m / dm 7 A1 b 0
5 ms
2m / dm 2 Al b O
l ms
4 m / dm 0 A1 b 4
4 ms
1 A+ dm 2 / b m 5
6 u 0s
5m / d m 0 A1 b 0
玩具等方 面,这类I一般采用 射频 ( F) c R 技术 实现。在实 际中选择器件 时 ,尤其注 意收发芯 片的数据传输是 否需要进行 曼彻斯特编码 、收 发芯片所需 的外围元件数 量 、功耗 、发 射功率 、收发芯片 的封 装和管脚数 等问题 。 关■ 词 芯片 ;特性 ;应用
中圈 分 类号 T 文 献标 识 码 A N 文 章编 号 17—6 1(00 8— 170 63 97-2 1) 2 02— 1 0
无线收发芯片广泛应用在无线 鼠标 、键盘 、游戏摇杆 、R I FD、安防 报警 、 家庭 自动化 、汽车电子、工业控制、无线通信 、 传感器玩具等方 面, 这类I一般采用射频 ( F) c R 技术实现。
1常用无线收发芯片性能比较
由于无线收发芯片的种类和数量 比较多 ,如何在设计 中选择所需要 的芯片是非 常关键的 ,正确 的选择可以使设计者少走弯路 ,降低成本。 目前市 面上无线收发芯片及模块种类很多 ,常用芯片性 能参数 如表 1 所

国内外蓝牙芯片的对比

国内外蓝牙芯片的对比

国内外蓝牙芯片的对比蓝牙技术自1994年提出至今,经久不衰,不断更新迭代,本文将列举几款如今主流的蓝牙芯片来为你解说。

国外部分TI CC2640R2FCC2640R2F是TI采用蓝牙4.2技术,内含有一个32位ARM®Cortex®-M3处理器的SOC芯片,并且具有丰富的外设功能集。

TI还提供完整的参考设计,不需要太多RF专业知识也能轻易发开,使得开发门槛降低。

支持空中升级(OTA)功能。

可以应用于智能家居、玩具等领域。

目前云里物里科技就有做TI芯片解决方案,该公司拥有丰富的研发经验,客户在开发过程中遇到的问题都会帮忙解决。

Nordic nRF51822nRF51822适用于低功耗蓝牙和2.4GHz超低功耗无线应用。

嵌入式2.4GHz收发器支持蓝牙低功耗及2.4GHz操作,其中2.4GHz模式Nordic nRF24L系列产品无线兼容,主要运用于PC周边产品/玩具和智能家居设备等领域。

CSR CSR1011CSR公司的CSR101x系列采用蓝牙4.0技术,是一款单模蓝牙低功耗平台,提供CSR uEnergy SDK2.5.1开发环境。

CSR市场占有率高,但是价格居高不下,一般的供应商也不会选择这种产品。

可用于智能蓝牙语音遥控器、智能家居等。

博通BK3431BK3431芯片是高度集成的蓝牙4.0低功耗单模设备。

它集成了一个高性能RF收发器,基带,ARM内核微处理器,丰富的功能外设单元,可编程协议和配置文件,以支持BLE应用。

国内部分联发科(中国台湾)MT7622作为全球首款蓝牙5规格的系统单芯片(SOC),主频为1.35GHz的64位双核ARM Cortex-A53处理器。

MT7622内建联发科技独家Wi-Fi网络加速器技术,实现优质的网络连接体验。

另外,MT7622支持主流必备的音频接口,包括I2S、TDM 和S/PDIF。

另外,该芯片除了同时整合Wi-Fi、蓝牙和Zigbee,还提供了一系列丰富的慢速输入/输出端口,以满足家用自动网关的技术需求。

几种常用无线收发芯片性能比较表

几种常用无线收发芯片性能比较表

几种常用无线收发芯片性能比较表
由于无线收发芯片的种类和数量比较多,如何在你的设计中选择你所需要的芯片是非常关键的,正确的选择可以使你少走弯路,降低成本,更快地将你的产品推向市场。

下面几点有助于你选择你所需要的产品:1、收发芯片的数据传输是否需要进行曼彻斯特编码?
采用曼彻斯特编码的芯片,在编程上会需要较高的技巧和经验,需要更多的内存和程序容量,并且曼彻斯特编码大大降低数据传输的效率,一般仅能达到标称速率的1/3。

而采用串口传输的芯片(如nRF401),应用及编程非常简单,传送的效率很高,标称速率就是实际速率,因为串口对大家来说是再熟悉不过的了,编程也很方便。

2、收发芯片所需的外围元件数量
芯片外围元件的数量的直接决定你的产品的成本,因此应该选择外围元件少的收发芯片。

有些芯片似乎比较便宜,可是外围元件使用很多昂贵的元件如变容管以及声表滤波器等;有些芯片收发分别需要两根天线,会大大加大成本。

这方面nRF401做得很好,外围元件仅10个左右,无需声表滤波器、变容管等昂贵的元件,只需要便宜且易于获得的4MHz晶体,收发天线合一。

3、功耗
大多数无线收发芯片是应用在便携式产品上的,因此功耗也非常重要,应该根据需要选择综合功耗较小的产品.
4、发射功率
在同等条件下,为了保证有效和可靠的通信,应该选用发射功率较高的产品。

但是也应该注意,有些产品号称的发射功率虽然较高,但是由于其外围元件多,调试复杂,往往实际的发射功率远远达不到标称值。

5、收发芯片的封装和管脚数
较少的管脚以及较小的封装,有利于减少PCB面积降低成本,适合便携式产品的设计,也有利于开发和生产。

nRF401仅20脚,是管脚数和体积最小的。

无线路由器CPU_闪存_内存_芯片_列表

无线路由器CPU_闪存_内存_芯片_列表

无线路由器CPU_闪存_内存_芯片_列表无线路由器 CPU、闪存、内存、芯片列表在当今数字化的时代,无线路由器已经成为了我们生活中不可或缺的一部分。

无论是在家中、办公室还是公共场所,稳定快速的无线网络连接都至关重要。

而无线路由器的性能,很大程度上取决于其内部的核心组件,如 CPU、闪存、内存和芯片。

接下来,让我们一起深入了解一下这些关键部件。

一、CPU(中央处理器)无线路由器的 CPU 就像是它的大脑,负责处理各种数据和任务。

不同型号和品牌的无线路由器所采用的 CPU 也各不相同。

常见的无线路由器 CPU 品牌包括博通(Broadcom)、高通(Qualcomm)、联发科(MediaTek)等。

博通的 CPU 在稳定性和性能方面表现出色,常用于一些高端路由器中;高通的芯片则在能耗控制和多设备连接处理上有优势;联发科的 CPU 则以性价比高而受到一些厂商的青睐。

例如,博通的 BCM4708 和 BCM4709 系列 CPU,具备强大的处理能力,能够同时处理多个数据流,为用户提供流畅的网络体验。

高通的 IPQ8074 则在支持 WiFi 6 标准的路由器中较为常见,其高效的多核心架构能够应对大量设备的连接需求。

二、闪存(Flash Memory)闪存主要用于存储无线路由器的操作系统和配置文件。

它的容量大小会影响路由器的功能扩展性和升级能力。

一般来说,低端无线路由器的闪存容量可能在4MB 到16MB 之间,而中高端路由器通常会配备 128MB 甚至更大容量的闪存。

较大的闪存容量可以让路由器支持更多的功能插件,例如 VPN 服务、广告拦截等。

同时,也为后续的系统升级提供了足够的空间,确保路由器能够跟上技术发展的步伐,不断优化性能和增加新的特性。

三、内存(Random Access Memory,RAM)内存则是无线路由器在运行时用于临时存储数据的部件。

类似于电脑的内存,它的大小直接影响着路由器同时处理多个任务和连接多个设备的能力。

无线通信芯片

无线通信芯片

一、我国业余无线电爱好者可使用的频率范围如下:135.7—137.8kHz(次要,且最大辐射功率不得超过1瓦)1800 kHz—2000kHz;3500 kHz—3900kHz;7000kHz—7200kHz;10100kHz—10150kHz(次要);14000kHz—14350kHz;18068kHz—18168kHz;21000kHz—21450kHz;24890kHz—24990kHz;28000kHz—29700kHz;50MHz—54MHz;144MHz—148MHz;430MHz—440MHz(次要);1240MHz—1300MHz(次要);2300MHz—2450MHz(次要);3300MHz—3500MHz(次要);5650MHz—5850MHz(次要);10GHz—10.5GHz(次要);24GHz—24.25GHz(其中24.05GHz—24.25GHz为次要业务);47GHz—47.2GHz;76GHz—81GHz;(除77.5GHz—78GHz外为次要业务)122.25GHz—123GHz(次要);134GHz—141GHz;(其中136—141为次要业务)241GHz—250GHz(其中241GHz—248GHz为次要业务)。

依照工业和信息化部文件___工信部无[2013]43号文件的规定:业余无线电台分为A、B、C三类进行管理。

A类业余无线电台可以在30MHz~3000MHz范围内的各业余业务和卫星业余业务频段内发射工作,且最大发射功率不大于25瓦。

B类业余无线电台可以在各业余业务和卫星业余业务频段内发射工作,30MHz以下频段最大发射功率不大于100瓦,30MHz 以上频段最大发射功率不大于25瓦。

C类业余无线电台可以在各业余业务和卫星业余业务频段内发射工作,30MHz以下频段最大发射功率不大于1000瓦,30MHz以上频段最大发射功率不大于25瓦。

二、常用的无线收发芯片1、nRF401,工作在433MHZ频段,它采用FSK调制解调技术,抗干扰能力强,并采用PLL频率合成技术,频率稳定性好,发射功率最大可达10dBm,接收灵敏度最大为-105dBm,数据传输速率可达20Kbps,工作电压在+3~5v之间,nRF401无线收发芯片所需外围元件较少,并可直接接单片机串口。

蓝牙芯片对比

蓝牙芯片对比

蓝牙芯片对比蓝牙芯片是指用于支持蓝牙无线通信的集成电路,它具有小尺寸、低功耗和低成本等特点。

目前市场上有很多不同类型的蓝牙芯片,本文将对比一些常见的蓝牙芯片,包括因特尔、博通、Nordic和Cypress等品牌。

首先,我们来看一下因特尔蓝牙芯片。

因特尔是全球知名的半导体制造商,其蓝牙芯片具有较高的性能和稳定性。

因特尔的蓝牙芯片适用于各种应用场景,如智能家居、智能手机、手表等。

因特尔的蓝牙芯片支持最新的蓝牙5.0标准,能够提供更快的传输速度和更稳定的连接。

博通是另一个知名的蓝牙芯片制造商。

博通的蓝牙芯片也具有较高的性能和稳定性。

博通的蓝牙芯片广泛应用于各种消费电子产品,如智能手机、平板电脑等。

博通的蓝牙芯片支持最新的蓝牙5.0标准,具有较低的功耗和更长的通信距离。

Nordic是一家专注于无线通信领域的芯片制造商。

Nordic的蓝牙芯片在低功耗和成本方面有优势,因此广泛应用于物联网设备、传感器等。

Nordic的蓝牙芯片支持蓝牙5.0标准,并且具有较低的功耗和较长的续航时间。

此外,Nordic的蓝牙芯片还支持多种蓝牙协议和网络技术,具有较好的兼容性。

Cypress是一家专注于系统级芯片设计的公司,其蓝牙芯片具有多种类型和规格。

Cypress的蓝牙芯片适用于各种应用场景,包括消费电子、工业设备等。

Cypress的蓝牙芯片支持蓝牙5.0标准,并且具有较低的功耗和较长的通信距离。

此外,Cypress的蓝牙芯片还具有较好的兼容性和稳定性。

综上所述,不同品牌的蓝牙芯片有各自的优势和特点。

因特尔的蓝牙芯片性能和稳定性较高;博通的蓝牙芯片功耗较低、通信距离较远;Nordic的蓝牙芯片具有低功耗和成本优势;Cypress的蓝牙芯片具有多种规格和兼容性。

消费者在选择蓝牙芯片时可以根据具体需求和应用场景选择合适的品牌和型号。

常用无线射频芯片

常用无线射频芯片

常用无线射频芯片目录CC1000PWR 超低功率射频收发器CC1010PAGR 射频收发器和微控制器CC1020RSSR 射频收发器CC1021RSSR 射频收发器CC1050PWR 超低功率射频发送器CC1070RSQR 射频发送器CC1100RTKR 多通道射频收发器CC1101RTKR 低于1GHz射频收发器CC1110F16RSPR 射频收发片上系统CC1110F32RSPR 射频收发片上系统CC1110F8RSPR 射频收发片上系统CC1111F16RSPR 射频收发片上系统CC1111F32RSPR 射频收发片上系统CC1111F8RSPR 射频收发片上系统CC1150RSTR 多通道射频发送器CC2400RSUR 多通道射频发送器CC2420RTCR2.4GHz射频收发器CC2420ZRTCR2.4GHz射频收发器CC2430F128RTCR ZigBee?芯片CC2430ZF128RTCR ZigBee?芯片CC2431RTCR 无线传感器网络芯片CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR2.4GHzZigBee处理器CC2500RTKR2.4GHz射频收发器?CC2510F16RSPR2.4GHz无线电收发器CC2510F32RSPR2.4GHz无线电收发器CC2510F8RSPR2.4GHz无线电收发器CC2511F16RSPR2.4GHz无线电收发器CC2511F32RSPR2.4GHz无线电收发器CC2511F8RSPR2.4GHz无线电收发器CC2520RHDR 射频收发器CC2530F128RHAR 射频收发器CC2530F256RHAR 射频收发器CC2530F64RHAR 射频收发器CC2550RSTR2.4GHz发送器CC2590RGVR2.4GHz射频前端芯片CC2591RGVR2.4GHz射频前端芯片CCZACC06A1RTCR2.4GHZ ZigBee芯片TRF7900APWR27MHz双路接收器TRF6900APT 射频收发器TRF6901PTG4 射频收发器TRF6901PTRG4 射频收发器TRF6903PTG4 射频收发器TRF6903PTRG4 射频收发器ADF7020-1BCPZ-RL7 射频收发IC ADF7020BCPZ-RL7 射频收发ICADF7021BCPZ-RL7ISM无线收发IC ADF7021-NBCPZ-RL7ISM无线收发IC ADF7025BCPZ-RL7 射频收发ICADF7010BRUZ-REEL7ISM无线发射IC ADF7011BRUZ-RL7ISM无线发射IC ADF7012BRUZ-RL7UHF无线发射IC ADF7901BRUZ-RL7ISM无线发射ICA7121(A71C21AQF)2.4GHz射频收发器A7122(A71C22AQF)2.4GHz射频收发器A7102(A71C02AQF) 射频收发ICA7103(A71C03AUF) 射频收发ICA7201(A72C01AUF) 射频接收ICA7202(A72C02AUF) 射频接收ICA7302(A73C02AMF) 射频发射ICA7105(A71X05AQF)2.4GHz射频收发IC A7125(A71X25AQF)2.4GHz射频收发IC A7325(A73X25AQF)2.4GHz射频发射ICA7303A(A73C03AQF)FM发射芯片A7303A(A73C03AUF)FM发射芯片A7303B(A73C03BUF)FM发射芯片A7303B(A73C03BQF)FM发射芯片A7282(A72N82AQF)GPS接收芯片A7531B(A75C31BQF)GPS开关芯片A7532(A75C32AQF)GPS开关芯片A7533(A75X33AQF)GPS开关芯片A7533(A75X33BQF)GPS开关芯片AS3931 低功耗无线接收芯片AS3932BTSW 低功耗无线接收芯片AS3932BQFW 低功耗无线接收芯片AS3977BQFT FSK发射芯片AT86RF211DAI-R 射频收发ICAT86RF211SAHW-R 射频收发IC AT86RF212-ZU 射频收发ICAT86RF230-ZU 射频收发ICAT86RF231-ZU 射频收发ICATA2745M-TCQY射频发送IC ATA5428-PLQW宽带收发ICATR2406-PNQG2.4GHz射频收发IC T5750-6AQ 无线发射ICT5753-6AQ 无线发射ICT5754-6AQ 无线发射ICT7024-PGPM 前端收发器U2741B-NFB 无线发射ICAX5051 射频收发器ICAX5042 射频收发器ICAX5031 射频收发器ICAX50424 射频收发器ICAX6042 射频收发器ICCYRF6936-40LFXC 无线USB芯片CYRF7936-40LFXC 无线收发器芯片CYWUSB6932-28SEC 无线USB芯片CYWUSB6934-28SEC 无线USB芯片CYWUSB6934-48LFXC 无线USB芯片CYWUSB6935-28SEI 无线USB芯片CYWUSB6935-48LFI 无线USB芯片CYWUSB6935-48LFXC 无线USB芯片CYWUSB6935-48LFXI 无线USB芯片CYRF69103-40LFXC 无线射频芯片CYRF69213-40LFXC 无线射频芯片CYWUSB6953-48LFXC 无线USB芯片EM2420-RTR ZigBee?芯片EM260-RTR ZigBee?芯片EM250-RTR ZigBee?芯片EM351-RTR ZigBee?芯片EM357-RTR ZigBee?芯片PA5305 射频功率放大器PA2420 射频功率放大器PA2421 射频功率放大器PA2432 射频功率放大器FM2422 射频前端模块FM2422U 射频前端模块FM2427 射频前端模块FM2429 射频前端模块FM2429U 射频前端模块FM2446 射频前端模块FM7705 射频前端模块FM7707 射频前端模块MC13190FCR2 射频收发IC MC13191FCR2 射频收发IC MC13192FCR2 射频收发IC MC13193FCR2 射频收发IC MC13201FCR2 射频收发IC MC13202FCR2 射频收发IC MC13203FCR2 射频收发IC MC13211R2 射频收发ICMC13212R2 射频收发ICMC13213R2 射频收发ICMC13214R2 射频收发ICMC13224V802.15.4/ZigBee芯片TDA5200ASK接收器TDA5201ASK接收器TDA5210ASK/FSK接收器TDA5211ASK/FSK接收器TDA5212ASK/FSK接收器TDA5220ASK/FSK接收器TDA5221ASK/FSK接收器TDA7200ASK/FSK接收器TDA7210ASK/FSK接收器TDA5230ASK/FSK接收器TDA5231ASK/FSK接收器TDK5100ASK/FSK发射器TDK5100F ASK/FSK发射器TDK5101ASK/FSK发射器TDK5101F ASK/FSK发射器TDK5102ASK/FSK发射器TDK5103A ASK发射器TDK5110ASK/FSK发射器TDK5110F ASK/FSK发射器TDK5111ASK/FSK发射器TDK5111F ASK/FSK发射器TDA7116F ASK/FSK发射器PMA7105ASK/FSK发射器PMA7106ASK/FSK发射器PMA7107ASK/FSK发射器PMA7110ASK/FSK发射器TDA5250ASK/FSK收发器TDA5251ASK/FSK收发器TDA5252ASK/FSK收发器TDA5255ASK/FSK收发器MAX1470EUI+T 无线接收IC MAX1471ATJ+T 无线接收IC MAX1472AKA+T 无线发射IC MAX1473EUI+T 无线接收IC MAX1479ATE+T 无线发射IC MAX7030HATJ+T 无线收发IC MAX7030LATJ+T 无线收发IC MAX7031LATJ+T 无线收发IC MAX7031MATJ50+T 无线收发IC MAX7032ATJ+T 无线收发ICMAX7033ETJ+T 无线接收IC MAX7044AKA+T 无线发射IC MAX7058ATG+T 无线发射IC MLX71121ELQ 射频接收IC MLX71122ELQ 射频接收IC TH71071EDC 射频接收IC TH71072EDC 射频接收IC TH7107EFC 射频接收ICTH71081EDC 射频接收IC TH71082EDC 射频接收IC TH7108EFC 射频接收ICTH71101ENE 射频接收IC TH71102ENE 射频接收IC TH71111ENE 射频接收IC TH71112ENE 射频接收IC TH71221ELQ 射频接收IC TH7122ENE 射频收发ICTH72001KDC 射频发射IC TH72002KDC 射频发射IC TH72005KLD 射频发射IC TH72006KLD 射频发射IC TH72011KDC 射频发射ICTH72012KDC 射频发射IC TH72015KLD 射频发射IC TH72016KLD 射频发射IC TH72031KDC 射频发射IC TH72032KDC 射频发射IC TH72035KLD 射频发射IC TH72036KLD 射频发射IC MICRF102BM 无线发射IC MICRF112YMM 无线发射IC MICRF113YM6 无线发射IC MICRF302YML 射频编码器MICRF405YML 射频发射IC MICRF505BML 射频收发IC MICRF506BML 射频收发IC MICRF002YM射频接收器MICRF005YM 无线接收IC MICRF007BM UHF接收器MICRF008BM 无线接收IC MICRF009BM UHF接收IC MICRF010BM UHF接收IC MICRF011BM 射频IC MICRF211AYQS 射频接收器MRF24J40-I/ML ZigBee芯片MRF24J40T-I/ML ZigBee芯片MCP2030-I/P 免钥登录芯片MCP2030-I/SL 免钥登录芯片MCP2030-I/ST 免钥登录芯片MCP2030T-I/SL 免钥登录芯片MCP2030T-I/ST 免钥登录芯片nRF2401AG2.4GHz收发器IC nRF24AP12.4GHz收发器IC nRF24E1G2.4GHz收发器IC nRF24E2G2.4GHz发射器IC nRF24L01+2.4GHz收发器IC nRF24LE12.4GHz收发器IC nRF24LU12.4GHz收发器IC nRF24Z12.4GHz收发器IC NRF905430928MHz收发器NRF9E5430-928MHz收发器MFRC50001T/0FE,112 阅读器IC MFRC53001T/0FE,112 阅读器IC MFRC53101T/0FE,112 阅读器IC MFRC52301HN1 阅读器ICPN5110A0HN1/C2 收发器ICPN5120A0HN1/C1 收发器ICPN5310A3HN/C203NFC控制器IC PN1000GPS RF接收ICRX3400 射频接收ICRX3930 射频接收ICRX3140 射频接收ICRX3310A 射频接收ICRX3361 射频接收ICRX3408 射频接收ICPT4301 射频接收ICPT4316 射频接收ICPT4450 射频发射ICTX4915 射频发射ICTX4930 射频发射ICPA2460 功率放大器ICPA2464 功率放大器ICFS8107E 锁相环ICFS8108 锁相环ICFS8160 锁相环ICFS8170 锁相环ICFS8308 锁相环ICMG2400-F48ZigBee单芯片MG2450-B72ZigBee单芯片MG2455-F48ZigBee单芯片AP1092 AP1098 AP1110 AP1091 AP1093功率放大器IC 功率放大器IC 功率放大器IC 功率放大器IC 功率放大器ICAP1280PA/LNA功率放大器AP1213 射频前端模块AP1290 AP1291功率放大器IC 功率放大器ICAP1294 功率放大器ICAP1045 AP1046功率放大器IC 功率放大器ICAP2085 功率放大器IC AP2010C 功率放大器ICAP3011 AP3013 AP3014 AP3015 AP3211功率放大器IC 功率放大器IC 功率放大器IC 功率放大器IC 功率放大器ICSX1211I084TRT 单芯片收发器SX1441I077TRLF 系统蓝牙芯片XE1203FI063TRLF 射频收发芯片XE1205I074TRLF 射频收发芯片XE1283I076TRLF 射频收发芯片XM1203FC433XE1 射频收发芯片XM1203FC868XE1 射频收发芯片XM1203FC915XE1 射频收发芯片SX1223I073TRT 射频发射芯片SI3400-E1-GM 以太网电源ICSI3401-E1-GM 以太网电源ICSI3460-D01-GM 以太网电源ICSI4020-I1-FT 射频发射ICSI4021-A1-FT 射频发射ICSI4022-A1-FT 射频发射ICSI4030-A0-FM 射频发射ICSI4031-A0-FM 射频发射ICSI4032-V2-FM 射频发射ICSi4230-A0-FM(IA4230) 无线发射IC Si4231-A0-FM(IA4231) 无线发射IC Si4232-A0-FM(IA4232) 无线发射IC Si4320-J1-FT 无线接收ICSi4322-A1-FT 无线接收ICSi4330-V2-FM(IA4330) 无线接收IC SI4420-D1-FT 射频收发ICSI4421-A1-FT(IA4421) 无线收发IC SI4430-A0-FM(IA4430) 无线收发IC SI4431-A0-FM(IA4431) 无线收发ICSS4432-V2-FM(IA4432) 无线收发IC TM1001 功率放大器ICTT1006 功率放大器ICTM1008 射频晶体管TM3001 射频开关ICTM3002 射频开关ICTT4001FM发射ICUU2453 无线网络ICUZ2400ZigBee?芯片UP22062.4GHz功率放大器UP22682.4GHz功率放大器UA2707 射频信号放大器UA2709 射频信号放大器UA2711 射频信号放大器UA2712 射频信号放大器UA2715 射频信号放大器UA2716 射频信号放大器UA2725 射频信号放大器UA2731 射频信号放大器UA2732 射频信号放大器W2805 无线视频ICW2801 无线音频IC。

路由器芯片哪个好

路由器芯片哪个好

路由器芯片哪个好路由器芯片作为网络设备的核心部件,直接影响到路由器的性能和功能。

目前市面上有许多优秀的路由器芯片品牌,如高通(Qualcomm)、博通(Broadcom)、MTK联发科技(Mediatek)、恩智浦(NXP)等。

以下将对这些品牌的几款经典芯片进行分析和比较。

1. 高通(Qualcomm)高通的路由器芯片骁龙系列是市场上最为知名和广泛应用的芯片之一。

该芯片采用先进的4核/6核/8核处理器架构,主频高达2.4GHz,提供强大的计算能力,支持高端路由器的高性能和多任务处理。

同时,高通芯片还内置了Adreno图形处理器和Hexagon数字信号处理器,能够提供更加流畅的游戏画面和高品质的音视频体验。

2. 博通(Broadcom)博通的路由器芯片系列可以说是市场份额最大的芯片之一。

它采用高性能的多核架构,配备主频高达2GHz的ARM Cortex-A9处理器,还内置了强大的硬件加速引擎,可以提供更高的转发性能和更低的网络延迟。

此外,博通芯片还支持WiFi 6、Mesh网络等先进技术,满足用户对高速、稳定的网络需求。

3. MTK联发科技(Mediatek)MTK联发科技推出的路由器芯片系列注重在性价比和功耗控制方面的优化。

它采用低功耗、多核架构的设计,配备主频高达1.2GHz的ARM Cortex-A7处理器,能够在保证性能的同时降低功耗。

此外,MTK芯片还提供了丰富的无线通信接口和高度集成的射频前端,方便OEM厂商进行快速设计和生产。

4. 恩智浦(NXP)恩智浦是一家专注于无线通信技术的公司,其路由器芯片在低功耗、高集成度以及安全性方面有一定的优势。

该芯片采用低功耗的ARM Cortex-M4内核,集成了丰富的外设接口和高效的通信协议栈,能够满足低功耗、智能化的应用需求。

此外,NXP芯片还支持硬件级别的安全加密,提供更可靠的数据传输和保护。

综上所述,高通、博通、MTK联发科技和恩智浦都是优秀的路由器芯片品牌,各自在性能、功耗、功能和安全性等方面都有其独特的优势。

蓝牙芯片有哪些种类?主流蓝牙芯片选型特点及芯片原厂介绍

蓝牙芯片有哪些种类?主流蓝牙芯片选型特点及芯片原厂介绍

蓝牙芯片有哪些种类?主流蓝牙芯片选型特点及芯片原厂介绍蓝牙芯片有很多种类,大致可以分以下几类:无线收发芯片、射频开关、射频卡芯片、RF放大器、RF混频器、RF检测器、RF衰减器、RF双工器、RF耦合器...等等常见的芯片厂商及蓝牙芯片型号与简介1、CSR高通,总部位于美国,旗下主产蓝牙芯片有:CSR101x芯片组产品系列,蓝牙4.1,低功耗蓝牙,CSR MESH技术,CSR102x产品系列,蓝牙4.2,低功耗蓝牙,CSR MESH技术,QCC300X产品系列,蓝牙5.0,双模蓝牙,部分适用于应用于蓝牙耳机、蓝牙音箱QCC5100系列,蓝牙5.0,超低功耗,高级SoC,用于紧凑,功能丰富的无线耳塞,可编程和耳机2、德州仪器(TI),总部位于美国,旗下主产蓝牙芯片有CC2642R:蓝牙5.0版本。

CC2652R:蓝牙5.0版本,蓝牙,ZigBee,线程,2.4GHz专有。

CC2564C:采用QFN封装的双模蓝牙控制器,经典蓝牙,双模蓝牙,蓝牙4.2。

CC2540T:2.4GHz蓝牙低功耗无线MCU。

CC2541:无线MCU,蓝牙4.0。

CC2564:蓝牙Smart Ready控制器,智能RF收发器,蓝牙智能(蓝牙低功耗),经典蓝牙,双模蓝牙。

CC2540:具有USB的SimpleLink蓝牙智能无线MCU,蓝牙智能(蓝牙低功耗)。

CC2560:蓝牙Smart Ready控制器,智能RF收发器。

3、赛普拉斯Cypress(收购Broadcom无线业务)【总部】:美国CYW20706:蓝牙4.2BR+EDR+BLE。

CYW20737:蓝牙4.1BLE。

CYW20736:蓝牙4.1BLE。

4、Nordic【总部】:挪威nRF52840:多协议蓝牙5.0蓝牙低功耗nRF52832:多协议蓝牙5.0蓝牙低功耗nRF52810:多协议蓝牙5.0蓝牙低功耗nRF51822:蓝牙低功耗和2.4GHz专有多协议SoC。

常用射频芯片

常用射频芯片

常用射频芯片射频芯片是一种广泛应用于通信领域的集成电路,主要用于无线通信系统中的射频信号处理和调制解调功能。

在现代通信技术发展的推动下,射频芯片的需求量不断增加,其应用范围也逐渐扩大。

本文将介绍几种常用的射频芯片及其特点。

1. 功率放大器芯片功率放大器芯片是射频系统中重要的组成部分,主要用于放大射频信号的功率。

常见的功率放大器芯片有SiGe HBT、GaN HEMT和CMOS等。

SiGe HBT芯片具有低噪声、高增益和较宽的工作频率范围等优点,适用于低功率射频应用。

而GaN HEMT芯片具有高功率、高工作频率和高效率的特点,适用于高功率射频应用。

CMOS芯片则具有低成本和低功耗的优势,适用于集成度要求较高的射频系统。

2. 调制解调器芯片调制解调器芯片是射频通信系统中的关键部件,用于将数字信号转换为模拟射频信号,或将模拟射频信号转换为数字信号。

常见的调制解调器芯片有IQ调制解调器、频率合成器和混频器等。

IQ调制解调器芯片能够实现高速、高精度的信号调制和解调,广泛应用于无线通信系统中。

频率合成器芯片则用于生成稳定的射频信号,保证通信系统的正常工作。

混频器芯片则用于将不同频率的信号进行混频,实现信号的频率变换。

3. 射频前端芯片射频前端芯片是射频通信系统中的关键部分,主要用于信号的接收和发送。

常见的射频前端芯片有低噪声放大器、滤波器和开关等。

低噪声放大器芯片能够在接收信号过程中提供高增益和低噪声,提高系统的接收性能。

滤波器芯片则用于滤除不需要的频率分量,保证信号的清晰度和准确性。

开关芯片则用于控制信号的传输路径,实现信号的选择和切换。

4. 射频识别芯片射频识别芯片是一种应用广泛的射频芯片,主要用于物联网、智能交通和物流领域。

射频识别芯片能够实现对物体的标识和追踪,方便实现物流管理和智能化控制。

射频识别芯片采用射频技术和非接触式通信方式,具有读取距离远、读取速度快和读写操作方便等特点。

常用射频芯片在无线通信和物联网等领域发挥着重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常用无线收发芯片性能比较表
由于无线收发芯片的种类和数量比较多,如何在你的设计中选择你所需要的芯片是非常关键的,正确的选择可以使你少走弯路,降低成本,更快地将你的产品推向市场。

下面几点有助于你选择你所需要的产品:
1、收发芯片的数据传输是否需要进行曼彻斯特编码?
采用曼彻斯特编码的芯片,在编程上会需要较高的技巧和经验,需要更多的内存和程序容量,并且曼彻斯特编码大大降低数据传输的效率,一般仅能达到标称速率的1/3。

而采用串口传输的芯片(如nRF401),应用及编程非常简单,传送的效率很高,标称速率就是实际速率,因为串口对大家来说是再熟悉不过的了,编程也很方便。

2、收发芯片所需的外围元件数量
芯片外围元件的数量的直接决定你的产品的成本,因此应该选择外围元件少的收发芯片。

有些芯片似乎比较便宜,可是外围元件使用很多昂贵的元件如变容管以及声表滤波器等;有些芯片收发分别需要两根天线,会大大加大成本。

这方面nRF401做得很好,外围元件仅10
个左右,无需声表滤波器、变容管等昂贵的元件,只需要便宜且易于获得的4MHz晶体,收发天线合一。

3、功耗
大多数无线收发芯片是应用在便携式产品上的,因此功耗也非常重要,应该根据需要选择综合功耗较小的产品.
4、发射功率
在同等条件下,为了保证有效和可靠的通信,应该选用发射功率较高的产品。

但是也应该注意,有些产品号称的发射功率虽然较高,但是由于其外围元件多,调试复杂,往往实际的发射功率远远达不到标称值。

5、收发芯片的封装和管脚数
较少的管脚以及较小的封装,有利于减少PCB面积降低成本,适合便携式产品的设计,也有利于开发和生产。

nRF401仅20脚,是管脚数和体积最小的。

相关文档
最新文档