有限元例题
有限元试题及答案
有限元试题及答案一、选择题1. 有限元方法是一种用于求解工程和物理问题的数值技术,其核心思想是将连续域划分为有限数量的离散子域。
以下哪项不是有限元方法的特点?A. 网格划分B. 边界条件处理C. 局部近似D. 整体求解答案:D2. 在有限元分析中,以下哪项不是网格划分的常见类型?A. 三角形网格B. 四边形网格C. 六边形网格D. 圆形网格答案:D3. 对于线性弹性问题,以下哪种元素类型不适用于有限元分析?A. 线性三角形元素B. 二次三角形元素C. 线性四边形元素D. 三次四边形元素答案:D二、填空题1. 在有限元分析中,单元刚度矩阵的计算通常涉及到单元的_________。
答案:形状函数2. 有限元方法中,边界条件可以分为_________和_________。
答案:Dirichlet边界条件;Neumann边界条件3. 有限元软件通常采用_________方法来求解大型稀疏方程组。
答案:迭代三、简答题1. 简述有限元方法的基本步骤。
答案:有限元方法的基本步骤包括:- 定义问题的几何域和边界条件。
- 将几何域划分为有限数量的小单元。
- 为每个单元定义形状函数。
- 计算单元刚度矩阵和载荷向量。
- 组装全局刚度矩阵和载荷向量。
- 施加边界条件。
- 求解线性方程组,得到节点位移。
- 计算单元应力和应变。
2. 为什么在有限元分析中需要进行网格划分?答案:网格划分是有限元分析中的一个重要步骤,因为它允许将连续的几何域离散化,使得问题可以被数值方法求解。
通过网格划分,可以: - 简化复杂几何形状的分析。
- 适应不同的材料属性和边界条件。
- 提供足够的细节以捕捉应力和位移的局部变化。
- 减少计算复杂度,提高求解效率。
四、计算题1. 假设有一个平面应力问题,已知材料的弹性模量E=210GPa,泊松比ν=0.3。
请计算一个边长为10mm的正方形单元在单轴拉伸下的单元刚度矩阵。
答案:单元刚度矩阵\[ K \]可以通过以下公式计算:\[K = \frac{E}{(1-\nu^2)} \int_{\Omega} \left[ B^T B \right] d\Omega\]其中,\( B \)是应变-位移矩阵,\( \Omega \)是单元的面积。
有限元试题及答案
有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。
下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。
答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。
答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。
答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。
假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。
结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。
分析载荷为2000 N,施加在结构的中心节点上。
有限元例题
q Fx 2 2 F2 Fy 2 0
K 11 K K 21 K 31 K 41
K 12 K 22 K 32 K 42
K 13 K 23 K 33 K 43
K 14 K 24 K 34 K 44
(3)零位移约束的处理,零位移处划行划列
K
K 22 K 32
K 22
K 32
K 23 K 33
线性方程组为:
K 23 2 F2 K 33 3 F3
1 2 1 1 2
(4)计算单元刚度矩阵 单元面积: A1 A2 (5)弹性矩阵:
D
E 1 2
1 0
1 0
0 3 1 0 3E 0 1 3 0 8 1 0 0 1 2
(6)几何矩阵:
B Bi
Bj
Bm
0 ci bi
b i 1 Bi 0 2A ci
2 u 2 q / 2 7 4 4 4 13 2 12 v 0 3Eh 2 7 0 u 3 q / 2 32 4 2 13 v3 0 2 12 0 u 2 1.98 v 2 q 0.36 u 3 Eh 1.79 v3 0.024
计算系数: 对于单元 1:
x1 0, y1 0,
a2 x3 y1 x1 y3 0, a3 x1 y 2 x2 y1 0, E K 332h 74
有限元课程实训结课上机参考例题
有限元课程实训结课上机参考例题题 1:图1所示薄板左边固定,右边受均布压力P=100Kn/m 作用,板厚度为0.3cm ;试采用如下方案,对其进行有限元分析,并对结果进行比较。
(1)三节点三角形单元;(2个和200个单元)(2)四节点矩形单元; (1个和50个单元)(3)八节点等参单元。
(1个和20个单元)图 1 题 2:图2所示为一带圆孔的单位厚度(1M )的正方形平板,在x 方向作用均布压力0.25Mpa ,试用三节点常应变单元和六节点三角形单元对平板进行有限元分析,并对以下几种计算方案的计算结果进行比较:(1) 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;注:在y 轴上,孔边应力的精确解为:MPa x 75.0-=σ,在x 轴上,孔边应力的精确解为:MPa y 25.0=σ图 2题 3:图3所示为带方孔(边长为80mm)的悬臂梁,其上受部分均布载荷(p=10Kn/m)作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为1mm,材料为钢)图 3题 4:图4所示为一隧道断面,其内受均布水压力q,外受土壤均布压力p;试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时的位移和应力分布情况。
(材料为钢,隧道几何尺寸和压力大小自行确定)图 4题 5:图5所示一简化直齿轮轮齿截面,高h=60mm,齿根宽b=60mm,齿顶宽c=25mm,齿顶作用力P=10Kn;试采用不同单元分析轮齿上位移及应力分布,并只指出最大应力位置。
图 5题 6:图6所示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
第一讲有限元例题
方法:代入已知位移。
1
1 2
Q1,
Q2
,
Q3
0
0
因为 Q1 0
0 6.0 105 2.0105
0 2.0105 2.0 105
QQ12 Q3
K 的第一行与第一列均与0相乘,可以在方程中将其划去。
K 简化成
6.0105 2.0105
2.0105
2.0 105
方程可以降阶为
10
5
QQ12
2.0 105 Q3
Q —— 结构整体节点位移向量
结构外力虚功
Wp
P • Q3
Q1
,
Q2
,
Q3
P1 P2
P3
P1 —未知 P2 0
P3 100 N
结构势能可以表示为
4.0 105
p
1 2
Q1
,
Q2
,
Q3
4.0 0
10
5
4.0 105 6.0 105 2.0 105
1 2
Q1,
Q2
4.0 105 4.0 105
4.0 105 Q1
4.0 105
Q2
1 2
Q2 ,Q3
2.0 105 2.0 105
2.0 105 2.0 105
QQ23
4.0 105
1 2
Q1,
Q2
,
Q3
4.0 0
10
5
4.0 105 4.0 105
0
0 0
QQ12
1
x Le
Q1e
x Le
Q2e
进一步写成矩阵形式有
ux
1
x Le
,
弹性力学有限元分析题
有限元分析练习1.如图所示为一简支梁,高0.6m,宽0.3m,长3m,承受均布荷载15kN/m,弹性模量为E=20X1010Pa,泊松比为μ=0.3。
(1)试将其看着平面应力问题进行有限元分析(应力,应变,位移),并与解析解进行比较分析。
(2)根据有限元计算结果,分析梁的弯曲变形是否符合平截面假定?将高度分别变为2m,0.5m,又如何?(3)如何提高该梁的有限元计算精度,请对比分析。
2.如图所示为一简支梁,高0.5m,宽0.3m,长2m,梁顶面承受均布荷载10kN/m,梁一侧受到集中荷载作用大小为10kN,另一侧受到均布荷载作用为20kN/m.弹性模量为E=3X1010Pa,泊松比为μ=0.2。
(1)分别计算在横向荷载和轴向荷载单独作用下梁的应力、应变和位移情况,并对结果进行讨论分析。
(2)计算在横向和轴向荷载共同作用下,梁的应力、应变和位移情况,并于仅受到横向荷载作用下梁的计算结果进行对比分析。
(3)如何提高梁的有限元计算精度,并对比分析。
3.下图表示一块带圆孔的方板,在x方向受到均布压力80kN/m。
方板边长为0.6m,厚度为0.03m,圆孔的半径为0.02m。
方板的弹性模量为E=2X1011Pa,泊松比为μ=0.3.(1)试进行有限元分析(应力,应变,位移),并与解析解进行比较分析。
(2)如何提高本题有限元计算精度,并对比分析。
(3)如果把圆孔改为边长为0.02m的正方形,是比较两者应力集中程度。
4. 下图表示一块带圆孔的方柱,在x 方向受到均布压力100kN/m 2。
方板边长为0.5m ,圆孔的半径为0.02m 。
方板的弹性模量为E=2X1011Pa ,泊松比为μ=0.2. (1) 假设厚度为无限大进行有限元分析(应力,应变,位移),并与解析解进行比较分析。
(2) 如何提高本题有限元计算精度,并对比分析。
(3) 如果把圆孔改为边长为0.02m 的三角形,是比较两者应力集中程度。
5. 下图为带圆孔的方板,在x 方向受到均布压力120kN/m ,在y 方向受到均布压力为60kN/m 。
(完整版)有限元考试试题及答案
e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。
(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。
图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。
当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。
c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。
3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。
意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。
4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。
有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。
有限元试题及答案
有限元试题及答案一、选择题1. 有限元法是一种数值方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 偏微分方程答案:D2. 在有限元分析中,以下哪项不是网格划分的基本原则?A. 网格应尽量均匀B. 网格应避免交叉C. 网格应尽量小D. 网格应适应几何形状答案:C3. 有限元方法中,单元的局部刚度矩阵可以通过以下哪种方式获得?A. 直接积分B. 矩阵乘法C. 线性插值D. 经验公式答案:A二、填空题1. 有限元方法中,______ 是指将连续的域离散化成有限数量的小单元。
答案:离散化2. 在进行有限元分析时,______ 是指在单元内部使用插值函数来近似求解场变量。
答案:近似3. 有限元法中,______ 是指在单元边界上满足的连续性条件。
答案:边界条件三、简答题1. 简述有限元法的基本步骤。
答案:有限元法的基本步骤包括:(1)定义问题域;(2)离散化问题域,生成网格;(3)为每个单元定义局部坐标系和形状函数;(4)组装全局刚度矩阵和载荷向量;(5)施加边界条件;(6)求解线性代数方程;(7)提取结果并进行后处理。
2. 描述有限元分析中的单元类型有哪些,并简述每种单元的特点。
答案:常见的单元类型包括:(1)一维单元,如杆单元和梁单元,特点是沿一个方向传递力;(2)二维单元,如三角形和四边形单元,特点是在平面内传递力;(3)三维单元,如四面体和六面体单元,特点是在空间内传递力。
每种单元都有其特定的形状函数和刚度矩阵。
四、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间施加集中力P。
使用有限元法求解该杆的位移和应力分布。
答案:首先,将杆离散化为一个单元。
使用一维杆单元的局部刚度矩阵和形状函数,可以推导出全局刚度矩阵。
然后,施加边界条件,即杆的两端位移为零。
最后,将集中力P转换为等效节点载荷,求解线性代数方程,得到节点位移。
应力可以通过位移和杆的截面特性计算得出。
有限元试题及答案[1]
∴ 又因
证明3、如图所示纯弯梁
梁的厚度很薄,外载沿厚度方向无变化,其中性层为y层,梁长为, 弹性模量为E,基本变量为:
位移(对中性层) 应力(为主应力,其方向很小,不考虑) 应变(为主要应变,中性层取微段莱推导三大方程)
解:根据力得平衡方程(体积力为零时) 知 上两个等式成立,即平衡方程成立,即此情况满足平衡条件。 其边界应力,
, ,
作图如下: 故边界下应力如图2.2所示:
其边界得剪应力如图2.3所示:
四、如图所示 已知,,(平面应力问题)
求:(1)斜面上应力,的表达式 (2)最大主应力,最小主应力及此时斜面的方向余弦。
衡。 (2) 当时,、并不一定为零,此情况下平衡方程并不一定成立,
故此情况下不满足平衡,只有在时,才满足平衡。 (3) 当时,平衡方程成立,故此情况下满足平衡。 (4) 所有均为非零时,只有当,时,平衡方程才成立,才能够满
足平衡,否则不平衡。 三、下列应力分布是否满足平衡条件(体积力为零),(2D平面应力问 题),描述就如图所示平面结构,该应力函数所表示时得边界应力。
解之知 所以: 所以,其形态函数矩阵 又因 所以几何矩阵 又 所以其应力矩阵 单元的势能为: 其刚度矩阵为: 十五、如图所示,为一由两根杆组成的结构(二杆分别沿X,Y)方向, 结构参数 试写成下列FEM分析
(1) 写出各单元的刚度矩阵 (2) 写出总刚度矩阵 (3) 求出节点2的位移 (4) 求各单元应力
如图所示8.4所示力的平衡:
几何方程:由变形后的几何关系可知 其中y为距中性层坐标,为挠度曲率。 即 由虎克定律知物理方程为: 整理上述方程得知下基本方程组 故纯弯梁的应变能: 九、如图所示为1个1D拉压问题 (1)写出描写该问题的所有基本变量 (2)写出所有基本方程,包括BC (3)写出应变能,外力功 (4)写出最小势能原理的一般表达式(1D问题) (5)证明(4)(即该原理与原基本方程的关系) 解(1)基本变量 位移 应力 应变 (2)基本方程 平衡方程 几何方程 物理方程 BC(): BC(p): 由平衡方程得知 (待定) 由几何方程得知 (待定) 由BC()知 由BC(p)知 ∴ (3)应变能 外力功 (4)最小势能一般表达式(1D问题)
有限元分析与应用详细例题
试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2)分别采用不同数量的三节点常应变单元计算;3)当选常应变三角单元时,分别采用不同划分方案计算。
一.问题描述及数学建模无限长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无限长的地基看着平面三角形的底边受固定支座约束的作用,受力面的受力简化为受均布载荷的作用。
二.建模及计算过程1. 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算下面简述三节点常应变单元有限元建模过程(其他类型的建模过程类似):进入ANSYS【开始】→【程序】→ANSYS →ANSYS Product Launcher →change the working directory →Job Name: shiti1→Run设置计算类型ANSYS Main Menu: Preferences →select Structural → OK选择单元类型单元是三节点常应变单元,可以用4节点退化表示。
ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4 node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain →OK→Close (the Element Type window)定义材料参数材料为钢,可查找钢的参数并在有限元中定义,其中弹性模量E=210Gpa,泊松比v=。
ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:, PRXY:→ OK生成几何模型生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS→依次输入四个点的坐标:input:1(0,0),2(3,0),3(6,0),4(3,5),5(0,10),6(0,5)→OK生成坝体截面ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接1,2,6;2,3,4;2,4,6;4,5,6这三个特征点→OK网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) Global: Set →input NDIV: 1→OK →(back to the mesh tool window)Mesh: Areas, Shape: Tri, Free →Mesh →Pick All (in Picking Menu) → Close( the Mesh Tool window)模型施加约束分别给下底边和竖直的纵边施加x和y方向的约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→ On lines→选择底边→OK→select:ALL DOF → OK给斜边施加x方向的分布载荷ANSYS 命令菜单栏: Parameters→Functions →Define/Edit→1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数:1000*{X};3) File>Save(文件扩展名:func) →返回:Parameters→Functions →Read from file:将需要的.func文件打开,任给一个参数名,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply→Structural →Pressure →On Lines →拾取斜边;OK →在下拉列表框中,选择:Existing table (来自用户定义的变量)→OK →选择需要的载荷参数名→OK分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →OK结果显示确定当前数据为最后时间步的数据ANSYS Main Menu: General Postproc →Read Result→Last Set查看在外力作用下的变形ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape→select Def + Undeformed→OK查看节点位移分布情况Contour Plot→Nodal Solu…→select: DOF solution→Displacement vctor sum→Def + Undeformed→OK查看节点应力分布情况Contour Plot→Nodal Solu…→select: Stress→XY shear stress→ Def + Undeformed→OK退出系统ANSYS Utility Menu: File→ Exi t…→ Save Everything→OK 三.结果分析三节点常应变单元(6个节点,4个单元)几何模型图变形图,节点位移图,节点应力图,节点应变图六节点常应变单元(6个节点,4个单元)几何模型图变形图,节点位移图,节点应力图,节点应变图分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算结果比较单元划分方案变形大小应力大小应变大小值的比较分析三节点三角形单元DMX:SMX:DMX:SMN:2778SMX:8749DMX:SMN:SMX:1.最大变形值小;2.最大应力值小;3.最大应变值小。
有限元习题
•WORD格式--可编辑--专业资料'判断题:1.象床单那样薄、那样宽的板用梁单元来模型化2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元3.一般自由度多的模型分析成本高4.使用尽可能多种类单元的模型是一个好的模型5.杆单元是壳单元的一种6.不能把梁单元、壳单元和实体单元混合在一起作成模型7.四边形的壳单元尽可能作成接近正方形形状的单元8.因为实体单元是3维单元,所以即使有严重的扭曲也没关系9.将作用有垂直载荷的悬臂梁用多个杆单元作成10.将作用有垂直载荷的两端自由支持的梁用杆单元来模型化11.三角形单元和四边形单元不能混在一起使用12.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案13.同样形状的话,使用三角形单元和使用四边形单元解是相同的14.边长为10cm和边长为100cm的正方形的板,后者的单元数如果是前者的10倍的话,才行15.为了校核连续的相同管子剖面内的应力状态,要使用平面应力单元16.对热应力问题,1维单元也好2维单元也好,所求的解都搞不清17.对于热传导分析必须输入线膨胀系数18.热应力随结构的约束状态而变化19.FEM分析变形越大应力就越高20.在线性分析中,即使变形变大,如果将这部分单元划分得多一些的话,也会保证解的适当正确21.为了评价应力集中,在网格划分时应该把整个作成一样的单元尺寸22.板厚并不一致的情况下,一定要用到实体单元23.单元数相同的话,1阶单元、2阶单元的解都一样24.为了忠实地尽可能表现结构的形状,必须严格按装配顺序来做模型化处理25.节点的位置依赖于形态,而并不依赖于载荷的位置26.一般应力变化大的地方单元尺寸要划的小才好27■仅用TETRA单元的模型与仅用HEXA单元的模型相比,后者的精度要好28.相接的单元尺寸大小不要变化太厉害29.在进行特征值分析时,必须输入质量30.进行热应力分析时,必须输入线膨胀系数31.壳单元表面的应力因为与表面内的应力相比精度会降低所以必须注意32.象船和火箭那样的结构因为漂浮在水(空)中而没被固定住,所以,FEM分析不可以使用33.约束条件用全固定或许加上铰固定就能表现完全34.一般在特征值分析中一定是采用节点编号连续来编的方法,所得精度要高35.用固有振动分析求应力,应力高的部分必须要加强36.屈曲模态并不依赖于约束条件37.自由度有位移自由度和转角自由度38.一般在FEM中使用的模型称为刚体模型39.对比铁更硬的部分所做模型化处理的单元称为刚体单元40.刚体单元和梁单元和板单元组合在一起进行分析是不可以的41.一般网格划分过度的话,很费分析时间42.对啤酒罐的压缩强度要用固有振动分析来评价表示自由度的坐标系有局部坐标系和整体坐标系应力集中的部分是多个载荷所加的部位在加上热载的情况下,即使是同一个模型,根据约束条件,所发生的应力有很大的不同用有限元法可以对正在动的(移动)物体的结构进行分析对膜(membran )单元也可用面压载荷可对膜(membran )单元可以用集中载荷施加强迫位移的分析要进行静力分析一般所给出的载荷的总和与反力的总和相一致即使将不同的局部坐标系下定义好的节点连起来也可定义单元所谓自由度是直接翻译degreesoffreedom 的所谓实体单元意味着刚体单元的集合 杨氏系数是纵弹性系数(模量)共鸣现象与固有频率有关杨氏系数是评价材令的基值即使是同一种材料,梁单元和板单元也要输入不同的材料性质数值泊松比是在纵向加压时发生在纵向的应变和横向的应变的比率用弹性材料可表现塑性化现象 一般线膨胀系数是作为材料常数之一输入一般用FEM 模型化时,大的结构求得的热变形小约束条件全都没被定义的结构不能分析 X 、Y 、Z 全部方向上的位移都是1时称为刚体变形分析结果是对称的模型,使用对称条件可以用较少的单元来进行分析所谓铰约束条件是约束位移自由度而让转角自由度自由强迫位移是一种约束条件即使所有的自由度都约束也会发生变形对于设置了约束的自由度即使输入载荷也不发生位移有限单元分析约束条件尽量少则精度好所谓约束就是消去自由度所谓全约束只要将位移自由度约束住壳单元与实体单元可约束的自由度不同线性分析将同样大的载荷加在反向产生位移的绝对值不变由分析所得的最大应力受网格划分的影响载荷和应力表示同一件东西主应力并不依赖于基本坐标系在应力分析中,应力小的部位单元尺寸要小,大的部位单元尺寸要大来进行模型化处理实特征值分析是一种求最大应力的手段 具有切口附近的应力集中用FEM 不能严密地计算1阶单元是假定单元内的应力都一样的单元表现材料的弹性界限是所谓的屈服应力 在屈服曲面内材料表现为弹性行为位移能用6个矢量成分来表示转角是一种位移载荷点的位移通常最大线性应力分析也可以得到极大的变形与材料无关的相同变形量产生相同的应力给出同一载荷杨氏系数越大则变形也越大43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88a —xy-xy —ijmmja —y-xy —jmi im a —y-xyam i jjib —y-y —ijmb —y -y —jm ib —y -y —-bm i j=(1-兰-卡)89. 对于静力分析质量是不可缺少的数据90. 实特征值分析中必须定义集中载荷或分布载荷 91. 屈曲分析和固有振动分析是类似的特征值问题92. 使用同一模型时,一般特征值分析要比线弹性分析化时间93. 一般求特征值分析所求的模态数多也好少也好,分析时间是一样的 94. 在静力分析中,仅施加左右方向的载荷时,不约束上下方向也可以 95. 卡车通过时,玻璃窗会别别地振动,这是与玻璃的固有频率有关 96. FEM 也被用在医学上97. 有限元法、有限体积法、有限差分法、边界元法这中间FEM 是有限差分法 98. 有限元法基本的是求解联立方程式 99. FEM 理论1950年前开始就有了100. 考虑阻尼的特征值问题成了复特征值问题1•如图所示为一平面应力状态的直角三角形单元,设V =1/6。
有限元例题及答案
例 8-1:E ,A ,L ,s σ 杆I 弹塑性; 杆II 弹性。
求s AF σ3=下2点位移。
解:(1)理论解在荷载s A F σ3=作用下,杆I 屈服而有内力(拉力)S A N σ=1,杆II 内力(压力)为s II A N σ2=,中点2位移δ取决于杆II 的变形,即*===∆=δσσδ22)2(EL AE L A l S S II式中E Ls σδ=*(屈服位移)(2)直接迭代法杆I 和杆II 的刚度分别为⎩⎨⎧=**≤〉)()(δδδδδσL EAAI S k L EA k II =①迭I 迭代步迭代从*=δδ0开始,这时有L EAk k K II I 20=+=*-====δσσδ5.15.123101EL L EA A F K S S②第2迭代步杆I 进入塑性,有L EA A k s I 67.01==δσ杆Ⅱ完全弹性,刚度不变。
因此,总刚为L EAk k K II I 67.11=+=*-====δσσδ8.18.167.13112E L LEA A F k S s 整个迭代过程见表8-1。
表8-1 直接迭代法各次迭代结果(3)切线刚度法杆Ⅰ和杆Ⅱ的切线刚度分别为⎩⎨⎧=**≤〉)()(0δδδδLEAI k L EA k II =①第1迭代步初始状态时,00=δ,杆Ⅰ,Ⅱ中应力、应变均匀为零。
总刚为:L EAk k K T TI T 21=+=由F K T -=δψ,得S A σψ30-=由n Tn n K ψδ1--=∆得,*=--=∆δσδ5.1)3(10S A L由式n n n δδδ∆+=+1得,s δδ5.11=杆中应力:S SI σσσσ5.111-==杆中内力:S SI A N A N σσ5.111-==②第2迭代步由于杆I 已进入塑性,杆Ⅱ仍处弹性,总刚:L EAk k K TIITI T =+=2由F K T -=δψ,得S S S A A A σσσψ5.035.21-=-=由n Tn n K ψδ1--=∆得,*=--=∆δσδ5.0)5.0(11S A LEA由式n n n δδδ∆+=+1得,*=∆+=σδδδ0.2112杆中应力:S II SI A N A N σσ0.222-==检验F K T -=δψ,有030.32=-=S S A A σσψ迭代平衡。
西工大-有限元精彩试题(附问题详解)
西工大-有限元精彩试题(附问题详解)1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。
2.如下图所示,求下列情况的带宽:a)4结点四边形元;b)2结点线性杆元。
3.对上题图诸结点制定一种结点编号的方法,使所得带宽更小。
图左下角的四边形在两种不同编号方式下,单元的带宽分别是多大?4.下图所示,若单元是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。
系统的带宽是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。
5.设杆件1-2受轴向力作用,截面积为A ,长度为L ,弹性模量为E ,试写出杆端力F 1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k6.设阶梯形杆件由两个等截面杆件○1与○2所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F 3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。
7.在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P ,求各结点的轴向位移和各杆的轴力。
8.下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x ,y 为总体坐标系,x 轴与x 轴的夹角为θ。
(1)求在局部坐标系中的单元刚度矩阵 )(][e k(2)求单元的坐标转换矩阵 [T];(3)求在总体坐标系中的单元刚度矩阵 )(][e k9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K]。
10.设上题中的桁架的支承情况和载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的力。
11.进行结点编号时,如果把所有固定端处的结点编在最后,那么在引入边界条件时是否会更简便些?12.针对下图所示的3结点三角形单元,同一网格的两种不同的编号方式,单元的带宽分别是多大?。
平面问题有限元例题
0 0 0 1 1 0 2 0 0 0 2 0 0 00 0 0 0 0 00 0 0 0
1
3 0
0
4
0
0 0 0 0 1 0 0 0 3 0 0 0 0 1 2 0 0 1
1 2 1 5 3 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 2 0 2 0 0 0 1 1 0
0
1
6
E 4
0 0
0 0
0 1
0 0
00 00
0 3
0 0 1 2 0 0 1
0 0 0 0 0 3
0 0 0 0 0 1 2 1 0 0
4 3 0 1 0 0
0 0 0 0 0 0 2 0 2 0 0 0 5 0 0 1 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0
0 00 0 0 00 0
0 1
0 0
0 0
0 0
2 0 1 1
2
0
0 返1回Βιβλιοθήκη 6所以结构总方程为:
R K
其中
R 0 P 0 0 0 0 0 0 0 0 0 0T
u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 T
考虑到边界条件:
u1 u2 u3 v4 v5 v6 0
返回
用对角元乘大数法消除奇异性后的结构总体方程为:
0
1
1
0
1 1
i
k 3
E 4
0 0
1 0
1 0
0 2
1 1 0 2
j
2 1 1 0 3 1
m
0 1 1 2 1 3
各单元的节点编号与总体结构的总编号之间的对应关 系见表3-2。
六类有限元上机题
注:题中E表示材料弹性模量,μ表示泊松比,ρ表示密度。
一静力结构分析1 如图1所示为普通订书钉,E=2.1×105MPa,μ=0.3,横截面尺寸为宽B=0.64mm,高H=0.402mm。
当订书钉被压入纸张时,约需要120N的载荷,载荷均匀地分布在订书钉上部。
以下面两种情况进行有限元分析。
(单位:mm)(1)订入时A、B点为铰支条件;(2)订入时A、B点为固定约束。
图1 载荷和尺寸情况2、小型铁路桥由横截面积为3250mm2的钢制杆件组装而成。
一辆火车停在桥上,其载荷施加在桥梁两侧的桁架上,单侧的桁架如图2所示,等效载荷为F1,F2,E=2.1×105MPa,μ=0.3,ρ=7.8×103kg/m3。
试计算位置R处由于载荷作用而沿水平方向移动的距离以及支反力,同时,分析各个节点的位移和非单元应力。
图2 铁路桥单侧桁架及载荷情况3如图3所示,模型参数为:E=3.0×1010Pa,A1=30m,A2=10m,B=80m,t=20m,p=2200Pa。
有关风载的确定,按照海洋井架行业标准,有以下方法:风压(Pa)=0.6115×风速(m/s)×高度系数×形状系数对于一般的海洋井架及建筑物,高度在30m左右,高度系数取为1.1,形状系数取为1.25,风速取为47.8m/s。
换算出来后得到的风压为2200Pa。
图3 高层建筑物及其风载荷4对于含裂纹体的结构及材料,若按照线弹性力学分析,会在裂纹的尖端处产生应力的奇异性,这时需要计算裂纹尖端处的应力强度因子(对于Ⅰ型裂纹,有K1=σ(πa)1/2),并以应力强度因子作为准则来对材料的裂纹是否扩展进行判断。
图4所示为一块矩形平板,其边缘存在长为a的裂纹,板的两端承受拉应作用。
利用结构上下的对成性,取矩形的一半建立有限元模型,完成看一力σ下工作:(1)球裂纹的张角θ(在施加载荷前=0,θ=0)(2)沿直线AO,画出y方向应力σy沿x变化的曲线图。
有限元例题(免费)
A1E 1 1 K L1
1 1 4.0 105 1 1 5 4.0 10
4.0 105 5 4.0 10
对单元2来说
Q2 Q Q 3
2
K
2
1 1 2.0 105 AE 1 1 2 L 2.0 105
4.0 105 6.0 105 2.0 105
Q1 2.0 105 Q2 2.0 105 Q3 0
Q1 0
的第一行与第一列均与0相乘,可以在方程中将其划去。
K
K 简化成
6.0 105 5 2.0 10
有
x e x e u x 1 e Q1 e Q2 L L
e Q1 x x u x 1 e , e e L L Q2
进一步写成矩阵形式有
令
u ux
x x N 1 e , e —— 形函数矩阵 L L
x
(2)
e 2
——(1)
e 1
由位移连续性知:
在i点应有
在j点应有
uxi Q
aQ
e 1
e ux j Q2
a bL Q (3)
e
L
e
—— 单元长度
e e Q2 Q1 b Le
联立(2)(3) (4)
解出:
将(2)、(4)代回(1)有
e Q2 Q1e e u x Q1e x 按 Q1e 和 Q2 合并同类项 Le
e
e e
u ( x ) e e N Q N1 , N 2 Q x x x
有限元考试精彩试题及问题详解——第一组
有限元考试试题及答案一、简答题(5道,共计25分)。
1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。
2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。
3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元任意一点有四个应变分量,平面单元任意一点非零独立应变分量有三个。
4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。
常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。
(2)结点位移3个分量。
(3)基本方程比平面问题多。
3个平衡方程,6个几何方程,6个物理方程。
5.简述四节点四边形等参数单元的平面问题分析过程。
(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
二、论述题(3道,共计30分)。
1. 简述四节点四边形等参数单元的平面问题分析过程。
(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
有限元考试试题
有限元考试试题一、选择题(每题5分,共30分)1、在有限元分析中,我们通常使用什么方法来求解偏微分方程?A.积分法B.差分法C.有限差分法D.有限元法2、下列哪个不是有限元法的优点?A.可以处理复杂几何形状B.可以处理非线性问题C.可以处理大规模问题D.可以处理不稳定问题3、在有限元分析中,我们通常将连续的物理场离散化为一系列的什么?A.有限个点B.无限个小段C.有限个小段D.无限个点4、下列哪个不是有限元分析的基本步骤?A.划分网格B.建立模型C.执行计算D.编写代码5、在有限元分析中,我们通常使用什么来描述物理场的性质?A.偏微分方程B.泛函方程C.常微分方程D.边界条件6、下列哪个不是有限元分析的应用领域?A.结构分析B.流体动力学C.电磁学D.社会科学二、填空题(每题10分,共40分)7、______是一种将连续的物理场离散化为一系列有限个点的方法,是有限元分析的基础。
8、在有限元分析中,我们通常使用______来对物理场进行离散化处理。
9、______是一种求解偏微分方程的数值方法,广泛应用于有限元分析。
10、在有限元分析中,我们通常使用______来描述物理场的性质。
三、解答题(每题20分,共60分)11、请简述有限元分析的基本步骤,并解释其在结构分析中的应用。
12、请说明在有限元分析中,如何处理边界条件,并举例说明。
13、请简述有限元分析的优点和局限性。
有限空间培训考试试题及答案一、选择题1、在有限空间内,以下哪个行为是危险的?A.带压操作B.穿著宽松衣服C.使用电动工具D.所有上述答案:D.所有上述。
在有限空间内,带压操作、穿著宽松衣服和使用电动工具都是危险的。
2、当进入有限空间前,应该进行哪项操作?A.排放内部气体B.测试内部气体C.对内部进行冲洗D.所有上述答案:D.所有上述。
在进入有限空间前,应该进行排放内部气体、测试内部气体并对内部进行冲洗。
3、有限空间内的危险因素不包括以下哪个?A.缺氧B.有毒气体C.电击D.所有上述答案:C.电击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【1】图示弹性力学平面问题,采用三角形常应变元,网格划分及单元、节点编号如图1所示。
试求:
(1) 计算系统刚度矩阵的最大带宽;
(2) 根据图中结构的边界约束状态,给出约束节点位移值。
【解】
(1) 相邻节点号的最大差为d = 4;
所以,半带宽为B = 2 ⨯ (4 + 1) = 10。
(2) u1 = 0,v1 = 0,u4 = 0,v4 = 0。
【2】弹性力学平面问题4节点等参元,其单元自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素?
【解】平面问题4节点等参元,其单元自由度是4 ⨯2 = 8个;单元刚度矩阵是8 ⨯ 8 阶的,单元刚度矩阵有64个元素。
【3】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素?
【解】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是2 ⨯ 3 = 6个;单元刚度矩阵是6 ⨯ 6阶的;单元刚度矩阵有36个元素。
【4】已知一等截面直杆中某一微段的起始点坐标为0.5m,终点坐标为0.6m,起始点的位移为0.2mm,终点的位移为0.3mm。
假定直杆内的位移是线性分布的。
求该微段等截面直杆的位移表达式f(x)。
【解】已知:x i = 0.5m, x j= 0.6m, u i = 0.2mm = 0.2⨯10-3m, u j= 0.3mm = 0.3⨯10-3m。
即
【5】已知4节点一维问题中单元①(1, 2)的应力矩阵为
结构总体位移列阵为
求单元①的应力(用矩阵计算)。
【解】由总体结构位移列阵知,单元①的位移列阵为
由{σ} = [C] {∆}e可求得单元①的应力
【6】某结构中单元③的单元应力矩阵
,节点位移列阵为
,
求单元3的应力{σ }。
【解】由{σ} = [C] {∆}e可求得单元③的应力
【7】已知某结构中三角形常应变单元的单元③的应力矩阵与应变矩阵分别为
,
单元厚度t = 1,单元面积A = 0.5,求单元③的刚度矩阵[K]3。
【解】三角形常应变单元的单元刚度矩阵为[K]e = [B]T[C]tA,则
【8】
【9】用矩阵或数组写出下列总体刚度矩阵的带宽存贮元素、变带宽一维存贮元素及辅助数组:
【解】
带宽存贮元素:
变带宽一维存贮元素:
{AK} = {25, 12, -8, 15, 0, 9, 22, 18, -6, 8, 24}
变带宽一维存贮辅助矩阵:
{LA} = {1, 4, 7, 8, 10, 11}
【10】已知某一维问题4个单元的单元定义(2个节点)分别为①:(1,2)、②:(2,3)、③:(3,4)、④:(4,5),这4个单元的单元刚度矩阵分别为
请写出总体刚度矩阵。
【解】
[K] =
【11】已知图4中刚架结构所有杆件的截面相同,且q = 10kN/m,F = 60kN。
试给此刚架结构划分单元(画图表示),说明单元总数,节点总数,自由度数,约束总数,单元荷载数,给出各节点坐标,各单元的单元定义(节点号),单元荷载的数值和分布类型(均布、线性分布)及分布长度,节点荷载数,节点荷载的作用位移序号和节点荷载大小。
图4 题11 图
【解】单元、节点划分及自由度序号、节点坐标如图5所示。
图5 题11 单元划分图
单元总数:3;节点总数:4 ;自由度数:3;约束总数:9;单元荷载数:2;
节点坐标:1(0,0),2(4,0),3(8,0),4(-4,-4);
单元定义:①(1,2),②(2,3),③(2,4);
单元荷载:单元1,分布荷载,类型为1(线性,分布长度为单元全长),两端数值均为10kN/m;单元2,集中荷载,类型为3(距左端距离为单元半长),数值为60kN。
节点荷载数为1;节点荷载作用位移序号为3;节点荷载大小为20kN m。