2020-2021年八年级下册数学期中考试卷及答案

合集下载

2020-2021年八年级下册期中数学试卷(含答案解析)

2020-2021年八年级下册期中数学试卷(含答案解析)

八年级(下)期中数学试卷姓名:得分:日期:一、填空题(本大题共 12 小题,共 24 分)1、(2分) 调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用______(填“普查”或“抽样调查”).2、(2分) 某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是______.3、(2分) 平行四边形ABCD中,∠A=40°,则∠D=______度.4、(2分) “a是实数,|a|≥0”这一事件是______ 事件.5、(2分) 样本的50个数据分别落在4个组内,第1、2、4组数据的个数分别是6、12、22,则落在第3组的频数是______.6、(2分) 菱形的两条对角线长分别为6和8,则这个菱形的周长为______.7、(2分) 如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是______度.8、(2分) 如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为______度.9、(2分) 在某次数学竞赛中,某校表现突出,成绩均不低于60分.为了更好地了解某校的成绩分布情况,随机抽取利了其中50名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,结果如表:按规定,成绩在80分以上(包括80分)的选手进入决赛.根据所给信息,请估计该校参赛选手入选决赛的概率为______.90≤x≤1000.110、(2分) 在矩形ABCD中,AB=3,BC=4,对角线AC、BD相交于点O,则△AOB的周长是______.11、(2分) 如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC和CD上,下列结论:①CE=CF;②BD=1+√3;③BE+DF=EF;④∠AEB=75°.其中正确的序号是______.12、(2分) 如图,△ABC中,点E、F是AC边上的三等分点,且AC=m,动点P从点E移动到点F,且PM∥BC,PN∥AB,G为MN的中点,则点G运动的路径长度为______(用含m的代数式表示)二、选择题(本大题共 6 小题,共 18 分)13、(3分) 下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.14、(3分) 在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个 B.15个 C.13个 D.12个15、(3分) 下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个16、(3分) 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )A.245B.125C.5D.417、(3分) 如图,矩形ABCD中,AB=14,AD=8,点E是CD的中点,DG平分∠ADC交AB于点G,过点A作AF⊥DG于点F,连接EF,则EF的长为()A.3B.4C.5D.618、(3分) 如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B 点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长()A.3√32B.2√33C.3√33D.4√33三、解答题(本大题共 8 小题,共 45 分)19、(2分) “共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20、(8分) 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,BE=DF.(1)求证:∠1=∠2;(2)求证:AF∥CE.21、(8分) 如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.22、(4分) 如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF(1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=______,菱形AEDF为正方形?请说明理由.23、(5分) 如图,点O是△ABC内一点,连接OB、OC,线段AB、OB、OC、AC的中点分别为D、E、F、G.(1)判断四边形DEFG的形状,并说明理由;(2)若M为EF的中点,OM=2,∠OBC和∠OCB互余,求线段BC的长.24、(8分) 如图,直线l1:y=-0.5x+b分别与x轴、y轴交于A.B两点,与直线l2:y=kx-6交于点C(4,2).(1)点A坐标为(______,______),B为(______,______);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形.25、(6分) 如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(8,0).(1)当α=60°时,△CB D的形状是______;(2)设AH=m①连接HD,当△CHD的面积等于10时,求m的值;②当0°<α<90°旋转过程中,连接OH,当△OHC为等腰三角形时,请直接写出m的值.26、(4分) 如图:正方形OABC置于坐标系中,B的坐标是(-4,4),点D是边OA上一动点,以OD为边在第一象限内作正方形ODEF.(1)CD与AF有怎样的位置关系,猜想并证明;(2)当OD=______时,直线CD平分线段AF;(3)在OD=2时,将正方形ODEF绕点O逆时针旋转α°(0°<α°<180°),求当C、D、E共线时D的坐标.2018-2019学年江苏省镇江市八年级(下)期中数学试卷【第 1 题】【答案】普查【解析】解:调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用普查,故答案为:普查.对于精确度要求高的调查,事关重大的调查往往选用普查.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【第 2 题】【答案】1000【解析】解:某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是1000,故答案为:1000样本容量:一个样本包括的个体数量叫做样本容量进行分析即可.此题主要考查了总体、个体、样本、样本容量,关键是掌握各个量的定义.【第 3 题】【答案】140【解析】解:∵四边形ABCD是平行四边形,∴∠D=180°-∠A=140°.故答案为:140由平行四边形的性质解答即可.本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的邻角互补.【 第 4 题 】【 答 案 】必然【 解析 】解:“a 是实数,|a|≥0”这一事件是必然事件.故答案是:必然.根据必然事件、随机事件以及不可能事件的定义即可作出判断.本题考查了必然事件、随机事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【 第 5 题 】【 答 案 】10【 解析 】解:第4组数据的频数:50-6-12-22=10,故答案为:10.根据频数是指每个对象出现的次数可得第3组数据的频数为50减去第1、2、4组的频数. 此题主要考查了频数,关键是掌握频数的定义.【 第 6 题 】【 答 案 】20【 解析 】解:如图所示,根据题意得AO=12×8=4,BO=12×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC⊥BD ,∴△AOB 是直角三角形,∴AB=√AO 2+BO 2=√16+9=5,∴此菱形的周长为:5×4=20.故答案为:20.根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.【 第 7 题 】【 答 案 】80【 解析 】解:由旋转的性质可知:∠B=∠AB 1C 1,AB=AB 1,∠BAB 1=100°.∵AB=AB 1,∠BAB 1=100°,∴∠B=∠BB 1A=40°.∴∠AB 1C 1=40°.∴∠BB 1C 1=∠BB 1A+∠AB 1C 1=40°+40°=80°.故答案为:80.由旋转的性质可知∠B=∠AB 1C 1,AB=AB 1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB 1A=∠AB 1C 1=40°,从而可求得∠BB 1C 1=80°.本题主要考查的是旋转的性质,由旋转的性质得到△ABB 1为等腰三角形是解题的关键.【 第 8 题 】【 答 案 】15【 解析 】解:∵△DCF 是△BCE 旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE .又∵∠ECF=90°,∴∠EFC=∠FEC=12(180°-∠ECF )=12(180°-90°)=45°,故∠EFD=∠DFC -∠EFC=60°-45°=15°.故答案为:15°此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.【第 9 题】【答案】0.3【解析】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴估计该校参赛选手入选决赛的概率为0.2+0.1=0.3.故答案为:0.3;概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.【第 10 题】【答案】8【解析】解:∵矩形ABCD中,AB=3,BC=4,∴AC=BD=√AB2+BC2=√32+42=5,∴OA=OB=2.5,∴△AOB的周长=3+2.5+2.5=8,故答案为:8.由题意根据勾股定理求出AC=BD=5,即可得到OA=OB=2.5,即可得出结果.本题考查了矩形的性质、勾股定理等知识,熟练掌握矩形的性质是关键.【第 11 题】【答案】①②④【解析】解:∵四边形ABCD 是正方形,∴AB=AD ,∵△AEF 是等边三角形,∴AE=AF , 在Rt△ABE 和Rt△ADF 中,{AB =AD AE =AF , ∴Rt△ABE≌Rt△ADF (HL ),∴BE=DF ,∵BC=DC ,∴BC -BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,故④正确;如图,连接AC ,交EF 于G 点,∴AC⊥EF ,且AC 平分EF ,∵∠CAF≠∠DAF ,∴DF≠FG ,∴BE+DF≠EF ,故③错误;∵△AEF 是边长为2的等边三角形,∠ACB=∠ACD ,∴AC⊥EF ,EG=FG , ∴AG=AE•sin60°=2×√32=√3,CG=12EF=1, ∴AC=AG+CG=√3+1;故②正确.故答案为:①②④.根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断④的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.此题属于四边形的综合题.考查了正方形的性质、等边三角形的性质、等腰直角三角形的性质以及直角三角形的性质.注意准确作出辅助线是解此题的关键.【 第 12 题 】【 答 案 】1m解:连接BP ,∵PM∥BC ,PN∥AB ,∴四边形BMPN 为平行四边形,∴MN 与BP 互相平分,∵G 为MN 的中点,∴G 为BP 的中点,连接BE 、BF ,设BE 、BF 的中点分别为D 、H ,则G 运动的路径长度为:DH=12EF=12×13m =16m .故答案为:16m .连接BP ,先证明点G 是BP 的中点,连接BE 、BF ,设BE 、BF 的中点分别为D 、H ,则G 运动的路径长度为DH 的长度,由三角形的中位线定理便可求得其长度.本题是平行四边形与三角形结合的一个综合题,主要考查了平行四边形的判定与性质,三角形的中位线定理,关键是找出G 点运动的路径是△BEF 的中位线.【 第 13 题 】【 答 案 】C【 解析 】解:A 、是轴对称图形,不是中心对称图形.故错误;B 、是轴对称图形,不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;D 、不是轴对称图形,是中心对称图形.故错误.故选:C .根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【 第 14 题 】D【解析】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴4 4+x =1 4,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.【第 15 题】【答案】B【解析】解:①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如对角线垂直的等腰梯形),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④正五边形只是轴对称图形不是中心对称图形,故该命题错误;所以正确的命题个数为2个,故选:B.根据平行四边形的各种判定方法、正方形的各种判定方法、菱形的各种判定方法以及正多边形的轴对称性逐项分析即可.本题考查菱形的判定,平行四边形的判定以及正方形的判定定理以及真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.【第 16 题】【答案】A【解析】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC ×BD =AB ×DH 是解此题的关键.根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可.【解答】解:如图,∵四边形ABCD 是菱形,∴AO=OC ,BO=OD ,AC⊥BD ,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB=√32+42=5,∵S 菱形ABCD =12×AC ×BD =AB ×DH ,∴12×8×6=5×DH ,∴DH=245.故选A .【 第 17 题 】【 答 案 】C【 解析 】解:连接CG ,∵四边形ABCD 是矩形,∴AB∥CD ,∠B=90°,AD=BC=8,∴∠AGD=∠GDC ,∵DG 平分∠ADC ,∴∠ADG=∠GDC ,∴∠AGD=∠ADG ,∴AG=AD=8,∵AF⊥DG 于点F ,∴FG=FD ,∵点E 是CD 的中点,∴EF 是△DGC 的中位线, ∴EF=12CG ,∵AB=14,∴GB=6,∴CG =√BC 2+BG 2=10, ∴EF=12×10=5,故选:C .连接CG ,由矩形的性质好已知条件可证明EF 是△DGC 的中位线,在直角三角形GBC 中利用勾股定理可求出CG 的长,进而可求出EF 的长本题考查了矩形的性质、等腰三角形的判断和性质、中位线定理的运用以及勾股定理的运用,证明EF 是△DGC 的中位线是解题的关键.【 第 18 题 】【 答 案 】D【 解析 】解:如图,∵将△ABG 绕点B 逆时针旋转60°得到△EBF ,∴BE=AB=BC ,BF=BG ,EF=AG ,∴△BFG 是等边三角形.∴BF=BG=FG ,.∴AM+BM+CM=EN+MN+CM .根据“两点之间线段最短”,∴当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长,过E 点作EF⊥BC 交CB 的延长线于F ,∴∠EBF=180°-120°=60°,∵BC=4,∴BF=2,EF=2√3,在Rt△EFC 中,∵EF 2+FC 2=EC 2,∴EC=4√3.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG ,∴EF=13CE=4√33, 故选:D .根据“两点之间线段最短”,当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长.本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.【 第 19 题 】【 答 案 】解:(1)本次参与调查的市民人数80÷40%=200(人);(2)A 品牌人数为200×30%=60(人),D 品牌人数为200×15%=30(人),补全图形如下:(3)10000×30%=3000(人),答:估计该区有3000名市民选择骑摩拜单车出行.【 解析 】(1)根据B 品牌人数及其所占百分比可得总人数;(2)总人数分别乘以A 、D 所占百分比求出其人数即可补全图形;(3)总人数乘以样本中A 的百分比即可得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【 第 20 题 】【 答 案 】证明:(1)连接AC,交BD于点O,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,∴AE∥FC,∴∠1=∠2;(2)∵四边形AECF是平行四边形,∴AF∥CE.【解析】(1)利用平行四边形的性质得出AO=CO,BO=DO,进而得出EO=FO,即可得出四边形AECF 是平行四边形,得出答案即可;(2)利用(1)中所求,结合平行四边形的性质得出即可.此题主要考查了平行四边形的判定与性质,得出四边形AECF是平行四边形是解题关键.【第 21 题】【答案】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由图形可知:交点坐标为(-1,-4).【解析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据旋转角度,旋转方向,分别找到A、B、C的对应点,顺次连接可得△A2B2C2;(3)由图形可知交点坐标;此题主要考查了平移变换以及旋转变换,得出对应点位置是解题关键.【第 22 题】【答案】(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中{AB=DC ∠B=∠C BE=CE,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)1:2。

2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 3【解答】解:A.√8=2√2,不符合题意;B.√5是最简二次根式;C.√4=2,不符合题意;D.√13=√33,不符合题意;故选:B.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:B.3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.2【解答】解:A、√12=2√3,不能与√2合并;B、√8=2√2,能与√2合并;C、√23=√63,不能与√2合并;D、√0.2=√55,不能与√2合并;故选:B.4.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.5.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和【解答】解:A、如果a2=b2,那么a=b或a=﹣b,故原题说法错误;B、0的平方根是0,故原题说法正确;C、如果∠A与∠B是内错角,∠A不一定等于∠B,故原题说法错误;D、三角形的一个外角等于与它不相邻的两个内角之和,故原题说法错误;故选:B.6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.7.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C 、52+122=132,故能构成直角三角形;D 、52+62≠72,故不能构成直角三角形.故选:C .8.如图,下面不能判断四边形ABCD 是平行四边形的是( )A .AB =CD ,AB ∥CDB .∠A =∠C ,∠B =∠DC .AB =CD ,AD ∥BC D .AB =CD ,AD =BC 【解答】解:A 、∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,正确;B 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确;C 、∵AB =CD ,AD ∥BC ,不能得出四边形ABCD 是平行四边形,错误;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,正确;故选:C .9.如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S △EOG =S △FOH ,S △DOG =S △BOH ,∴S阴影=S△ABD=12S▱ABCD=12×6=3.故选:A.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√12−(12)2=√32,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=12+(32)2=√72,∴BD=2OD=√7,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=√3 2,∴S△AOE=S△EOC=12OE•OC=12×12×√32=√38,∵OE∥AB,∴EPAP =OEAB=12,∴S△POES△AOP =12,∴S△AOP=23S△AOE=23×√38=√312;故⑤错误;本题正确的有:①②③④,4个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为x√y.【解答】解:原式=√3x⋅13xy=√x2y=x√y.故答案为:x√y.12.若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为3.【解答】解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EF A=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EF A,∴AE=AF=3,故答案为:3.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为 2.2m.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.15.如图,在等边△ABC 中,BC =5cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ),当t = 53或5 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【解答】解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BC ﹣BF =5﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =5﹣2t ,解得:t =53;②当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣5(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣5,解得:t =5;综上可得:当t =53s 或5s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.故答案为:53或5. 三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.【解答】解:(1)原式=2﹣1+5﹣4√3=6﹣4√3;(2)原式=−12×2×4√5=−4√5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x √y x +3y √xy 3)﹣(4x √x y +√36xy ),其中x =32,y =27. 【解答】解:(1)原式=2×2×12√12÷50×34−35√2=2×310√2−35√2=35√2−35√2 =0;(2)原式=6x √y x +3y √xy 3−4x √x y −√36xy=6√xy +3√xy −4x y √xy −6√xy =(3−4x y )√xy =3y−4x y √xy , 当x =32,y =27时,原式=81−627√812=252√2.18.(9分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,{AB =AE ∠ABC =∠EAD BC =AD,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=1120(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:√1+1n2+1(n+1)2=1+1n(n+1);(3)利用上述规律计算:√5049+164(仿照上式写出过程)【解答】解:(1)√1+142+152=1+14−15=1120;故答案为:1120;(2)√1+1n2+1(n+1)2=1+1n−1n+1=1+1n(n+1);故答案为:√1+1n2+1(n+1)2=1+1n(n+1);(3)√5049+164=√1+172+182=1156.20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?【解答】解:如图,一共可以画9个三角形,其中,△ABE,△BCE,△CDE是直角三角形、△ACD,△BCD,ABD是钝角三角形、△ADE,△AEC,△BDE是锐角三角形,△AEC,△CDE是等腰三角形.21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.【解答】解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴S△OBD=12BD⋅OG=12OD⋅OB,∴OG=OD⋅OBBD=√4+8=8√55,∴OA′=2OG=16√5 5,设OF =x ,则BF =8﹣x ,∵OA ′2﹣OF 2=A ′F 2=A ′B 2﹣BF 2,即(16√55)2−x 2=82−(8−x)2, 解得,x =165,即OF =165, ∴A′F =2−OF 2=325,∴A ′(−325,165);(2)作A ′点关于x 轴的对称点A ″,连接BA ″,与x 轴交于点P ,则A 'P +PB =A ″P +PB =A ″B 的值最小,∴A ″(−325,−165),∵B (0,8),∴A″B =√(325)2+(8+165)2=8√655故A 'P +PB 的长度的最短距离为8√655.22.(10分)在平行四边形ABCD 中,以AB 为边作等边△ABE ,点E 在CD 上,以BC 为边作等边△BCF ,点F 在AE 上,点G 在BA 延长线上且FG =FB .(1)若CD =6,AF =3,求△ABF 的面积;(2)求证:BE =AG +CE .【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=12S△ABE=12•√34•62=9√32.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.【解答】解:(1)在Rt△ABC中,∵∠A=90°,BC=15,AB=7,∴AC=√BC2−AB2=√152−72=4√11.(2)∵BD=BE,CD=CE=8,∴BC⊥DE,∴∠BCD=∠BCE=90°,∴BD=BE=√BC2+CD2=√152+82=17,∴△BDE的周长=17+17+16=50.。

2020-2021学年八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.能使√x−1有意义的x的取值范围是()A.x>0B.x≥0C.x>1D.x≥1【解答】解:∵√x−1有意义,∴x﹣1≥0,解得x≥1.故选:D.2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6【解答】解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.4.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.5.已知a<b,则化简二次根式√−a3b的正确结果是()A.−a√−ab B.−a√ab C.a√ab D.a√−ab 【解答】解:∵√−a3b有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴√−a3b=−a√−ab.故选:A.6.下列各式属于最简二次根式的是()A.√8B.2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.7.使代数式√2x+6有意义的x的取值范围是()A.x≥﹣3B.x≤﹣3C.x>﹣3D.﹣3<x≤0【解答】解:∵代数式√2x+6有意义,∴2x+6>0,∴x>﹣3,故选:C.8.已知x−1x=2,则x2+1x2的值为()A.2B.4C.6D.8【解答】解:原式=(x−1x)2+2=22+2=6,故选:C.9.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.10.如图,桌面上的正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B点,则它运动的最短路程为()A.√10B.4C.√17D.5【解答】解:如图,它运动的最短路程AB=√(2+2)2+(22)2=√17,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.若√12x是一个整数,则x可取的最小正整数是3.√(判断对错)【解答】解:∵√12x=2√3x,∴若√12x是一个整数,则x可取的最小正整数是3,故答案为:√.12.已知最简二次根式√7−2a与2√3可以合并,则a的值是2.【解答】解:由最简二次根式√7−2a与2√3可以合并,得7﹣2a=3.解得a=2,故答案为:2.13.已知直角三角形的两边x,y的长满足|x﹣4|+√y−3=0,则第三边的长为5或√7.【解答】解:∵|x−4|≥0,√y−3≥0,∴||=0,√y−3=0,即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为√42−32=√7;(2)边长为4的边是直角边,则第三边即斜边的长为√32+42=5,故答案为5或√7.14.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是132+842=852.【解答】解:∵第一个等式是:32+42=52;第二个等式是52+122=132;第三个等式是72+242=252;第四个等式是92+402=412;第五个等式是112+602=612…按照这样的规律,第六个等式是:132+842=852,故答案为:132+842=852.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4√5.【解答】解:(i)如图1所示:当B′D=B′C时,过B′点作GH∥AD,则∠B′GE =90°.当B′C=B′D时,AG=DH=12DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G=√B′E2−EG2=√132−52=12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′=√B′H2+DH2=√42+82=4√5(ii)如图2所示:当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B 重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4√5.故答案为:16或4√5.三.解答题(共8小题)16.计算:(1)(√6−2√15)×√3−6√1 2(2)(√2+1)2√32×√50√8.【解答】解:(1)原式=√6×3−2√15×3−3√2=3√2−6√5−3√2=﹣6√5;(2)原式=2+2√2+1−√32×508=3+2√2−10√2=3﹣8√2.17.先化简,再求值(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.【解答】解:(1−4x+3)÷x2−2x+12x+6=x+3−4x+3⋅2(x+3) (x−1)2=x−11⋅2(x−1)2=2x−1,当x=√2+1时,原式=2+1−1=√2.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?【解答】解:BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°﹣90°﹣60°=30°,故乙船沿南偏东30°方向航行.19.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?【解答】解:(1)由题意,⊙O 是△ABC 内接圆,D 为切点,如图1,连结OD ,OC .设⊙O 半径为r ,纸盒长度为h ',则CD =√3r ,BC =2√3r 则圆柱型唇膏和纸盒的体积之比为:πr 2ℎ′√34(23r)2ℎ′#/DEL/#=√39π#/DEL/#(若设△ABC 的边长为a 112πa 2ℎ′34a =√39π) (2)易拉罐总体积和纸箱容积的比:l 2r ⋅b 2r ⋅πr 2ℎlbℎ=π4;(3)∵√39ππ4=4√39=√4881<1 ∴第二种包装的空间利用率大.20.四边形ABCD 是长方形,将长方形ABCD 折叠,如图①所示,点B 落在AD 边上的点E 处,折痕为FG ,将图②折叠,点C 与点E 重合,折痕为PH .(1)在图②中,证明:EH =EP ;(2)若EF =6,EH =8,FH =10,求长方形ABCD 的面积.【解答】(1)证明:如图2,由折叠得:∠CHP=∠EHP,∵EG∥BC,∴∠EPH=∠CHP,∴∠EHP=∠EPH,∴EP=EH;(2)解:∵EF=6,EH=8,FH=10,∴∠FEH=90°,∴S△EFH=12EF×EH=24,由折叠得:BF=EF=6,CH=EH=8,∴BC=BF+FH+HC=6+10+8=24,过E作EM⊥BC于M,∴S△EFH=12FH×EM=24,∴FH×EM=48,∵FH=10,∴EM=4.8,∴S矩形ABCD=BC×EM=115.2.21.阅读下列材料,并解决相应问题:√5−√3=√5+√3)(√5−√3)(√5+√3)=2(√5+√3)2=√5+√3用上述类似的方法解答问题:若a是√5的小数部分,求√5a的值.【解答】解:∵2<√5<3,a 是√5的小数部分,∴a =√5−2,∴√5a =√5√5−2=√5(√5+2)(√5−2)(√5+2)=5+2√5. 22.已知:如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP =PC ,AP⊥PC .PC 交AD 于点N ,连接DP ,过点P 作PM ⊥PD 交AD 于M . (1)若AP =√5,AB =13BC ,求矩形ABCD 的面积;(2)若CD =PM ,求证:AC =AP +PN .【解答】(1)解:∵AP ⊥CP 且AP =CP ,∴△APC 为等腰直角三角形, ∵AP =√5, ∴AC =√10,∵AB =13BC ,∴设AB =x ,BC =3x ,∴在Rt △ABC 中,x 2+(3x )2=10,10x 2=10,x =1,∴S ABCD =AB •BC =1×3=3;(2)解:延长AP,CD交于Q,∵∠1+∠CND=∠2+∠PNA=90°,且∠CND=∠ANP,∴∠1=∠2,又∠3+∠5=∠4+∠5=90°,∴∠3=∠4,在△APM和△CPD中∵{∠1=∠2 AP=CP ∠3=∠4,∴△APM≌△CPD(ASA),∴DP=PM,又∵CD=PM,∴CD=PD,∴∠1=∠4=∠3,∵∠1+∠Q=∠3+∠6=90°∴∠Q=∠6∴DQ=DP=CD∴D为CQ中点,又∵AD⊥CQ∴AC=AQ=AP+PQ,在△APN和△CPQ中∵{∠1=∠2AP=CP∠APC=∠CPQ,∴△APN≌△CPQ(ASA),∴PQ=PN∴AC=AP+PQ=AP+PN.23.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是 3.8或2.6厘米/秒.(直接写出答案)【解答】解:(1)①△BMN≌△CDM.理由如下:…(1分)∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM…(1分)∵CD=4(cm)∴BM=CD…(1分)∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)…(1分)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,…(1分)∴3t=2×(10﹣3t)∴t=209(秒);…(1分)Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,…(1分).∴10﹣3t=2×3t∴t=109(秒).…(1分)∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.…(2分)。

2020-2021学年度八年级数学下册期中考试试卷(含答案)

2020-2021学年度八年级数学下册期中考试试卷(含答案)

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m22.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.3.以下列线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=40,c=41B. a=b=5,c=5√2C. a:b:c=3:4:5D. a=11,b=12,c=154.如图,在△ABC中,AB=AC,AD是△ABC的角平分线.若AB=13,AD=12,则BC的长为()A. 5B. 10C. 20D. 245.如图,DA⊥AC,DE⊥BC.若AD=5cm,DE=5cm,∠ACD=30°,则∠DCE=()A. 30°B. 40°C. 50°D. 60°6.不等式组{x−1>0,5−x≥1的整数解共有()A. 1个B. 2个C. 3个D. 4个7.下列说法不一定成立的是()A. 若a>b,则a+c>b+cB. 若a+c>b+c,则a>bC. 若a>b,则ac2>bc2D. 若ac2>bc2,则a>b8.下列图形既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 圆9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A. 55°B. 60°C. 65°D. 70°10.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组11.已知关于x的不等式组{2x−a<1,x−2b>3的解集为−1<x<1,则(a+1)(b−1)的值为()A. 6B. −6C. 3D. −312.如图所示的仪器中,OD=OE,CD=CE.小州把这个仪器往直线l上一放,使点D,E落在直线l上,作直线OC,则OC⊥l,他这样判断的理由是()A. 到一个角两边距离相等的点在这个角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 到线段两端点距离相等的点在这条线段的垂直平分线上D. 线段垂直平分线上的点到线段两端点的距离相等13.如图,在平面直角坐标系中,△OAB为等边三角形,AB⊥x轴,AB=4√3,点C的坐标为(2,0).P为OB边上的一个动点,则PA+PC的最小值为()A. √13B. 2√13C. 4√13D. 1214.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是()①这次比赛的全程是500米②乙队先到达终点③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快④乙与甲相遇时乙的速度是375米/分钟⑤在1.8分钟时,乙队追上了甲队A. ①③④B. ①②⑤C. ①②④D. ①②③④⑤15. 如图,在正方形ABCD 中,AB =3,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A. 3B. 2√3C. √13D. √15 卷Ⅱ 二、填空题(本大题共5小题,共25.0分)16. 根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.17. 已知x −y =3,若y <1,则x 的取值范围是 .18. 如图,这是某超市自动扶梯的示意图,大厅两层之间的距离ℎ=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v =0.5米/秒,则顾客乘自动扶梯上一层楼的时间为 秒.19. 当k 时,代数式23(k −1)的值不小于代数式1−5k−16的值.20. 如图,线段AB 和CD 关于点O 中心对称.若∠B =40°,则∠D 的度数为 .三、解答题(本大题共7小题,共80.0分)21. (8分)(1)解不等式0.2x 0.3−6−7x 3≤1(2) 解不等式组{12x >13x x+43>3x−72−122. (8分)如图,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,连接BE .(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.23.(10分)如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.24.(12分)如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.25.(12分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?26.(14分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.27.(16分)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)求证:∠OMP=∠OPN;(2)当OP=2时,点M关于点H的对称点为Q,连接QP.①用量角器和直尺以图1中OP的长为2,画出一个尽可能准确的图形。

2020-2021学年八年级下学期期中数学试题及答案

2020-2021学年八年级下学期期中数学试题及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.等腰三角形一腰上的高与腰之比1:2,则等腰三角形顶角的度数为()A.30°B.60°或120°C.30°或150°D.150°2.下列各组数据为三角形的三边,能构成直角三角形的是()A.4,8,7B.2,2,2C.2,2,4D.13,12,5 3.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.104.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且P A平分∠BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.186.顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形D.平行四边形7.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.8.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m9.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形10.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△P AB,△PBC,△P AD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为()A.8个B.9个C.10个D.11个二.填空题(共8小题,满分32分,每小题4分)11.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,CD⊥AB,垂足为D,若BD=1,则AD的长为.13.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的三角形是.14.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有个三角形.15.顺次连接四边形ABCD各边的中点得到的四边形一定是.16.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为.17.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三.解答题(共8小题,满分78分)19.(8分)如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.20.(8分)已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.21.(8分)有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?22.(10分)如图,▱ABCD的两条对角线相交于O点,过O点作OE⊥AB,垂足为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=45,求线段OE的长.23.(10分)如图,在▱ABCD 中,点E 是BC 上的一点,连接DE ,在DE 上取一点F 使得∠AFE =∠ADC .若DE =AD ,求证:DF =CE .24.(10分)如图所示,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,你能求出CD 的长吗?25.(12分)如图,在矩形ABCD 中,AB =2,AD =4.点E ,F 分别在AD ,BC 上,点A与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证:四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DP CP 的值.26.(12分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC ∠ACG ;(填“>”或“<”或“=”)(2)线段AC ,AG ,AH 什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.等腰三角形一腰上的高与腰之比1:2,则等腰三角形顶角的度数为()A.30°B.60°或120°C.30°或150°D.150°【解答】解:当该三角形为锐角三角形时,如图1,∵sin∠A=BDAB=12,∴∠A=30°,即△ABC的顶角为30°;当该三角形为钝角三角形时,如图2,在Rt△ABD中,∵sin∠BAD=BDAB=12,∴∠BAD=30°,∴∠BAC=150°,即△ABC的顶角为150°;综上可知该三角形的顶角为30°或150°,故选:C.2.下列各组数据为三角形的三边,能构成直角三角形的是()A.4,8,7B.2,2,2C.2,2,4D.13,12,5【解答】解:A、42+72≠82,故不为直角三角形;B、22+22≠22,故不为直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形;故选:D.3.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.10【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.4.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且P A平分∠BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA【解答】解:由已知得,AP=AP,∠DAP=∠EAP,∠ADP=∠AEP所以符合AAS判定.故选:B.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形D.平行四边形【解答】解:如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=12BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.7.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.8.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB=√62+82=10米.所以大树的高度是10+6=16米.故选:C.9.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形【解答】解:A、只有两组对边平行的四边形是平行四边形,故此选项错误;B、根据有一个角是直角的平行四边形是矩形,故此选项错误;C、四条边相等的四边形是菱形,此选项正确;D、根据对角线互相垂直平分且相等的四边形是正方形,故此选项错误;故选:C.10.如图,在正方形ABCD所在平面内求一点P,使点P与正方形ABCD的任意两个顶点构成△P AB,△PBC,△P AD,△PCD均是等腰三角形,则满足上述条件的所有点P的个数为()A.8个B.9个C.10个D.11个【解答】解:分为三种情况:①正方形对角线的交点P1;②作AD边的垂直平分线MN,以点D为圆心,以DC为半径画弧,交MN于点P2和P3;以点C为圆心,以DC为半径画弧,交MN于点P4和P5,如图:③同理,作AB边的垂直平分线,分别以点A和点B为圆心,AD为半径画弧,与该垂直平分线也有4个交点.综上,符合题意的所有点P的个数为:1+4+4=9(个).故选:B.二.填空题(共8小题,满分32分,每小题4分)11.若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.12.如图,在△ABC中,∠ACB=90°,∠ABC=60°,CD⊥AB,垂足为D,若BD=1,则AD的长为3.【解答】解:∵在三角形ABC中,∠ACB=90°,∠ABC=60°,∴∠A=30°,∵CD⊥AB,∴∠BCD=30°,∴在Rt△BCD中,BC=2BD=2,∴在Rt△ABC中,AB=2BC=4,∴AD=AB﹣BD=4﹣1=3,故答案为:3.13.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的三角形是Rt△ABE≌Rt△DCF,△AEC≌△DFB..【解答】证明:∵AE⊥BC,DF⊥BC,垂足分别为E、F,∴∠AEB=∠DFC=90°,而AB=DC,AE=DF,∴Rt△ABE≌Rt△DCF,∴BE=CF,∴EC=BF,而AE=DF,∴△AEC≌△DFB.故填空答案为:Rt△ABE≌Rt△DCF,△AEC≌△DFB.14.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073个三角形.【解答】解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.15.顺次连接四边形ABCD各边的中点得到的四边形一定是平行四边形.【解答】解:连接BD,∵E、F、G、H分别是边AD、DC、BC、AB的中点,∴EH∥BD,FG∥BD,EH=12BD,FG=12BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形,故答案为:平行四边形.16.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为 4.8cm.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=12AC•BD=AB•DH,∴DH=AC⋅BD2AB=4.8cm.17.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=√82+62=10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为(a+b).(用含a,b的代数式表示)【解答】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=14a,∴正方形ABCD的面积=4×14a+b=a+b.故答案为(a+b).三.解答题(共8小题,满分78分)19.(8分)如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.【解答】证明:在▱ABCD中,则AB∥CD,AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形.20.(8分)已知:如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,∠ABC=90°,求四边形ABCD的面积.【解答】解:连接AC,在Rt△ABC中,由勾股定理得:AC=√AB2+BC2=√22+22=2√2,∵CD=1,AD=3,AC=2√2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=12AB×BC+12×AC×CD=12×2×2+12×1×2√2=2+√2.21.(8分)有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC=√AE2+EC2=√62+82=10m,故小鸟至少飞行10m.22.(10分)如图,▱ABCD的两条对角线相交于O点,过O点作OE⊥AB,垂足为E,已知∠DBA=∠DBC,AB=5.(1)求证:四边形ABCD为菱形;(2)若sin∠ADB=45,求线段OE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠DBC,∵∠DBA=∠DBC,∴∠ADB=∠DBA,∴AD=AB,∴四边形ABCD为菱形;(2)解:∵四边形ABCD为菱形,∴AC⊥BD,AD=AB=5,OB=OD,∵sin∠ADB=OAAD=45,∴OA=4,∴OB=OD=2−OA2=3,∵OE⊥AB,△OAB的面积=12AB×OE=12OA×OB,∴OE=OA×OBAB=4×35=125.23.(10分)如图,在▱ABCD中,点E是BC上的一点,连接DE,在DE上取一点F使得∠AFE=∠ADC.若DE=AD,求证:DF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠ADC,∴∠AFD=∠C,在△AFD 和△DEC 中,{∠ADF =∠DEC∠AFD =∠C AD =DE,∴△AFD ≌△DCE (AAS ),∴DF =CE .24.(10分)如图所示,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,你能求出CD 的长吗?【解答】解:在Rt 三角形中,由勾股定理可知:AB =√BC 2+AC 2=√82+62=10. 由折叠的性质可知:DC =DE ,AC =AE ,∠DEA =∠C .∴BE =4,∠DEB =90°.设DC =x ,则BD =8﹣x .在Rt △BDE 中,由勾股定理得:BE 2+ED 2=BD 2,即42+x 2=(8﹣x )2.解得:x =3.∴CD =3.25.(12分)如图,在矩形ABCD 中,AB =2,AD =4.点E ,F 分别在AD ,BC 上,点A与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证:四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DP CP 的值.【解答】解:(1)证明:如图,连接AF ,CE ,AC 交EF 于点O∵四边形ABCD 是矩形∴AB =CD ,AD =BC ,AD ∥BC∴∠AEO =∠CFO ,∠EAO =∠FCO∵点A 与点C 关于EF 所在的直线对称∴AO =CO ,AC ⊥EF∵∠AEO =∠CFO ,∠EAO =∠FCO ,AO =CO∴△AEO ≌△CFO (AAS )∴AE =CF ,且AE ∥CF∴四边形AFCE 是平行四边形,又∵AC ⊥EF∴四边形AFCE 是菱形;(2)如图,作点F 关于CD 的对称点H ,连接EH ,交CD 于点P ,此时△PEF 的周长最小∵四边形AFCE 是菱形∴AF =CF =CE =AE∵AF 2=BF 2+AB 2∴AF 2=(4﹣AF )2+4∴AF =52∵AD ∥BC∴△DEP ∽△CHP∴DP CP =DE CH =35. 答:当△PEF 的周长最小时,DP CP 的值为35. 26.(12分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF ,GH .(1)填空:∠AHC=∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°,∠DAC=∠BAC=45°,∴AC=√42+42=4√2,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,AH AC =ACAG,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(4√2)2=16.∴△AGH的面积为16.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴BC AH =BE AE =12, ∴AE =23AB =83.如图2中,当CH =HG 时,易证AH =BC =4(可以证明△GAH ≌△HDC 得到) ∵BC ∥AH ,∴BE AE =BC AH =1,∴AE =BE =2.如图3中,当CG =CH 时,易证∠ECB =∠DCF =22.5°.在BC 上取一点M ,使得BM =BE , ∴∠BME =∠BEM =45°,∵∠BME =∠MCE +∠MEC ,∴∠MCE =∠MEC =22.5°,∴CM =EM ,设BM =BE =x ,则CM =EM =√2x , ∴x +√2x =4,∴x =4(√2−1),∴AE =4﹣4(√2−1)=8﹣4√2,综上所述,满足条件的m 的值为83或2或8﹣4√2.。

2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分) 1.下列各方程组中,属于二元一次方程组的是( ) A .{x =0y =2B .{x +y =0z +y =2C .{x +y =01x+y =2D .{x +y =0xy =2【解答】解:A 、该方程组符合二元一次方程组的定义,故本选项符合题意; B 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意; C 、该方程组的第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意; D 、该方程组中的第二个方程的最高次数2,不是二元一次方程组,故本选项不符合题意; 故选:A .2.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( )A .56B .512C .59D .712【解答】解:如图所示:12个大小相同的小正方形,其中5个小正方形已涂上阴影, 则随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是:512.故选:B .3.如图,∠DAC 是△ABC 的一个外角,AE 平分∠DAC ,且AE ∥BC ,则△ABC 一定是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【解答】证明:∵AE 平分∠DAC ,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.4.下列命题中,真命题是()A.两个锐角的和一定是钝角B.相等的角是对顶角C.垂线段最短D.带根号的数一定是无理数【解答】解:A、两个锐角的和可能是锐角、直角或钝角,故原命题错误,是假命题,不符合题意;B、相等的角不一定是对顶角,故原命题错误,不符合题意;C、垂线段最短,正确,是真命题,符合题意;D、带根号的数不一定是无理数,如√4,故原命题错误,不符合题意,故选:C.5.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为s甲2、s乙2,若x甲=x乙,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A 不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B 不符合题意; 根据平均数和方差的意义可得选项C 符合题意; 一个抽奖活动中,中奖概率为120,表示中奖的可能性为120,不代表抽奖20次就有1次中奖,因此选项D 不符合题意; 故选:C .6.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为( )A .74°B .32°C .22°D .16°【解答】解:∵CD =CE ,∠D =74°, ∴∠DEC =∠D =74°,∴∠C =180°﹣74°﹣74°=32°, ∵AB ∥CD , ∴∠B =∠C =32°, 故选:B .7.已知方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是( ) A .(﹣1,1)B .(1,﹣1)C .(2,﹣2)D .(﹣2,2)【解答】解:∵方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,∴一次函数y =2x +3与y =ax +c 的图象的交点坐标是(﹣1,1), 故选:A .8.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5B .6C .7D .8【解答】解:设袋中白球有x 个,根据题意得:x x+14=0.3,解得:x =6,经检验:x =6是分式方程的解,故选:B .9.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺. A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺, 依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15.故选:B .10.如图,把一个长方形纸片沿EF 折叠后,点C 、D 分别落在M 、N 的位置.若∠EFB =65°,则∠AEN 等于( )A .25°B .50°C .65°D .70°【解答】解:∵∠EFB =65°,AD ∥CB , ∴∠DEF =65°,由折叠可得∠NEF =∠DEF =65°, ∴∠AEN =180°﹣65°﹣65°=50°, 故选:B .11.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .{x +y =83x −y =12B .{x −y =83x −y =12C .{x +y =183x +y =12D .{x −y =83x +y =12【解答】解:设这个队胜x 场,负y 场, 根据题意,得{x +y =83x −y =12.故选:A .12.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km【解答】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB =xkm ,AC =ykm ,根据题意得: {2x +2y =210×2x −y +x =210, 解得:{x =140y =70.∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .或者:设AC =ykm 即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C 回到A .从A 到C ,甲、乙两车都行驶了AC ,即乙车耗油量为ykm ,也即甲车注入燃料量为ykm ,注入后甲车剩余ykm (刚好返回A 地),所以对于甲车,y +y +y =210,所以y =70.从乙车角度,从C 出发是满燃料,所以AB 为:105+70÷2=140(km ). 故选:B .二.填空题(共6小题,满分18分,每小题3分)13.把命题“对顶角相等”改写成“如果…那么…”的形式: 如果两个角是对顶角,那么这两个角相等 .【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等, 故答案为:如果两个角是对顶角,那么这两个角相等.14.甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 .【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5,所以a +c =4+(﹣2)=2, 故答案为:2.15.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13,那么盒子内白色乒乓球的个数为 4 .【解答】解:盒子内乒乓球的个数为2÷13=6(个), 白色乒乓球的个数6﹣2=4(个) 故答案为4.16.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那它停在4号板上的概率是116.【解答】解:因为4号板的面积占了总面积的116,故停在4号板上的概率为116,故答案为:116.17.如图,已知AB ∥CD ∥EF ,则∠1,∠2,∠3之间的数量关系是 ∠1﹣∠3+∠2=180° .【解答】解:∵CD ∥EF ,∴∠2+∠CEF =180°, ∵AB ∥EF , ∴∠1=∠3+∠CEF , ∴∠CEF =∠1﹣∠3, ∴∠2+∠1﹣∠3=180°, 即∠1﹣∠3+∠2=180°. 故答案为:∠1﹣∠3+∠2=180°.18.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题.如图所示,已知AB ∥CD ,∠BAE =78°,∠DCE =120°,则∠E 的度数是 42° .【解答】解:如图,延长DC 交AE 于F , ∵AB ∥CD ,∠BAE =78°, ∴∠CFE =78°, 又∵∠DCE =120°,∴∠E =∠DCE ﹣∠CFE =120°﹣78°=42°. 故答案为:42°.三.解答题(共6小题,满分66分)19.(12分)解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下:解: ① + ② ,得3x +4y =10,④ ② + ③ ,得5x +y =11,⑤ ⑤ 与 ④ 联立,得方程组 {3x +4y =10,④5x +y =11,⑤(1)请补全小曹同学的解答过程:(2)若m 、n 、p 、q 满足方程组{m +n +p +q =42(m +n)+3p −q =163(m +n)−2p +q =6,则m +n ﹣2p +q = ﹣2 .【解答】解:(1)方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下: 解:①+②,得3x +4y =10,④ ②+③,得5x +y =11,⑤ ⑤与④联立,得方程组 {3x +4y =10,④5x +y =11,⑤ 解得:{x =2y =1把{x =2y =1代入①得:2+1+z =2, 解得:z =﹣1,∴原方程组的解是{x =2y =1z =−1故答案为:①,②,②,③,⑤,④.(2){m +n +p +q =4①2(m +n)+3p −q =16②3(m +n)−2p +q =6③②﹣①×2得:p ﹣3q =8④, ③﹣①×3得:﹣5p ﹣2q =﹣6⑤, 由④与⑤组成方程组{p −3q =8−5p −2q =−6解得:{p =2q =−2,代入①得:m +n =4 ∴m +n ﹣2p +q =﹣2 故答案为:﹣2.20.(10分)(1)解方程组:{x +2y =1,①3x −2y =11,②(2)计算:√4+|﹣2|+√−273+(﹣1)2016.【解答】解:(1)①+②得:4x =12, 解得:x =3;把x =3代入①得:y =﹣1, 则方程组的解为{x =3y =−1;(2)原式=2+2﹣3+1 =4﹣3+1 =1+1 =2.21.(10分)(1)解方程组:{23x −34y =124(x −y)−3(2x +y)=17; (2)已知关于x 、y 的方程组{x −y =a +32x +y =5a 的解满足x >y >0,化简|a |+|3﹣a |.【解答】解:(1)原方程化为{8x −9y =6①2x +7y =−17②,①﹣②×4得:﹣37y =74, 解得y =﹣2,把y =﹣2代入①得x =−32, ∴原方程组的解为{x =−32y =−2;(2)由方程组{x −y =a +32x +y =5a ,解得{x =2a +1y =a −2,由x >y >0,得{2a +1>a −2a −2>0,解得a>2,当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.22.(12分)已知:如图,点D、E、F、G都在△ABC的边上,DE∥AC,且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB,∠C=40°,求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.(10分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?【解答】解:公平.画树状图得:从表中可以得到:P 积为奇数=26=13,P 积为偶数=46=23,∴小明的积分为26×2=23,小刚的积分为46×1=46=23.24.(12分)5G 时代的到来,将给人类生活带来巨大改变.现有A 、B 两种型号的5G 手机,进价和售价如表所示:型号价格进价(元/部) 售价(元/部) A3000 3400 B 3500 4000某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【解答】解:(1)设营业厅购进A 、B 两种型号手机分别为a 部、b 部,{3000a +3500b =32000(3400−3000)a +(4000−3500)b =4400, 解得,{a =6b =4, 答:营业厅购进A 、B 两种型号手机分别为6部、4部;(2)设购进A 种型号的手机x 部,则购进B 种型号的手机(30﹣x )部,获得的利润为w 元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.四.解答题(共2小题,满分30分)25.(14分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.26.(16分)探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠BDC和∠ACD,试利用上述结论直接写出∠A+∠B与∠P的数量关系2∠P=∠B+∠A.【解答】解:探究一:∠FDC+∠ECD=180°+∠A.理由如下:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∠FDC+∠ECD=180°+∠A.理由如下:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°−12∠ADC−12∠ACD,=180°−12(∠ADC+∠ACD),=180°−12(180°﹣∠A),=90°+12∠A;探究三:2∠P=∠B+∠A.理由如下:∵DP,CP分别平分∠BDC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°−12∠ADC−12∠BCD=180°−12(∠ADC+∠BCD)=180°−12(360°﹣∠A﹣∠B)=12(∠A+∠B).即2∠P=∠B+∠A.故答案为:2∠P=∠B+∠A.。

2020-2021学年八年级下期中数学试卷及答案

2020-2021学年八年级下期中数学试卷及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√1252.一组数据2,0,1,4,3,这组数据的方差是()A.2B.4C.1D.33.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.C.D.4.服装店为了解某品牌外套销售情况,对各种码数销量进行统计,店主最应关注的统计量是()A.平均数B.中位数C.方差D.众数5.如图所示,正方形网格中,M、N、P在格点上,则∠MPN=()A.150°B.135°C.120°D.105°6.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±47.若函数y=kx+b的图象如图所示,则关于x的不等式﹣kx+b<0的解集是()A.x<﹣6B.x>﹣6C.x<6D.x>68.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.9.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°10.如图,菱形ABCD的边长为2,且∠ABC=120°,E是BC的中点,P为BD上一点,且△PCE的周长最小,则△PCE的周长的最小值为()A.√3+1B.√7+1C.2√3+1D.2√7+1二.填空题(共5小题,满分15分,每小题3分)11.(3分)若√x−3在实数范围内有意义,则x的取值范围是.12.(3分)某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是分.13.(3分)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.14.(3分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.15.(3分)若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是.三.解答题(共7小题)16.计算:(1)√12×(√75+3√13−√48);(2)(√2−1)2+√3×(√3−√6)+√8.17.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班24初三(2)班2421(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察如图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.18.如图,四边形ABCD是矩形.(1)尺规作图:在图中,求作AB的中点E(保留作图痕迹,不写作法);(2)在(1)的条件下,连接CE,DE,若AB=2,AD=√3,求证:CE平分∠BED.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?20.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.21.如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.22.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.2.一组数据2,0,1,4,3,这组数据的方差是()A.2B.4C.1D.3【解答】解:x=15(2+0+1+4+3)=2,∴S2=15[(2﹣2)2+(0﹣2)2+(1﹣2)2+(4﹣2)2+(3﹣2)2]=2,故选:A.3.下列平面直角坐标系中的图象,不能表示y是x的函数是()A.B.C.D.【解答】解:A、能表示y是x的函数,故此选项不合题意;B、不能表示y是x的函数,故此选项符合题意;C、能表示y是x的函数,故此选项不合题意;D、能表示y是x的函数,故此选项不合题意;故选:B.4.服装店为了解某品牌外套销售情况,对各种码数销量进行统计,店主最应关注的统计量是()A.平均数B.中位数C.方差D.众数【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.5.如图所示,正方形网格中,M、N、P在格点上,则∠MPN=()A.150°B.135°C.120°D.105°【解答】解:延长NP至A,连结AM,根据勾股定理可得MP=AM=√12+22=√5,AP=√32+12=√10,又∵(√5)2+(√5)2=(√10)2,∴△AMP是等腰直角三角形,∴∠APM=45°,∴∠MPN=135°.故选:B.6.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4【解答】解:A、√2与√3不能合并,所以A选项错误;B、原式=5,所以B选项正确;C、原式=√2,所以C选项错误;D、原式=4,所以D选项错误.故选:B.7.若函数y=kx+b的图象如图所示,则关于x的不等式﹣kx+b<0的解集是()A.x<﹣6B.x>﹣6C.x<6D.x>6【解答】解:由图象可知函数y=kx+b与x轴的交点为(6,0),则函数y=﹣kx+b与x 轴的交点为(﹣6,0),且y随x的增大而增大,∴当x<﹣6时,﹣kx+b<0,所以关于x的不等式﹣kx+b<0的解集是x<﹣6,故选:A.8.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.9.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°【解答】解:如图,连接BD,∵矩形ABCD中,∠BAC=40°,OA=OB,∴∠ABD=40°,∠DBE=90°﹣40°=50°,∵AC=BD,AC=BE,∴BD=BE,∴△BDE中,∠E=12(180°﹣∠DBE)=12(180°﹣50°)=65°,故选:A.10.如图,菱形ABCD的边长为2,且∠ABC=120°,E是BC的中点,P为BD上一点,且△PCE的周长最小,则△PCE的周长的最小值为()A.√3+1B.√7+1C.2√3+1D.2√7+1【解答】解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,△BCD是等边三角形,∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,如图,连接AE,交BD于点P,此时,△PCE的周长最小,∵DE=CD•sin60°=√3,CE=12BC=1,∴在Rt△ADE中,AE=√AD2+DE2=√7,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=√7+1,故选:B.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.12.(3分)某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目创新能力综合知识语言表达测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是77分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分).故答案为:77.13.(3分)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是①③.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.【解答】解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.14.(3分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是(4,160).【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).15.(3分)若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是AC=BD.【解答】解:∵E、F、H分别是边AD、AB、CD的中点,∴EF=12BD,EH=12AC,∵四边形EFGH是菱形,∴EF=EH,∵EF=12BD,EH=12AC,∴AC=BD,故答案为:AC=BD.三.解答题(共7小题)16.计算:(1)√12×(√75+3√13−√48);(2)(√2−1)2+√3×(√3−√6)+√8.【解答】解:(1)√12×(√75+3√13−√48=2√3×(5√3+√3−4√3)=12;(2)(√2−1)2+√3×(√3−√6)+√8=2﹣2√2+1+3﹣3√2+2√2=6﹣3√2.17.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全下表:班级平均数/分中位数/分众数/分初三(1)班242424初三(2)班242421(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察如图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.【解答】解:(1)初三(1)班平均分:110(21×3+24×4+27×3)=24(分);有4名学生24分,最多,故众数为24分;把初三(2)班的成绩从小到大排列,则处于中间位置的数为24和24,故中位数为24分, 填表如下:班级 平均数/分中位数/分众数/分 初三(1)班 24 24 24 初三(2)班 242421故答案为:24,24,24;(2)初三(1)班优秀学生所占的百分比是:4+310×100%=70%,初三(1)班优秀学生约是70%×40=28人; 初三(2)班优秀学生所占的百分比是:610×100%=60%,初三(2)班优秀学生约是60%×40=24人.(3)S 12=110[(21﹣24)2×3+(24﹣24)2×4+(27﹣24)2×3] =110×(27+27) =5.4;S 22=110[(21﹣24)2×3+(24﹣24)2×2+(27﹣24)2×2+(30﹣24)2×2+(15﹣24)2]=110×198 =19.8; ∵S 12<S 22,∴初三(1)班的学生纠错的得分更稳定. 18.如图,四边形ABCD 是矩形.(1)尺规作图:在图中,求作AB 的中点E (保留作图痕迹,不写作法);(2)在(1)的条件下,连接CE ,DE ,若AB =2,AD =√3,求证:CE 平分∠BED .【解答】解:(1)如图所示,点E即为所求.(2)∵E是AB的中点,∴AE=12AB=1,∵四边形ABCD是矩形,∴∠A=90°,AB=CD=2,∴DE=√AD2+AE2=2,∴DE=DC,∴∠DEC=∠DCE,∵AB∥CD,∴∠CEB=∠DCE,∴∠CEB=∠DEC,∴CE平分∠BED.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.20.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD =x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【解答】(1)证明:如图1中,∵∠EDE ′=∠C =90°,∴∠ADP +∠CDE =90°,∠CDE +∠DEC =90°, ∴∠ADP =∠DEC .(2)解:如图1中,当C ′E ′与AB 相交于Q 时,即65<x ≤127时,过P 作MN ∥DC ′,设∠B =α∴MN ⊥AC ,四边形DC ′MN 是矩形, ∴PM =PQ •cos α=45y ,PN =43×12(3﹣x ), ∴23(3﹣x )+45y =x ,∴y =2512x −52,当DC ′交AB 于Q 时,即127<x <3时,如图2中,作PM ⊥AC 于M ,PN ⊥DQ 于N ,则四边形PMDN 是矩形,∴PN =DM ,∵DM =12(3﹣x ),PN =PQ •sin α=35y , ∴12(3﹣x )=35y ,∴y =−56x +52. 综上所述,y ={−56x +52(127<x <3)2512x −52(65<x ≤127)21.如图,已知四边形ABCD 是正方形,点E 、F 分别在AD 、DC 上,BE 与AF 相交于点G ,且BE =AF .(1)求证:△ABE ≌△DAF ; (2)求证:BE ⊥AF ;(3)如果正方形ABCD 的边长为5,AE =2,点H 为BF 的中点,连接GH .求GH 的长.【解答】解:(1)证明:∵四边形ABCD 为正方形, ∴∠BAE =∠D =90°,AB =AD , 在Rt △ABE 和Rt △DAF 中, {BE =AFAB =AD, ∴Rt △ABE ≌Rt △DAF (HL ); (2)证明:∵Rt △ABE ≌Rt △DAF ,∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∴BE⊥AF;(3)∵BE⊥AF,∵点H为BF的中点,∴GH=12BF,∵在Rt△BCF中,BC=5,CF=CD﹣DF=5﹣2=3,根据勾股定理,得∴BF=√BC2+CF2=√34,∴GH=√34 2.22.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B 的另一条直线交x轴正半轴于点C,且OC=3.(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.【解答】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∵OC =3,则C (3,0),设直线BC 的解析式为y =kx +b ,则有{3k +b =0b =4,解得{k =−43b =4,∴直线BC 的解析式为y =−43x +4;(2)设M (m ,−43m +4), ∵S △AMB =S △AOB , ∴S △ABC ﹣S △AMC =S △AOB , ∴12×5×4−12×5×(−43m +4)=12×2×4, ∴m =65, ∴M (65,125);(3)∵F A =FB ,A (﹣2,0),B (0,4), ∴F (﹣1,2),设G (0,n ),①当n >2时,如图1,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,∴∠MGF +∠NGQ =90°,∠NGQ +∠NQG =90°, ∴∠MGF =∠NQG ,∵∠FMG =∠GNQ =90°,GF =GQ , ∴△FMG ≌△GNQ (AAS ), ∴MG =NQ =1,FM =GN =n ﹣2, ∴Q (n ﹣2,n ﹣1),第 21 页 共 21 页∵点Q 在直线y =−43x +4上,∴n ﹣1=−43(n ﹣2)+4,∴n =237,∴G (0,237);②当n <2时,如图2﹣2中,同法可得Q (2﹣n ,n +1),∵点Q 在直线y =−43x +4上,∴n +1=−43(2﹣n )+4,∴n =﹣1,∴G (0,﹣1).综上所述,满足条件的点G 坐标为(0,237)或(0,﹣1).。

2020-2021学年八年级下期中考试数学试题及答案

2020-2021学年八年级下期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.在线段、角、等腰三角形、平行四边形、矩形、菱形这几个图形中是中心对称图形的个数是( )A .2个B .3个C .4个D .5个【解答】解:由题可得,中心对称图形的有:线段、平行四边形、矩形、菱形共4个. 故选:C .2.如果分式x 2−4x+2的值为零,那么x 的值为( ) A .2B .﹣2C .0D .±2 【解答】解:∵分式x 2−4x+2的值为零,∴{x 2−4=0x +2≠0, 解得,x =2,故选:A .3.将分式x 2y x−y 中的x ,y 的值同时扩大为原来的3倍,则分式的值( )A .扩大6倍B .扩大9倍C .不变D .扩大3倍 【解答】解:∵把分式x 2y x−y 中的x 与y 同时扩大为原来的3倍, ∴原式变为:27x 2y 3x−3y =9x 2y x−y=9×x 2y x−y , ∴这个分式的值扩大9倍.故选:B .4.如果反比例函数y =a−2x (a 是常数)的图象在第二、四象限,那么a 的取值范围是( ) A .a >2 B .a <2C .a >0D .a <0 【解答】解:∵反比例函数y =a−2x 的图象分布在第二、四象限,∴a ﹣2<0,解得a <2,故选:B .5.已知∠AOB =30°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,则△P 1OP 2是( )A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.6.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的一个内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=kx(k>0,x>0)的图象经过AC的中点D,则k的值为()A .4B .5C .6D .8【解答】解:作CE ⊥x 轴于E ,∵AC ∥x 轴,OA =2,OB =1,∴OA =CE =2,∵∠ABO +∠CBE =90°=∠OAB +∠ABO ,∴∠OAB =∠CBE ,∵∠AOB =∠BEC ,∴△AOB ∽△BEC ,∴BE OA =CE OB ,即BE 2=21, ∴BE =4,∴OE =5,∵点D 是AB 的中点,∴D (52,2). ∵反比例函数y =k x(k >0,x >0)的图象经过点D ,∴k =52×2=5. 故选:B .8.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A.45°B.60°C.70°D.90°【解答】解:∵将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=12(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°.故选:D.9.如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线y=kx(k≠0)上,边AD与y轴相交于点E,S四边形BEDC=5S△ABE=10,则k的值是()A.﹣16B.﹣9C.﹣8D.﹣12【解答】解:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵BO∥DG,∴∠OBC=∠GDE,∴∠HDC=∠ABO,在△CDH和△ABO中,{∠ABO =∠HDC ∠AOB =∠CDH AB =CD,∴△CDH ≌△ABO (AAS ),∴CH =AO =1,DH =OB =2,设C (m ﹣1,n ),D (m ,n +2),则(m ﹣1)n =m (n +2)=k ,解得n =﹣2m ,则D 的坐标是(m ,﹣2m +2),设直线AD 解析式为y =ax +b ,将A 、D 两点坐标代入得{a +b =0ma +b =−2m +2, 由①得:a =﹣b ,代入②得:﹣mb +b =﹣2m +2,即﹣b (m +1)=﹣2(m +1),解得b =2,则{a =−2b =2, ∴y =﹣2x +2,∴E (0,2),BE =4,∴S △ABE =12×BE ×AO =2, ∵S 四边形BCDE =5S △ABE =5×12×4×1=10,∵S 四边形BCDE =S △ABE +S 四边形BEDM =10,即2+4×m =10,解得:m =2,∴n =2m =4,∴|k |=(m +1)n =12.∵双曲线图形在第二象限,∴k =﹣12故选:D .10.如图,以Rt△ABC的两条直角边向内分别作两个等边三角形△ABD与△ACE,连结DE,若∠AED=45°,则下列叙述正确的是()A.DE=12AE B.DE=√22AE C.DE=12AB D.DE=√22AB【解答】解:设BD与AE交于F点,∵∠BAC=90°,△ABD和△AEC是等边三角形,∴∠BAD+∠CAE=120°,∴∠DAE=∠BAD+∠CAE﹣∠BAC=120°﹣90°=30°,∴AF为∠BAD的平分线,∴AF⊥BD,且F为BD的中点,∵∠AED=45°,∴∠FDE=90°﹣∠FED=90°﹣45°=45°,∴△FED是等腰直角三角形,∴FD =FE ,设FD =x ,在Rt △FED 中,DE =√FD 2+FE 2=√x 2+x 2=√2x ,在Rt △AFD 中,∠F AD =30°,∴AB =AD =2FD =2x ,∴AF =√AD 2−FD 2=√4x 2−x 2=√3x ,∴AE =AF +FE =(√3+1)x ,∴DE =√2√3+1=√6−√22AE ,故选:D .二.填空题(共8小题,满分16分,每小题2分)11.若分式2x−3x+2无意义,则x 的值为 ﹣2 .【解答】解:由分式2x−3x+2无意义,得x +2=0.解得x =﹣2,故答案是:﹣2. 12.若关于x 的分式方程m(x+1)−52x+1=m −3无解,则m = 6,10 . 【解答】解:∵关于x 的分式方程m(x+1)−52x+1=m −3无解, ∴x =−12, 原方程去分母得:m (x +1)﹣5=(2x +1)(m ﹣3)解得:x =26−m ,m =6时,方程无解.或26−m =−12是方程无解,此时m =10. 故答案为6,10.13.如图,在菱形ABCD 中,AB =18cm ,∠A =60°,点E 以2cm /s 的速度沿AB 边由A 向B 匀速运动,同时点F 以4cm /s 的速度沿CB 边由C 向B 运动,F 到达点B 时两点同时停止运动.设运动时间为t 秒,当△DEF 为等边三角形时,t 的值为 3s .【解答】解:连接BD .如图:∵四边形ABCD 是菱形,∠A =60°,∴AD =CD =BC =AB =18,△ADB ,△BDC 都是等边三角形,∴AD =BD ,∠ADB =∠DBF =60°,∵△DEF 是等边三角形,∴∠EDF =60°,∴∠ADB =∠EDF ,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,{∠A =∠DBF =60°AD =BD ∠ADE =∠BDF,∴△ADE ≌△BDF (ASA ),∴AE =BF ,∴2t =18﹣4t ,∴t =3,故答案为:3s .14.如图,一次函数y =ax +b 的图象交x 轴于点B ,交y 轴于点A ,交反比例函数y =k x 的图象于点C ,若AB =BC ,且△OBC 的面积为2,则k 的值为 8 .【解答】解:作CD ⊥y 轴于D ,则OB ∥CD ,∴OA OD =AB BC ,∵AB =BC ,∴OA =OD ,∴S △OCD =S △AOC∵AB =BC ,∴S △AOB =S △OBC =2,∴S △AOC =S △AOB +S △OBC =4,∴S △OCD =4,∵反比例函数y =k x的图象经过点C ,∴S △OCD =12|k |=4,∵在第一象限,∴k =8.故答案为8.15.如图,在矩形ABCD 中,AB =6,AD =8,以A 为圆心,任意长为半径画弧交AB ,AC于M ,N ,再分别以M ,N 为圆心,大于12MN 为半径画弧,两弧交于点G ,连接AG ,交边BC 于E ,则△AEC 的面积为 15 .【解答】解:作EF ⊥AC 于F ,如图:由题意得:AE 平分∠BAC ,∵四边形ABCD 是矩形,∴∠B =90°,BC =AD =8,∴AC =2+BC 2=√62+82=10,EB ⊥AB ,∵AE 平分∠BAC ,∴EF =EB ,在Rt △AEF 和Rt △AEB 中,{AE =AE EF =EB, ∴Rt △AEF ≌Rt △AEB (HL ),∴AF =AB =6,∴CF =AC ﹣AF =4,设EF =EB =x ,则CE =8﹣x ,在Rt △CEF 中,由勾股定理得:x 2+42=(8﹣x )2, 解得:x =3,∴EF =3,∴△AEC 的面积=12AC ×EF =12×10×3=15; 故答案为:15.16.如图,点A、B在反比例函数y=12x的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是9.【解答】解:∵点A、B在反比例函数y=12x的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,∴S△AOD=S△BOE=12×12=6,∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∴S△AOB=12(4+2)×(6﹣3)=9,故答案为9.17.如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=115°.【解答】解:∵四边形ABCD 是菱形, ∴CA 平分∠BCD ,AB ∥CD ,∴∠BAE +∠AEC =180°,∠B +∠BCD =180°, ∴∠BCD =180°﹣∠B =180°﹣50°=130°, ∴∠ACE =12∠BCD =65°, ∵AE =AC ,∴∠AEC =∠ACE =65°, ∴∠BAE =180°﹣∠AEC =115°; 故答案为:115.18.如图,矩形ABCD 的两个顶点A 、B 分别落在x 、y 轴上,顶点C 、D 位于第一象限,且OA =3,OB =2,对角线AC 、BD 交于点G ,若曲线y =kx (x >0)经过点C 、G ,则k =72.【解答】解:如图,分别过C 、G 两点作x 轴的垂线,交x 轴于点E 、F , ∴CE ∥GF , 设C (m .n ),∵四边形ABCD 是矩形, ∴AG =CG ,∴GF =12CE ,EF =12(3﹣m ), ∴OF =12(3﹣m )+m =32+12m , ∴G (3+m 2,12n ),∵曲线y =kx (x >0)经过点C 、G , ∴mn =3+m 2×12n ,解得m =1, 作CH ⊥y 轴于H , ∴CH =1, ∵∠ABC =90°, ∴∠CBH +∠ABO =90°, ∵∠OAB +∠ABO =90°, ∴∠OAB =∠CBH , ∵∠AOB =∠BHC =90°, ∴△AOB ∽△BHC , ∴BH OA=CH OB,即BH 3=12,∴BH =32, ∴OH =32+2=72, ∴C (1,72),∴k =1×72=72; 故答案为72.三.解答题(共10小题,满分64分)19.(8分)阅读下面的材料,并解答后面的问题 材料:将分式3x 2+4x−1x+1拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x +1,可设3x 2+4x ﹣1=(x +1)(3x +a )+b . 因为(x +1)(3x +a )+b =3x 2+ax +3x +a +b =3x 2+(a +3)x +a +b , 所以3x 2+4x ﹣1=3x 2+(a +3)x +a +b . 所以{a +3=4a +b =−1,解之,得{a =1b =−2.所以3x 2+4x−1x+1=(x+1)(3x+1)−2x+1=(x+1)(3x+1)x+1−2x+1=3x +1−2x+1这样,分式就被拆分成了一个整式3x +1与一个分式2x+1的差的形式.问题:(1)请将分式2x 2+3x+6x−1拆分成一个整式与一个分式(分子为整数)的和(差)的形式; (2)请将分式5x 4+9x 2−3x +2拆分成一个整式与一个分式(分子为整数)的和(差)的形式.【解答】解:(1)由分母为x ﹣1,可设2x 2+3x +6=(x ﹣1)(2x +a )+b . 因为(x ﹣1)(2x +a )+b =2x 2+ax ﹣2x ﹣a +b =2x 2+(a ﹣2)x ﹣a +b , 所以2x 2+3x +6=2x 2+(a ﹣2)x ﹣a +b . 所以{a −2=3−a +b =6,解得{a =5b =11.所以分式2x 2+3x+6x−1=(x−1)(2x+5)+11x−1=2x +5+11x−1.(2)由分母为x 2+2,可设5x 4+9x 2﹣3=(x 2+2)(5x 2+a )+b . 因为(x 2+2)(5x 2+a )+b =5x 4+ax 2+10x 2+2a +b =5x 4+(a +10)x 2+2a +b ,所以5x 4+9x 2﹣3=5x 4+(a +10)x 2+2a +b . 所以{a +10=92a +b =−3,解得{a =−1b =−1.所以5x 4+9x 2−3x 2+2=(x 2+2)(5x 2−1)−1x 2+2=5x 2﹣1−1x 2+2.20.(4分)解方程:4x 2−1+x+21−x=−1.【解答】解:两边都乘以(x +1)(x ﹣1),得:4﹣(x +2)(x +1)=﹣(x +1)(x ﹣1), 解得:x =13,检验:当x =13时,(x +1)(x ﹣1)≠0, 所以原分式方程的解为x =13. 21.(5分)计算:2x+2+2x−2−x 2+4x 2−4.【解答】解:原式=2(x−2)(x+2)(x−2)+2(x+2)(x−2)(x+2)−x 2+4(x+2)(x−2),=2x−4+2x+4−x 2−4(x+2)(x−2),=4x−4−x 2(x+2)(x−2), =−(x−2)2(x−2)(x+2),=−x−2x+2.22.(6分)先化简,再求值:(x 2+4x +4)÷x 2−4x 2−2x −x−x 2x−1,然后在0,1,2,3中选一个你认为合适的x 值,代入求值.【解答】解:原式=(x+2)2x ÷(x+2)(x−2)x(x−2)−x(1−x)x−1=2x +2不能代入0,1,2 所以只能代入3得:8. 23.(5分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?【解答】解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人, 由题意得240x−30=2404x,解得x =6,经检验x =6是分式方程的解,答:2017年每小时客运量24万人.24.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A1B1C1为所作;(2)①画如图,△A2B2C2为所作;②点B2的坐标为(﹣3,3).故答案为(﹣3,3).25.(5分)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=6,AC=4,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.【解答】解:(1)∵AD是高,∴∠ACB=∠ADC=90°,在Rt△ADB中,E是AB的中点,∴DE=12AB=3,AE=12AB=3,同理可得,AF=DF=12AC=2,∴四边形AEDF的周长=3+3+2+2=10;(2)EF垂直平分AD,理由如下:∵EA=ED,F A=FD,∴EF是AD的垂直平分线.26.(7分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=2−BE2=√102−62=8,在Rt△AEC中,AC=√AE2+EC2=√82+42=4√5,∵四边形ABCD是菱形,∴OA=OC,∴OE=12AC=2√5.27.(9分)已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=1 2.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=OBOA=12,∴OA=8,∴A (﹣8,0).(2)∵EC ⊥AB ,∴∠ACD =∠AOB =∠DOE =90°,∴∠OAB +∠ADC =90°,∠DEO +∠ODE =90°, ∵∠ADC =∠ODE , ∴∠OAB =∠DEO , ∴△AOB ∽△EOD , ∴OA OE=OB OD,∴OE :OD =OA :OB =2,设OD =m ,则OE =2m , ∵12•m •2m =16,∴m =4或﹣4(舍弃), ∴D (﹣4,0),E (0,﹣8), ∴直线DE 的解析式为y =﹣2x ﹣8, ∵A (﹣8,0),B (0,4), ∴直线AB 的解析式为y =12x +4,由{y =−2x −8y =12x +4,解得{x =−245y =85, ∴C (−245,85),∵若反比例函数y =kx的图象经过点C , ∴k =−19225.(3)如图1中,当四边形MNPQ 是矩形时,∵OD =OB =4, ∴∠OBD =∠ODB =45°, ∴∠PNB =∠ONM =45°, ∴OM =DM =ON =2, ∴BN =2,PB =PN =√2, ∴P (﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);28.(9分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=√13;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是√15+√3,√39+√3,2√15.【解答】解:(1)①∵∠ABC=90°,∴BD=AC=2+BC2=√4+9=√13,故答案为√13,②∵A(0,3),B(5,0),∴AB=√52+32=√34,设点P(m,n),O(0,0),∴OP=√m2+n2=√34,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠EBF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3)√15+√3,√39+√3,2√15∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2√3,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE=12AB=1,∴DE=√AD2−AE2=√16−1=√15,∴S准矩形ABCD=S△ADE+S梯形BCDE=12DE×AE+12(BC+DE)×BE=12×√15+12(2√3+√15)×1=√15+√3;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=12BC=√3,∴DF=√CD2−CF2=√16−3=√13,∴S准矩形ABCD=S△DCF+S梯形ABFD=12FC×DF+12(AB+DF)×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当AD=CD,如图3,连接AC中点和D并延长交BC于M,连接AM,连接BG,过B作BH⊥DG,在Rt△ABC中,AC=2AB=4,∴BD=AC=4,∴AG=12AC=2,∵AB=2,∴AB=AG,∵∠BAC=60°,∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=2√33,HM=√33,∴CM=4√3 3,在Rt△DHB中,BH=1,BD=4,∴DH=√15,∴DM=DH﹣MH=√15−√3 3,∴S准矩形ABCD=S△ABM+S四边形AMCD,=12BM×AB+12AC×DM=12×2√33×2+12×4×(√15−√33)=2√15;故答案为√15+√3,√39+√3,2√15.。

2020-2021学年八年级下期中考试数学试卷及答案

2020-2021学年八年级下期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷
一.选择题(共8小题,满分24分,每小题3分)
1.(3分)下列代数式中,二次根式√m+n的有理化因式可以是()A.√m+√n B.√m−√n C.√m+n D.√m−n.2.(3分)一组数据﹣3,2,2,0,2,1的众数是()
A.﹣3B.2C.0D.1
3.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()
A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8 4.(3分)下列命题中,不正确的是()
A.对角线相等的矩形是正方形
B.对角线垂直平分的四边形是菱形
C.矩形的对角线平分且相等
D.顺次连结菱形各边中点所得的四边形是矩形
5.(3分)已知x1,x2,x3的平均数x=2,方差S2=3,则2x1,2x2,2x3的平均数和方差分别为()
A.2,3B.4,6C.2,12D.4,12
6.(3分)为了调查某校学生课后参加体育锻炼的时间,学校体育组随机抽样调查了若干名学生的每天锻炼时间,统计如表:
20406080每天锻炼时间(分
钟)
学生数(人)2341
下列说法错误的是()
A.众数是60分钟B.平均数是52.5分钟
C.样本容量是10D.中位数是50分钟
7.(3分)关于一次函数y=﹣3x+1,下列说法正确的是()
A.图象过点(﹣1,3)
B.y随x的增大而增大
C.图象经过第一、二、三象限
第1 页共19 页。

2020-2021学年八年级下学期期中数学试卷及答案

2020-2021学年八年级下学期期中数学试卷及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.若m >n ,则下列不等式正确的是( )A .m ﹣4<n ﹣4B .m 4>n 4C .4m <4nD .﹣2m >﹣2n【解答】解:∵m >n ,∴m ﹣4>n ﹣4;14m >14n ;4m >4n ,﹣2m <﹣2n . 故选:B .2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD【解答】解:∵△ABC 中,AB =AC ,D 是BC 中点∴∠B =∠C ,(故A 正确)AD ⊥BC ,(故B 正确)∠BAD =∠CAD (故C 正确)无法得到AB =2BD ,(故D 不正确).故选:D .3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( ) A .B .C .D . 【解答】解:{2x −4≤0①x +2>0②, 由①得x ≤2,由②得x >﹣2,故此不等式组的解集为:故选:C .4.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH 不是l 的垂直平分线,故此选项错误;故选:A .5.已知a <b ,则下列不等式不成立的是( )A .a ﹣1<b ﹣1B .a 2<b 2C .a ﹣b <0D .1−a 3<1−b 3【解答】解:∵a <b ,∴a ﹣1<b ﹣1,12a <12b ,a ﹣b <0,1−a 3>1−b 3.故选:D .6.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD 的周长是( )A .12cmB .16cmC .18cmD .20cm【解答】解:∵△ABE 的周长=AB +BE +AE =10(cm ),由平移的性质可知,BC =AD =EF =1(cm ),AE =DF ,∴四边形ABFD 的周长=AB +BE +EF +DF +AD =10+1+1=12(cm ).故选:A .7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解答】解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)【解答】解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<2【解答】解:∵一次函数y=ax+b的图象经过一、二、三象限,则函数y随x的增大而增大,∴a>0.把点(﹣2,0),代入即可得到:﹣2a+b=0.即2a﹣b=0.不等式ax>b的解集就是求函数y=ax﹣b>0,故当x>2时,不等式ax>b成立.则不等式ax>b的解集为x>2.故选:C.10.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故选:D.二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.12.已知a+b+c=0,a>b>c,则ca 的取值范围是﹣2<ca<−12.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c②解得ca>−2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c③解得ca <−12,∴﹣2<ca<−12.故答案为:﹣2<ca<−12.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是﹣6≤k<﹣4.【解答】解:解不等式2x﹣k>0得x>k 2,解不等式x﹣2≤0,得:x≤2,∵不等式组有且只有5个整数解,∴﹣3≤k2<−2,解得﹣6≤k<﹣4,故答案为:﹣6≤k<﹣4.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有6个.【解答】解:AB=√5,以B为顶点,BC=BA,这样的C点有4个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点不存在,但与前面的重合;所以使△ABC的等腰三角形,这样的格点C的个数有6个.故答案为6.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣8.【解答】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO +∠BAO =∠BAO +∠CAD ,∴∠ABO =∠CAD ,在△ACD 和△BAO 中{∠ABO =∠CAD ∠AOB =∠CDA AB =AC,∴△ACD ≌△BAO (AAS )∴AD =OB =2,CD =OA =4,∴C (6,4)设直线AC 的解析式为y =kx +b ,将点A ,点C 坐标代入得{4k +b =06k +b =4, ∴{k =2b =−8, ∴直线AC 的解析式为y =2x ﹣8.故答案为:y =2x ﹣8.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax 2﹣2ax +a ;(2)解不等式组:{x +3≤2(x +2)x 3+1>3x−14,并写出所有非负整数解. 【解答】解:(1)ax 2﹣2ax +a =a (x 2﹣2x +1)=a (x ﹣1)2;(2){x +3≤2(x +2)①x 3+1>3x−14②, 解不等式①得,x ≥﹣1,解不等式②得,x <3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x <3:∴非负整数解有:0,1,2.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标(﹣1,﹣2).(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标(−134,0).【解答】解:(1)如图所示,△A1B1C1,△A2B2C2即为所求.(2)如图所示,点Q即为所求,其坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2);(3)如图所示,点P即为所求,设直线A′B的解析式为y=kx+b,将点A′(﹣4,﹣1),B(﹣1,3)代入,得:{−4k +b =−1−k +b =3, 解得:{k =43b =133, ∴直线A ′B 的解析式为y =43x +133, 当y =0时,43x +133=0, 解得x =−134,∴点P 的坐标为(−134,0). 故答案为:(−134,0). 18.(9分)如图,在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∠A =36°.求证:AD =BC .【解答】证明:∵AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∴DB =DA ,∴△ABD 是等腰三角形;∵∠A =36°,∴∠ABD =∠A =36°,∠ABC =∠C =(180°﹣36°)÷2=72°,∴∠BDC =∠A +∠ABD =72°,∴∠C =∠BDC ,∴BD =BC ,∴AD =BC .19.(9分)(1)已知3m =6,9n =2,求32m ﹣2n +1的值;(2)已知a +b =6,ab =8,求a 2+b 2与(a ﹣b )2的值.【解答】解:(1)∵3m =6,9n =2,∴32m﹣2n+1=(3m)2÷9n×3=36÷2×3=54;(2)将a+b=6平方得:(a+b)2=a2+b2+2ab=36,把ab=8代入得:a2+b2+16=36,即a2+b2=20;∴(a﹣b)2=a2+b2﹣2ab=20﹣16=4.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=60°∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=30°∵DE⊥AB,∴∠DEA=90°∴∠EDA=90°﹣∠BAD=60°(2)过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=20√3 9,又AB=10,AC=8,∴S△ABC=12×10×20√39+12×8×20√39=20√321.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型 乙型 价格(万元/套)m n 生产量(台/日) 120 100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m ,n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.【解答】解:(1)根据题意知{m −n =6m +3n =10, 解得:{m =7n =1; (2)设购买甲型设备x 台、乙型设备(10﹣x )台,根据题意,得:{7x +10−x ≤26120x +100(10−x)≥1020, 解得:1≤x ≤83,∵x 为整数,∴x =1或x =2,即有两种购买方案:方案一:购买1台甲型设备、9台乙型设备,购买总费用为1×7+9×1=16万元; 方案二:购买2台甲型设备、8台乙型设备,购买总费用为2×7+8×1=22万元; 所以购买1台甲型设备、9台乙型设备最省钱.22.(9分)如图,△ABC 中,AB =30cm ,AC =20cm ,以BC 为边作等边△BCD ,连接AD ,求AD 的最大值,最小值分别是多少?【解答】解:∵△BCD为等边三角形,∴DC=DB,∠BDC=60°,把△DAC绕点D逆时针旋转60°得到△DEB,如图,连接AE,∴DA=DE,∠ADE=60°,BE=AC=20,∴△DAE为等边三角形,∴AD=AE,∵AB+BE≥AE或AB﹣BE≤AE(当且仅当A、B、E共线时取等号),∴AE的最大值为30+20=50,AE的最小值为30﹣20=10.。

2020-2021学年八年级下学期期中考试数学试卷( 附解析版)

2020-2021学年八年级下学期期中考试数学试卷( 附解析版)

2020-2021学年八年级下学期期中考试数学试卷一、选择题(本大题共 8 小题,共 24 分)1、(3分) 下列图形是中心对称,但不是轴对称图形的是()A. B. C. D.2、(3分) 分式16x2y 和12xyz最简公分母是()A.6x2yzB.6xyzC.12x2yzD.12xyz3、(3分) 若分式x2−1x−1的值为0,则x的值为()A.0B.1C.-1D.±14、(3分) 下列事件是必然事件的是()A.小红经过十字路口,遇到红灯B.打开数学书课本时刚好翻到第60页C.火车开到月球上D.在十三名中国学生中,必有属相相同的5、(3分) 蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数分布直方图C.条形统计图D.扇形统计图6、(3分) 菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7、(3分) 如图所示转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的机会与停在偶数号扇形的机会相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有()A.1个B.2个C.3个D.4个8、(3分) 如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共 10 小题,共 30 分)9、(3分) 要使分式21−x有意义,则x应满足的条件是______.10、(3分) 化简1x−1−xx−1的结果是______.11、(3分) 为了了解某校八年级420名学生的视力情况,从中抽查60人的视力,在这个问题中个体是______.12、(3分) 某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是______.13、(3分) 一只不透明的袋子里装有3个红球、4个黄球和5个白球,这些球除颜色外都相同,从中任意摸出1个球,则摸出______球的可能性最小.14、(3分) 如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是______m2.15、(3分) 如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=______.16、(3分) 如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C′在同一条直线上,则三角板ABC 旋转的角度是______.17、(3分) 如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是______.18、(3分) 如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°,得到线段AQ ,连接BQ ,若PA=3,PB=4,PC=5,则四边形APBQ 的面积为______三、计算题(本大题共 2 小题,共 18 分)19、(8分) 约分: (1)2xy 2z4xyz ; (2)xy+2y x 2−4.20、(10分) 计算(1)2a−1a+3-a−4a+3; (2)1x+2-1x+3.四、解答题(本大题共 7 小题,共 78 分)21、(9分) 如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上. (1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.22、(12分) 某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:(1)本次抽查的样本容量是______;(2)在扇形统计图中,“主动质疑”对应的圆心角为______度;(3)将条形统计图补充完整;(4)如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?23、(10分) 下表是一名同学在罚球线上投篮的实验结果,根据表中数据,回答问题:投篮次数(n)50 100 150 209 250 300 500投中次数(m)28 60 78 104 124 153 252投中频率(mn )0.56 0.60 0.52 0.52 0.49______ ______(1)将表格补充完成;(精确到0.01)(2)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(3)根据此概率,估计这名同学投篮622次,投中的次数约是多少?24、(9分) 如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.求证:四边形AECF是平行四边形.25、(12分) 如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,EC交AD于F.(1)求证:△AFE≌△CFD;(2)若AB=3,BC=6,求图中阴影部分的面积.26、(12分) 将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.其中点B落在点E处,定C落在点F处,点D落在点G处.(1)如图1,当点E在BD上时,求证:EF平分∠DEG;(2)在(1)的条件下,如图2,分别延长ED、EF,相交于点H,求证:DH=BE;(3)当α=______时,GC=GB?(直接填空,不必说理).27、(14分) 如图1,已知正方形ABCD,点E是边BA边上一动点(不与点A、B重合),连接CE.将三角形CBE沿着BA方向平移,使得BC边与AD边重合,得到三角形DAF.(1)四边形CEFD能否是一个菱形?说明理由;(2)在图1的基础上,连接AC,过点E作EG垂直AC于点G,如图2.①若已知∠BEC=70°,求∠CEG的度数;②如图3,连接GD、GF.求证:GD=GF;③若三角形CGD为等腰三角形,求∠C EG的度数.参考答案:【第 1 题】【答案】C【解析】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【第 2 题】【答案】A【解析】解:分式16x2y 和12xyz最简公分母是6x2yz,故选:A.确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.本题考查了最简公分母,关键是确定最简公分母的方法一定要掌握.【第 3 题】【答案】C【解析】解:∵分式x 2−1x−1的值为0,∴x2-1=0,且x-1≠0,解得:x=-1.故选:C.直接利用分式的值为0,则分子为0,进而得出答案.此题主要考查了分式的值,正确把握定义是解题关键.【第 4 题】【答案】D【解析】解:A、小红经过十字路口,遇到红灯是随机事件,故A错误;B、打开数学书课本时刚好翻到第60页是随机事件,故B错误;C、火车开到月球上是不可能事件,故C错误;D、在十三名中国学生中,必有属相相同的是必然事件,故D正确.故选:D.根据必然事件、不可能事件、随机事件的概念可区别各类事件.本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【第 5 题】【答案】A【解析】解:这七天空气质量变化情况最适合用折线统计图,故选:A.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.【第 6 题】【答案】B【解析】解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.根据菱形的性质即可判断;本题考查菱形的性质,解题的关键是熟练掌握菱形的性质,属于中考基础题.【第 7 题】【答案】A【解析】解:A、错误,是随机事件,不能确定;B、错误,是随机事件,不能确定;C、正确,由于奇数号扇形和偶数号扇形数目相同,指针停在奇数号扇形的机会等于停在偶数号扇形的机会;D、错误,随机事件,不受意识控制.故选:A.随机事件发生的可能性大小在0至1之间,可能性大的也不是肯定会发生,可能性小的也不是肯定不会发生,所以只有丁的说法是对的.本题考查的是随机事件发生的可能性大小的理解,随机事件发生的可能性大小在0至1之间,随机事件发生的可能性只是一种推测,并不是一定发生或不发生的.【第 8 题】【答案】B【解析】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,在△ABF和△DAE中{AB=DA∠BAD=∠ADEAF=DE,∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四边形DEOF,所以(4)正确.故选:B.根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.【第 9 题】【答案】x≠1【解析】解:由题意得1-x≠0,则x≠1,故答案为:x≠1.根据分式有意义,分母不等于0列不等式求解即可.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.【第 10 题】【答案】-1【解析】解:原式=1−xx−1=-x−1x−1=-1.故答案为:-1.原式利用同分母分式的减法法则计算,约分即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.【第 11 题】【答案】该校八年级每一名学生的视力【解析】解:该校八年级每一名学生的视力.故答案为:该校八年级每一名学生的视力.根据个体的意义,每一个被考查的对象,在这个问题中,该校八年级每一个学生的视力是个体.考查总体、个体的意义,以及在具体问题中总体、个体的甄别.【第 12 题】【答案】0.32【解析】解:某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是32÷100=0.32,故答案为:0.32.根据频数与总数的比是频率,可得答案.本题考查了频数与频率,频数与总数的比是频率.【 第 13 题 】【 答 案 】红【 解析 】解:∵袋子中共有3+4+5=12个球,其中红球个数最少,∴从中任意摸出1个球,则摸出红球的可能性最小,故答案为:红.根据各种球数量的多少,直接判断可能性的大小,哪种颜色的球越多,摸出的可能性就越大;首先判断出每种颜色的球的数量的多少,然后判断出摸出的可能性的大小即可.本题主要考查可能性的大小,某种颜色球的个数多,摸出的可能性就大,反之,摸出的可能就是小,只要有某种颜色的,都有可能摸出.【 第 14 题 】【 答 案 】1【 解析 】解:∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近, ∴小石子落在不规则区域的概率为0.25,∵正方形的边长为2m ,∴面积为4m 2,设不规则部分的面积为s m 2, 则s 4=0.25,解得:s=1,故答案为:1.首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.【 第 15 题 】【 答 案 】3【 解析 】解:∵四边形ABCD 是平行四边形,∴BC=AD=6,∵点E 、F 分别是BD 、CD 的中点, ∴EF=12BC=12×6=3.故答案为:3.由四边形ABCD 是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E 、F 分别是BD 、CD 的中点,利用三角形中位线的性质,即可求得答案.此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.【 第 16 题 】【 答 案 】150°【 解析 】解:∵直角三角板ABC 绕点A 旋转,使得点B ,A ,C′在同一条直线上,∴旋转角是∠CAC′=180°-30°=150°.故答案为:150°.根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.【 第 17 题 】【 答 案 】245cm【 解析 】解:∵四边形ABCD 是菱形,∴CO=12AC=3cm ,BO=12BD=4cm ,AO⊥BO ,∴BC=√AO 2+BO 2=5cm , ∴S 菱形ABCD =BD.AC 2=12×6×8=24cm 2,∵S 菱形ABCD =BC×AE ,∴BC×AE=24, ∴AE=24BC =245cm .故答案为:245cm .根据菱形的性质得出BO 、CO 的长,在Rt△BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度.此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.【 第 18 题 】【 答 案 】6+9√34 【 解析 】解:连结PQ ,如图,∵△ABC 为等边三角形,∴∠BAC=60°,AB=AC ,∵线段AP 绕点A 顺时针旋转60°得到线段AQ ,∴AP=AQ=3,∠PAQ=60°,∴△APQ 为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ ,且AC=AB ,AP=AQ∴△APC≌△ABQ (SAS ),∴PC=QB=5,在△BPQ 中,∵PB 2=42=16,PQ 2=32=9,BQ 2=52=25,∴PB 2+PQ 2=BQ 2,∴△PBQ 为直角三角形,∠BPQ=90°, ∴S 四边形APBQ =S △BPQ +S △APQ =12BP×PQ+√34×PQ 2=6+9√34 故答案为:6+9√34 连结PQ ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC ,再根据旋转的性质得AP=AQ=3,∠PAQ=60°,则可判断△APQ 为等边三角形,所以PQ=AP=3,接着证明△APC≌△ABQ 得到PC=QB=5,然后利用勾股定理的逆定理证明△PBQ 为直角三角形,再根据三角形面积公式,利用S 四边形APBQ =S △BPQ +S △APQ 进行计算.本题考查了旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ 为等边三角形是本题的关键.【 第 19 题 】【 答 案 】解:(1)原式=y 2;(2)原式=y x−2.【 解析 】(1)约去分式的分子与分母的公因式2xyz ;(2)约去分式的分子与分母的公因式(x+2).本题考查了分式的约分,解决此题的关键是找出分子与分母的最大公因数或式.【 第 20 题 】【 答 案 】解:(1)原式=2a−1−(a−4)a+3=a+3a+3 =1; (2)原式=x+3(x+2)(x+3)-x+2(x+2)(x+3)=1(x+2)(x+3);【 解析 】(1)根据分式的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.【 第 21 题 】【 答 案 】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【解析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.【第 22 题】【答案】解:(1)本次调查的样本容量为224÷40%=560(人),故答案为:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360°×84=54°,560故答案为:54;(3)“讲解题目”的人数是:560-84-168-224=84(人).=18000(人),(4)60000×168560答:在试卷评讲课中,“独立思考”的初三学生约有18000人.【解析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360°乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用60000乘以对应的比例即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【第 23 题】【答案】解:(1)153÷300=0.51,252÷500≈0.50;故答案为:0.51,0.50;(2)估计这名同学投篮一次,投中的概率约是0.5;(3)622×0.5=311(次).所以估计这名同学投篮622次,投中的次数约是311次【解析】(1)用投中的次数除以投篮的次数即可得出答案;(2)计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.(3)用总投篮次数乘以其概率即可求得投中次数.此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.【 第 24 题 】【 答 案 】证明:∵四边形ABCD 是平行四边形,∴AD∥BC ,且AD=BC ,∴AF∥EC ,∵BE=DF ,∴AF=EC ,∴四边形AECF 是平行四边形.【 解析 】根据平行四边形性质得出AD∥BC ,且AD=BC ,推出AF∥EC ,AF=EC ,根据平行四边形的判定推出即可.本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.【 第 25 题 】【 答 案 】(1)解:∵四边形ABCD 是矩形,∴AB=CD ,∠B=∠D=90°.∵将矩形ABCD 沿对角线AC 翻折∴AB=AF ,∠B=∠E .∴AE=CD ,∠E=∠D ,在△AFE 和△CFD 中,{∠E =∠D ∠AFE =∠DFC AE =CD ,∴△AFE≌△CFD (AAS );(2)证明:由折叠得AF=AB=3.∵△AFE≌△CDE ,∴EF=ED .设AE=x ,则ED=6-x ,EF=6-x .在Rt△AEF 中,由勾股定理得AE 2=AF 2+EF 2.∴32+(6-x )2=x 2.解得x=154,即AE=154.∴S △AEC =12AE•AB=12×154×3=458.【 解析 】(1)由矩形的性质得出AB=CD ,∠B=∠D=90°.由折叠的性质得出AB=AF ,∠B=∠E .得出AE=CD ,∠E=∠D ,即可得出结论;(2)由折叠得AF=AB=3.由全等三角形的性质得出EF=ED.设AE=x,则ED=6-x,EF=6-x.在Rt△AEF中,由勾股定理得出方程,得出x=154,即AE=154.即可得出结果.本题考查了翻折变换的性质、矩形的性质、全等三角形的判定与性质等知识;证明三角形全等是解题的关键.【第 26 题】【答案】(1)证明:如图1所示:∵四边形ABCD是矩形,∴∠C=∠ABC=90°.由旋转的性质得:AE=AB,∠ABD=∠AEG,∴∠ABD=∠AEB.∴∠AEG=∠AEB.由旋转的性质得:∠AEF=∠ABC=90°.∴∠AEG+∠FEG=90°,∠AEB+∠FED=90°.∴∠FED=∠FEG.∴EF平分∠DEG;(2)证明:由旋转的性质得:∠EFG=∠C=90°.∴∠EFH=∠EFG=90°.在△FEH和△FEG中,{∠FED=∠FEGEF=EF∠EFH=∠EFG,∴△FEH≌△FEG(ASA).∴EG=EH.由旋转的性质得:EG=BD,∴EH=BD,∴DH=BE;(3)解:当α为60°或300°时,GC=GB.理由如下:①当G在AD的右边时,连接DG,如图3所示:∵GC=GB,∴点G在BC的垂直平分线上,∵四边形ABCD是矩形,∴点G也在AD的垂直平分线上,∴DG=AG,由旋转的性质得:AG=AD,∴DG=AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,即α=60°;②当G在AD的左边时,连接DG,如图4所示:∵GC=GB,∴点G在BC的垂直平分线上,∵四边形ABCD是矩形,∴点G也在AD的垂直平分线上,∴DG=AG,由旋转的性质得:AG=AD,∴DG=AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∴α=360°-60°=300°;综上所述,当α为60°或300°时,GC=GB;故答案为:60°或300°.【解析】(1)由正方形的性质得出∠C=∠ABC=90°.由旋转的性质得:AE=AB,∠ABD=∠AEG,得出∠ABD=∠AEB.因此∠AEG=∠AEB.由旋转的性质得:∠AEF=∠ABC=90°.得出∠AEG+∠FEG=90°,∠AEB+∠FED=90°.证出∠FED=∠FEG即可;(2)证明△FEH≌△FEG得出EG=EH.由旋转的性质得:EG=BD,得出EH=BD,即可得出结论;(3)①当G在AD的右边时,由GC=GB,得出点G在BC的垂直平分线上,由矩形的性质得出点G也在AD的垂直平分线上,得出DG=AG,由旋转的性质得:AG=AD,得出DG=AG=AD,证出△ADG是等边三角形,得出∠DAG=60°,即α=60°;②当G在AD的左边时,同①得出∠DAG=60°,得出α=360°-60°=300°即可.本题是四边形综合题目,考查了矩形的性质、旋转变换的性质、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的判定、等边三角形的判定与性质等知识;本题综合性强,熟练掌握矩形的性质和旋转变换的性质是解题的关键.【第 27 题】【答案】(1)解:四边形CEFD不能是一个菱形.理由如下:由平移的性质得:AF=BE.∴AB=EF.∵四边形ABCD是正方形,∴CD=AB=BC,CD∥AB.∴CD=EF,CD∥EF.∴四边形CEFD是平行四边形.∵点E不与点A、B重合,∴在直角三角形BCE中,CE>BC.∴CE≠EF.∴四边形CEFD不能是菱形.(2)①解:∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∠GAE=45°.∵EG⊥AC,∴∠EGA=90°.∴∠BEG=90°+45°=135°.∵∠BEC=70°,∴∠CEG=135°-70°=65°.②证明:由①得:∠GEA=45°=∠GAE.∴GA=GE.∵四边形ABCD是正方形,∴CD=AD=AB=EF,∠GAD=∠GCD=∠ACB=45°.在△DGA和△FGE中,{GA=GE∠DAG=∠FEGAD=EF,∴△DGA≌△FGE(SAS),∴GD=GF.③解:∵点E不与点A、B重合,∠GCD=45°,∴点G不与AC的中点和点A重合.∴当且仅当GC=DC时,△CGD为等腰三角形.∴∠GDC=∠CGD=67.5°.∵△DGA≌△FGE,∴∠DGA=∠FGE.∴∠DGF=∠AGE=90°.∵GD=GF,∴∠GDF=45°.∴∠CDF=67.5°+45°=112.5°.∴∠DAF=180°-112.5°=67.5°.∴∠CEB=67.5°.∴∠CEG=135°-67.5°=67.5°.【解析】(1)由平移的性质得:AF=BE.得出AB=EF.由正方形的性质得出CD=AB=BC,CD∥AB.得出CD=EF,CD∥EF.证出四边形CEFD是平行四边形.由直角三角形的性质得出CE≠EF.即可得出结论;(2)①由正方形的性质得出AB=BC,∠B=90°,∠GAE=45°,由三角形的外角性质得出∠BEG=90°+45°=135°.即可得出结果;②由①得:∠GEA=45°=∠GAE.得出GA=GE,由正方形的性质得出CD=AD=AB=EF,∠GAD=∠GCD=∠ACB=45°,证明△DGA≌△FGE,即可得出结论;③证出当且仅当GC=DC时,△CGD为等腰三角形.由等腰三角形的性质得出∠GDC=∠CGD=67.5°.由全等三角形的性质得出∠DGA=∠FGE.得出∠DGF=∠AGE=90°.由GD=GF得出∠GDF=45°.求出∠CDF=112.5°.得出∠DAF=180°-112.5°=67.5°.得出∠CEB=67.5°,即可得出结果.本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、平移的性质、平行四边形的判定、等腰直角三角形的判定与性质、等腰三角形的性质、三角形的外角性质等知识;本题综合性强,有一定难度.。

2020-2021学年人教版八年级下期中考试数学试题及答案解析

2020-2021学年人教版八年级下期中考试数学试题及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列计算中正确的是()A.√3+√2=√5B.√(−3)2=−3C.√24÷√6=4D.√8−√2=√2【解答】解:A、√3+√2无法计算,故此选项不合题意;B、√(−3)2=3,故此选项不合题意;C、√24÷√6=2,故此选项不合题意;D、√8−√2=√2,正确.故选:D.2.设√7的小数部分为b,那么(4+b)b的值是()A.1B.是一个有理数C.3D.无法确定【解答】解:∵√7的小数部分为b,∴b=√7−2,把b=√7−2代入式子(4+b)b中,原式=(4+b)b=(4+√7−2)×(√7−2)=3.故选:C.3.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62; 当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形; 当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42, ∵√62>√42, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .4.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm ,则这个矩形的一条较短边的长度为( )A .10cmB .8cmC .6cmD .5cm【解答】解:∵四边形ABCD 是矩形, ∴OA =OC =12AC ,OD =OB =12BD ,AC =BD , ∴OA =OB , ∵AC +BD =20, ∴AC =BD =10cm , ∴OA =OB =5cm ,∵OA =OB ,∠AOB =60°, ∴△OAB 是等边三角形, ∴AB =OA =5cm , 故选:D .5.如图,▱ABCD 的对角线相交于点O ,且AB ≠AD ,过点O 作OE ⊥BD 交BC 于点E ,若△CDE 的周长为10,则▱ABCD 的周长为( )A .14B .16C .20D .18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.下列各图能表示y是x的函数是()A.B.C.D.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x 的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.7.如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5B.4C.3D.2【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=2.故选:D.8.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线y=12x+b与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1B.−12≤b≤1C.−12≤b≤12D.﹣1≤b≤12【解答】解:直线y=12x+b经过点B时,将B(3,1)代入直线y=12x+b中,可得32+b=1,解得b=−1 2;直线y=12x+b经过点A时:将A(1,1)代入直线y=12x+b中,可得12+b=1,解得b=12;直线y=12x+b经过点C时:将C(2,2)代入直线y=12x+b中,可得1+b=2,解得b=1.故b的取值范围是−12≤b≤1.故选:B.9.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2B.3C.4D.5【解答】解:C点所有的情况如图所示:故选:C.10.直线y=﹣x+4不可能经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由于﹣1<0,4>0,故函数过一、二、四象限,不过第三象限.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.计算√48−9√13的结果是√3.【解答】解:√48−9√1 3=4√3−3√3=√3.故答案为:√3.12.如果在▱ABCD中,∠A=40°,那么∠B=50°.×(判断对错)【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=40°,∴∠B=140°≠50°,故答案为:×.13.如图,△ABC中,∠ACB=90°,D为AB中点,BC=6,CD=5,则AB=10,AC =8.【解答】解:∵∠ACB=90°,D为AB中点,∴AB=2CD=10,由勾股定理得:AC=√AB2−BC2=√102−62=8;故答案为:10,8.14.若正比例函数y=kx与y=2x的图象关于x轴对称,则k的值=﹣2.【解答】解:两个解析式的k值应互为相反数,即k=﹣2.15.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B=√2或7√2.【解答】解:分两种情况:①如图1,过D作DG⊥BC与G,交A′E与F,过B作BH⊥A′E与H,∵D为AB的中点,∴BD=12AB=AD,∵∠C=90,AC=8,BC=6,∴AB=10,∴BD=AD=5,sin∠ABC=DGBD=ACAB,∴DG 5=810,∴DG =4,由翻折得:∠DA ′E =∠A ,A ′D =AD =5, ∴sin ∠DA ′E =sin ∠A =BCAB =DF A′D, ∴610=DF 5,∴DF =3, ∴FG =4﹣3=1, ∵A ′E ⊥AC ,BC ⊥AC , ∴A ′E ∥BC ,∴∠HFG +∠DGB =180°, ∵∠DGB =90°, ∴∠HFG =90°, ∵∠EHB =90°, ∴四边形HFGB 是矩形, ∴BH =FG =1,同理得:A ′E =AE =8﹣1=7, ∴A ′H =A ′E ﹣EH =7﹣6=1,在Rt △AHB 中,由勾股定理得:A ′B =√12+12=√2;②如图2,过D 作MN ∥AC ,交BC 与于N ,过A ′作A ′F ∥AC ,交BC 的延长线于F ,延长A ′E 交直线DN 于M , ∵A ′E ⊥AC ,∴A ′M ⊥MN ,A ′E ⊥A ′F , ∴∠M =∠MA ′F =90°, ∵∠ACB =90°, ∴∠F =∠ACB =90°, ∴四边形MA ′FN 是矩形, ∴MN =A ′F ,FN =A ′M , 由翻折得:A ′D =AD =5,Rt △A ′MD 中,∴DM =3,A ′M =4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B=√72+72=7√2;综上所述,A′B的长为√2或7√2.故答案为:√2或7√2.16.小明用同一副七巧板先后拼成了正方形和“船形”两幅图案(如图1,2所示).若图1的正方形的边长为8cm,则图2的“船形”中阴影部分的面积为8cm2.【解答】解:∵图1的正方形的边长为8cm,∴正方形对角线长为8√2cm,∴阴影三角形的斜边长为4√2cm,∴S =12×4√2×2√2=8cm 2, 故答案为8.三.解答题(共9小题,满分86分) 17.(12分)计算:(1)√12×(√75+3√13−√48); (2)(√2−1)2+√3×(√3−√6)+√8. 【解答】解:(1)√12×(√75+3√13−√48 =2√3×(5√3+√3−4√3) =12;(2)(√2−1)2+√3×(√3−√6)+√8 =2﹣2√2+1+3﹣3√2+2√2 =6﹣3√2.18.(7分)如图,已知AB ∥CF ,D 是AB 上一点,DF 交AC 于点E ,若AB =BD +CF ,求证:△ADE ≌△CFE .【解答】证明:∵AB =BD +CF , 又∵AB =BD +AD , ∴CF =AD ∵AB ∥CF ,∴∠A =∠ACF ,∠ADF =∠F 在△ADE 与△CFE 中 {∠A =∠ACF CF =AD ∠ADF =∠F, ∴△ADE ≌△CFE (ASA ).19.(7分)已知一次函数y =3x +3的图象与x 轴交于点A ,与y 轴交于点B .(1)求A,B两点的坐标;(2)在给定的直角坐标系中,画出一次函数y=3x+3的图象.【解答】解:(1)在y=3x+3中,令y=0,则x=﹣1;令x=0,则y=3,所以,点A的坐标为(﹣1,0),点B的坐标为(0,3);(2)如图:.20.(8分)如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE ⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形(2)已知DE=8,FN=6,求BN的长.【解答】(1)证明:∵AE ⊥BD ,CF ⊥BD ,∴AM ∥CN ,∵四边形ABCD 是平行四边形,∴CM ∥AN∴四边形CMAN 是平行四边形;(2)解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠ADE =∠CBF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°,在△ADE 与△CBF 中,∠ADE =∠CBF ,∠AED =∠CFB ,AD =BC ,∴△ADE ≌△CBF (AAS );∴DE =BF =8,∵FN =6,∴BN =√82+62=10.21.(8分)【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为(x 1+x 22,y 1+y 22)【运用】(1)已知O 为▱ABCD 的对角线AC 与BD 交点,点B 的坐标为(4,3),则点D 的坐标为(﹣1,1),则O 的坐标为 (32,2) ; (2)在直角坐标系中,有A (﹣1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.(提示:运用阅读材料完成)【解答】解:(1)∵O 为▱ABCD 的对角线AC 与BD 交点,∴OB =OD ,即O 为BD 的中点,∴点O 的横坐标为4−12=32,纵坐标为3+12=2,∴点O 的坐标为(32,2); 故答案为:(32,2); (2)如图所示:①当AC 和BC 为平行四边形的边时,连接对角线AB 、CD 1交于E ,∴AE =EB ,CE =ED 1,∵A (﹣1,2),B (3,1),∴E (1,32), ∵C (1,4),∴D 1(1,﹣1);②当BC 和CD 2为平行四边形的边时,连接对角线BD 2和AC 交于G ,同理可得D 2(﹣3,5);③当AC 和AB 为平行四边形的边时,连接 AD 3和BC 交于F ,同理可得D 3(5,3);综上所述,点D 的坐标为(1,﹣1)或(﹣3,5)或(5,3).22.(8分)如图,在矩形ABCD 中,AB =1,BC =3.(1)在图①中,P 是BC 上一点,EF 垂直平分AP ,分别交AD 、BC 边于点E 、F ,求证:四边形AFPE 是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接标出菱形的边长.(保留作图痕迹,不写作法)【解答】(1)证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠APB =∠EAP ,∵EF 垂直平分AP ,∴AF =PF ,AE =PE ,∴∠EAP =∠P AF ,∴∠APB =∠P AF ,∴AE =AF ,∴AF =PF =AE =PE ,∴四边形AFPE 是菱形.(2)如图2中,菱形AMCN 即为所求.23.(10分)某学校准备购进A 、B 两种型号的实验用品,已知1个A 型实验用品和3个B型实验用品共需45元;3个A 型实验用品和2个B 型实验用品共需51元.(1)求1个A 型实验用品和1个B 型实验用品的售价各是多少元;(2)学校准备购进这两种型号的实验用品共70个,并且A 型实验用品的数量不多于B 型实验用品数量的2倍,怎样购买最省钱?【解答】解:(1)设1个A 型实验用品的售价是x 元,1个B 型实验用品的售价是y 元,依题意,得:{x +3y =453x +2y =51, 解得:{x =9y =12.答:1个A型实验用品的售价是9元,1个B型实验用品的售价是12元.(2)设购进A型实验用品m个,则购进B型实验用品(70﹣m)个,依题意,得:m≤2(70﹣m),解得:m≤140 3,又∵m为正整数,∴m的最大值为46.设购买这批实验用品所需总费用为w元,则w=9m+12(70﹣m)=﹣3m+840,∵k=﹣3<0,∴w随m的增大而减小,∴当m=46时,w取得最小值,此时70﹣m=24,∴当购进A型实验用品46个,B型实验用品24个时,购买总费用最少.24.(12分)如图,平面直角坐标系中,直线y=−√3x+√3与坐标轴交于点A、B.点C在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)对于直线y=−√3x+√3,当y=0 时,−√3x+√3=0,解得:x=1,∴A(1,0),∴OA=1,当x=0 时,y=√3,∴OB =√3,∵∠AOB =90°,∴AB =√OA 2+OB 2=√1+3=2,∵AB :AC =1:2,∴AC =4,∴OC =3,∴C (﹣3,0);(2)如图所示,∵OA =1,OB =√3,AB =2,∴∠ABO =30°,同理:BC =2√3,∠OCB =30°,∴∠OBC =60°,∴∠ABC =90°,分两种情况考虑:①若M 在线段BC 上时,BC =2√3,CM =t ,可得BM =BC ﹣CM =2√3−t ,此时S △ABM =12BM •AB =12×(2√3−t )×2=2√3−t (0<t <2√3); ②若M 在BC 延长线上时,BC =2√3,CM =t ,可得BM =CM ﹣BC =t ﹣2√3,此时S △ABM =12BM •AB =12×(t ﹣2√3)×2=t ﹣2√3(t >2√3);综上所述,S ={2√3−t(0<t <2√3)t −2√3(t >2√3);若AB是菱形的边,如图2所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),综上,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0).25.(14分)如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.【解答】解:(1)设直线l2的解析表达式为y=kx+b(k≠0),把A(4,0)、B(3,−32)代入表达式y=kx+b,{4k +b =03k +b =−32,解得:{k =32b =−6, ∴直线l 2的解析表达式为y =32x ﹣6.(2)当y =﹣3x +3=0时,x =1,∴D (1,0).联立y =﹣3x +3和y =32x ﹣6,解得:x =2,y =﹣3,∴C (2,﹣3),∴S △ADC =12×3×|﹣3|=92.(3)∵△ADP 与△ADC 底边都是AD ,△ADP 与△ADC 的面积相等, ∴两三角形高相等.∵C (2,﹣3),∴点P 的纵坐标为3.当y =32x ﹣6=3时,x =6,∴点P 的坐标为(6,3).。

2020-2021学年八年级下学期期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.使函数y=√x+1x有意义的自变量x的取值范围为()A.x≠0B.x≥﹣1C.x≥﹣1且x≠0D.x>﹣1且x≠0【解答】解:由题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:C.2.下列各图能表示y是x的函数是()A.B.C.D.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x 的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.3.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm【解答】解:由勾股定理得,AC=√AB2+BC2=√62+82=10cm,∵四边形ABCD是矩形,∴OA=OD=12AC=12×10=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=52cm,AF=12×8=4cm,AE=12OA=52cm,∴△AEF的周长=52+4+52=9cm.故选:C.6.如图,数轴上表示实数√5的点可能是()A.点P B.点Q C.点R D.点S【解答】解:∵2<√5<3,∴数轴上表示实数√5的点可能是点Q.故选:B.7.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y =mnx 的图象过一、三象限,无符合项;(4)当m <0,n >0时,mn <0,一次函数y =mx +n 的图象一、二、四象限,正比例函数y =mnx 的图象过二、四象限,无符合项.故选:C .8.如果直线y =kx +b 经过一、二、四象限,则k ,b 的取值分别是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【解答】解:由一次函数y =kx +b 的图象经过第一、二、四象限,又由k <0时,直线必经过二、四象限,故知k <0.再由图象过一、二象限,即直线与y 轴正半轴相交,所以b >0.故选:C .9.如图所示的图象所表示的函数的关系式为( )A .y =32|x ﹣1|(0≤x ≤2)B .y =32−32|x ﹣1|(0≤x ≤2)C .y =32−|x ﹣1|(0≤x ≤2)D .y =1﹣|x ﹣1|(0≤x ≤2)【解答】解:观察图象可知,图象上已知三点坐标为(0,0),(1,32)(2,0),代入每个解析式检验可知:A 、点(0,0)不符合函数解析式;B 、点(0,0),(1,32),(2,0),都符合函数解析式;C 、点(0,0)不符合函数解析式;D 、点(1,32)不符合函数解析式. 只有B 符合.故选:B .10.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=12×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=−13x2+53x(0<x<5),纵观各选项,只有D选项符合.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.若点A(2,y1),B(﹣1,y2)都在直线y=﹣2x+1上,则y1与y2的大小关系是y1<y2.【解答】解:∵直线y=﹣2x+1的比例系数为﹣2,∴y随x的增大而减小,∵2>﹣1,∴y1<y2,故答案为y1<y2.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要612元钱.【解答】解:由勾股定理,AC=2−BC2=√132−52=12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.13.无论m为何值直线y=x+2m与直线y=﹣x+4的交点都不可能在第三象限.【解答】解:y=﹣x+4是一次函数,∵k=﹣1<0,∴图象过二、四象限,又∵b=4>0,∴图象过第一象限,∴一定不过第三象限;∴直线y =x +2m 与y =﹣x +4的交点不可能在第三象限.故答案为:三.14.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C ′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB =3,BC =4,则折痕EF 的长为 2512 .【解答】解:设BC ′与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:∠NBD =∠CBD ,AM =DM =12AD ,∠FMD =∠EMD =90°, ∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC =4,∠BAD =90°,∴∠ADB =∠CBD ,∴∠NBD =∠ADB ,∴BN =DN ,设AN =x ,则BN =DN =4﹣x ,∵在Rt △ABN 中,AB 2+AN 2=BN 2,∴32+x 2=(4﹣x )2,∴x =78,即AN =78,∵C ′D =CD =AB =3,∠BAD =∠C ′=90°,∠ANB =∠C ′ND ,∴△ANB ≌△C ′ND (AAS ),∴∠FDM =∠ABN ,∴tan ∠FDM =tan ∠ABN ,∴AN AB =MF MD ,∴783=MF 2,∴MF =712, 由折叠的性质可得:EF ⊥AD ,∴EF ∥AB ,∵AM =DM ,∴ME =12AB =32,∴EF =ME +MF =32+712=2512.故答案为:2512.15.已知一次函数y =mx +2m +8与x 轴、y 轴交于点A 、B ,若图象经过点C (2,4).过点C 作x 轴的平行线,交y 轴于点D ,在△OAB 边上找一点E ,使得△DCE 构成等腰三角形,则点E 坐标为 (0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5) .【解答】解:∵一次函数y =mx +2m +8的图象经过点C (2,4),∴4=2m +2m +8,解得m =﹣1,∴一次函数为y =﹣x +6,∵与x 轴、y 轴交于点A 、B ,∴A (6,0),B (0,6),如图,∵C (2,4),∴C 点在直线AB 上,以D 为圆心,以2为半径作圆,交OB 于B 和E 2,此时E (0,6)或(0,2);以B 为圆心,以2为半径作圆,交AB 于E 3和E 4,此时E(2−√2,4+√2)或(2+√2,4−√2),作DC的垂直平分线交OA于E5,交AB于E6,此时E5(1,0),E6(1,5);综上,点E坐标为(0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5);故答案为(0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5).三.解答题(共8小题,满分75分)16.(8分)计算:−√24÷√2−√13×√12+√48.【解答】解:−√24÷√2−√13×√12+√48=﹣2√6÷√2−√4+4√3=﹣2√3−2+4√3=2√3−2.17.(8分)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE 2+AD 2=BE 2+BC 2,设AE =x ,则BE =AB ﹣AE =(25﹣x ),∵DA =15km ,CB =10km ,∴x 2+152=(25﹣x )2+102,解得:x =10,∴AE =10km ,∴收购站E 应建在离A 点10km 处.18.(9分)四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)连接BF 、AC 、DE ,当BF ⊥AE 时,求证:四边形ACED 是平行四边形.【解答】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AD ∥BC ,∵AE 平分∠BAD ,∴∠EAB =∠EAD =∠AEB ,∴AB =BE ,∴BE =CD .(2)∵BA =BE ,BF ⊥AE ,∴AF =EF ,∵AD ∥CE ,∴∠DAF =∠CEF ,在△ADF 和△ECF 中,{∠DAF =∠CEF AF =FE ∠AFD =∠CFE,∴△DAF ≌△CEF∴AD =CE ,∵AD ∥CE ,∴四边形ADEC 是平行四边形.19.(9分)如图,已知一次函数y =kx +b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求一次函数的解析式;(2)求点C 和点D 的坐标;(3)求△AOB 的面积.【解答】解:(1)把A (﹣2,﹣1),B (1,3)代入y =kx +b 得 {−2k +b =−1k +b =3, 解得 {k =43b =53. 所以一次函数解析式为y =43x +53;(2)令y =0,则0=43x +53,解得x =−54,所以C 点的坐标为(−54,0),把x =0代入y =43x +53得y =53,所以D 点坐标为(0,53), (3)△AOB 的面积=S △AOD +S △BOD=12×53×2+12×53×1=52.20.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=6,BF=8,DF=10,求证:AF平分∠DAB.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=√FC2+FB2=10,∴AD=BC=DF=10,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.21.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.22.(10分)如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P 为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=13PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.【解答】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中,{∠ABP =∠BCQAB =BC ∠BAP =∠QBC,∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt △ABN ≌△Rt △C 'BN (HL ),∴AN =NC ',∵BP =13PC ,AB =8,∴BP =2=CQ ,CP =DQ =6,设AN =NC '=a ,则DN =8﹣a ,∴在Rt △NDQ 中,(8﹣a )2+62=(a +2)2解得:a =4.8,即AN =4.8.(3)解:过Q 点作QG ⊥BM 于G ,由(1)知BP =CQ =BG =x ,BM =MQ .设MQ =BM =y ,则MG =y ﹣x ,∴在Rt △MQG 中,y 2=82+(y ﹣x )2,∴y =32x +x 2. ∴S △BMC ′=S △BMQ ﹣S △BC 'Q =12BM ⋅QG −12BC′⋅QC′=12(32x +x 2)×8−12×8x , =128x −2x .23.(11分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?最大利润是多少?【解答】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得{10a +20b =400020a +10b =3500, 解得{a =100b =150. 答:每台A 型电脑销售利润为100元,每台B 型电脑的销售利润为150元;(2)①根据题意得,y =100x +150(100﹣x ),即y =﹣50x +15000;②据题意得,100﹣x ≤2x ,解得x ≥3313, ∵y =﹣50x +15000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时最大利润是y =﹣50×34+15000=13300.即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是13300元.。

2020-2021学年度八年级下册数学期中考试题(附答案)

2020-2021学年度八年级下册数学期中考试题(附答案)

2020-2021学年度八年级下册数学期中考试题(附答案)一、单选题1.以下列各组数为边长,不能构成直角三角形的是( )A. 5,12,13B. 1,2,√5C. 1,√3,2D. 4,5,62.下列各式计算正确的是()A. √22=±2B. (√5+√2)(√5−√2)=3C. √(−2)2=−2D. √23.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则对四边形EFGH 表述最确切的是()A. 四边形EFGH是矩形B. 四边形EFGH是菱形C. 四边形EFGH是正方形D. 四边形EFGH是平行四边形4.下列命题的逆命题是真命题的是()A. 如果两个角是直角,那么它们相等B. 如果两个实数相等,那么它们的平方相等C. 如果一个四边形是菱形,那么它的四条边都相等D. 如果一个四边形是矩形,那么它的对角线相等5.式子√3−x在实数范围内有意义,那么()A. x<﹣3B. x<3C. x≤﹣3D. x≤36.若直角三角形两条直角边的边长分别为6和8,则斜边上的高是()A. 5B. 10C. 125D. 2457.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为()A. 14B. 15C. 16D. 178.已知四边形ABCD中,AB∥CD,添加下列条件仍不能判断四边形ABCD是平行四边形的是()A. AB=CDB. AD=BCC. AD∥BCD. ∠A+∠B=180°9.如图,以正方形ABCD的边AD为一边作等边△ADE,则∠AEB等于()A. 10°B. 15°C. 20°D. 12.5°10.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A. 6B. 12C. 18D. 24二、填空题11.依次连接菱形各边中点所得到的四边形是________.12.如图,矩形ABCD的对角线AC与BD相交于点O,∠AOB=120°,AD=3,则AC的长是________.13.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是________.14.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为________15.已知(x−y+3)2+√2−y=0,则x+y=________.16.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是________ .三、解答题(共9题;共62分)17.化简(1)(4 √12﹣3 √6)÷ √2;(2)√13×(2 √12﹣√75).18.先化简,再求值:x2x2+4x+4÷xx+2−x−1x+2,其中x=√2+2.19.如图,在4×3正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画线段EF,使得EF的长为√5,以AB,CD,EF三条线段能否构成直角三角形,并说明理由.20.如图,在四边形ABCD中,AB=AD=4,∠A=60°,∠ADC=150°,CD=3,求BC的长.21.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.22.如图,在▱ABCD中,点E,F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.23.如图,▱ABCD中,O是AB的中点,CO=DO.求证:▱ABCD是矩形.24.如图,在矩形ABCD中AD=12,AB=9,E为AD的中点,G是DC上一点,连接BE,BG,GE,并延长GE 交BA的延长线于点F,GC=5(1)求BG的长度;(2)求证:ΔBEG是直角三角形(3)求证:∠BGF=∠DGF25.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.答案一、单选题1. D2. C3. B4. C5. D6. D7. C8. B9. B 10. C二、填空题11. 矩形12. 6 13. (﹣5,4).14.45°15.1 16. √5三、解答题17. (1)[(2)[18. 解:原式=x2(x+2)2⋅x+2x−x−1x+2,=xx+2−x−1x+2,=1x+2,因为x=1√2+2=2−√2(√2+2)(2−√2)=2−√22,所以原式=12−√22+2=26−√2=2(6+√2)(6+√2)(6−√2)=6+√217.19. (1)[(2)[20. 解:如图,连接BD,∵AB=AD=4,∠A=60°,∴△ABD是等边三角形,∴BD=AB=4,∠ADB=60°,∵∠ADC=150°,∴∠BDC=∠ADC−∠ADB=90°,又∵CD=3,∴BC=√BD2+CD2=√42+32=5,即BC的长是5.21. 证明:连接AF,ED,EF,EF交AD于O,∵AE=DF,AE∥DF,∴四边形AEDF为平行四边形;∴EO=FO,AO=DO;又∵AB=CD,∴AO﹣AB=DO﹣CD; ∴BO=CO;又∵EO=FO,∴四边形EBFC是平行四边形.22.证明:如图,连接BD,交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF.∴OE=OF.∴四边形BEDF是平行四边形23. 证明:∵四边形ABCD是平行四边形,∴AD=BC,AD //BC,∴∠A+∠B=180°,∵O是AB的中点,∴AO=BO,在△DAO和△CBO中,{AD=BCAO=BODO=CO,∴△DAO≌△CBO(SSS),∴∠A=∠B,∵∠A+∠B=180°,∴∠A=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.24. (1)解:∵四边形ABCD为矩形,∴BC=AD=12,∠C=90°,∴BG= √BC2+GC2=13(2)证明:∵E为AD中点,∴AE=DE=6,∴BE= √AB2+AE2=3√13∵DG=CD-GC=4,∴EG= √GD2+DE2=2√13∴BG2=DG2+EG2, ∴ΔBEG是直角三角形(3)证明:∵AE=DE,∠FAE=∠D=90°,又∠AEF=∠DEG,∴△AEF≌△DEG,∴E为EG中点,又BE⊥FG,∴△BFG为等腰三角形,∴∠F=∠BGF,又BF∥CD,∴∠F= ∠DGF∴∠BGF=∠DGF25. (1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD(直角三角形斜边上的中线等于斜边的一半),∴四边形BECD是菱形(3)解:当∠A=45°时,四边形BECD是正方形,理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.。

2020-2021学年人教版八年级下期中考试数学试卷含答案解析

2020-2021学年人教版八年级下期中考试数学试卷含答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各点在直线y =2x +6上的是( )A .(﹣5,4)B .(﹣7,20)C .(23,223)D .(−72,1) 【解答】解:A 、当x =﹣5时,y =2×(﹣5)+6=﹣4,∴点(﹣5,4)不在直线y =2x +6上;B 、当x =﹣7时,y =2×(﹣7)+6=﹣8,∴点(﹣7,20)不在直线y =2x +6上;C 、当x =23时,y =2×23+6=223, ∴点(23,223)在直线y =2x +6上;D 、当x =−72时,y =2×(−72)+6=﹣1,∴点(−72,1)不在直线y =2x +6上.故选:C .2.下列说法正确的是( )A .有一组邻边相等的四边形是菱形B .一组对边平行,另一组对边相等的四边形是平行四边形C .对角线相等的四边形是矩形D .有一个角是直角的菱形是正方形【解答】解:有一组邻边相等的平行四边形是菱形,故选项A 错误;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如等腰梯形,故选项B 错误;对角线相等的平行四边形是矩形,故选项C 错误;一个角是直角的菱形是正方形,故选项D 正确;故选:D .3.如图,在长方形纸片ABCD 中,AB =4,AD =6.点E 是AB 的中点,点F 是AD 边上的一个动点.将△AEF 沿EF 所在直线翻折,得到△GEF .则GC 长的最小值是( )A.2√10−2B.2√10−1C.2√13D.2√10【解答】解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,如图所示根据折叠可知:GE=AE=12AB=2.在Rt△BCE中,BE=12AB=2,BC=6,∠B=90°,∴CE=√BE2+BC2=2√10,∴GC的最小值=CE﹣GE=2√10−2.故选:A.4.下列各式中,一定是二次根式的是()A.√2x B.√m3C.√x2+2D.√a−1【解答】解:A、当x<0时,√2x不是二次根式;B、√m3的指数是3,不是二次根式;C、x2+2>0,∴√x2+2是二次根式;D、当a<1时,a﹣1<0,√a−1不是二次根式;,故选:C.5.如果一次函数y=kx+b的图象经过一、二、三象限,那么k、b应满足的条件是()A.k>0,且b>0B.k<0,且b<0C.k>0,且b<0D.k<0,且b>0【解答】解:∵一次函数y=kx+b的图象经过一、二、三象限,∴其图象如图所示,∴直线从左向右逐渐上升,∴k>0,∵直线与y轴的交点在x轴的上方,∴b>0,故选:A.6.如图,在平行四边形ABCD中,AB=5,G是边BC的一点,DG=2,F是AG上一点,且∠BFC=90°,E是边BC的中点,若EF∥AB,则BC的长为()A.5B.6C.7D.8【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=5,∴CG=CD﹣DG=5﹣2=3,∵E是边BC的中点,且∠BFC=90°,∴EF=12BC,∵EF∥AB,AB∥CG,E是边BC的中点,∴F是AG的中点,∴EF是梯形ABCG的中位线,∴2EF=AB+CG,∴BC=AB+CG=5+3=8;故选:D.7.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m>nx﹣5n>0的整数解为()A.3B.4C.5D.6【解答】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故选:B.8.在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查杭州市出租车数量D.了解全班同学的家庭经济状况【解答】解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查杭州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.9.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理【解答】解:A、顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;B、平行四边形既是中心对称图形,又是轴对称图形,说法错误;C、对角线相等的四边形是矩形,说法错误;D、只要是证明两个直角三角形全等,都可以用“HL”定理,说法错误;故选:A.10.关于一次函数y=﹣3x+1,下列说法正确的是()A.图象过点(﹣1,3)B.y随x的增大而增大C.图象经过第一、二、三象限D.与y轴的交点坐标为(0,1)【解答】解:A、当x=﹣1,y=﹣3x+1=﹣3×(﹣1)+1=4,则点(﹣1,3)不在函数y=﹣3x+1图象上,所以A选项错误;B、由于k=﹣3<0,则y随x增大而减小,所以B选项错误;C、由于k=﹣3<0,则函数y=﹣3x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,所以C选项错误.D、与y轴的交点坐标为(0,1),所以D选项正确;故选:D.二.填空题(共8小题,满分24分,每小题3分)11.已知平面直角坐标系上有三个点,点A(2,0),B(5,2),C(3,4),以点A,点B,点C为顶点画平行四边形,则第四个顶点D的坐标为_(0,2)或(6,6)或(4,﹣2).【解答】解:以AC为对角线,将AB向上平移2个单位,再向左平移2个单位,A点对应的位置为(0,2)就是第四个顶点D;以AB为对角线,将BC向下平移4个单位,再向左平移1个单位,B点对应的位置为(4,﹣2)就是第四个顶点D′;以BC为对角线,将AB向上平移4个单位,再向右平移1个单位,B点对应的位置为(6,6)就是第四个顶点D″;∴第四个顶点D的坐标为:(0,2)或(6,6)或(4,﹣2),故答案为:(0,2)或(6,6)或(4,﹣2).12.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=20.【解答】解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.13.甲,乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:(1)这是一次100米赛跑;(2)乙在这次赛跑中的速度为8米/秒.【解答】解:(1)这是一次100米赛跑;(2)乙在这次赛跑中的速度为:100÷12.5=8(米/秒).故答案为:(1)100;(2)8.14.一组数据8、9、10、11、12的方差为 2 .【解答】解:这组数据的平均数是:15(8+9+10+11+12)=10, ∴数据的方差S 2=15[(8﹣10)2+(9﹣10)2+(10﹣10)2+(11﹣10)2+(12﹣10)2]=2.故答案为:2.15.已知等腰三角形的底角是30°,腰长为2√3,则它的周长是 6+4√3 .【解答】解:作AD ⊥BC 于D ,∵AB =AC ,∴BD =DC ,在Rt △ABD 中,∠B =30°,∴AD =12AB =√3,由勾股定理得,BD =√AB 2−AD 2=3,∴BC =2BD =6,∴△ABC 的周长为:6+2√3+2√3=6+4√3,故答案为:6+4√3.16.直线y =2x ﹣1与直线y =﹣2x +m 的交点在第四象限,则m 的取值范围是 ﹣1<m <1 .【解答】解:联立方程组{y =2x −1y =−2x +m, 解得{x =m+14y =m−12, ∵交点在第四象限,∴{m+14>0m−12<0,解得,﹣1<m <1.故答案为:﹣1<m <1.17.矩形纸片ABCD ,长AD =8cm ,宽AB =4cm ,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段.当图中存在30°角时,AE 的长为 4√33厘米或4√3厘米或(8−4√3) 厘米.【解答】解:①当∠ABE =30°时,AE =AB ×tan30°=4√33;②当∠AEB =30°时,AE =AB tan30°=33=4√3;③∠ABE =15°时,∠ABA ′=30°,延长BA ′交AD 于F ,如下图所示,设AE =x ,则EA ′=x ,EF =x sin60°=2√3x 3, ∵AF =AE +EF =AB tan30°=4√33, ∴x +2√3x 3=4√33, ∴x =8﹣4√3,∴AE =8﹣4√3.故答案为:4√33厘米或4√3厘米或(8﹣4√3)厘米. 18.如图,在平面直角坐标系中,四边形ABCO 是正方形,点B 的坐标为(4,4).(1)直线y =mx ﹣2恰好把正方形ABCO 的面积分成相等的两部分,则m = 2 ;(2)若直线y =mx ﹣2与正方形ABCO 的边有两个公共点,则m 的取值范围是 m >12.【解答】解:(1)∵直线y =mx ﹣2恰好把正方形ABCO 的面积分成相等的两部分, ∴直线必经过正方形的中心,∵点B 的坐标为(4,4),∴中心为(2,2),代入直线中得:2=2m ﹣2,m =2;(2)∵四边形ABCO 是正方形,点B 的坐标为(4,4),∴C (4,0),把C (4,0)代入y =mx ﹣2得4m ﹣2=0,∴m =12,∴当m >12时,直线y =mx ﹣2与正方形ABCO 的边有两个公共点,故答案为:2,m >12.三.解答题(共4小题,满分16分)19.(5分)计算:(3√2−√6)2+√48.【解答】解:(3√2−√6)2+√48=18﹣6√12+6+4√3=18﹣12√3+6+4√3=24﹣8√3.20.(5分)已知直线y =kx +2与y 轴交于点A .将点A 向右平移2个单位,再向上平移1个单位,得到点B.(1)求点A,B坐标;(2)点B关于x轴的对称点为点C,若直线y=kx+2与线段BC有公共点,求k的取值范围.【解答】解:(1)∵直线y=kx+2与y轴交于点A,∴A(0,2),∵将点A向右平移2个单位,再向上平移1个单位,得到点B.∴B(2,3);(2)∵点B关于x轴的对称点为点C,B(2,3),∴C(2,﹣3),把B(2,3)代入y=kx+2得,3=2k+2,解得k=1 2,把C(2,﹣3)代入y=kx+2得,﹣3=2k+2,解得k=−5 2,∴若直线y=kx+2与线段BC有公共点,k的取值范围是−52≤k≤12.21.(6分)如图,在▱ABCD中,M、N分别是AD、BC的中点,∠AND=90°,连接CM交DN 于点O .(1)求证:△ABN ≌△CDM ; (2)求证:四边形CDMN 为菱形;(3)过点C 作CE ⊥MN 于点E ,交DN 于点P ,若PE =1,∠1=∠2,求NC 的长.【解答】(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,∠B =∠CDM , ∵M 、N 分别是AD ,BC 的中点, ∴BN =DM ,∵在△ABN 和△CDM 中,{AB =CD∠B =∠CDM BN =DM ,∴△ABN ≌△CDM (SAS );(2)证明:∵M 是AD 的中点,∠AND =90°, ∴NM =AM =MD , ∵BN =NC =AM =DM , ∴NC =MN =DM , ∵NC ∥DM ,NC =DM , ∴四边形CDMN 是平行四边形, 又∵MN =DM ,∴四边形CDMN 是菱形.(3)解:∵M 是AD 的中点,∠AND =90°, ∴MN =MD =12AD , ∴∠1=∠MND , ∵AD ∥BC , ∴∠1=∠CND , ∵∠1=∠2,∴∠MND =∠CND =∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∠END+∠CNP+∠2=180°﹣∠CEN=90°,又∵∠END=∠CNP=∠2,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴NC=CEcos30°=√32=2√3.22.疫情期间,为了科普卫生防疫知识,学校在初一,初二两个年级组织了一次在线新冠肺炎卫生防疫知识竞赛,小艾同学分别从两个年级各随机抽取了20名同学的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.(1)收集数据:两个年级各抽取的20名学生的成绩如表:初一98989292929292898988 88848383797978786958初二99969696969696949289 88858078727271655855(2)整理、描述数据:根据上面得到的两组样本数据,绘制了频数分布直方图:请补全初二的频数分布直方图.(3)分析数据:两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差初一85.1a8889.85初二83.796b184.01请直接写出a和b的值.(4)得出结论根据以上信息,判断初二年级对卫生防疫知识掌握的较好,理由如下:初二年级的众数高于初一年级,初二年级的中位数高于初一年级.(至少从两个不同的角度说明判断的合理性).【解答】解:(2)由(1)中的表格可知,初二学生60≤x<70的频数为1,70≤x<80的频数为4,补全的频数分布直方图如右图所示;(3)由(1)中的表格可知,a=92,b=(89+88)÷2=88.5,即a和b的值分比为92,88.5;(4)根据题目中的信息可知,初二年级对卫生防疫知识掌握的较好,理由如下:初二年级的众数高于初一年级,初二年级的中位数高于初一年级.四.解答题(共3小题,满分24分,每小题8分)23.(8分)如图,△ABC中,AB=BC=5cm,AC=8cm,点P从顶点B出发,沿B→C→A 以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm,某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x012345678910111213 y0.0 1.0 2.0 3.0 4.0 5.0 4.2 3.6 3.2 3.0 3.2 3.6 4.2 5.0要求:补全表格中相关数值(保留一位小数)(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当x约为8.0或2.5时,BP=CP.【解答】解:(1)当x=5时,点P与点C重合,故y=BP=BC=5,当x=10时,如下图所示:过点P作PH⊥AC于点H,在Rt△BCH中,BC=5,CH=12AC=4,则BH=3,则PH=PC﹣CH=5﹣4=1,在Rt△BHP中,y=BP=√BH2+PH2=√10≈3.2,注:也可通过表格数据的对称性,确定此时,y=3.2;故答案为:5.0;3.2;(2)描点绘出如下函数图象:(3)PC=x﹣5,而BP=CP,即y=x﹣5,画出函数y=x﹣5的图象与原图象的交点即为所求,从图象看,x约为8.0,此外,当P在线段BC中点时,即x=2.5,故答案为8.0或2.5.24.(8分)如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是DG=BE;②直线DG与直线BE之间的位置关系是DG⊥BE;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).【解答】解:(1)①如图②中,∵四边形ABCD 和四边形AEFG 是正方形, ∴AE =AG ,AB =AD ,∠BAD =∠EAG =90°, ∴∠BAE =∠DAG , 在△ABE 和△DAG 中, {AB =AD∠BAE =∠DAG AE =AG, ∴△ABE ≌△ADG (SAS ), ∴BE =DG ;②如图2,延长BE 交AD 于T ,交DG 于H . 由①知,△ABE ≌△DAG , ∴∠ABE =∠ADG , ∵∠ATB +∠ABE =90°, ∴∠ATB +∠ADG =90°, ∵∠ATB =∠DTH , ∴∠DTH +∠ADG =90°, ∴∠DHB =90°, ∴BE ⊥DG ,故答案为:BE =DG ,BE ⊥DG ;(2)数量关系不成立,DG =2BE ,位置关系成立. 如图③中,延长BE 交AD 于T ,交DG 于H .∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴ABAD =AEAG=12,∴△ABE∽△ADG,∴∠ABE=∠ADG,BEDG =1 2,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴GH ET=AH AT=AG AE=2,∴GH =2x ,AH =2y , ∴4x 2+4y 2=4, ∴x 2+y 2=1,∴BG 2+DE 2=(2x )2+(2y +2)2+x 2+(4﹣y )2=5x 2+5y 2+20=25.25.(8分)如图1,直线y =43x +4与x 轴、y 轴分别交于A 、B 两点,以A 为顶点,以AB 为腰在第二象限内作等腰直角△ABC . (1)求点C 的坐标;(2)如图2,若M 为x 轴上的一个动点,N 为直线AB 上的一个动点,以A 、C 、M 、N 为顶点的四边形是平行四边形,请直接写出满足条件的M 点、N 点坐标;(3)如图3,P 为y 轴负半轴上的一个动点,当P 点沿y 轴负方向向下运动时,以P 为顶点,以AP 为腰作等腰Rt △APD ,过D 作DE ⊥x 轴于E 点,求证:OP ﹣DE 为定值.【解答】解:(1)过点C 作CM ⊥x 轴于M 点,如图1,∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴A (﹣3,0),B (0,4),∴OA =3,OB =4, ∵CM ⊥OA ,AC ⊥AB ,∴∠MAC +∠OAB =90°,∠OAB +∠OBA =90° 则∠MAC =∠OBA 在△MAC 和△OBA 中, {∠CMA =∠AOB =90°∠MAC =∠OBA AC =BA, ∴△MAC ≌△OBA (AAS )则CM =OA =3,MA =OB =4,则点C 的坐标为(﹣7,3).(2)如图2中,当点N 在x 轴上方时,CN ∥x 轴,此时N (−34,3),可得M (−374,0)或M ′(134,0).当点N ′在x 轴下方时,可得N ′(−214,﹣3),此时M (−214,0).综上所述,满足条件的点N (−34,3),M (−374,0)或N (−34,3),M (134,0)或N(−214,﹣3),M (−374,0).(3)如图3中,过点D 作DQ ⊥OP 于Q 点,则OP ﹣DE =PQ ,∵∠APO +∠QPD =90°,∠APO +∠OAP =90°, ∴∠QPD =∠OAP , 在△AOP 和△PDQ 中, {∠AOP =∠PQD =90°∠QPD =∠OAP AP =PD, ∴△AOP ≌△PDQ (AAS ) ∴OP ﹣DE =PQ =OA =3.。

2020-2021学年人教版八年级下学期期中数学试卷及答案

2020-2021学年人教版八年级下学期期中数学试卷及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在下列四个图案中,不是中心对称图形的是( )A .B .C .D .【解答】解:根据中心对称图形的概念可得:D 选项不是中心对称图形.故选:D .2.式子√2x+1x−1有意义的x 的取值范围是( ) A .x ≥−12且x ≠1 B .x ≠1 C .x ≥−12 D .x >−12且x ≠1 【解答】解:由题意,得2x +1≥0且x ﹣1≠0,解得x ≥−12且x ≠1,故选:A .3.把方程x 2+6x +5=0化为(x +h )2=k 的形式( )A .(x +3)2=﹣2B .(x +3)2=2C .(x +3)2=4D .(x +3)2=﹣4 【解答】解:∵x 2+6x +5=0,∴x 2+6x =﹣5,∴x 2+6x +9=﹣5+9,即(x +3)2=4,故选:C .4.如图,E 、F 在▱ABCD 的对角线AC 上,AE =EF =CD ,∠ADF =90°,∠BCD =54°,则∠ADE 的大小为( )A.46°B.27°C.28°D.18°【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=12AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=54°﹣x,∴2x=54°﹣x,解得:x=18°,即∠ADE=18°;故选:D.5.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4【解答】解:A、√2与√3不能合并,所以A选项错误;B、原式=5,所以B选项正确;C、原式=√2,所以C选项错误;D、原式=4,所以D选项错误.故选:B.6.某篮球队5名场上队员的身高(单位:cm)是:178,180,183,184,190.现用一名身高185cm的队员换下场上身高190cm的队员,与换人前相比,场上队员身高的()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大【解答】解:用一名身高185cm的队员换下场上身高190cm的队员,与换人前相比,场上队员身高的和变小,而人数没变,所以他们的平均数变小,由于数据的波动性变小,所以数据的方差变小.故选:A.7.已知关于x的一元二次方程x2﹣(2m﹣1)x+m2=0有实数根,则m的取值范围是()A.m≠0B.m≤14C.m<14D.m>14【解答】解:根据题意得,△=b2﹣4ac=[﹣(2m﹣1)]2﹣4m2=﹣4m+1≥0,解得:m≤1 4,故选:B.8.若正多边形的一个外角是60°,则这个正多边形的边数是()A.4B.5C.6D.7【解答】解:设所求正n边形边数为n,则60°•n=360°,解得n=6.故正多边形的边数是6.故选:C.9.某旅游景区去年第二季度游客数量比第一季度下降20%,第三、四季度游客数量持续增长,第四季度游客数量比第一季度增长15.2%,设第三、四季度的平均增长率为x,下列方程正确的是()A.(1﹣20%)(1+x)2=1+15.2%B.(1﹣20%)(1+2x)=1+15.2%C.1+2x=(1﹣20%)(1+15.2%)D.(1+x)2=20%+15.2%【解答】解:设第三、四季度销售额的平均增长率为x,根据题意得:(1﹣20%)(1+x)2=1+15.2%,故选:A.10.如图,在▱ABCD中,BE⊥CD,BF⊥AD,∠EBF=45°,CE=3,DF=1,则▱ABCD 的面积是()A.18﹣3√2B.15+3√2C.15﹣3√2D.18+3√2【解答】解:∵BE⊥CD,BF⊥AD,∴∠BEC=90°,∠BED=∠BFD=90°,∵∠EBF=45°,∴∠D=360°﹣90°﹣90°=135°,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠C=180°﹣∠D=45°,∴∠A=∠C=45°,∵CE=3,∴BE=EC=3,∴BC=3√2,∵DF=1,∴AF=BF=3√2−1,∴▱ABCD的面积是AD×BF=3√2×(3√2−1)=18﹣3√2.故选:A.二.填空题(共6小题,满分24分,每小题4分)11.(4分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+1)*3=0的解为x1=2,x2=﹣4.【解答】解:∵(x+1)*3=0,∴(x+1)2﹣32=0,∴(x+1)2=9,x+1=±3,所以x1=2,x2=﹣4.故答案为x1=2,x2=﹣4.12.(4分)已知√18−n是整数,自然数n的最小值为2.【解答】解:∵√18−n是整数,n为最小自然数,∴18﹣n=16,∴n=2,故答案为:2.13.(4分)已知:如图,直线a,b被c所截,∠1,∠2是同位角,且∠1≠∠2,求证:a 不平行b.证明:假设a平行b,则∠1=∠2,(两直线平行,同位角相等),这与∠1≠∠2相矛盾,所以假设不成立,所以a不平行b.【解答】证明:假设a平行b,则∠1=∠2,(两直线平行,同位角相等)这与∠1≠∠2相矛盾,所以假设不成立,所以a不平行b.14.(4分)如图,在平行四边形ABCD中,∠DAB的平分线AE交DC于点E,连接BE,若AE=AB,∠D=120°,则∠EBC=45°.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=120°,AB∥CD,∴∠BAD=180°﹣∠D=60°,∵AE平分∠DAB,∴∠BAE=12×60°=30°,∵AE=AB,∴∠ABE=12×(180°﹣30°)=75°,∴∠EBC =∠ABC ﹣∠ABE =45°;故答案为:45.15.(4分)一张长方形的会议桌,长3米,宽2米,有一块台布的面积是桌面面积的1.5倍,并且铺在桌面上时,各边垂下的长度相同,则台布各边垂下的长度是−5+√374 米.(结果保留根号)【解答】解:设各边垂下的长度为x 米,根据题意得:(3+2x )(2+2x )=1.5×2×3,化简得4x 2+10x ﹣3=0,解这个方程得:x =−5±√374, 因为x =−5−√374不符合题意,舍去, 答:台布各边垂下的长度是−5+√374米. 故答案为:−5+√374.16.(4分)定义:有一组对角互补的四边形叫做互补四边形.如图,在互补四边形纸片ABCD中,BA =BC ,AD =CD ,∠A =∠C =90°,∠ADC =45°.将纸片先沿直线BD 对折,再将对折后的纸片从一个顶点出发的直线裁剪,把剪开的纸片打开后铺平,若铺平后的纸片中有一个面积为8√2的平行四边形,则CD 的长为 4+2√2或4√2+4 .【解答】解:分两种情况:①如图1所示:∵四边形BMDN 是平行四边形,∴BM ∥AD ,∴∠MBD =∠NDB ,在t △BCD 和t △BAD 中,{BD =BD BC =BA, ∴Rt △BCD ≌Rt △BAD (HL ),∴∠MDB =∠NDB ,∴∠MBD =∠MDB ,∴BM=DM,∴四边形BMDN是菱形,∴BN=BM=DM,∠MBN=∠ADC=45°,BM∥AD,∴∠BMC=∠ADC=45°,∵∠C=90°,∴△BCM是等腰直角三角形,∴CM=√22BM,设BM=BN=DM=x(x>0),作NH⊥BM于H,则NH=√22BN,设NH=x,则BM=BN=DM=√2x,∵菱形BMDN的面积=BM•NH=√2x×x=8√2,解得:x=2√2,则BM=DM=4,CM=2√2,∴DC=DM+CM=4+2√2;②如图2所示:延长AE交CD于点N,过点B作BF⊥AE于点F,则CN=BF,FN=BC,∵四边形ABCE为平行四边形,AB=BC,∴四边形ABCE是菱形,∴AB∥CE,AE∥BC,AB=BC=AE,∵∠BAD=∠BCD=90°,∠ADC=45°,∴∠ABC=135°,∠BAE=45°,∴△BAF是等腰直角三角形,∴AB=√2BF=√2AF,∵∠BAD=90°,∴∠DAN=45°,∴∠AND=90°,△ADN是等腰直角三角形,∴AN=DN,设BF=x(x>0),则AB=AE=√2x,∵四边形ABCE面积为8√2,∴√2x×x=8√2,解得:x=2√2,∴CN=BF=2√2,DN=AN=x+√2x=2√2+4,∴CD=CN+DN=4√2+4;综上所述,CD的长为4+2√2或4√2+4;故答案为:4+2√2或4√2+4.三.解答题(共9小题,满分66分)17.(6分)(1)计算:√18+√2(√2−2)(2)解方程:x(x﹣3)+2x﹣6=0【解答】解:(1)原式=3√2+2﹣2√2=2+√2;(2)原方程可变形为:x(x﹣3)+2(x﹣3)=0(x﹣3)(x+2)=0x﹣3=0或x+2=0,解得:x1=3,x2=﹣2.18.(6分)如图,坐标平面内的网格中,每个小正方形的边长均为1个单位.△ABC的三个顶点在图中相应的格点上,点B的坐标为(﹣3,4).(1)请在网格平面内作出平面直角坐标系;(2)作出与△ABC关于原点对称的图形△A1B1C1;(3)请直接写出:以A1,B1,C1,D1为顶点的平行四边形的第四个顶点D1的坐标(写出所有情况).【解答】解:(1)平面直角坐标系如图所示.(2)如图,△A1B1C1即为所求.(3)D1(0,﹣4),D2(0,6),D3(6,﹣4).19.(8分)为了了解八年级学生的课外阅读情况,学校随机调查了该年级25名学生,得到他们上周双休日课外阅读时间(记为t,单位:时)的一组样本数据,其扇形统计图如图所示.(1)阅读时间为4小时的占百分之几?(2)试确定这个样本的中位数和众数,并求出平均数.【解答】解:(1)1﹣12%﹣16%﹣24%﹣12%﹣8%=28%,答:阅读时间为4小时的占28%;(2)阅读时间出现最多的是4小时,占28%,因此阅读时间的众数是4小时,从小到大排列,所占百分比处在50%的阅读时间是3小时,因此阅读时间的中位数是3小时,x=1×12%+2×16%+3×24%+4×28%+5×12%+6×8%=3.36(时),答:学生上周双休日课外阅读时间的众数是4小时,中位数是3小时,平均数是3.36小时.20.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD=√CE2−DE2=√42−22=2√3.∵D是BC的中点,∴BC=2CD=4√3.21.(8分)如图,AO=BO=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由A以2cm/s的速度向B爬行;同时另一只蚂蚁由O点以3cm/s的速度沿OC方向爬行.问:是否存在这样的时刻,使两只小蚂蚁与点O点组成的三角形面积为450cm2?【解答】解:有两种情况:(1)如图1,当蚂蚁在AO 上运动时,设xs 后两只蚂蚁与O 点组成的三角形面积为450cm 2,由题意,得12×3x ×(50﹣2x )=450, 整理,得x 2﹣25x +150=0,解得x 1=15,x 2=10.(2)如图2,当蚂蚁在OB 上运动时,设x 秒钟后,两只蚂蚁与O 点组成的三角形面积为450cm 2,由题意,得12×3x (2x ﹣50)=450, 整理,得x 2﹣25x ﹣150=0,解得x 1=30,x 2=﹣5(舍去).答:15s ,10s ,30s 后,两蚂蚁与O 点组成的三角形的面积均为450cm 2.22.(10分)如图,直线y 1=−12x +b 分别与x 轴、y 轴交于A ,B 两点,与直线y 2=kx ﹣6交于点C (4,2).(1)b = 4 ;k = 2 ;点B 坐标为 (0,4) ;(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.【解答】解:(1)∵直线y2=kx﹣6交于点C(4,2),∴2=4k﹣6,∴k=2,∵直线y1=−12x+b过点C(4,2),∴2=﹣2+b,∴b=4,∴直线解析式为:y1=−12x+4,直线解析式为y2=2x﹣6,∵直线y1=−12x+b分别与x轴、y轴交于A,B两点,∴当x=0时,y=4,当y=0时,x=8,∴点B(0,4),点A(8,0),故答案为:4,2,(0,4);(2)∵点E在线段AB上,点E的横坐标为m,∴E(m,−12m+4),F(m,2m﹣6),①当0≤m≤4时∴EF=−12m+4−(2m−6)=10−52m.∵四边形OBEF是平行四边形,∴BO=EF,∴4=10−52 m,解得:m=12 5;②当4≤m≤8时,2m﹣6﹣(−12m+4)=4,解得m=28 5,综上所述:当m=125或m=285时,四边形OBEF是平行四边形;(3)存在.理由如下:①若以AB为边,AP为边,如图1所示:∵点A(8,0),B(0,4),∴AB=4√5.∵四边形BAPQ为菱形,∴AP=AB=4√5=BQ,AP∥BQ,∴点Q(4√5,4),点Q'(﹣4√5,4),若以AB为边,AP是对角线,如图1,∵四边形ABPQ是菱形,∴OB=OQ=4,∴点Q(0,﹣4);②以AB为对角线,如图2所示:∵四边形APBQ是菱形,∴AP =BP =BQ ,AP ∥BQ ,∵BP 2=OP 2+OB 2,∴AP 2=(8﹣AP )2+16,∴AP =5,∴BQ =5,∴点Q (5,4)综上所述:若点 P 为 x 轴上一点,当点Q 坐标为 (−4√5,4)或(4√5,4)或(0,﹣4)或 (5,4)时,使以P ,Q ,A ,B 为顶点的四边形是菱形.23.(5分)计算:√(√3−√2)2= √3−√2 .【解答】解:因为√3>√2,所以√3−√2>0,所以√(√3−√2)2=|√3−√2|=√3−√2.故答案为:√3−√2.24.(5分)如果x ,y 是两个实数(xy ≠1),且3x 2﹣2005x +2=0,2y 2﹣2005y +3=0,则x 2y +x y 2的值等于 40109 .【解答】解:∵2y 2﹣2005y +3=0,∴y ≠0,∴2﹣2005×1y +3(1y)2=0,设1y =z ,则3z 2﹣2005z +2=0, ∵xy ≠1,∴x ≠1y ,∴z ,x 是方程3m 2﹣2005m +2=0的两个不相等的实数根,∴x +z =20053,zx =23, ∴x 2y +x y=x 2z +xz 2=xz (x +z )=23×20053 =40109. 故答案为:40109.25.(10分)在直角坐标系中,O 为坐标原点,点A (4,0),点B (0,4),C 是AB 中点,连接OC ,将△AOC 绕点A 顺时针旋转,得到△AMN ,记旋转角为α,点O ,C 的对应点分别是M ,N .连接BM ,P 是BM 中点,连接OP ,PN .(Ⅰ)如图①.当α=45°时,求点M 的坐标;(Ⅱ)如图②,当α=180°时,求证:OP =PN 且OP ⊥PN ;(Ⅲ)当△AOC 旋转至点B ,M ,N 共线时,求点M 的坐标(直接写出结果即可).【解答】解:(Ⅰ)如图①中,过点M 作MD ⊥OA 于D .∵A (4,0),B (0,4),∴OA =OB =4,∵C 是AB 的中点,∴OC =CB =CA =12AB ,且OC ⊥AB ,∴△AOC 是等腰直角三角形,∴当α=45°时,点M 在AB 上,由旋转可知:△AOC ≌△AMN ,∴AM=OA=4.MD=AD=√22AM=2√2,∴OD=OA=AD=4﹣2√2,∴M(4﹣2√2,2√2).(Ⅱ)如图②,当α=180°时,点B,A,N共线,O,A,M共线,∵∠BNM=∠BOM=90°,P是BM的中点,∴OP=PN=PB=PM,∴∠PMN=∠PNM,∠POB=∠PBO,∵∠NPM=180°﹣2∠PMN,∠BPO=180°﹣2∠PBO,∴∠MPN+∠BPO=360°﹣2(∠PMN+∠PBO)∴∠MPN+∠BPO=360°﹣2(45°+∠PMO+∠PBO),∵∠PMO+∠PBO=90°,∴∠MPN+∠BPO=90°,∴∠OPN=180°﹣(∠MPN+∠BPO)=90°,∴OP⊥PN.(Ⅲ)①如图③﹣1中,当点M在线段BN上时,在Rt△ABN中,∵AB=4√2,AN=2√2,∴AB=2AN,∴∠ABN=30°,∴BN=√3AN=2√6,BM=BN=MN=2√6−2√2,过点M作MK⊥OB于K,在MK上截取一点J,使得BJ=MJ,设BK=a,∵∠ABO=45°,∴∠MBK=75°,∠KMB=15°,∵JB=JM,∴∠JBM=∠JMB=15°,∴∠BJK=∠JBM+∠JMB=30°,∴BJ=JM=2a,KJ=√3a,∵BM2=BK2+KM2,∴(2√6−2√2)2=a2+(2a+√3a)2,解得a=4﹣2√3(负根已经舍弃),∴KM=2a+√3a=2,OK=2√2,∴M(2,2√3),②如图③﹣2中,当点N在线段BM上时,同法可得M(2,﹣2√3),综上所述,满足条件的点M的坐标为(2,2√3)或(2,﹣2√3).。

2020—2021学年第二学期八年级数学期中测试参考答案

2020—2021学年第二学期八年级数学期中测试参考答案

2020-2021学年第二学期期中测试八年级数学试题参考答案题号 1 2 3 4 5 6 7 8 9 10 选项 BAACDBCBAD11. 2x ≥12. 513. 10214. 5015. 0.816. 3三、解答题(本大题共9小题,共86分) 17.(8分)(1)解:原式22232=-+……3′(2)解:原式12252=÷…3′ 922=……………4′ 125= …………4′ 18.(8分)解:原式224x x x x--=÷ …………2′ 当22x =-时 ……………7′ 2(2)(2)x x x x x -=⋅+- ……4′ 原式2222==-+ ……8′ 12x =+ ……………………6′ 19. ∵四边形ABCD 为平行四边形,∴AB =DC =6,AD =BC =10,AB ∥DC ……3′ ∴∠ABE =∠CFB. 又∵BF 平分∠ABC , ∴∠ABE =∠FBC.∴∠FBC =∠CFB ………6′ ∴BC =CF =10.∴DF =CF -DC =10-6=4. ………8′20. 证明:∵AB ∥CD , ∴∠BAE =∠CFE. ………1′ ∵E 是BC 的中点, ∴BE =CE. ………2′在△ABE 和△FCE 中,⎩⎪⎨⎪⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS).………5′∴AE=EF.又∵BE=CE,∴四边形ABFC是平行四边形.………8′21.(1)画出三角形得3分,求出面积为2,得6分。

(2)画出平行四边形,得8分。

22.(1)在△BCD中,∵CD⊥AB,∴由勾股定理得BD2+CD2=BC2∴CD2=BC2-BD2=152-92=144∴CD=12. ……………3′(2)在△ACD中,∵CD⊥AB,∴由勾股定理得CD2+AD2=AC2.∴AD2=AC2-CD2=202-122=256∴AD=16. ……………6′∴AB=AD+BD=16+9=25. ………7′(3)∵BC2+AC2=152+202=625,AB2=252=625,∴AB2=BC2+AC2∴由勾股定理的逆定理得△ABC是直角三角形.……10′23.(1)证明:连接BD交AC于O,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AB ∥CD ,AB =CD , ∴∠BAE =∠DCF , ∵BE ⊥AC ,DF ⊥AC , ∴∠AEB =∠CFD =90°,在△ABE 和△CDF 中,BAE DCF AEB CFDAB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF (AAS ), …………4′ ∴AE =CF , ∴OE =OF , 又∵OB =OD ,∴四边形BEDF 为平行四边形; …………6′ (2)解:由(1)得:OE =OF =12EF =1, ∵BE ⊥AC , ∴∠BEO =90°,∴OB =22224117BE OE +=+=, ………9′ ∴BD =2OB =217. …………10′24.(12分)解:(1)第n 个式子为11n n n n=+-++; …………4′(2)2132143n n +++⋯++++++ ()()()()2132431n n =-+-+-+⋯++-1119n =+-=,∴解得399n =; …………8′(3)不等式的左边()()()()213243109=-+-+-+⋯+-213243109=-+-+-+⋯+- 101=-, …………10′91016<<,3104∴<<, 21013∴<-<,∴ 1013-<,即不等式成立. …………12′25.(14分)解:(1)由图可得,12×(a+b )(a+b )=12ab+12c 2+12ab , ∴a 2+2ab+b 2=2ab+c 2, ∴a 2+b 2=c 2; …………5′ (2)当a=1,b=2时,可得:c=5 …………6′ 如图1时:四边形的周长为:4+25;如图2时,四边形的周长为:6;如图3时,四边形的周长为:2+25;综上,图1是周长最大的四边形,周长为:4+25;………10′(3)满足条件的在x 轴上的点的坐标:C 1(1+5,0).C 2(1-5,0)、C 3(﹣1,0)、C 43(,0)2-………14′。

2020-2021学年八年级下期中数学试卷及答案解析

2020-2021学年八年级下期中数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个【解答】解:式子“3x >y ;4x ﹣3y ≥1;4x <0,”属于不等式, 故选:B .3.下列计算正确的是( )A .(−32)﹣1=32B .1a+1b=2a+bC .a 2−b 2a−b=a +bD .(−120)0=0 【解答】解:A 、原式=−23,错误; B 、原式=a+bab,错误; C 、原式=(a+b)(a−b)a−b=a +b ,正确;D 、原式=1,错误; 故选:C .4.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB【解答】解:∵AC =AD ,BC =BD , ∴AB 是线段CD 的垂直平分线, 故选:C .5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)=(x+y)2(x−y). A .1个B .2个C .3个D .4个【解答】解:①(3b 22a )3=27b 63,故选项错误;②(2x x+y )2=4x 2x 2+2xy+y 2,故选项错误;③−a+b −a−b =a−b a+b,故选项错误;④−x+y x−y =−1,故选项正确;⑤x+y x+y=1,故选项错误;⑥(x−y)−2(x+y)=(x+y)2(x−y),故选项正确;所以正确的有2个. 故选:B .6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A .2个B .3个C .4个D .5个【解答】解:①∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,AC=BC,∵CE=12BC,F是AC的中点,∴CF=CE,∴∠E=∠CFE,∵∠ACB=∠E+∠CFE=60°,∴∠E=30°,∴∠BGE=90°,∴EG⊥AB,故①正确;②设AG=x,则AF=FC=CE=2x,∴FG=√3x,BE=6x,Rt△BGE中,BG=3x,EG=3√3x,∴EF=EG﹣FG﹣3√3x−√3x=2√3x,∴GF=12EF,故②正确;③如图,过N作NH⊥AC于H,连接BN,等边三角形ABC,∵AD⊥BC,∴AD平分∠BAC,BN=CN,∵MN⊥AB,∴NH=NM,∵MN是BG的垂直平分线,∴BN=NG,∴BN=CN=NG,在Rt△NGM和Rt△NCH中,{MN=NHGN=NC,∴Rt△NGM≌Rt△NCH(HL),∴∠GNM=∠CNH,∴∠MNH=∠CNG,∵∠ANM=∠ANH=60°,∴∠CNG=120°,故③正确;④∵MN是BG的垂直平分线,∴BM=MG=32x,∴AM=x+32x=52x,等边△ABC中,AD⊥BC,∴∠BAD=30°,∴MN=5√3x 6,∴GN=√GM2+MN2=(32x)2+(5√3x6)2=√39x2≠FG,故④不正确;⑤∵BN=CN=NG,∴∠DCN=∠DBN,∠NBM=∠NGM,∵∠ACN=∠ACB﹣∠DCN=60°﹣∠DBN=∠ABN=∠NGM,∵MG=32x,MN=5√36x,∴MG≠MN,∴∠NGM≠∠MNG,∴∠MNG≠∠ACN,故⑤不正确;其中正确的有:①②③,一共3个,故选:B.二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x 的不等式为 10x ﹣5(20﹣x )>160 . 【解答】解:设他答对x 道题,则答错或不答的题数为(20﹣x )道, 根据题意,可列出关于x 的不等式为10x ﹣5(20﹣x )>160, 故答案为:10x ﹣5(20﹣x )>160. 8.若关于x 的分式方程2x−3+x+m 3−x=2有增根,则m 的值为 ﹣1 .【解答】解:方程两边都乘(x ﹣3),得 2﹣x ﹣m =2(x ﹣3) ∵原方程增根为x =3,∴把x =3代入整式方程,得2﹣3﹣m =0, 解得m =﹣1. 故答案为:﹣1.9.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 168 cm 2.【解答】解:∵直角梯形ABCD 沿AD 方向平移到梯形EFGH , ∴HG =CD =24,∴DW =DC ﹣WC =24﹣6=18,∵S 阴影部分+S 梯形EDWF =S 梯形DHGW +S 梯形EDWF , ∴S 阴影部分=S 梯形DHGW =12(DW +HG )×WG =12×(18+24)×8=168(cm 2). 故答案为168.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为23【解答】解:由图知△DEF 是由△ABC 向右平移3个单位,再向下平移2个单位得到的, ∴a =3、b =2, 则ba=23,故答案为:23.11.不等式组﹣1<x <4的整数解有 4 个.【解答】解:在﹣1<x <4范围内的整数只有0,1,2,3, 所以等式﹣1<x <4的整数解有4个, 故答案为4.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 26 .【解答】解:∵BO 平分∠ABC , ∴∠MBO =∠CBO , ∵MN ∥BC , ∴∠MOB =∠CBO , ∴∠MOB =∠MBO , ∴OM =BM , 同理CN =NO , ∴BM +CN =MN ,∴△AMN 的周长是AN +MN +AM =AN +CN +OM +ON =AB +AC =12+14=26. 故答案为:26.三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算题(1)分解因式:2x2y﹣8xy+8y(2)解方程:xx−1=3x2−2x+1【解答】解:(1)原式=2y(x2﹣4x+4)=2y(x﹣2)2;(2)去分母得:2x=﹣3x+2x﹣2,解得:x=−2 3,经检验x=−23是分式方程的解.14.(6分)先化简,再求值:(2−x−1x+1)÷x2+6x+9x2−1,其中x=2.【解答】解:(2−x−1x+1)÷x2+6x+92=2(x+1)−(x−1)x+1⋅(x+1)(x−1)(x+3)2=2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2=x+3 x+1⋅(x+1)(x−1)(x+3)2=x−1 x+3,当x=2时,原式=2−12+3=15.15.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A 1B 1C 1为所作; (2)①画如图,△A 2B 2C 2为所作;②点B 2的坐标为(﹣3,3). 故答案为(﹣3,3).16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.【解答】解:解方程组{x +y =m +22x −y =5m +4得:{x =2m +2y =−m ,根据题意,得:{2m +2≥0−m >0,解得:﹣1≤m <0, 则整数m =﹣1.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .【解答】证明:如图,连接DF,∵D是CB的中点,∴CD=BD.∵将△ACD沿AD折叠后得到△AED,∴CD=ED,∠AED=∠C=90°,∴BD=ED,∠DEF=90°,∵BF∥AC,∠C=90°,∴∠CBF=180°﹣∠ACB=90°,∴∠DBF=∠DEF=90°,在Rt△DBF和Rt△DEF中,{DF=DFDE=DB,∴Rt△DBF≌Rt△DEF(HL),∴BF=EF.四.解答题(共3小题,满分24分,每小题8分)18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:{y=2x−1y=−12x+32的解;(2)不等式kx+b<0的解集是x>3;(3)当x≤1时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【解答】解:(1)把A (0,﹣1),P (1,1)分别代入y =mx ﹣n 得{−n =−1m −n =1,解得{m =2n =1,所以直线l 1的解析式为y =2x ﹣1,把P (1,1)、B (3,0)分别代入y =kx +b 得{k +b =13k +b =0,解得{k =−12b =32, 所以直线l 2的解析式为y =−12x +32,所以交点P 的坐标(1,1)是一元二次方程组{y =2x −1y =−12x +32的解; (2)不等式kx +b <0的解集为x >3; (3)当x ≤1时,kx +b ≥mx ﹣n ;(4)当y =0时,2x ﹣1=0,解得x =12,则M 点的坐标为(12,0);当x =0时,y =−12x +32=32,则N 点坐标为(0,32),所以四边形OMPN 的面积=S △ONB ﹣S △PMB =12×3×32−12×(3−12)×1 =1.故答案为{y =2x −1y =−12x +32;x >3;≤1.19.(8分)若一多项式除以2x 2﹣3,得到的商式为x +4,余式为3x +2,求此多项式. 【解答】解:根据题意得:(2x 2﹣3)(x +4)+3x +2=2x 3+8x 2﹣10. 20.(8分)若3x−5x 2−2x−3=a x−3−bx+1(a ,b 为常数),求(a +2b )b 的值.【解答】解:a x−3−bx+1=ax+a−bx+3b(x−3)(x+1)=(a−b)x+a+3b x 2−2x−3, ∵3x−5x 2−2x−3=a x−3−b x+1,∴{a −b =3a +3b =−5, 解得,{a =1b =−2, ∴(a +2b )b=[1+2×(﹣2)]﹣2 =(﹣3)﹣2 =19.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元,由题意得:300x =4003x−50,解得:x =30,经检验,x =30是原方程的解且符合实际意义,3x ﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40﹣y )瓶,由题意得:30y +40(40﹣y )=1400,解得:y =20,∴40﹣y =40﹣20=20,答:购买了20瓶乙品牌消毒剂.22.(9分)如图1,在平面直角坐标系中,直线AB 分别交y 轴、x 轴于点A (0,a ),点B(b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.【解答】解:(1)∵a2−4a+4+√2b+2=0,∴(a−2)2+√2b+2=0,∵(a﹣2)2≥0,√2b+2≥0,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB =∠ABC =45°,∴AB =CB ,过点C 作CG ⊥OA 于G ,∴∠CAG +∠ACG =90°,∵∠BAO +∠CAG =90°,∴∠BAO =∠ACG ,在△AOB 和△BCP 中,{∠CGA =∠AOB =90°∠ACG =∠BAO AC =AB,∴△AOB ≌△CGA (AAS ),∴CG =OA =2,AG =OB =1,∴OG =OA ﹣AG =1,∴C (2,1),Ⅱ、当∠ABC =90°时,如图2,同Ⅰ的方法得,C (1,﹣1);即:满足条件的点C (2,1)或(1,﹣1)(3)①如图3,由(2)知点C (1,﹣1),过点C 作CL ⊥y 轴于点L ,则CL =1=BO ,在△BOE 和△CLE 中,{∠OEB =∠LEC ∠EOB =∠ELC BO =CL,∴△BOE ≌△CLE (AAS ),∴BE =CE ,∵∠ABC =90°,∴∠BAO +∠BEA =90°,∵∠BOE =90°,∴∠CBF +∠BEA =90°,∴∠BAE =∠CBF ,在△ABE 和△BCF 中,{∠BAE =∠CBF AB =BC ∠ABE =∠BCF,∴△ABE ≌△BCF (ASA ),∴BE =CF ,∴CF =12BC ;②点C 到DE 的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=12BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=CD+CE.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.【解答】解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC=√2AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,∴√2AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴∠ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∵∠DAE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=12AC=4.。

2020-2021学年八年级下期中考试数学试卷及答案解析

2020-2021学年八年级下期中考试数学试卷及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程是()A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.1x=x+2【解答】解:A、含有两个未知数,不是一元二次方程;B、符合一元二次方程的定义,是一元二次方程;C、含有不等号,不是一元二次方程;D、含有分式,不是一元二次方程.故选:B.2.下列结论不正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相垂直的平行四边形是菱形C.平行四边形对角相等对边相等D.矩形的对角线相等【解答】解:A.对角线互相垂直平分且相等的四边形是正方形,故本选项错误;B.对角线互相垂直的平行四边形是菱形,故本选项正确;C.平行四边形对角相等,对边相等,故本选项正确;D.矩形的对角线相等,故本选项正确;故选:A.3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐【解答】解:∵甲、乙两队的方差分别是1.7、2.4,∴S甲2<S乙2,∴甲队身高更整齐;故选:B.4.已知一次函数y=kx+b,y随x的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.【解答】解:∵一次函数y=kx+b,y随x的增大而减小,且b<0,∴k<0,b<0,∴该函数图象经过第二、三、四象限,故选:B.5.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.6.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.7.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【解答】解:∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.8.两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A .B .C .D .【解答】解:根据一次函数的图象与性质分析如下:A .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a <0,b <0.A 错误;B .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a >0,b <0.B 正确;C .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a <0,b <0.C 错误;D .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a >0,b <0.D 错误; 故选:B .9.下列各点在直线y =2x +6上的是( ) A .(﹣5,4)B .(﹣7,20)C .(23,223) D .(−72,1)【解答】解:A 、当x =﹣5时,y =2×(﹣5)+6=﹣4, ∴点(﹣5,4)不在直线y =2x +6上; B 、当x =﹣7时,y =2×(﹣7)+6=﹣8, ∴点(﹣7,20)不在直线y =2x +6上; C 、当x =23时,y =2×23+6=223, ∴点(23,223)在直线y =2x +6上;D 、当x =−72时,y =2×(−72)+6=﹣1, ∴点(−72,1)不在直线y =2x +6上. 故选:C .10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B 1在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3,…,在x 轴上已知正方形A 1,B 1,C 1,D 1,的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A n B n ∁n D n 的边长是( )A .(12)nB .(12)n−1C .(√33)nD .(√33)n ﹣1【解答】解:∵正方形A 1B 1C 1D 1的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3, ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°, ∴D 1E 1=C 1D 1sin30°=12,则B 2C 2=B 2E 2cos30°=√33=(√33)1,同理可得:B 3C 3=13=(√33)2, 故正方形A n B n ∁n D n 的边长是:(√33)n ﹣1, 故选:D .二.填空题(共8小题,满分24分,每小题3分)11.关于x 的一次函数y =(k +2)x ﹣2k +1,其中k 为常数且k ≠﹣2 ①当k =0时,此函数为正比例函数; ②无论k 取何值,此函数图象必经过(2,5);③若函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),则k =−83; ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限. 上述结论中正确的序号有 ②③④ .【解答】解:①当k =0时,此函数为y =2x +1,不是正比例函数,故本结论错误; ②∵y =(k +2)x ﹣2k +1=(x ﹣2)k +2x +1, ∴当x =2时,y =5,∴无论k 取何值,此函数图象必经过(2,5),故本结论正确; ③∵函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),∴{(k +2)m −2k +1=a 2①(k +2)(m +3)−2k +1=a 2−2②, ②﹣①,得3(k +2)=﹣2,解得k =−83,故本结论正确; ④如果此函数图象同时经过第二、三、四象限, 那么{k +2<0−2k +1<0,此不等式组无解,所以无论k 取何值,此函数图象都不可能同时经过第二、三、四象限,故本结论正确. 即上述结论中正确的序号有②③④. 故答案为②③④.12.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s 甲2=0.2,S 乙2=0.08,成绩比较稳定的是 乙 (填“甲”或“乙”). 【解答】解:∵S 甲2=0.2,S 乙2=0.08, ∴S 甲2>S 乙2,∴成绩比较稳定的是乙; 故答案为:乙.13.某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目 创新能力 综合知识 语言表达 测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是 77 分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分). 故答案为:77.14.写出一个一元二次方程,它的二次项系数为1,其中一个根为﹣3,另一个根为2,这个一元二次方程是 x 2+x ﹣6=0 . 【解答】解:设这个方程为ax 2+bx +c =0. ∵该方程的二次项系数为1,两根分别为﹣3和2, ∴a =1,−ba =−3+2,ca=−3×2,∴b=1,c=﹣6,∴这个方程为x2+x﹣6=0.故答案为:x2+x﹣6=0.15.如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为2.【解答】解:∵四边形ABCD是菱形,对角线长分别为2和4,∴AB∥DC,AD∥BC,菱形ABCD的面积=12×2×4=4,∵EF∥DC,∴EF∥DC∥AB,∴四边形ABFE和四边形CDEF是平行四边形,∴△ABH的面积=12平行四边形ABFE的面积,△CDG的面积=12平行四边形CDEF的面积,∴△ABH的面积+△CDG的面积=12菱形ABCD的面积=2,∴图中阴影部分的面积=4﹣2=2;故答案为:2.16.如图,直线l:y=−√3x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴正半轴于点A3;…,按此作法进行下去点A2020的坐标为(﹣22019,0).【解答】解:已知点A 1坐标为(﹣1,0),且点B 1在直线y =−√3x 上,可知B 1点坐标为(﹣1,√3),由题意可知OB 1=√12+(√3)2=2,故A 2点坐标为(﹣2,0), 同理可求的B 2点坐标为(﹣2,2√3),按照这种方法逐个求解便可发现规律,A 2020点坐标为(﹣22019,0), 故答案为(﹣22019,0).17.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt △ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为6017.【解答】解:∵四边形CDEF 是正方形, ∴CD =ED ,DE ∥CF ,设ED =x ,则CD =x ,AD =5﹣x , ∵DE ∥CF ,∴∠ADE =∠C ,∠AED =∠B , ∴△ADE ∽△ACB , ∴DE BC =AD AC , ∴x 12=5−x5,x =6017, 故答案为:6017.18.在正方形ABCD 中,点G 在AB 上,点H 在BC 上,且∠GDH =45°,DG 、DH 分别与对角线AC 交于点E 、F ,则线段AE 、EF 、FC 之间的数量关系为 EF 2=AE 2+CF 2 .【解答】解:如图,将△DCH 绕点D 顺时针旋转90°,得△DAM ,则△DAM ≌△DCH 则DM =DH ,AM =CH ,∠CDH =∠ADM在DM 上截取DN =DF ,连接NE ,AN 在△DAN 和△DCF 中 {DA =DC∠ADN =∠CDF DN =DF; ∴△DAN ≌△DCF (SAS ) ∴AN =CF ,∠DAN =∠DCF =45° 又∵∠DAC =45° ∴∠NAE =90° ∴AN 2+AE 2=NE 2 ∵∠GDH =45°, ∴∠NDE =45° 在△DNE 和△DFE 中 {DN =DF∠NDE =∠FDE DE =DE ∴△DNE ≌△DFE ∴NE =EF 又∵AN =CF ∴CF 2+AE 2=EF 2故答案为:EF2=AE2+CF2.三.解答题(共9小题,满分66分)19.(7分)解方程(1)用直接开平方法解3(x﹣1)2﹣6=0;(2)用配方法解x2﹣6x+3=0;(3)用公式法解9x2+10x=4;(4)用因式分解法解2x2﹣5x=0.【解答】解:(1)∵3(x﹣1)2=6,∴(x﹣1)2=2则x﹣1=±√2,∴x1=1+√2,x2=1−√2;(2)∵x2﹣6x=﹣3,∴x2﹣6x+9=﹣3+9,即(x﹣3)2=6,则x﹣3=±√6,∴x1=3+√6,x2=3−√6;(3)∵9x2+10x﹣4=0,∴a=9,b=10,c=﹣4,则△=102﹣4×9×(﹣4)=244>0,∴x=−b±√b2−4ac2a=−10±2√6118=−5±√619,即x1=−5+√619,x2=−5−√619;(4)∵2x2﹣5x=0,∴x(2x﹣5)=0,则x=0或2x﹣5=0,解得x1=0,x2=2.5.20.(7分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.【解答】证明:∵菱形ABCD ,∴BA =BC ,∠A =∠C ,∵BE ⊥AD ,BF ⊥CD ,∴∠BEA =∠BFC =90°,在△ABE 与△CBF 中{∠BEA =∠BFC ∠A =∠C BA =BC,∴△ABE ≌△CBF (AAS ),∴AE =CF .21.(7分)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0.(1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2) =4k 2+4k +1﹣2k 2+8=2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0,∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2,∵x 1﹣x 2=3,∴(x 1﹣x 2)2=9,∴(x 1+x 2)2﹣4x 1x 2=9,∴(2k +1)2﹣4×(12k 2﹣2)=9, 化简得k 2+2k =0,解得k =0或k =﹣2.22.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg ,众数是 1.5kg .(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.4+1.52=1.45(kg ),众数是1.5kg ,故答案为:1.45kg ,1.5kg .(2)x =1.2×1+1.3×4+1.4×5+1.5×6+1.6×2+1.7×220=1.45(kg ), ∴这20条鱼质量的平均数为1.45kg ;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.23.(7分)如图,在矩形ABCD 中,AD =6,CD =8,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求DG的值.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴Rt△AEH≌Rt△DHG(HL).∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于Q,则∠FQG=90°.∴∠A=∠FQG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠QGE,∠HEG=∠FGE,∴∠AEH=∠QGF.∵EH=GF,∴△AEH≌△QGF(AAS).∴FQ=AH=2.∵S△FCG=12CG•FQ=12×CG×2=2,∴CG=2.24.(7分)如图,在平面直角坐标系中,过点A (0,6)的直线AB 与直线OC 相交于点C(2,4)动点P 沿路线O →C →B 运动.(1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.【解答】解:(1)∵点A 的坐标为(0,6),∴设直线AB 的解析式为y =kx +6,∵点C (2,4)在直线AB 上,∴2k +6=4,∴k =﹣1,∴直线AB 的解析式为y =﹣x +6;(2)由(1)知,直线AB 的解析式为y =﹣x +6,令y =0,∴﹣x +6=0,∴x =6,∴B (6,0),∴S △OBC =12OB •y C =12,∵△OPB 的面积是△OBC 的面积的14, ∴S △OPB =14×12=3, 设P 的纵坐标为m ,∴S △OPB =12OB •m =3m =3,∴m =1,∵C (2,4),∴直线OC 的解析式为y =2x ,当点P 在OC 上时,x =12,∴P (12,1), 当点P 在BC 上时,x =6﹣1=5,∴P (5,1),即:点P (12,1)或(5,1);(3)∵△OBP 是直角三角形,∴∠OPB =90°,当点P 在OC 上时,由(2)知,直线OC 的解析式为y =2x ①,∴直线BP 的解析式的比例系数为−12,∵B (6,0),∴直线BP 的解析式为y =−12x +3②,联立①②,解得{x =65y =125, ∴P (65,125),当点P 在BC 上时,由(1)知,直线AB 的解析式为y =﹣x +6③,∴直线OP 的解析式为y =x ④,联立③④解得,{x =3y =3, ∴P (3,3),即:点P 的坐标为(65,125)或(3,3).25.(7分)已知关于x 的方程(a 2﹣1)(x x−1)2﹣(2a +7)(x x−1)+1=0有实根.(1)求a 取值范围; (2)若原方程的两个实数根为x 1,x 2,且x 1x 1−1+x 2x 2−1=311,求a 的值.【解答】解:(1)设x x−1=y ,则原方程化为:(a 2﹣1)y 2﹣(2a +7)y +1=0 (2),①当方程(2)为一次方程时,即a 2﹣1=0,a =±1.若a =1,方程(2)的解为y =19,原方程的解为x =−18满足条件;若a =﹣1,方程(2)的解为y =15,原方程的解为x =−14满足条件;∴a =±1.②当方程为二次方程时,a 2﹣1≠0,则a ≠±1,要使方程(a 2﹣1)y 2﹣(2a +7)y +1=0 (2)有解,则△=(2a +7)2﹣4(a 2﹣1)=28a +53≥0,解得:a ≥−5328,此时原方程没有增根,∴a 取值范围是a ≥−5328.综上,a 的取值范围是a ≥−5328.(2)设x 1x 1−1=y 1,x 2x 2−1=y 2,则则y 1、y 2是方程(a 2﹣1)y 2﹣(2a +7)y +1=0的两个实数根,由韦达定理得:y 1+y 2=2a+7a 2−1, ∵y 1+y 2=311, ∴2a+7a 2−1=311, 解得:a =−83或10,又∵a ≥−5328,∴a =10.26.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB 和线段CD 分别表示小泽和小帅离甲地的距离y (单位:千米)与时间x (单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为 16 千米/小时;点C 的坐标为 (0.5,0) ;(2)求线段AB 对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?【解答】解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C 的横坐标为:1﹣8÷16=0.5,∴点C 的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB 对应的函数表达式为y =kx +b (k ≠0),∵A (0.5,8),B (2.5,24),∴{0.5k +b =82.5k +b =24, 解得:{k =8b =4, ∴线段AB 对应的函数表达式为y =8x +4(0.5≤x ≤2.5);(3)当x =2时,y =8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.27.(10分)如图①,已知直线y =﹣2x +4与x 轴、y 轴分别交于点A 、C ,以OA 、OC 为边在第一象限内作长方形OABC .(1)求点A 、C 的坐标;(2)将△ABC 对折,使得点A 的与点C 重合,折痕交AB 于点D ,求直线CD 的解析式(图②);(3)在坐标平面内,是否存在点P (除点B 外),使得△APC 与△ABC 全等?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:x=5 2此时,AD=52,D(2,52)(2分)设直线CD为y=kx+4,把D(2,52)代入得52=2k+4(1分)解得:k=−3 4∴直线CD解析式为y=−34x+4(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=52,PD=BD=4−52=32,AP=BC=2由AD×PQ=DP×AP得:52PQ=3∴PQ=6 5∴x P=2+65=165,把x=165代入y=−34x+4得y=85此时P(165,85) (也可通过Rt △APQ 勾股定理求AQ 长得到点P 的纵坐标) ③当点P 在第二象限时,如图同理可求得:CQ =85∴OQ =4−85=125此时P(−65,125)综合得,满足条件的点P 有三个,分别为:P 1(0,0);P 2(165,85);P 3(−65,125).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下数学期中考试卷
时间:120分钟 满分:150分
学校: 班级: 姓名: 得分:______ 一、选择题(每小题4分,共40分,将正确答案写在下面答案框中)
1.下列各式:





中,分式有 个.
A .2
B .3
C .4
D . 5
2. 某种感冒病毒的直径是0.00000012米,用科学记数法表示为 米. A .71.210-⨯ B.71012.0-⨯ C.6102.1-⨯ D.61012.0-⨯
3. x=2是方程mx+5=0的解,则函数2-=mx y 的图象不经过 A.第一象限 B.第二象限 C.第三象限 D.第四象限
4. 点P (5,4-)关于x 轴对称点是
A .(5,4) B.(5,4- C.(4,5-)D.(5-,4-) 5. 已知2
111=-b a ,则b a ab -的值是
A .21
B.21-
C.2
D.2-
6.若点P(3,-1m )在第二象限,则m 的取值范围是 A. m <1 B. m <0 C. m >0 D. m >1
7.若点(x 1,y 1)、(x 2,y 2)和(x 3,y 3)分别在反比例函数2y x
=- 的图象上,,
则下列判断中正确的是
A 、123y y y <<
B 、312y y y <<
C 、231y y y <<
D 、321y y y <<
8.在同一坐标系中,函数x
k
y =
和3+=kx y )0(≠k 的图像大致是
9.如图,在□ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC
的长度分别为 A .2和3 B .3和2 C .4和1 D .1和4 10.百米赛跑中,队员所用的时间y 秒与其速度x 米/秒之间的函数图像应为
A B C D
二、填空题:(每小题4分,共24分)
11. 当x=__________时,分式2
42
x x --的值为零
12.函数121
x y x +=-中,自变量x 的取值范围是
13.若分式方程2
12
-=--x x m x 有增根,则m =
14.如图,将平行四边形的ABCD 的一边BC 延长至点E ,若∠A=110°,则∠DCE= 。

第14题图 第15题图 第16题图 15.如图,A 、B 两点在双曲线y= 6
x
(x>0)的图象上,分别经过A 、B 两点向轴作垂
线段,已知S 阴影=1,则S 1+S 2=
题 号 1 2 3 4 5 6 7 8 9 10 答 案
x y o
x
y o x
y o
o x
y
A
D
3
210x x x <<<
16.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图方式放置,点A 1、A 2、A 3…和点C 1、C 2、C 3…分别在直线()0>+=k b kx y 和x 轴上。

已知点B 1(1,1)、B 2(3,2),请写出点B 3的是 ,……,点B n 的坐标是 。

三、解答题:(共86分) 17、(10分)
(1)计算:02)14.3()2
1(9-+--π (2)2
2()a b a b b a a ab ⋅--
18、(10分)解分式方程:
(1)2133
3x x x
-+=-- (2)2
1
12
4
x x x -
=--
19、(10分)先化简,再求值:212141
(1).()11443
x x x x x ---÷=+-++其中
20.(10分)已知:如图,ABCD 的周长是,由钝角顶
点D 向AB ,BC 引两条高DE.DF,且DE=8cm ,DF=10cm ,求这个平行四边形的面积。

21.(12分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米。

小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O-A-B-C 和线段OD 分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在超市购物的时间为 分钟,小聪返回学校的速度为 千米/分钟;(4分)
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(4分)
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?(4分)
22. (本题10分)列分式方程解应用题
2013年4月20日,四川雅安发生了7.0级地震。

在抗震救灾活动中,重庆某厂接到一份订单要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前5天完成生产任务,该厂迅速加派人员组织生产,实际每天生产的顶数是原计划每天生产的顶数的2倍,请问该厂实际每天生产多少顶帐篷?
23、(12分) 如图7,一次函数b kx y +=的图像与反比例函数x
m y =的图像相
交于A (2,3-)、B (n ,2)两点。

(1)求反比例函数和一次函数的解析式; (2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;
(3)根据图像直接写出使一次函数的值大于反比例函数的值的x 的取值范围
24、(12分)已知,在直角坐标系中,平行四边形OABC 的顶点A,C 坐标分别为A(2,0),C(-1,2),反比例函数x
m y =的图象经过点B (m ≠0)
(1)求出反比例函数的解析式 (2)将
OABC 沿着x 轴翻折,点C 落在点D 处,做出点
D 并判断点D 是否在反比例函数x
m y =的图象上
(3)在x 轴是否存在一点P 使△OCP 为等腰三角形,若存在,写出点P 的坐标;若不存在,请说明理由。

相关文档
最新文档