石墨烯及其复合材料的表征
石墨烯氧化铈纳米复合材料的制备及表征
石墨烯/氧化铈纳米复合材料的制备及表征在本篇论文中,通过改进的Hummer 法制备出氧化石墨烯(GO)。
然后通过水热法把氧化石墨烯和六水硝酸铈(CeO 2•6H 2O)进行复合,得到石墨烯/氧化铈的纳米复合材料。
并通过XRD 、场发射扫描电镜(SEM )、拉曼光谱、X 射线光电能谱(XPS )以及红外光谱(IR )研究了GO-CeO 2纳米复合材料的结构,形态。
总体而言,这篇论文提供了一种简单,没有催化剂的水热法合成石墨烯/氧化铈复合材料,为合成其他的石墨烯复合材料提供了新的视角。
这些基于石墨烯的复合材料展现出来了很多潜在应用价值。
考虑到其小尺寸和很好的分散性,可以进一步应用于太阳能电池,燃料电池以及遥感等。
伴随着经济的快速发展,环境问题越来越成为困扰人们生活的重要问题,尤其是有机污染越来越威胁人们的身体健康,而正是环境的恶化促进了人们对于处理环境污染的研究,加大了人们对新型材料尤其是复合材料的研究。
纳米科技是在20世纪80年代末90年代初才逐渐发展起来的前沿、交叉性新兴学科领域,它在创造新的生产工艺、新的产品等方面有巨大潜能。
从材料的结构单元层次来说,纳米材料一般是由1~100 nm 间的粒子组成,它介于宏观物质和微观原子、分子交界的过渡区域,是一种典型的介观系统。
纳米材料因其独特的表面效应、量子尺寸效应、小尺寸效应等而表现出有异于常规材料的特殊性能,因而在各个领域得到广泛的应用[1、2]。
Ueda 等人较早从利用太阳能的观点出发,对纳米材料的微多相光催化反应进行了系统的研究。
这些反应主要集中在光解水[3]、CO 2和N 2固化[4]、光催化降解污染物[5~7]及光催化有机合成[8]等方面。
TiO 2光催化剂作为众多性能最好、最具有应用前景的光催化材料之一 [9],它具有催化活性高、稳定性好、价格低廉、对环境无污染、对人体无毒害等优点而受到大家的青睐。
但是二氧化钛因为自身的局限性[10]:在光催化领域仍然面临着量子产率低、光生电子-空穴对易发生简单复合且禁带宽度约为3.2 eV ,需在(近)紫外光下才能激发等不足,限制了其在光催化降解污染物方面的应用[11~13]。
石墨烯复合材料的制备、表征及性能
石墨烯复合材料的制备、表征及性能郝丽娜【摘要】石墨烯属于一种二维晶体结构,它是由碳原子紧密堆积而成,其中有富勤烯、石墨以及碳纳米管等基本单元,这些都是碳的同位异形体.石墨烯在力学领域、电学领域、热学领域以及光学领域等都发挥出其优越的性能,因此,这一复合材料在当今已经成为了科学领域和物理学领域之中研究的焦点.对石墨烯复合材料的制备、表征以及性能进行分析,希望可以对石墨烯的应用与研究起到一定的帮助.%Graphene belongs to a two-dimensional crystal structure,which is formed by the close packing of carbon atoms.There are basic units such as rich olefins,graphite and carbon nanotubes,which are allomorphs of carbon.Graphene has exerted its superior performance in various fields such as mechanics,electricity,heat,and optics.Therefore,this composite material has become the focus of research in the fields of science and physics.This paper is to analyze the preparation,characterization and performance of graphene composites,and hope to help the applicationand research of graphene.【期刊名称】《化工设计通讯》【年(卷),期】2019(045)009【总页数】2页(P128-129)【关键词】石墨烯复合材料;制备;表征;性能【作者】郝丽娜【作者单位】齐齐哈尔工程学院,黑龙江齐齐哈尔 161005【正文语种】中文【中图分类】TB332 ;TM53因为石墨烯所具有的二维晶体结构是比较特殊的,所以其纵横比很高、电子迁移率也很高,这就使得石墨烯在储能领域之中的应用前景十分广泛。
石墨烯基复合材料的制备及性能研究
石墨烯基复合材料的制备及性能研究石墨烯是一种由碳原子构成的单层二维晶体材料,具有多种优异的物理、化学和机械性质,被广泛认为是材料科学领域的革命性发现之一。
石墨烯具有极高的电子迁移率、巨大的表面积和出色的机械强度,使其成为制备复合材料的理想增强剂。
石墨烯基复合材料的制备方法有多种,其中最常用的方法之一是化学气相沉积法(Chemical Vapor Deposition,CVD)。
CVD法通过将碳源气体(如甲烷)在高温下引入反应室中,经过化学反应生成石墨烯,并将其沉积在基底材料上。
CVD法制备的石墨烯通常为大面积单层石墨烯,具有较高的质量和较少的缺陷。
石墨烯基复合材料的性能研究是一个热门领域。
其中一个典型应用是石墨烯纳米复合材料的电子器件方面。
石墨烯的高电子迁移率和大量的自由电子使其成为理想的导电层材料,可以用于制备高性能的柔性电子器件、传感器和太阳能电池。
另外,石墨烯还可以作为增强剂用于制备高性能的复合材料。
石墨烯具有极高的拉伸强度和刚度,可以有效地增强复合材料的力学性能。
研究表明,在复合材料中引入少量的石墨烯可以显著提高复合材料的强度、刚度和耐磨性。
除了力学性能的增强,石墨烯还可以改善复合材料的导热性能。
石墨烯具有优异的热导率,能够有效地传导热量。
因此,将石墨烯引入导热性能较差的基体材料中,可以显著提高复合材料的导热性能。
这对于一些需要高导热材料的领域(如电子散热材料)具有重要意义。
此外,石墨烯还可以提高复合材料的抗腐蚀性能。
石墨烯具有较高的化学稳定性,可以有效地防止基体材料受到腐蚀。
因此,在复合材料中引入石墨烯可以增强复合材料的耐腐蚀性能,延长其使用寿命。
总之,石墨烯基复合材料的制备和性能研究是一个充满挑战和潜力的领域。
石墨烯的优异性能使其成为制备高性能电子器件和复合材料的理想材料。
未来,随着对石墨烯制备技术和性能研究的不断深入,相信石墨烯基复合材料将在各个领域展现出更多的应用前景。
石墨烯增强铝基复合材料的研究进展
石墨烯增强铝基复合材料的研究进展石墨烯是一种由碳原子以sp2杂化的二维晶格构成的新型材料,具有优异的导热、导电、机械强度和化学稳定性等特性,因此在材料科学领域备受关注。
铝基复合材料因其轻质、高强度和耐腐蚀等优点,被广泛应用于航空航天、汽车制造、电子器件等领域。
将石墨烯与铝基复合材料结合起来,可以在保持其优良性能的基础上进一步提高其性能,因此石墨烯增强铝基复合材料的研究备受关注。
本文将从石墨烯增强铝基复合材料的制备方法、性能表征以及应用领域等方面进行综述,以期为相关领域的研究提供参考。
制备石墨烯增强铝基复合材料主要有机械合金化、电化学沉积、湿法共沉淀和热压等多种方法。
机械合金化是将石墨烯和铝粉通过球磨混合,然后进行热压成型得到复合材料。
这种方法简单易行,但由于石墨烯具有高度的层间结合力,很难与金属基体充分接触,从而影响复合材料的性能。
电化学沉积法是将金属离子在石墨烯表面还原沉积得到铝基复合材料,这种方法可以获得较好的界面结合性能,但沉积过程较为复杂,且需要特定的实验条件。
湿法共沉淀是将石墨烯和铝盐共沉淀得到复合材料,虽然可以实现大面积的石墨烯分散,但其界面结合能力有待提高。
热压法是将铝粉与石墨烯加热压制成型,这是一种简单易行的方法,能够在保持石墨烯的完整性的同时实现石墨烯与铝基体的良好结合。
石墨烯增强铝基复合材料的制备方法各有优缺点,需要根据具体需要选择合适的方法。
二、石墨烯增强铝基复合材料的性能表征石墨烯增强铝基复合材料的性能主要包括力学性能、导热性能和导电性能等方面。
力学性能是衡量复合材料可靠性的重要指标,石墨烯作为增强相可以有效提高复合材料的力学性能。
研究表明,适量添加石墨烯可以显著提高复合材料的硬度、强度和韧性等性能指标。
导热性能是石墨烯的一大特点,将石墨烯引入铝基复合材料中可以显著提高其导热性能,从而提高材料的热稳定性和散热性能。
导电性能是石墨烯的另一大特点,石墨烯具有优异的电导率,将其引入铝基复合材料中可以显著提高材料的导电性能,有利于提高材料在电子器件领域的应用性能。
石墨烯聚苯胺复合材料的制备及其电化学性能
石墨烯聚苯胺复合材料的制备及其电化学性能一、本文概述本文旨在探讨石墨烯聚苯胺复合材料的制备工艺及其电化学性能。
石墨烯,作为一种二维的碳纳米材料,因其出色的电导性、高比表面积和良好的化学稳定性,在电化学领域具有广泛的应用前景。
聚苯胺,作为一种导电聚合物,具有良好的电化学活性和环境稳定性。
将石墨烯与聚苯胺复合,可以充分发挥两者的优势,提高复合材料的电化学性能。
本文将首先介绍石墨烯和聚苯胺的基本性质,然后详细阐述石墨烯聚苯胺复合材料的制备方法,包括溶液混合法、原位聚合法等。
随后,通过对制备的复合材料进行结构表征和电化学性能测试,分析其电化学性能的影响因素及优化条件。
本文还将讨论石墨烯聚苯胺复合材料在超级电容器、锂离子电池等电化学器件中的应用潜力,并展望其未来的发展前景。
通过本文的研究,旨在为石墨烯聚苯胺复合材料的制备和应用提供理论支持和实践指导,推动其在电化学领域的广泛应用。
二、石墨烯聚苯胺复合材料的制备方法石墨烯聚苯胺复合材料的制备是一个融合了化学合成和纳米材料制备技术的复杂过程。
这种方法的关键步骤包括石墨烯的制备、聚苯胺的合成以及两者的复合。
我们需要制备高质量的石墨烯。
这通常通过化学气相沉积(CVD)法、氧化还原法或剥离法实现。
其中,氧化还原法是最常用的一种方法,它通过将天然石墨与强氧化剂反应,生成氧化石墨,再经过热还原或化学还原得到石墨烯。
接下来,我们合成聚苯胺。
聚苯胺的合成通常通过化学氧化聚合法进行,如使用过硫酸铵作为氧化剂,在酸性条件下将苯胺单体氧化聚合,生成聚苯胺。
制备石墨烯聚苯胺复合材料的核心步骤是将石墨烯和聚苯胺进行有效复合。
这可以通过溶液混合法、原位聚合法或熔融共混法实现。
其中,溶液混合法是最常用的一种方法。
将石墨烯分散在适当的溶剂中,然后加入聚苯胺溶液,通过搅拌或超声处理使两者充分混合。
随后,通过蒸发溶剂或热处理使复合材料固化。
为了进一步提高复合材料的性能,我们还可以在制备过程中引入其他添加剂或进行后处理。
石墨烯复合材料的制备、性能与应用
石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。
它是现代科学技术的重要内容,也是未来技术的主流。
是基础研究与应用探索紧密联系的新兴高尖端科学技术。
石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。
由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。
综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。
关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。
研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。
石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。
通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。
通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。
采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。
研究表明PS微球通过公家方式连接到石墨烯的表面。
通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。
制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。
本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。
石墨烯与其复合材料的电磁波屏蔽性能研究
石墨烯与其复合材料的电磁波屏蔽性能研究石墨烯是一种具有特殊物理性质的薄片状材料,其单层由碳原子构成,有着高度的导电性和导热性。
与其他材料相比,石墨烯的电催化活性、热稳定性和机械强度都非常优异,因此被广泛用于电子、能源、传感器等领域的研究和应用。
在电磁波屏蔽性能方面,石墨烯及其复合材料也展现出了很好的潜力。
1. 石墨烯的电磁波屏蔽性能石墨烯是一种单层碳原子排列成的二维晶体,其结构具有很好的结构特性和物理性能,以及与传统材料相比具有更高的导电性和导热性。
由于石墨烯独特的电子能带结构和空间结构,具有优异的电磁波屏蔽性能。
一个最显著的优势是石墨烯的介电常数很低,使其对电磁波有很强的吸收能力。
石墨烯电磁波屏蔽性能可以归功于它的两个特性,一是单层厚度,二是非常好的导电性。
在超薄的石墨烯薄膜上,电磁波相互作用的作用距离较短,使得电荷的耗散非常强烈,并产生表面电阻。
在高电阻的污垢表面,能量被转化为热能,并有效地吸收电磁波。
石墨烯的晶格性质也影响着它的电磁波屏蔽性能,不规则的几何形状和碳原子排列可形成局部电荷堆积,从而加强了吸收电磁波的能力。
2. 石墨烯复合材料的电磁波屏蔽性能虽然石墨烯的单层厚度和优异的导电性使其成为一种很好的电磁波屏蔽材料,但由于其制备成本过高,生产中心性差等问题,导致其应用不太广泛。
为了克服这些问题,现在许多研究人员正在研究石墨烯的复合材料,以利用石墨烯的性能和其他材料的优点来制造出成本更低,效率更高的电磁波屏蔽材料。
石墨烯的复合材料有许多种类型,需要根据应用的需求和要求来选择适合的材料。
例如,石墨烯与聚合物混合后可以获得电磁波屏蔽材料,也可以使用金属纳米颗粒包覆的石墨烯来制造出具有优良抗干扰能力的材料。
3. 石墨烯复合材料电磁波屏蔽性能的优化石墨烯的复合材料有很好的电磁波屏蔽性能,但是这种性能还可以通过不断优化来提升。
例如可以通过石墨烯和其他材料的形状和组成来对其电磁波屏蔽性能进行调整。
在复合材料中增加石墨烯含量通常可以提高电磁波屏蔽性功能力,但这也会导致质量和成本增加。
ZnO-石墨烯复合材料的制备及其光催化降解性能研究
05140功滋讨科2021年第5期(52)卷文章编号:1001-9731(2021)05-05140-05ZnO-石墨烯复合材料的制备及其光催化降解性能研究李林枝(吕梁学院化学化工系,山西吕梁033000)摘要:采用溶剂热法,制备了一系列不同还原氧化石墨烯(RGO)含量(0,2%,4%,6%和8%(质量分数))的ZnO-石墨烯复合材料。
通过XRD.SEM.PL等方法对复合材料样品进行了表征。
结果表明,所有掺杂RGO的复合材料样品均没有改变ZnO的结构;纯ZnO样品为圆球状颗粒,晶粒尺寸约为40nm,掺入RGO后,样品的晶粒尺寸出现了不均匀现象,并且随着RGO含量的增加,复合材料样品的团聚逐渐加大;所有复合材料的发射峰都在373nm附近,随着RGO掺量的增加,复合材料的本征发射峰的强度呈现先降低后升高的趋势;RGO的引入可以提高复合材料在可见光区域的吸收,并且吸收峰有轻微红移的趋势;随着RGO掺量的增加,复合材料的光催化性能呈现出先升高后降低的趋势,当RGO含量为6%(质量分数)时,复合材料的光催化性能最佳,降解率和反应速率常数分别达到71.97%,0.017mirT1。
关键词:ZnO;石墨烯;复合材料;光催化;吸收光谱中图分类号:))613.71;TQ426.6文献标识码:A DOI:10.3969/.issn.100-9731.2021.05.0210引言随着工业社会的进步,环境污染已经成为了制约我国发展的主要问题,目前废水处理是影响最为广泛的问题,对于废水处理,常用的手段就是光催化[4]。
光催化是指半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解。
金属氧化物常常被作为光催化剂,在众多光催化剂中,ZnO 凭借其宽禁带(3.3〜3.4eV)、较高的激子结合能和优异的常温发光性能等成为了光催化降解水污染的核心研究方向[-10]。
但同时ZnO在催化中也存在一些缺点,例如:ZnO仅对紫外光(<400mm)有较强吸收,对可见光区域的吸收利用率较低、Zn()的电子-空穴复合概率较高,复合速率较快:1115],这些问题都严重制约了ZnO在光催化中的应用。
水热法制备α—Fe2O3/石墨烯复合材料及其表征
5 %与 1 O % 的石 墨 烯 , 1 8 0 ℃条 件 下 在 高压 反 应 釜 中水 热 反 应 1 2 h , 再退 火处理得 到纳米 F e 0 。 / 石 墨和 a — F e O 。 / 石墨烯复合材料 , 并对其进行 了 X RD和 S E M 表 征 。 实验 结果 表 明石 墨 烯 的 分 散 效 果 较 石 墨 要 好 。 关键词 : 水热 法; 石墨; 石墨烯 ; F e 2 O。 ; 复 合 材 料 中图分类号 : T B 3 3 2 文献标志码 : A 文章编号 : 2 0 9 5 — 7 7 2 6 ( 2 0 1 4 ) 1 0 — 0 0 2 2 — 0 3
收 稿 日期 : 2 0 1 4 — 0 8 — 0 2
化 工股 份有 限公 司) , 磷 酸二 氢 钠 ( AR, 中 国联 试 化 工试 剂有 限公 司) , 磷 酸氢二 钠 ( AR, 天 津 市 致远 化
作者简介 : 瞿 波( 1 9 7 0 一) , 男, 湖 北 利 川 人 。副研 究 员 , 博士 , 研 究方向 : 复合 材 料 。 通讯作者 : 刘小英( 1 9 7 9 一) , 女, 福 建 惠安 人 。讲 师 , 研 究方向: 高 分 子 材 料 及 功 能化 。
适 应大 规模 生产 ¨ 1 ¨ ] 。 本 文采 用水热 法合 成 a — F e O 。 与 石墨 烯 的复 合 产物 , 并 对其 进行 了 X RD、 S E M 表征 。
化学 性质稳 定 、 催化 活 性 高 、 具 有 良好 的耐 候 性 、 耐 光性 和对 紫外线 有 良好 的 吸收 和屏 蔽 效 应 , 在 闪光
瞿 波 , 周 婕 , 刘 小英
( 泉, k l 1 师 范 学 院 化 学 与 生命 科 学 学 院 , 福建 泉 州 3 6 2 0 0 0 )
石墨烯基复合材料的制备与性能研究
石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。
在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。
为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。
这些复合材料具有优异的性能和多样化的应用前景。
本文将探讨石墨烯基复合材料的制备方法以及其性能研究。
一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。
该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。
石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。
CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。
2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。
通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。
这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。
3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。
首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。
该方法可以在实验室条件下进行,操作简单方便。
然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。
二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。
石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。
研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。
2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。
石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。
3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。
石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。
石墨烯/ATO纳米复合材料的制备与表征
积、 高导 电率 , 而成为电化学储能材料 的理想碳
材料 。 然而, 实 际中石墨 烯很 容易 堆叠 成多层 ,
比表面积减小而使其物理化学性能大大降低 。近 年来 , 人们通过不 同的途径将金属纳米粒子( 如 P t , A u 等) [ 5 I 6 1 、 金属氧化物( T i O 2 , S n O 2 等) 负载 到石 墨烯 的表 面 以降低石 墨烯 片 的堆 叠 。将石 墨
述 悬 浮液 中 , 在 加入 一 定量 的 O . 5 mo l / L的 HC 1 溶 液 ( 抑 制水 解 ) ,再 加入 0 . 1 g十 二烷 基苯 磺 酸钠
景。 在制 备方法 上 , 常规 石墨 烯 / 纳 米复 合材料 都 是通 过 纳米粒 子 和石 墨烯 简单 的混 合得 到 的 , 限 制 了纳米 粒 子 的均 匀分 散 和 石 墨 烯 片 间 的 有 效 分离 。本 研究 采 用石 墨烯 表 面负 载 AT O 的方 法
限制 , 是一 种极具 发展 潜 力 的新 型多 功 能透 明导 电材 料 , 将其 与石 墨烯 的复合 具 有广 阔的研 究 前
的气体扩散 , 反应持续 9 6 h 。反应结束后 , 混合物 用 8 0 0 mL去 离 子水 洗 净抽 滤 、 分层 , 将 合 成 的氧 化 石 墨用 5 %HC l 溶 液 洗净 。用 去离 子水 将 氧化
关键 词 : 石墨烯 ; A T O; 纳米 ; 复合 材 料 中 图分 类 号 : 0 6 3 文 献标 识 码 : A 文章编号: 1 0 0 9 — 1 8 1 5 ( 2 0 1 3 ) 0 4 — 0 1 6 4 — 0 4
石 墨 烯 是 目前 世 界 上 被 认 为最 薄 同 时也 是 最坚硬 的二维材 料[ 1 ] 。理论 上 , 完 美 的石 墨烯 由六
石墨烯在复合材料领域的应用
石墨烯在复合材料领域的应用
科技风 2020年 5月
高瑞方
濮阳职业技术学院 河南濮阳 457000
摘 要:随着近几年石墨烯的研究进展,在复合材料领域石墨烯扮演的角色越来越重要。目前我国的企业和高校的合成材料 平台正在依托于我国丰富的天然石墨烯资源而进行广泛的探索,而且提出了石墨烯在复合材料领域的研究方向。由于石墨烯拥 有光学、电学、力学等特性,因而在材料、能源、生物医学等方面有着非常好的应用前景,本文针对石墨烯在复合材料领域的应用进 行了探讨。
用石墨烯片作为模版,利用固定在石墨烯衬底上的有机或无机 粒子来制造更复杂和功能更强的二维材料,这样不仅仅能够避 免了纳米材料的聚集,还能够提高电导率。目前很多科学家已 经找到了一些方法通过化学改性来提高这种复合材料的性能。 为了整合其独特的性质,科学家已其中一种方法是用石墨烯和 已经制备好的无机纳米粒子进行组装,另外一种则是无机纳米 粒子在石墨烯表面的原位生长,目前这两种方法是比较常用的 方法,很多科学研究也基于这两种方法来进行技术上的探索。
关键词:石墨烯;负荷材料;应用
一、石墨烯的制备技术 目前我们国家在研究石墨烯生产方法时主要有两个方向, 分别是物理法制备和化学法制备。利用微机械剥离法能够得 到高质量的石墨烯,但是由于此种方法处理出来的石墨烯通常 尺寸较小,应用范围不广阔因此并不适合大规模生产,目前比 较适用的还是化学方法,化学方法总共分为两种,一种是化学 气象沉积法,这种方法通常是用 Ni,Ru等一些过度金属来做基 底,在利用甲烷和乙烯等一些小分子来高温气态的条件下发生 一些化学反映,在基底层可以生长出石墨烯,这种方法目前主 要用来制备墨烯薄膜,但是由于使用过渡金属作为基底,成本 相对比较高。另外一种则是使用化学还原的方法,通常采用浓 硫酸和发烟硝酸等强酸将天然石墨来进行氧化处理,得到氧化 物之后在进行还原,这样能够得到石墨烯。这种方法制备的石 墨烯微片会有一定的含氧官能团,可以与树脂等高分子基体进
石墨烯及其复合材料的制备、性质及应用研究共3篇
石墨烯及其复合材料的制备、性质及应用研究共3篇石墨烯及其复合材料的制备、性质及应用研究1石墨烯及其复合材料的制备、性质及应用研究石墨烯是一种由碳原子构成的单层蜂窝状结构材料,具有独特的电学、光学、热学和机械性质。
自2004年它被首次发现以来,它的研究成果一直是纳米科学和材料科学最活跃的领域之一。
石墨烯具有很高的载流子迁移率、良好的机械强度和高比表面积,因此在传感器、电子器件、能量存储装置、超级电容器、太阳能电池、催化剂和生物医学传感器等领域具有广泛的应用。
本文旨在介绍石墨烯及其复合材料的制备方法、性质及其应用研究进展。
石墨烯的制备有许多方法,包括机械剥离、化学气相沉积、物理气相沉积、化学还原、流体力学剥离和微波辐射法等。
其中,机械剥离法是第一个制备单层石墨烯的方法,虽然成本低、易于实现,但需要大量时间和劳动力,并存在控制问题。
化学还原法则采用氧化石墨的还原,得到具有一定缺陷的石墨烯,且杂质易残留影响性质。
化学气相沉积法制备石墨烯具有高晶格载流子迁移率、具有极高的缺陷密度的石墨烯,但过程复杂,成本高。
物理气相沉积法适合生产无缺陷石墨烯,但难以控制多层石墨烯形成、且温度高,影响成品质量。
流体力学剥离法利用石墨烯的自身表面张力减小形成薄膜,但制备过程仍需要控制单层厚度。
微波辐射法是最新的石墨烯制备方法,采用微波对石墨进行瞬间加热、膨胀、冷却制备大面积石墨烯,具有制备速度快、质量好、颗粒易于控制等优点。
石墨烯的独特性质使其在许多应用中具有广阔的前景。
首先,在电子领域,石墨烯可以用来制造微电子器件、包括场效应晶体管、半导体和光电器件等。
FET型石墨烯晶体管基于石墨烯中载流子迁移率的高值,值得在短时间获得了重大的研究进展;二维电子系统(2DEG)可以用于制造高速逻辑电路和高灵敏感受器。
其次,在传感器领域,石墨烯表现出高度灵敏性,可以用于制造各种传感器,如光学传感器、生物传感器等。
此外,石墨烯还可以用于制造锂离子电池、超级电容器、声波马达等能量存储装置中。
石墨烯基复合材料的制备及性能分析
石墨烯基复合材料的制备及性能分析石墨烯是一种新型的碳材料,由于其独特的结构和优异的性能,被广泛应用于材料科学领域。
石墨烯基复合材料作为一种将石墨烯与其他材料复合而成的新材料,具有石墨烯的优势和复合材料的多功能性,因此在材料制备和性能分析方面备受关注。
一、石墨烯基复合材料的制备方法目前,制备石墨烯基复合材料的方法主要包括机械混合法、溶液处理法和化学气相沉积法等。
机械混合法是最简单的制备方法,将石墨烯和其他材料进行物理混合。
这种方法操作简单,成本低廉,但是石墨烯与其他材料的界面结合较弱,对复合材料性能的提升有限。
溶液处理法是通过将石墨烯分散于溶液中,与其他材料形成复合体。
这种方法不仅能够提高石墨烯与其他材料的界面结合,还可以调控复合体的结构和性能。
然而,溶液处理法对石墨烯的分散性要求较高,操作复杂。
化学气相沉积法是一种高温气相合成法,通过在金属基底上沉积石墨烯。
这种方法制备的石墨烯基复合材料具有较高的结晶质量和界面结合强度,但是设备要求高、制备时间长。
二、石墨烯基复合材料的性能分析石墨烯基复合材料的性能主要包括力学性能、导电性能和热学性能等。
力学性能是衡量材料抗拉、抗压、抗弯等力学性能的指标。
石墨烯具有极高的强度和刚度,因此能够大幅提升复合材料的力学性能。
石墨烯基复合材料的强度和刚度通常随着石墨烯含量的增加而增加,但是当石墨烯含量过高时,由于石墨烯的堆叠导致复合材料的脆性增加。
导电性是衡量材料传导电流的性能指标。
石墨烯是一种具有优异导电性的材料,其导电性能主要取决于石墨烯的层数和形态。
石墨烯基复合材料通常具有较好的导电性能,且导电性能能够随着石墨烯含量的增加而增加。
热学性能是衡量材料导热性能的指标。
石墨烯具有很高的导热性能,因此能够显著提高复合材料的导热性能。
石墨烯基复合材料的导热性能通常随着石墨烯含量的增加而增加,但是石墨烯的堆叠也会对导热性能产生一定的影响。
除了上述性能分析,石墨烯基复合材料还具有其他一些特殊的性能。
石墨烯的表征
红外光谱表征
红外光谱在石墨烯研究中,主要用来表征石 墨烯及其衍生物或复合材料的化学结构。在化 学法制备石墨烯的过程中,天然石墨被氧化或 者氧化石墨被还原,都会伴随有红外谱图上特 征吸收峰的减弱或消失;在对石墨烯及其衍生 物进行修饰改性或者复合后,同样伴随有红外 谱图上峰形峰强的变化,还可能引入新的特征 吸收峰,因此可用红外光谱监测和调控化学法 制备石墨烯及其复合材料的过程目前,红外光 谱在石墨烯研究中主要是用于定性表征,关于 其定量方面的表征还未见报道
石墨烯的表征方法介绍
陈丁丁 电子科学与工程学院 NJU 2015.3.6
石墨烯的表征方法类型
为了研究石墨烯的层数和结构,现在主要 有以下表征方法,光学显微镜法,扫描电 子显微镜法(SEM)透射电子显微镜法 (TEM),原子力显微镜法(AFM),拉 曼光谱(Raman),红外光谱(IR),X射 线光电子能谱(XPS),和紫外-可见光谱 (UV-Vis)。
XPS表征
X射线光电子能谱分析可以用于石墨烯及其衍生物或 复合材料中化学结构和化学组分的定性及定量研究。 GO在C1s谱图上主要有4种结合能的特征信号峰 284.5、286.4、287.8和289.0eV,分别对应于碳碳双 键和单键(C=C,C—C)、环氧基和烷氧基(C—O) 羰基(C=O)和羧基(COOH)。通常以 O/C比来反 映石墨的氧化程度和氧化石墨的还原程度XPS也可用 于表征氧化石墨的还原过程。在还原过程中,随着 产物中含氧基团的不断去除,碳氧键相关的信号峰 会减弱,碳峰与碳氧峰的相对峰强明显增大此外, 在XPS谱图上还会反映出碳氧键、碳碳键以外的其它 信号峰,从而可以用于监控石墨烯改性或复合材料 的合成。
SEM 也可以用来表征石墨烯形貌, 这是因为SEM 图像的颜色和表面褶 皱可以大致反映出石墨烯的层数。 单层石墨烯在SEM下是有着一定厚 度褶皱的不平整面,为了降低其表 面能,单层石墨烯形貌会由二维向 三维转变,所以单层石墨烯的表面 褶皱明显大于双层石墨烯,并且随 着石墨烯层数的增多,褶皱程度越 来越小。这样可以认为在图像中颜 色较深的位置石墨层数较多,颜色 较浅的位置石墨层数相对较少.
石墨烯橡胶复合材料的性能
石墨烯橡胶复合材料的性能一、机械性能石墨烯拉伸强度高达130GPa、杨氏模量约为1.01TPa,为目前最硬、强度最高的材料;此外,它还拥有超高的比表面积(约为2630m2/g),比传统石墨高100~500倍,石墨烯的径厚比约为400,比炭黑的高40~80倍,添加少量石墨烯就能明显提升橡胶复合材料性能,这对于石墨烯改性纳米复合材料的应用大有裨益。
Araby等将结构完整的、厚度为3.56nm的石墨烯片通过机械共混法混入EPDM 橡胶中制备出了纳米复合材料。
当GNPs填量为26.7%(体积分数)时,复合材料的杨氏模量、拉伸强度和撕裂强度分别增大了710%、404%和270%。
Gan等利用溶液混合法制备了硅橡胶(SR)/氧化石墨烯纳米复合材料。
结果表明:GO片能够均匀地分散在SR基体中,同时纳米复合材料的热性能和机械性能得到增大。
同时还发现,将不同乙烯基浓度的SR共混使用制备的GO填充纳米复合材料的机械性能均比单一乙烯基浓度的SR纳米复合材料高。
二、疲劳性能橡胶制品在轮胎、高速机车、航空航天等领域服役时,常处于周期动态负载状态,而制品疲劳寿命很大程度上取决于橡胶材料的疲劳断裂性能。
因此,为了保证橡胶制品使用时的安全性、可靠性和长寿命,改善橡胶材料的动态疲劳特性具有重要的意义。
Mahmoud等研究了GNPs对NBR橡胶“循环疲劳—滞后”性能影响。
累计损伤可用耗散的能量LDE(Loading path Disspated Energy)来表示,LDE随周期性应力—应变循环次数的变化情况见图4-6。
研究表明,随着GNPs填量增多,体系中GNPs总表面积增大,GNPs与橡胶基体之间的摩擦作用更强,结果循环过程中复合材料的能量耗散增多,滞后效应更明显,损伤速率加快;且随着循环次数增多,GNPs的结构发生破坏;在经历初次十个疲劳循环后,纳米复合材料的LDE 速率增大到了临界值,此后随着循环次数增大,累积损伤速率变化很小,纳米复合材料的损伤耗散能量降低。
石墨烯热学性能及表征技术
石墨烯热学性能及表征技术河南清濮智慧化工科技有限公司河南省濮阳市 457000摘要:碳元素(C)是自然界中普遍存在的一种重要元素,它的电子轨道杂化(sp,sp2,sp3)杂化(sp,sp2,sp3),这就导致了以碳作为唯一元素的同素异形体材料的各种形态。
零维碳单质材料是由 Kroto等于1985年找到的。
在这之后,第一个一维的碳单质碳奈米管被伊吉马在1991年发现。
从那时起,碳材料一直是材料科学领域的一个热门课题。
安德烈·吉姆和英国曼彻斯特大学的康斯坦丁·诺沃赛罗夫于2004年用一种简单的胶布剥离技术,得到了一种以sp2为单一原子的单晶碳单质石墨。
石墨烯的基本构造包括:零维富勒烯、一维碳纳米管、3D石墨等。
关键词:石墨烯;热学性能;表征技术一、石墨烯的结构与性能石墨是一种具有独特的碳基化合物,它是一种具有六方点阵蜂窝状的苯环的碳单质碳基,它具有很好的稳定性。
在一个完美的石墨体系中,每一个碳与邻近的碳原子都会有一个稳定的 signa键,而剩下的 p型电子,会沿着与石墨烯垂直的方向,在整个石墨烯的表面上,产生一个sp2型的p-键。
正因为如此,它才具有了类似于金属的性质,并且具有极好的传导能力。
这种单片的石墨烯,厚度仅为1个碳,大约0.335 nm,是迄今为止最轻的一种,它拥有许多其他的碳素都没有的优异性能。
石墨内部的碳分子间存在着很少的相互作用,因此在外部作用下,大面积的表面会产生相应的弯曲,从而保证了其稳定。
它是当今世上最坚固的材料,甚至超过了钻石。
石墨烯是世界上最薄、最坚固的物质,它具有2630平方米/克的理论比表面,同时具有非凡的热传导能力3000W/(m. K)、机械特性1060 GPa,在室温下具有高的电子移动能力。
石墨烯近乎全透明,仅能接受2.3%的光线。
此外,该方法还具备非局部性、量子力学和双极电场等优良性能。
二、石墨烯的制备方法石墨烯最初的制造是通过力学剥离技术进行的,近年来,石墨烯的生产工艺得到了改进,希望可以大规模生产出层数可控、面积大、质量好、成本低的高质量石墨烯。
《石墨烯-导电聚合物复合材料的制备及其电化学性能的研究》
《石墨烯-导电聚合物复合材料的制备及其电化学性能的研究》石墨烯-导电聚合物复合材料的制备及其电化学性能的研究摘要:本文研究了石墨烯与导电聚合物复合材料的制备方法,并对其电化学性能进行了深入探讨。
通过合理的制备工艺,我们成功制备了具有优异导电性能和电化学稳定性的复合材料。
本文详细描述了实验过程、结果及分析,以期为相关研究提供有益的参考。
一、引言随着科技的发展,石墨烯因其独特的物理和化学性质,在材料科学领域引起了广泛的关注。
石墨烯与导电聚合物的复合材料因其在电化学储能、传感器、电磁屏蔽等领域的潜在应用价值,成为了研究的热点。
本文旨在研究石墨烯/导电聚合物复合材料的制备方法及其电化学性能。
二、实验材料与方法1. 材料准备实验所需材料包括石墨烯、导电聚合物(如聚吡咯、聚苯胺等)、溶剂(如乙醇、水等)以及其他添加剂。
2. 制备方法采用溶液混合法或原位聚合法制备石墨烯/导电聚合物复合材料。
具体步骤包括:将石墨烯与导电聚合物在溶剂中混合,并通过搅拌或超声处理使两者充分混合;然后进行聚合反应,得到复合材料。
三、电化学性能测试通过循环伏安法(CV)、恒流充放电测试、电化学阻抗谱(EIS)等方法,对制备的复合材料进行电化学性能测试。
四、结果与讨论1. 制备结果通过优化制备工艺,我们成功制备了具有良好分散性和导电性能的石墨烯/导电聚合物复合材料。
SEM和TEM结果表明,石墨烯与导电聚合物在纳米尺度上实现了良好的复合。
2. 电化学性能分析(1)循环伏安法(CV)测试:复合材料在充放电过程中表现出稳定的电化学行为,无明显极化现象。
(2)恒流充放电测试:复合材料具有较高的比电容和优异的循环稳定性。
在一定的电流密度下,其比电容随循环次数的增加而略有增加,表现出良好的充放电性能。
(3)电化学阻抗谱(EIS)分析:复合材料的内阻较小,电子传递速度快,表现出优异的电导率和良好的电荷传输能力。
通过分析不同因素(如石墨烯含量、聚合条件等)对电化学性能的影响,我们发现合理的复合比例和制备工艺是获得高性能复合材料的关键。
Fe3O4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin.2011,27(X),0001-0009Month Received:January 3,2011;Revised:March 9,2011;Published on Web:March 31,2011.∗Corresponding authors.YANG Zu-Pei,Email:yangzp@;Tel:+86-29-85308442.ZHANG Zhi-Jun,Email:zjzhang2007@;Tel:+86-512-62872556.The project was supported by the National Natural Science Foundation of China (20873090,21073224).国家自然科学基金(20873090,21073224)资助项目ⒸEditorial office of Acta Physico-Chimica SinicaFe 3O 4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征张燚1,2陈彪2杨祖培1,*张智军2,*(1陕西师范大学化学与材料科学学院,西安710062;2中国科学院苏州纳米技术与纳米仿生研究所,江苏苏州215123)摘要:首先利用高温分解法制备了粒径为18nm 的Fe 3O 4磁性纳米粒子,并进行羧基化修饰,然后与聚乙烯亚胺(PEI)化学修饰的氧化石墨烯进行交联反应,得到磁功能化的氧化石墨烯(MGO)复合材料.研究了氧化石墨烯片上的磁性纳米粒子的可控负载及其对复合材料磁性能的影响.利用透射电子显微镜(TEM),原子力显微镜(AFM),X 射线衍射(XRD),傅里叶变换红外(FT-IR)光谱,热重分析(TGA),振荡样品磁强计(VSM)等手段对MGO 复合材料的形貌,结构和磁性能进行了表征.结果表明,我们发展的MGO 复合材料的制备方法具有简单、可控的优点,所制备的MGO 复合材料具有较高的超顺磁性.该类磁性氧化石墨烯复合材料有望在磁靶向药物、基因输运,磁共振造影,以及磁介导的生物分离和去除环境污染物等领域获得广泛的应用.关键词:氧化石墨烯;Fe 3O 4磁性纳米粒子;复合材料;可控制备;表征.中文分类号:O641Controlled Synthesis and Characterization of the Structure and Property of Fe 3O 4Nanoparticle-Graphene Oxide CompositesZHANG Yi 1,2CHEN Biao 2YANG Zu-Pei 1,*ZHANG Zhi-Jun 2,*(1School of Chemistry and Materials Science,Shaanxi Normal University,Xi ′an 710062,P .R.China ;2Suzhou Institute of Nano-tech and Nano-bionics,Chinese Academy of Sciences,Suzhou 215123,Jiangsu Province,P .R.China )Abstract:Fe 3O 4nanoparticle-graphene oxide (MGO)composites were prepared by chemically binding carboxylic acid-modified Fe 3O 4nanoparticles to polyethylenimine-functionalized graphene oxide (GO).The structure,morphology,and magnetic properties of the composites were characterized by transmission electron microscopy (TEM),atomic force microscopy (AFM),X-ray diffraction (XRD),Fourier transform infrared (FT-IR)spectroscopy,thermogravimetric analysis (TGA),and vibrating sample magnetometry (VSM).The results show that the Fe 3O 4nanoparticle content in the MGO composites can be easily controlled by changing the ratio of Fe 3O 4nanoparticles to GO in the reaction mixture.The MGO composites obtained are superparamagnetic with high saturation magnetization,which can potentially be applied in magnetic targeted drug delivery,magnetic resonance imaging,bioseparation,and magnetic guided removal of aromatic contaminants in waste water and in other fields.Key Words:Graphene oxide;Fe 3O 4nanoparticles;Composites;Controlled synthesis;Characterization0001Acta Phys.⁃Chim.Sin.2011V ol.271引言石墨烯是由单层碳原子组成的世界上最薄的二维纳米材料.1其优异的性能,如较高的机械强度(> 1060GPa),导热系数(-3000W·m-1·K-1),电子迁移率(15000cm2·V-1·s-1),以及比表面积(2600m2·g-1),2引起了科学家的广泛关注.目前石墨烯的制备技术已经较为成熟,发展了机械剥离,3晶体外延生长,4化学氧化,5化学气相沉积6和有机合成7等多种制备方法.对石墨烯进行有效的功能化,赋予其新的性质和功能,拓展其应用领域,是当今研究石墨烯材料的热点.尤其是近年来氧化石墨烯和金属纳米粒子(金,铂等),磁性纳米粒子(氧化镍,氧化钴,四氧化三铁等)的复合材料的制备以及其在材料、化学、生物医学等领域的应用研究发展迅速.8磁功能化的石墨烯复合材料具有光限幅特性,9磁介导的靶向载药,10磁共振成像11等应用而备受瞩目.磁性纳米粒子-氧化石墨烯复合材料大多是采用原位还原乙酰丙酮合铁而制备的.12-14陈永胜课题组10通过化学沉淀法制备了磁性纳米粒子-氧化石墨烯复合材料,俞书宏课题组15通过在聚苯乙烯磺酸钠(PSS)包裹的氧化石墨烯(GO)溶液中高温分解乙酰丙酮合铁来制备磁性纳米粒子-氧化石墨烯复合材料的,使复合材料表面接上了不同含量的磁性纳米粒子,并研究了其作为磁共振成像造影剂等方面.最近Chan等16通过化学交联法合成了磁性纳米粒子-氧化石墨烯复合材料,并初步研究了其在去除污水中污染物方面的应用,但他们采用二氧化硅包覆磁性纳米粒子,大大降低了复合材料的饱和磁化强度;我们课题组也采用共价交联的方式制备了磁性纳米粒子-氧化石墨烯复合材料,17但未对其可控负载进行更深入的研究.以上工作大都存一定缺陷,如复合材料中磁性纳米粒子的粒径分布不均,复合材料的饱和磁化强度低,在氧化石墨烯上的担载率不能有效控制等.这些都限制了磁性纳米粒子-氧化石墨烯复合材料在不同领域的广泛应用.针对以上问题,我们发展了一种利用组装技术制备磁性纳米颗粒-氧化石墨烯复合材料的方法.首先我们利用成熟的高温分解法获得单分散性好,粒径可控的油溶性Fe3O4磁性纳米颗粒,并通过配体交换,使其转化为带有羧基的水溶性磁性纳米粒子(记为Fe3O4-DMSA).同时将聚乙烯亚胺(PEI)共价交联到氧化石墨烯上,得到GO-PEI.最后通过控制反应中GO-PEI和Fe3O4-DMSA的比例制备了不同负载率的磁性纳米粒子-氧化石墨烯复合材料.并对复合材料的结构、形貌和性能进行了表征.2实验部分2.1试剂与仪器聚乙烯亚胺(相对分子质量为25000),乙酰丙酮合铁(Fe(acac)3,97%),油胺(90%),二苯醚(99%),二巯基丁二酸(DMSA,98%)及乙基二甲基胺丙基碳化二亚胺(EDAC,>99%),均购于Sigma-Aldrich公司(美国).硫酸,过硫酸钾,五氧化二磷,高锰酸钾,无水乙醇,环己烷,二氯甲烷,乙酸乙酯,甲苯,油酸,石墨(化学纯或者分析纯),均购于国药集团化学试剂有限公司.二甲基亚砜(DMSO,>99.9%,生工).Fe3O4纳米粒子、氧化石墨烯和复合材料形貌是利用美国Tecnai(G2F20S-Twin200kV)型透射电子显微镜(TEM)和原子力显微镜(AFM)(Veeco Dimen-sion3100)进行表征.磁性纳米粒子的结构是利用X 射线衍射(XRD)(Bruker D8Advance)进行分析.复合材料中磁性纳米粒子的负载量采用热重分析仪(TG-DTA6200,升温速率为10°C·min-1)测定.氧化石墨烯和复合材料的结构采用傅里叶变换红外(FT-IR)光谱仪(美国Pekin-Elmer,Spectrum One)进行表征.磁性纳米粒子和复合材料的磁性使用振荡样品磁强计(VSM)磁性测量系统(Lakeshore7307)进行测量.2.2氨基化氧化石墨烯(GO-PEI)的制备氧化石墨烯的制备参照我们以前的工作.11具体方法:100mL的氧化石墨稀(1mg·mL-1)加入5g 氢氧化钠和5g氯酸钠超声2h,透析,得到表面羧基化的氧化石墨烯.在25mL的羧基化的氧化石墨烯(1mg·mL-1)中加入25mL的PEI(0.1mg·mL-1)及20mg的EDAC搅拌24h,透析,得到在常温下稳定的PEI修饰的氧化石墨烯(记为GO-PEI).2.3Fe3O4-DMSA的制备采用高温分解法18制备了粒径为18nm的Fe3O4纳米粒子.具体方法为:将乙酰丙酮合铁(3 mmol),油胺(20mL)和二苯醚(10mL)加入100mL 的三颈瓶中混合,在氮气保护下进行反应.磁力搅拌升温至110°C保温2h,再升温至280°C回流反应1h.室温冷却产物,加入20mL乙醇沉淀,离心.在沉淀物中加入环己烷(20mL),油酸(-0.05mL),油胺(-0.05mL),超声使其分散均匀.离心(8000r·min-1)30min,弃上清,保留沉淀,在其中分别加入0002张燚等:Fe 3O 4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征No.X环己烷(20mL),油酸(~0.05mL),油胺(~0.05mL),超声使其分散.再离心(6000r ·min -1)30min,获得油溶性的Fe 3O 4纳米粒子.用DMSA 进行表面修饰.具体方法为:20mg 的油溶性Fe 3O 4纳米粒子溶解在2mL 甲苯中.20mg DMSA 溶解在2mL DMSO 中,然后加入到Fe 3O 4纳米粒子的甲苯溶液中,在25°C 下搅拌12h.反应结束后,在溶液中加入乙酸乙酯,沉淀用磁铁收集,重复2-3次,再用超纯水清洗3次,最后溶解在2mL 的水中.用很稀的氢氧化钠水溶液调节其pH 值在7-8之间,即得到了水溶性很好的表面羧基化的磁性纳米粒子(Fe 3O 4-DMSA).192.4MGO 系列复合材料的合成在EDAC 存在下,利用GO-PEI 上的氨基与Fe 3O 4-DMSA 上的羧基进行交联反应,制备MGO 复合材料.具体方法为:在含有10mL 的GO-PEI (~0.3mg ·mL -1)圆底烧瓶中,加入1.5mL Fe 3O 4-DMSA 水溶液(~0.8mg ·mL -1)及0.8mL 的EDAC (25mmol ·mL -1),在室温搅拌下,反应48h.反应结束后,用磁铁富集所获得的产物,用超纯水清洗三次,除去溶液中未反应的EDAC,得到了磁功能化的氧化石墨烯复合材料,记为MGO-1.同样,GO-PEI 用量不变,将Fe 3O 4-DMSA 的用量改变为4和7mL,得到Fe 3O 4纳米粒子含量不同的MGO 复合材料,分别记为MGO-2和MGO-3.3结果和讨论3.1MGO 系列复合材料的合成图1为Fe 3O 4纳米粒子-氧化石墨烯复合材料的制备示意图.在我们的技术路线中,首先通过配体交换使高温分解法制备的油溶性的Fe 3O 4纳米粒子转化为表面带有羧基官能团的Fe 3O 4-DMSA,以便下一步与GO-PEI 的氨基共价交联.采用Hummers 和offeman 方法20得到表面和边缘带有羧基、羟基和环氧基等基团的氧化石墨烯(GO);再用PEI 共价交联GO,得到了表面带有氨基的氧化石墨烯材料(GO-PEI).最后用EDAC 交联Fe 3O 4-DMSA 与GO-PEI,得到了磁性纳米粒子-氧化石墨烯复合材料(MGO).我们所设计的实验路线是分别采用成熟的制备方法合成磁性纳米粒子和氧化石墨烯,能更有效地控制该两种材料的形貌、尺寸和表面修饰等.更重要的一点,通过改变反应混合物中Fe 3O 4纳米颗子与GO-PEI 的比例,获得了磁性可控的MGO复合材料.在我们的实验中,Fe 3O 4纳米粒子与GO-PEI 之间通过酰胺键键合,具有很好的化学和热稳定性.我们的结果还表明,Fe 3O 4-DMSA 和GO-PEI 具有良好的水溶性,其化学交联后所得到的磁性氧化石墨烯复合材料在水溶液也表现出良好的胶体稳定性.因此,我们合成的磁性氧化石墨烯复合材料所具备的以上特点有利于其在生物医学,材料等不同领域的广泛应用.3.2磁功能化氧化石墨烯复合材料的形貌和组成分析图2为GO 和GO-PEI 的AFM 图.由图2可知,制备的GO 尺寸在几十纳米到几百个纳米,厚度约为1.379nm,表明所制备的氧化石墨烯基本上为单层,也可能存在一些双层;20理论上石墨烯的厚度为0.34nm,而氧化石墨烯表面含有很多含氧基团,导致其厚度增加.GO-PEI 厚度为3.408nm,这是由于PEI 可以修饰氧化石墨烯片的两面导致其厚度显著增加.利用TEM 和XRD 对所制备的磁性纳米粒子以图1Fe 3O 4纳米粒子-氧化石墨烯复合材料制备路线示意图Fig.1Schematic synthesis diagram of Fe 3O 4nanoparticle-GO compositesDMSA:meso-2,3-dimercaptosuccinic acid;NPs:nanoparticles;PEI:polyethylene imine;EDAC:1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride;GO:graphene oxide图2(GO 和GO-PEI 的AFM 图Fig.2AFM images of GO and GO-PEI sheets0003Acta Phys.⁃Chim.Sin.2011V ol.27及其与氧化石墨烯的复合物进行了形貌,尺寸和结构的表征.图3A为Fe3O4纳米粒子TEM图,TEM结果表明,我们所制备的油溶性磁性纳米粒子单分散性较好,粒径约为18nm.图3B为Fe3O4纳米粒子的XRD图谱.图3B中的6个特征峰(2θ=30.4°,35.7°, 43.4°,53.4°,57.4°,62.7°),分别对应立方相Fe3O4的(220),(311),(400),(422),(511),(440)晶面,表明磁性物质为纯Fe3O4.21图4为氧化石墨烯担载不同含量Fe3O4纳米粒子的TEM图.从图中可以看出,Fe3O4纳米粒子均能很好地组装在GO片上形成复合材料.从TEM图中很明显地看出改变氧化石墨烯与Fe3O4纳米粒子的比例,导致Fe3O4纳米粒子吸附在GO上含量的变化.然后我们对这些Fe3O4纳米粒子-氧化石墨烯复合材料磁学性质进行了研究.MGO复合材料的磁性能依赖于Fe3O4纳米粒子的负载量,当Fe3O4纳米粒子负载量较高时,其相应的饱和磁化强度也较高,反之其负载量较少时,饱和磁化强度也较低. Fe3O4纳米粒子较少时,复合材料的饱和磁化强度较低,但是氧化石墨烯基面很多空出的位置可以通过π-π吸附一些特定的含芳环的分子,如抗癌药物,10或四环素,17等,实现载药和环境污染物吸附去除的目的.氧化石墨烯表面担载Fe3O4纳米粒子较多时,其饱和磁化强度较高,可以用于磁共振成像15或生物分离.所以通过控制复合材料上Fe3O4纳米粒子与氧化石墨烯的不同比例可以极大地扩展其应用领域.图5为磁功能化的氧化石墨烯复合材料在空气气氛下的热重分析图.第一阶段,100-150°C时的失重是由于复合材料表面吸附的水分以及一些低温易分解的物质.第二阶段,150-520°C时的失重原因是氧化石墨烯上的碳转化为二氧化碳以及氧化石墨烯上部分官能团转化为其相应氧化物气体等形式脱去.第三阶段,520°C以后则主要是不易分解的Fe2O3纳米粒子.由于Fe3O4纳米粒子在空气中易氧化,形成Fe2O3纳米粒子,会使其增重-12%.考虑该因素后,从TGA图中计算出该系列复合材料中Fe3O4磁性纳米粒子的相对含量,复合材料MGO-1,MGO-2,MGO-3中磁性纳米粒子的相对含量分别为:23.5%,43.3%,54.1%.从TGA结果得到的Fe3O4含量的变化与TEM和VSM结果相一致.图3Fe3O4纳米粒子的(A)TEM图和(B)XRD图谱Fig.3(A)TEM image and(B)XRD pattern of the as-prepared Fe3O4nanoparticles图4Fe3O4纳米粒子-氧化石墨烯(MGO)复合材料的TEM图Fig.4TEM images of Fe3O4nanoparticle-GO(MGO)composites(A)MGO-1,(B)MGO-2,(C)MGO-3A B C0004张燚等:Fe 3O 4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征No.X3.3GO-PEI 和MGO-3复合材料的红外分析为了表征Fe 3O 4纳米粒子-氧化石墨烯的化学结构,我们对GO-PEI,MGO 复合材料进行了红外光谱分析.图6为GO-PEI 和MGO-3的FT-IR 光谱.GO-PEI 和MGO-3样品在3435cm -1处的吸收峰归属于氧化石墨烯上吸附水分子的O ―H,以及PEI 的N ―H 的伸缩振动.GO-PEI,MGO-3在2854cm -1处的吸收峰归属于PEI 亚甲基的伸缩振动.在图中还可以明显看出GO-PEI 和MGO-3在1636cm -1的吸收峰为酰胺键的C =O 伸缩振动.在1114cm -1处的红外吸收峰归属于C ―O 的伸缩振动.22-24与原始的GO-PEI 的红外光谱比较,MGO-3在617cm -1处较强的吸收峰属于Fe ―O 键的伸缩振动,25,26表明Fe 3O 4纳米粒子与氧化石墨烯形成了复合物.3.4Fe 3O 4和MGO 复合材的磁性能我们通过改变Fe 3O 4纳米粒子在氧化石墨烯上的负载量获得了一系列磁功能化的氧化石墨烯复合材料.利用VSM 磁性测量系统测定了Fe 3O 4纳米粒子以及MGO 复合材料的磁滞回线(图7).如图7所示,磁滞回线呈现典型的S 型,剩余磁化强度趋于0,表明Fe 3O 4纳米粒子和MGO 系列复合材料为超顺磁物质.我们所制备的18nm Fe 3O 4纳米粒子的饱和磁化强度为41.3emu ·g -1,比其体相材料的92emu ·g -1显著减少,25这主要是由于Fe 3O 4纳米颗粒较小的缘故,26且表面有机配体的修饰等造成的.MGO 系列复合材料的饱和磁化强度因Fe 3O 4纳米颗粒含量而改变,分别为7.8,11.1,15.6emu ·g -1.这样制备的不同含量的磁性氧化石墨烯复合材料可以分别在磁共振成像,磁靶向载药,磁分离等方面获得广泛应用.4结论通过化学交联的方法制备了Fe 3O 4纳米粒子-氧化石墨烯复合材料.利用TEM 、XRD 、AFM 、TGA 、FT-IR 、VSM 等手段表征了其形貌、结构、组成以及磁学性质.实验结果表明,利用我们的制备方法,可以很好地控制磁性氧化石墨烯复合材料中Fe 3O 4磁性纳米粒子粒径,粒径分布,以及其负载率.我们所制备的磁性氧化石墨烯复合材料具有较好的超顺磁性.这些磁功能化石墨烯复合材料将在磁靶向载药,生物分离,磁共振成像,以及在去除污水中稠环污染物等领域获得广泛的应用.References(1)Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6,183.(2)Shen,J.F.;Hu,Y .Z.;Shi,M.;Li,N.;Ma,H.W.;Ye,M.X.J.Phys.Chem.C 2010,114,1498.(3)Novoselov,K.S.;Geim,A.K.;Morozov,S.V .;Jiang,D.;Zhang,Y .;Dubonos,S.V .;Grigorieva,I.V .;Firsov,A.A.Science 2004,306,666.图5MGO-1,MGO-2,MGO-3复合材料的热重分析曲线Fig.5TGA curves of MGO-1,MGO-2,MGO-3composites图6GO-PEI 和MGO-3的傅里叶变换红外光谱Fig.6FT-IR spectra of GO-PEI andMGO-3图7(A)MGO-1,(B)MGO-2,(C)MGO-3复合材料及(D)Fe 3O 4纳米粒子的磁滞回线Fig.7Magnetic hysteresis loops of (A)MGO-1,(B)MGO-2,(C)MGO-3composites and (D)Fe 3O 4nanoparticles0005Acta Phys.⁃Chim.Sin.2011V ol.27(4)Berger,C.;Song,Z.M.;Li,T.B.;Li,X.B.;Ogbazghi,A.Y.;Feng,R.;Dai,Z.T.;Marchenkov,A.N.;Conrad,E.H.J.Phys.Chem.B2004,108,19912.(5)Stankovich,S.;Dikin,D.A.;Dommett,G.H.B.;Kohlhaas,K.M.;Zimney,E.J.;Stach,E.A.;Piner,R.D.;Nguyen,S.T.;Ruoff,R.S.Nature2006,442,282.(6)Di,C.A.;Wei,D.C.;Yu,G.;Liu,Y.Q.;Guo,Y.L.;Zhu,D.B.Adv.Mater.2008,20,3289.(7)Wu,J.S.;Pisula,W.;Mullen,K.Chem.Rev.2007,107,718.(8)Huang,J.;Zhang,L.M.;Chen,B.;Ji,N.;Chen,F.H.;Zhang,Y.;Zhang Z.J.Nanoscale2010,2,2733.(9)Zhang,X.Y.;Yang,X.Y.;Ma,Y.F.;Huang,Y.;Chen,Y.S.Journal of Nanoscience and Nanotechnology2010,10,2984. (10)Yang,X.Y.;Zhang,X.Y.;Ma,Y.F.;Huang,Y.;Wangand,Y.S.;Chen,Y.S.J.Mater.Chem.2009,19,2710.(11)Zhang,L.M.;Xia,J.G.;Zhao,Q.H.;Liu,L.W.;Zhang,Z.J.Small2010,6,537.(12)Si,Y.C.;Samulski,E.T.Chem.Mater.2008,20,6792.(13)Muszynski,R.;Seger,B.;Kamat,P.V.J.Phys.Chem.C2008,112,5263.(14)Xu,C.;Wang,X.;Zhu,J.W.J.Phys.Chem.C2008,112,19841.(15)Cong,H.P.;He,J.J.;Lu,Y.;Yu,S.H.Small2010,6,169.(16)He,F.;Fan,J.T.;Ma,D.;Zhang,L.M.;Leung,C.W.;Chan,H.L.Carbon2010,48,3139.(17)Zhang,Y.;Chen,B.;Zhang,L.M.;Huang,J.;Chen,F.H.;Yang,Z.P.;Yao.J.L.;Zhang,Z.J.Nanoscale,publishedonline:07Feb,2011,DOI:10.1039/C0NR00776E.(18)Sun,S.H.;Zeng,H.;Robinson,D.B.;Raoux,S.;Rice,P.M.;Wang,S.X.;Li,G.X.J.Am.Chem.Soc.2004,126,273. (19)Chen,Z.P.;Zhang,Y.;Xu,K.;Xu,R.Z.;Liu,J.W.;Gu,N.Journal of Nanoscience and Nanotechnology2008,8,12.(20)Hummers,W.;Offeman,R.J.Am.Chem.Soc.1958,80,1339.(21)Zhu,C.X.;Peng,D.F.Speciality Petrochemicals2010,27,57.(21)Paredes,J.I.;Villar-Rodil,S.;Solis-Fernandez,P.;Martinez-Alonso,A.;Tascon,ngmuir2009,25,5957.(22)Bourlinos,A.B.;Gournis,D.;Petridis,D.;Szabo,T.;Szeri,A.;Dekany,ngmuir2003,19,6050.(23)Stankovich,S.S.;Piner,R.D.;Nguyen,S.B.T.;Ruoff,R.S.Carbon2006,44,3342.(24)Chin,S.F.;Iyer,K.S.;Raston,b.Chip.2008,8,439.(25)Rocchiccioli-Deltche,C.;Franck,R.;Cabuil,V.;Massart,R.J.Chem.Res.1987,5,126.(26)Popplewell,J.;Sakhnini,L.J.Magn.Mater.1995,142,72.0006。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合粉体TEM图
由于少层石墨烯在热力学上处于不稳定状态,所以呈卷曲状, 可以数出石墨烯的层数大概为 3~4 层
复合材料TEM 可以推断出这些夹杂 在铜颗粒之间的少层 石墨烯的厚度非常小, 大概为几纳米左右,
即说明我们在制备复 合粉体阶段得到的少 层石墨烯经过电火花 烧结过程后并没有发 生明显的复合。
复合粉体中石墨片形貌的 SEM 观察
复合材料SEM
我们可以看到在非常致密的铜基体上有许多小的孔洞,或 者分散或者聚集成一片,孔洞中嵌入的物质即为少层石墨 烯铜颗粒以及少层石墨烯很好地复合在一起
材料断口SEM
发现断口处存在许多被拉断的少层石墨烯,有的石墨烯仍然嵌在基体中, 有的已经被整个拽了出来,厚度虽然具体观察不出来,但直观可见非常 薄,远远要小于石墨颗粒的尺寸(直径 300 目,约 50um)。而且在断 口中石墨烯的数量非常多,沿各个方向嵌在铜基体中,这都说明经过高 剪切均质机的作用,石墨得到了有效的剥离。
发现随着时间延长, D 模的强度逐渐降低, 72h 时更是趋近于零,也即 ID\IG 逐渐减低,这说明 石墨的有序度并没有随剥离时间延长而降低,剥 离后的产物有序度较高,缺陷较少
石墨片的透明度非常 好,透过某些石墨片 可 以 较清晰 地 看见位 于其下的铜晶粒
尺 寸 标度可 以 推测石 墨片的厚度大概在 1~50nm 的范围在粉体 中 发 现的石 墨 片可能 约为几层至几十层
其它方法
热重—示差扫描 用于分析温度变化过程中的物理化学 变化,如晶型转变、物质含量、相态变化、分解和氧化还 原等,研究样品的热失重行为和热量变化。
低温氮吸附测试 测定石墨烯的孔结构和比表面积,计 算比表面积、孔径大小、孔分布、孔体积等物理参数。 傅里叶变换红外光谱分析( FT-IR ) 用来识别化合物 和结构的官能团,在石墨烯制备中主要用于氧化石墨烯的 基面和边缘位的官能团的识别。
铜基石墨烯复合材料的表征(XRD)
发现剥离时间越长,石墨峰越弱,铜的氧化物的峰越强, 说明石墨片的剥离是一个循序渐进的过程,时间越长剥离 效果越好,但是时间长了,铜颗粒的氧化情况更严重了。 并且剥离时间越长,铜峰的强度越强。
复合材料金相分析:发现铜基体非常致密,另外在铜基体的 表面可以发现一些深灰色的小片,这些小片就是嵌在基体中 的少层石墨烯,它们的分布比较均匀,而且各个小片平面的 延伸方向也不尽相同,这样就能保证复合材料受力时能够具 有各向同性的力学性能。
石墨烯及其复合材料的 表征
石墨烯的表征:
1、拉曼光谱( Raman )
2、扫描电子显微镜( SEM ) 3、高分辨透射电子显微镜( HRTEM )
4、X射线衍射( XRD )
5、原子力显微镜( AFM ) 6、其它方法
拉曼光谱( Ra在Raman光谱上一般表现为2个峰,ID/IG强 度比是衡量物质不规则度,判断物质有序性的重要指标。 the G band around 1580 cm-1 corresponds to sp 2 bonded atoms in a hexagonal lattice, and the D band around 1350 cm -1 is related to the vibrations of sp 3 carbon atoms of and disorder
扫描电子显微镜( SEM )
图为铜箔在 800 ( b )和 1000(c)摄氏度下的 SEM图,扫描电子显微镜 可以用来观察样品的整 体形貌和表面结构。
X射线衍射( XRD )
XRD可用来表征石墨烯的合成过程,对每一步反应进行监 控。
原子力显微镜(AFM)
原子力显微镜 是石墨烯片层 结构最有力、 最直接有效的 工具。它可以 清晰地反应出 石墨烯的大小、 厚度等信息。