第8章第1讲 空间几何体的结构及其三视图和直观图

合集下载

8.1空间几何体的结构、三视图和直观图

8.1空间几何体的结构、三视图和直观图

§8.1空间几何体的结构、三视图和直观图最新考纲考情考向分析1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.空间几何体的结构特征、三视图、直观图在高考中几乎年年考查.主要考查根据几何体的三视图求其体积与表面积.对空间几何体的结构特征、三视图、直观图的考查,以选择题和填空题为主.1.多面体的结构特征2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台 直角梯形 垂直于底边的腰所在的直线球半圆直径所在的直线3.空间几何体的三视图 (1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图. 4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x 轴和z 轴的线段在直观图中保持原长度不变;平行于y 轴的线段在直观图中长度变为原来的一半. 知识拓展1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图均为全等的矩形. 2.斜二测画法中的“三变”与“三不变” “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(×)(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.(×)(4)正方体、球、圆锥各自的三视图中,三视图均相同.(×)(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.(×)(6)菱形的直观图仍是菱形.(×)题组二教材改编2.[P19T2]下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行答案D解析由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.3.[P8T1]在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三易错自纠4.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案A解析由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.5.(2018·珠海质检)将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为()答案B解析侧视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为虚线.由于AD1与B1C不平行,投影为相交线,故选B.6.正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案6 16a2解析画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图),D′为O′A′的中点.易知D′B′=12DB(D为OA的中点),∴S△O′A′B′=12×22S△OAB=24×34a2=616a2.题型一空间几何体的结构特征1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A解析①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.(2018·青岛模拟)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1 C.2 D.3答案B解析由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③不正确.思维升华(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.题型二简单几何体的三视图命题点1已知几何体,识别三视图典例(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.命题点2已知三视图,判断几何体的形状典例(2017·全国Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16答案B解析观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×12×(2+4)×2=12.故选B.命题点3已知三视图中的两个视图,判断第三个视图典例(2017·汕头模拟)一个锥体的正视图和侧视图如图所示,下列选项中,不可能是该锥体的俯视图的是()答案C解析A,B,D选项满足三视图作法规则,C不满足三视图作法规则中的宽相等,故C不可能是该锥体的俯视图.思维升华三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.跟踪训练(1)(2017·全国Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90π B.63π C.42π D.36π答案B解析方法一(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正视图可能是( )答案 A解析 由俯视图和侧视图可知原几何体是四棱锥,底面是长方形,内侧的侧面垂直于底面,所以正视图为A.题型三 空间几何体的直观图典例 (2018·福州调研)已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.跟踪训练 (2017·贵阳联考)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.答案 2+22解析 如图1,在直观图中,过点A 作AE ⊥BC ,垂足为E . 在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 又四边形AECD 为矩形,AD =EC =1, ∴BC =BE +EC =22+1, 由此还原为原图形如图2所示,是直角梯形A ′B ′C ′D ′. 在梯形A ′B ′C ′D ′中,A ′D ′=1,B ′C ′=22+1,A ′B ′=2. ∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝⎛⎭⎫1+1+22×2=2+22.1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱答案D解析球、正方体的三视图形状都相同、大小均相等.当三棱锥的三条侧棱相等且两两垂直时,其三视图的形状都相同、大小均相等.不论圆柱如何放置,其三视图的形状都不会完全相同,故选D.2.如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案C3.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,c C.c,b D.b,d答案A解析当正视图和侧视图完全相同时,“牟合方盖”相对的两个曲面正对前方,正视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选A.4.(2018·成都质检)如图,在长方体ABCD-A1B1C1D1中,点P是棱CD上一点,则三棱锥P -A1B1A的侧视图是()答案D解析在长方体ABCD-A1B1C1D1中,从左侧看三棱锥P-A1B1A,B1,A1,A的射影分别是C1,D1,D;AB1的射影为C1D,且为实线,P A1的射影为PD1,且为虚线.故选D. 5.(2018·武汉调研)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()答案A解析设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.6.(2017·黄山质检)一个正方体截去两个角后所得几何体的正视图、俯视图如图所示,则其侧视图为()答案C解析根据一个正方体截去两个角后所得几何体的正视图、俯视图可得几何体的直观图如图所示.所以侧视图如图所示.7.(2017·东北师大附中、吉林市一中等五校联考)如图所示,在三棱锥D—ABC中,已知AC =BC=CD=2,CD⊥平面ABC,∠ACB=90°.若其正视图、俯视图如图所示,则其侧视图的面积为()A. 6 B.2C. 3D.2答案D解析由几何体的结构特征和正视图、俯视图,得该几何体的侧视图是一个直角三角形,其中一直角边为CD,其长度为2,另一直角边为底面△ABC的边AB上的中线,其长度为2,则其侧视图的面积S=12×2×2= 2.8.如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()答案B解析由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB1与面ACC1A1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.9.(2017·福建龙岩联考)一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O′A′B′C′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为________.答案22解析因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.10.(2017·南昌一模)如图,在正四棱柱ABCD—A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P—BCD的正视图与侧视图的面积之比为________.答案1∶1解析根据题意,三棱锥P—BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P—BCD的正视图与侧视图的面积之比为1∶1.11.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的射影可能是________.(填出所有可能的序号)答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的射影是①;在平面BCC′B′上的射影是②;在平面ABCD上的射影是③,而不可能出现的射影为④中的情况.12.(2018·长沙调研)某四面体的三视图如图所示,则该四面体的六条棱的长度中,最大的是________.答案27解析由三视图可知该四面体为三棱锥V—ABC,如图,其中EC=CB=2,AE=23,VC=2,AE⊥BE,VC⊥平面ABE,所以在六条棱中,最大的棱为VA或者AB.AC2=AE2+EC2=(23)2+22=16,所以VA2=AC2+VC2=16+22=20,此时VA=20=25,AB2=AE2+EB2=(23)2+42=28,所以AB=28=27>25,所以棱长最大的为27.13.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8 B.7C.6 D.5答案C解析画出直观图,共六块.14.(2017·湖南省东部六校联考)某三棱锥的三视图如图所示,则该三棱锥的四个面的面积中,最大的面积是()A.4 3 B.83C.47 D.8答案C解析如图,设该三棱锥为P—ABC,其中P A⊥平面ABC,P A=4,则由三视图可知△ABC是边长为4的等边三角形,故PB=PC=42,所以S△ABC=12×4×23=43,S△P AB=S△P AC=12×4×4=8,S△PBC=12×4×(42)2-22=47,故四个面中面积最大的为S△PBC=47,故选C.15.(2017·泉州二模)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是()A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分答案D解析根据几何体的三视图,可得侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.16.(2018·济南模拟)一只蚂蚁从正方体ABCD—A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.①③C.③④D.②④答案D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.。

§8.1 空间几何体的结构及其三视图和直观图

§8.1 空间几何体的结构及其三视图和直观图

探究提高
解决该类题目需准确理解几何体的定义,要真正把握几何 体的结构特征,并且学会通过反例对概念进行辨析,即要说明 一个命题是错误的,设法举出一个反例即可. 主页
变式训练 1
下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱; ②若过两个相对侧棱的截面都垂直于底面,则该四棱 柱为直四棱柱; ③若四个侧面两两全等,则该四棱柱为直四棱柱; ④若四棱柱的四条对角线两两相等,则该四棱柱为 直四棱柱. 其中,真命题的编号是②④ ________.(写出所有真命题 的编号)
主页
变式训练 3
一个平面图形的水平放置的斜二测直观图是一个 等腰梯形,它的底角为45°,两腰和上底边长均为1,则这 2 2 个平面图形的面积是 ______.
y
D
C
D
1
C
2
o
A
E
B x
A
2 1
B
S 1 [1 2 1] 2 2 2. 2
主页
题 型四
几何体的截面问题
对于①,平行六面体的两个相对侧面也可能与 底面垂直且互相平行,故①假; 对于②,两截面的交线平行于侧棱,且垂直于底 面,故②真;
主页
变式训练 1 下面是关于四棱柱的四个命题: ③若四个侧面两两全等,则该四棱柱为直四棱柱; ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱. ②④ .(写出所有真命题的编号) 其中,真命题的编号是________
对于③,作正四棱柱的两个平行菱形截面,可得满足条件 的斜四棱柱(如图(1)),故③假; 对于④,四棱柱一个对角面的两条对角线,恰为四棱柱 的对角线,故对角面为矩形,于是侧棱垂直于底面的一对角 线,同样侧棱也垂直于底面的另一对角线,故侧棱垂直于底 面,故④真(如图(2)).

第1讲___空间几何体的结构及其三视图和直观图

第1讲___空间几何体的结构及其三视图和直观图

第1讲空间几何体的结构及其三视图和直观图1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等没有严格要求).1.空间几何体的结构特征2.空间几何体的三视图(1)三视图的形成与名称空间几何体的三视图是用平行投影得到的,在这种投影之下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是完全相同的,三视图包括________、________、________.(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成________.②三视图的正视图、侧视图、俯视图分别是从几何体的________方、________方、________方观察几何体画出的轮廓线.3.空间几何的直观图空间几何体的直观图常用________画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=________,已知图形中平行于x轴的线段,在直观图中长度________,平行于y轴的线段,长度________.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度________.例1下列结论正确的是()A. 各个面都是三角形的几何体是三棱锥B. 以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C. 棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D. 圆锥的顶点与底面圆周上的任意一点的连线都是母线例2[2012·湖南高考]某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()例3[2013·桂林检测]已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2 B.38a2C.68a2 D.616a2第2讲 空间几何体的表面积和体积 1.了解球、柱体、锥体、台体的表面积计算公式. 2.了解球、柱体、锥体、台体的体积计算公式. 1种必会方法 等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高. 2个重要技巧 1. 巧割:对于给出的一个不规则的几何体,不能直接套用公式.常用分割法,即将原几何体分割成几个可求体积的几何体,然后求其体积之和. 2. 妙补:对不规则的几何体,常通过补形,补成规则的几何体,借助于规则的几何体的体积或面积公式求解 3点必须注意 1. 柱、锥、台体的侧面积分别是侧面展开图的面积,因此,弄清侧面展开图的形状及各线段的位置关系,是求侧面积及解决有关问题的关键. 2. 求柱、锥、台体的体积关键是找到相应的底面积和高.充分运用多面体的截面及旋转体的轴截面,将空间问题转化成平面问题. 3. 球的有关问题,注意球半径,截面圆半径,球心到截面距离构成直角三角形.例1 [2012·北京高考]某三棱锥的三视图如图所示,该三棱锥的表面积是( )A. 28+65B. 30+6 5C. 56+125D. 60+12 5例2如图所示为一个几何体的三视图,则该几何体的体积为()A.24π-16B.24π+16C.24π-48D.24π+48例3[2012·山东高考]如图,正方体ABCD-A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A-DED1的体积为________.[审题视点]等体积法,将三棱锥A-DED1的体积转化为三棱锥C-AD1D的体积求解.第3讲空间点、直线、平面之间的位置关系1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题1点必须注意“不同在任何一个平面内”指这两条直线不能确定任何一个平面,因此异面直线既不相交,也不平行.2种必会方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.3个必知作用1. 公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.2. 公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3. 公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线.2.空间直线的位置关系(1)位置关系的分类错误!(2)平行公理平行于同一条直线的两条直线互相________.(3)等角定理空间中如果两个角的两边分别对应平行,那么这两个角________.(4)异面直线所成的角(或夹角)①定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的________叫做异面直线a与b所成的角.②范围:________.例1[2013·安顺检测]如图,在正方体ABCD-A1B1C1D1中,E、F分别是AB和AA1的中点,求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.例2[2013·安庆模拟]如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1、B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由.(2)D1B和CC1是否是异面直线?说明理由.对于四面体ABCD,下列命题正确的是________(写出所有正确命题的编号).①相对棱AB与CD所在直线异面;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高所在的直线异面;④分别作三组相对棱中点的连线,所得的三条线段相交于一点.例3[2012·大纲全国高考]已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.。

空间几何体结构及其三视图和直观图PPT课件

空间几何体结构及其三视图和直观图PPT课件

圆柱体实例分析
总结词:直上直下
详细描述:圆柱体的底面和顶面都是圆,侧面是曲面。在三视图和直观图中,圆柱体的上下底面是圆形,侧面则呈现为矩形 或椭圆,体现了其直上直下的特性。
圆锥体实例分析
总结词:尖顶曲底
详细描述:圆锥体的底面是圆,侧面是曲面。在三视图和直观图中,圆锥体的底面是圆形,侧面则呈 现为三角形或曲线,体现了其尖顶曲底的特性。
左视图
左视图是空间几何体在左侧投影 下得到的视图,通常表示物体的
宽度和高度。
左视图的方向应与投影方向一致, 且应将物体的主要轮廓和特征反
映出来。
在左视图中,垂直于投影面的线 段长度和倾斜线段的高度应保持
不变。
俯视图
俯视图是空间几何体在顶部投 影下得到的视图,通常表示物 体的长度和宽度。
俯视图的方向应与投影方向一 致,且应将物体的主要轮廓和 特征反映出来。
常见空间几何体
01
02
03
多面体
由多个平面围成的几何体, 如正方体、长方体、三棱 锥等。
旋转体
由一个平面图形围绕其一 边或一点旋转而成,如圆 柱、圆锥、球等。
复杂几何体
由多个多面体和旋转体组 合而成,如组合体、镶嵌 体等。
空间几何体的性质
空间性
空间几何体存在于三维空 间中,具有大小和方向。
封闭性
04
空间几何体与三视图的 应用
三视图在工程设计中的应用
工业设计
三视图是工业设计中重要的表达 工具,用于展示产品的外观、结
构和功能。
建筑设计
在建筑设计中,三视图用于呈现建 筑物的外观、内部布局和结构设计, 以便更好地进行施工和规划。
机械设计
在机械设计中,三视图用于描述机 器的零件、装配关系和运动原理, 以确保机器的正常运行。

8.1空间几何体的结构及其三视图与直观图(理_课件)

8.1空间几何体的结构及其三视图与直观图(理_课件)
面;无论旋转到什么位置,不垂直于轴的边都叫做 (2)圆锥:以 .
所在直线为旋转轴,其余两边旋转形 的部
成的面所围成的旋转体叫做圆锥. (3)圆台:用平行于圆锥底面的平面去截圆锥, 分叫做圆台,圆台的 (4)球:以 答案:(1)旋转轴 (3)底面与截面之间 延长后交于一点. 所在直线为旋转轴,半圆面旋转一周形成的旋 圆柱侧面的母线 各母线
).
【例1】 下列结论正确的是(
A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所
围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
返回目录
按Esc键退出
解析:A错误.如图,由两个结构相同的三棱锥叠放在一起构成的几何体,
返回目录
按Esc键退出
2.相等的角在直观图中一定相等,相等的线段在直观图中也一定相等, 对吗? 提示:不对.根据斜二测画法的规则,相等的角在直观图中不一定相等, 相等的线段在直观图中也不一定相等.
返回目录
按Esc键退出
考点探究突破
◎拓展升华思维的加油站◎
返回目录
按Esc键退出
一、空间几何体的结构特征
理解几何体的定义,若对概念进行辨析,一方面是严格按照定义判断,
另一方面还要学会通过举反例来说明一个命题是错误的.
请做[针对训练]1
返回目录
按Esc键退出
二、几何体的三视图 【例2】 画出如图所示几何体的三视图.
返回目录
按Esc键退出
解:三视图如下:
返回目录
按Esc键退出
方法提炼三视图的画法要坚持以下原则:
保持原长度不变,平行于y轴的线段,长度为

空间几何体的结构、三视图、直观图课件

空间几何体的结构、三视图、直观图课件
用一个平行于棱锥 底面的平面去截棱 棱台 锥,底面与截面之 间的部分叫作棱台 (1) (1)上下两个底面 互相平行; 互相平行; (2) (2)侧棱的延长线 相交于一点; 相交于一点;
1 V Sh 3
旋转体
圆柱 圆锥 圆台 球
分别以矩形、直角三角形的直角边、 直角梯形垂直于底边的腰所在的直线为旋
柱、锥、台、球的结构特征
空间几何体的结构 识 图 空 间 几 何 体
画 图
简单几何体的结构特征
柱、锥、台、球的三视图 三视图 简单几何体的三视图 平面图形 平行投影 中心投影
直观图
斜二测画法 空间几何体
柱、锥、台、球的表面积与体积
概念 棱柱
多面体
柱 锥 台 球 旋转体
棱锥
性质 侧面积
棱台
体积
圆柱 圆锥 圆台 概念 结构特征 侧面积
在中心投影中,如果改变物体与投射中心或投影面之间 的距离、位置,则其投影的大小也随之改变.
我们把在一束平行光线照射下形成的投影称为平行投影. 斜投影:投 射线倾斜于 投影面
正投影:投 射线垂直于 投影面
正投影能正确的表达物体的真实形状和大小,作图比较方 便,在作图中应用最广泛. 斜投影在实际中用的比较少,其特点是直观性强,在作图 中只是作为一种辅助图样.
(2)画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在 轴上取线段PQ,使PQ= 1.5cm;分别过点M 和N 作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
O
Z
y
Q
x
M
D
O
C
A
N

第1讲空间几何体的结构三视图和直观图.ppt

第1讲空间几何体的结构三视图和直观图.ppt

视图分别如图所示,则该几何体的俯视图为
()
解析:正视图中小长方形在左上方,对应俯视图应该在左侧,排除B、D,侧视 图中小长方形在右上方,排除A. 答案:C
考基联动
考向导析
规范解答
限时规范训练
5.从如右图所示的圆柱中挖去一个以圆柱的上 底面为底面,下底面的圆心为顶点的圆锥得 到一个几何体,现用一个平面去截这个几何体, 若这个平面垂直于圆柱的底面所在的平面,那么 所截得的图形可能是下图中的________(把所有可 能的图形的序号都填上).
S′= 2S,能进行相关问题的计算. 4
迁移发散
3.如图,矩形 O′A′B′C′是水平放置的一个平面图形的
直观图,其中 O′A′=6 cm,O′C′=2 cm,则原图形

()
A.正方形
B.矩形
C.菱形
D.一般的平行四边形
解析:将直观图还原得▱OABC,则
∵O′D′= 2O′C′=2 2(cm),
OD=2O′D′=4 2(cm), C′D′=O′C′=2(cm),∴CD=2(cm),
2.旋转体是一个平面封闭图形绕一个轴旋转生成的,一定要弄清圆柱、圆锥、圆台 和球分别是由哪一种平面图形旋转形成的,从而可掌握旋转体中各元素的关系, 也就掌握了它们各自的性质.
3.三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我 们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三 视图可以想象出空间几何体的形状,两者之间可以相互转化.
第1讲 空间几何体的结构、三视图和直观图
1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生 活中简单物体的结构.
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图, 能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.

§8.1 空间几何体的结构及其三视图和直观图

§8.1 空间几何体的结构及其三视图和直观图

(1)在已知图形中,取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,
把它们画成对应的x'轴和y'轴,两轴相交于点O',且使∠x'O'y'=45°(或 135°),用它们确定的平面表示水平面.
栏目索引
(2)已知图形中平行于x轴、y轴的线段,在直观图中,分别画成平行于x' 轴、y'轴的线段. (3)已知图形中平行于x轴的线段,在直观图中保持长度不变,平行于y轴 的线段,在直观图中长度变为原来的④ 一半 . 5.水平放置的平面图形的直观图的面积S直与原平面图形的面积S原的关 系为S直= S原.
ห้องสมุดไป่ตู้
栏目索引
解题导引
解析 过点A,E,C1的截面为AEC1F,如图, 则剩余几何体的左视图为选项C中的图形.故选C.
2 4
栏目索引
方法技巧
方法 掌握三视图的基本特征
正确认识三视图和直观图是本节的重点和难点.掌握三视图的基本特征 和“长对正、高平齐、宽相等”的原则,注意虚实线的区别,充分发挥 空间想象能力是解题的关键. 例 (2017河北衡水中学七调,5)正方体ABCD-A1B1C1D1 中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该 正方体的上半部分,则剩余几何体的左视图为 ( C )
栏目索引
考点二
三视图和直观图
1.三视图是从一个几何体的正前方、正左方、③ 正上方 三个 不同的方向看这个几何体,描绘出的图形,分别称为正视图、侧视图、 俯视图. 2.三视图的排列顺序:先画正视图,俯视图放在正视图的下方,侧视图放 在正视图的右方. 3.三视图的三个原则:长对正、高平齐、宽相等. 4.水平放置的平面图形的直观图的斜二测画法

〖2021年人教版〗《8.1 空间几何体的结构、三视图和直观图》完整版教学课件PPT

〖2021年人教版〗《8.1 空间几何体的结构、三视图和直观图》完整版教学课件PPT

几何画板展示
2有一个面是多边形,其余各面都是三角形的几何体是棱锥 ×
几何画板展示
3夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱
台×
几何画板展示
4正方体、球、圆锥各自的三视图中,三视图均相同 × 5用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱 × 6菱形的直观图仍是菱形 ×
考点自测
§81 空间几何体的结构、三视图和直观图
内容索引
基础知识 自主学习 题型分类 深度剖析 课时作业
基础知识 自主学习
知识梳理
1多面体的结构特征
互相平行 全等
公共顶点 平行于底面
相似
2旋转体的形成
几何体 圆柱 圆锥
旋转图形 矩形
直角三角形
圆台 球
直角梯形 半圆
旋转轴 任一边所在的直线 任一直角边所在的直线 垂直于底边的腰所在的直线
直径 所在的直线
3空间几何体的三视图 1三视图的名称 几何体的三视图包括: 、正视图、 侧视图 俯视图 2三视图的画法 ①在画三视图时,重叠的线只画一条,挡住的线要画成虚线 ②三视图的正视图、侧视图、俯视图分别是从几何体的 正前方、 方 、正左 方观察正到上的几何体的正投影图
4空间几何体的直观图 空间几何体的直观图常用 斜画二法测来画,其规则是
1教材改编下列说法正确的是 答案 解析 A相等的角在直观图中仍然相等 B相等的线段在直观图中仍然相等 C正方形的直观图是正方形 D若两条线段平行,则在直观图中对应的两条线段仍然平行
由直观图的画法规则知,角度、长度都有可能改变,而线段的 平行性不变.
22016·天津将一个长方体沿相邻三个面的对角线截去一个棱
1原图形中轴、轴、轴两两垂直,直观图中,′轴,′轴的夹角为 , ′

《创新设计 高考总复习》2014届高考数学一轮复习:第八篇 第1讲 空间几何体的结构、三视图和直观图

《创新设计 高考总复习》2014届高考数学一轮复习:第八篇 第1讲 空间几何体的结构、三视图和直观图

均以选择题的形式出现,难度不大.
抓住4个考点
突破3个考向
揭秘3年高考
【真题探究】► (2011· 山东)如图所示,长和宽 分别相等的两个矩形.给定下列三个命题:
①存在三棱柱,其正视图、俯视图如右图
所示;②存在四棱柱,其正视图、俯视图 如右图;③存在圆柱,其正视图,俯视图 如图. 其中真命等腰三角形的棱锥是正棱锥;
③侧面都是矩形的直四棱柱是长方体;
④若有两个侧面垂直于底面,则该四棱柱为直四棱柱. 其中不正确的命题的个数是________个. 解析 认识棱柱一般要从侧棱与底面的垂直与否和底面多 边形的形状两方面去分析,故①③都不准确,②中对等腰
形.
③棱台:棱台可由平行于底面的平面截棱锥得到,其上下底 面是相似多边形.
抓住4个考点 突破3个考向 揭秘3年高考
(2)旋转体 一边所在直线 ①圆柱可以由矩形绕_____________旋转一周得到.
②圆锥可以由直角三角形绕其___________旋转得到. 任一直角边
③圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点 连线旋转得到,也可由平行于圆锥底面的平面截圆锥得 到. ④球可以由半圆或圆绕直径旋转得到.
均相等,首先排除选项A和C.对于如图所示三 棱锥O-ABC,当OA、OB、OC两两垂直且OA =OB=OC时,其三视图的形状都相同,大小
均相等,故排除选项B.不论圆柱如何放置,其
三视图的形状都不会完全相同,故答案选D.
答案
D
抓住4个考点
突破3个考向
揭秘3年高考
5. 如图,过BC的平面截去长方体的一
答案
D
抓住4个考点 突破3个考向 揭秘3年高考
对于直观图,除了了解斜二测画法的规则外,还 要了解原图形面积 S 与其直观图面积 S′之间的关系 S′ 2 = S,能进行相关问题的计算. 4

81空间几何体的结构三视图和直观图

81空间几何体的结构三视图和直观图

81空间几何体的结构三视图和直观图空间几何体是三维的物体,具有长度、宽度和高度三个方向的尺寸。

在空间几何体中,结构、三视图和直观图是常用的展示方式。

下面将对空间几何体的结构、三视图和直观图进行详细介绍。

空间几何体的结构是指几何体内部的布局和组织方式。

不同的空间几何体具有不同的结构。

例如,一个立方体的结构由六个正方形的面组成,每个面都与其他四个面相邻。

而一个圆柱体的结构由一个圆柱形的侧面和两个圆形的底面组成,底面与侧面相连。

三视图是一种展示空间几何体的方法,它分别显示了几何体的正视图、侧视图和俯视图。

正视图是指从正面观察几何体时所看到的影像,侧视图是指从侧面观察几何体时所看到的影像,俯视图是指从上方俯视几何体时所看到的影像。

通过这三个视图,可以全面地了解几何体的形状和结构。

直观图是一种更加真实、立体的展示方式。

它使用透视原理将几何体投影到二维平面上,使观察者可以立即理解几何体的形状和结构。

直观图可以是手绘的,也可以是通过计算机软件生成的。

在直观图中,几何体的形状以及相对位置和尺寸都能够直观地呈现出来。

空间几何体的结构对于设计和制造过程非常重要。

通过了解几何体的结构,可以确定几何体的组成部分以及它们之间的关系,从而进行有效的设计和制造。

三视图和直观图则是与相关人员进行沟通和交流的重要工具。

设计师可以通过三视图和直观图向客户和制造人员展示他们的设计,以便于理解和评估。

总结起来,空间几何体的结构、三视图和直观图都是对几何体进行描述和展示的方式。

它们在设计和制造过程中发挥着重要的作用,能够帮助人们更好地理解和应用空间几何体。

空间几何体得结构、三视图和直观图

空间几何体得结构、三视图和直观图

我参与、我快乐! 2015年1月3日高三一轮复习理科补习班专用编写人:贾长江课题:空间几何体的结构、三视图和直观图【考点分析】(1)几何体作为线面关系的载体,其结构特征是必考内容;(2)考查三视图、直观图及其应用。

【重难点】(1)重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型;(2)熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。

【知识梳理】1、空间几何体的结构特征从多面体和旋转体来构建本节知识框架。

2、空间几何体的直观图空间几何体的直观图常用_________画法来画,基本规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为__________,z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中__________.平行于x轴和z轴的线段长度在直观图中______________,平行于y轴的线段长度在直观图中________________.3、通过预习,你能说出正四面体、正棱锥、正棱柱的概念吗?【①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是__________【通关训练1】以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0个B.1个C.2个D.3个审核人审批人 班级 小组 姓名 组评 师评 2题型二 空间几何体的三视图且体积为12,则该几何体的俯视图可以是( )题型三 空间几何体的直观图的面积为( )A.34a2B.38a2C.68a2D.616a2【通关训练3】 如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B.1+22C.2+22 D .1+ 2【我的收获】。

空间几何体的结构、三视图和直观图课件

空间几何体的结构、三视图和直观图课件
(3)圆台可以由直角梯形绕直角腰所在直线 或等腰梯形绕上下底中点的连线旋转得到,
也可由平行于圆锥底面的平面截圆锥得到. (4)球可以由半圆或圆绕其 直径 旋转得到.
2.正棱锥:底面是正多 边形,顶点在底面的 射影是底面正多边形 的中心的棱锥叫作正 棱锥.特别地,各棱 均相等的正三棱锥叫 正四面体.反过来, 正棱锥的底面是正多 边形,且顶点在底面 的射影是底面正多边 形的中心.
题型分类·深度剖析
题型三
空间几何体的直观图
【例 3】 已知△ABC 的直观图 A′B′C′是边长为 a 的正三 角形,求原△ABC 的面积.
思维启迪 解析 探究提高
已 知 A′B′ = A′C′ = a , 在
△OA′C′中, 由正弦定理得
OC′ sin∠OA′C′

As′in C45′°,
所以 OC′=ssiinn14250°°a= 26a,
直观图中分别画成平行于 x′轴 和 y′轴
的线段;
(3)已知图形中平行于 x 轴的线段,在直观图 中保持原长度不变;平行于 y 轴的线段,长 度为原来的12.
3.空间几何体的数量关系也 体现在三视图中,主视图 和左视图的“高平齐”, 主视图和俯视图的“长 对正”,左视图和俯视图 的“宽相等”.其中,主 视图、左视图的高就是空 间几何体的高,主视图、 俯视图中的长就是空间 几何体的最大长度,左视 图、俯视图中的宽就是空 间几何体的最大宽度.要 尽量按照这个规则画空 间几何体的三视图.
数学 北(理)
§8.1 空间几何体的结构、 三视图和直观图
第八章 立体几何
基础知识·自主学习
要点梳理
难点正本 疑点清源
1.多面体的结构特征 (1)棱柱的上下底面 平行 ,侧棱都 平行 且 长度相等 ,上底面和下底 面是 全等 的多边形. (2)棱锥的底面是任意多边形,侧面 是有一个 公共顶点 的三角形. (3)棱台可由平行于棱锥底面 的平面 截棱锥得到,其上下底面的两个多 边形 相似 .

第一讲空间几何和结构特征以及三视图和直观图讲解

第一讲空间几何和结构特征以及三视图和直观图讲解
三视图分为:正视图、侧视图、俯视图 (1)正俯一样长;俯侧一样宽;正侧一样高 注 意 (2)摆放位置 (3)看不到的线划成虚线
各棱长都为2的正三棱锥的三视图如图所示:
2 2
3
3
2 2
2
2 3 体高h 2 3
三、斜二测画法:
平行于x轴长度不变平行于 x轴 平行于y轴长度减半平行于 y轴 平行于z轴长度不变平行于 z轴
是底面中心的棱锥.特别地,各条棱均相等的正三棱锥又叫
正四面体. (3)平行六面体:指的是底面为平行四边形的四棱柱.
平面内的一个四边形为平行四边形的充要条件有 多个,如两组对边分别平行,类似地,写出空间中的一个
四棱柱为平行六面体的两个充要条件:
充要条件① ;
充要条件②
(写出你认为正确的两个充要条件)
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形 成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能 是正六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
解析:A错误.如图(1)所示,由两个结构相同的三棱锥叠放在
一起构成的几何体,各面都是三角形,但它不是棱锥.
解析:由三视图知,由4块木 块组成.
答案:4
5.如图,矩形O′A′B′C′是水平放置的一个平面图形的直 观图,其中O′A′=6 cm,O′C′=2 cm,则原图形的形 状是 .
解析:将直观图还原得▱OABC,
则∵O′D′=
OD=2O′D′=4 OC=
O ′ C′ = 2
cm,
cm,
C′D′=O′C′=2 cm,∴CD=2 cm, =2 cm, OA=O′A′=6 cm=OC,故原图形为菱形.
答案:菱形

2021高三人教B数学:第8章 第1讲空间几何体的结构及其三视图和直观图

2021高三人教B数学:第8章 第1讲空间几何体的结构及其三视图和直观图

课时作业1.给出下列命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③长方体一定是正四棱柱.其中正确的命题个数是( )A.0 B.1C.2 D.3答案A解析①底面是菱形的直平行六面体,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③显然错误.2.(2019·河北唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()答案A解析由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A。

3.如图,直观图所表示的平面图形是( )A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案D解析由直观图中,A′C′∥y′轴,B′C′∥x′轴,还原后如图AC∥y轴,BC∥x轴.所以△ABC是直角三角形.故选D.4.(2019·宁德质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()答案C解析该几何体的侧视图是从左边向右边看.故选C.5.如图所示,从三棱台A′B′C′-ABC中截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台答案B解析剩余部分是四棱锥A′-BB′C′C,选B。

6.(2019·湖南长沙模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-BCD的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )答案A解析正视图和俯视图中棱AD和BD均看不见,为虚线,故选A.7.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是()答案D解析几何体的正视图和侧视图完全相同,则该几何体从正面看和从侧面看的长度相等,只有等边三角形不可能.故选D。

8.(2019·临沂模拟)如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF,如图乙,则该几何体的正(主)视图是( )答案C解析由于三棱柱为正三棱柱,故侧面ADEB⊥底面DEF,△DEF是等边三角形,所以CD在面ABED上的投影为AB的中点与D 的连线,CD的投影与底面DEF不垂直.故选C.9.(2019·河北石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()答案D解析由图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD。

2021届高考数学一轮总复习第8章立体几何第1节空间几何体的结构特征及三视图和直观图跟踪检测文含解析

2021届高考数学一轮总复习第8章立体几何第1节空间几何体的结构特征及三视图和直观图跟踪检测文含解析

第八章立体几何第一节空间几何体的结构特征及三视图和直观图A级·基础过关|固根基|1.由平面六边形沿某一方向平移形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体解析:选C 平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义.2.下列说法中,正确的是( )A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等解析:选C 棱柱的侧面都是平行四边形,选项A错误;若棱柱的底面是矩形,其他侧面可能是平行四边形,选项B错误;棱柱的侧棱长与底面边长不一定相等,选项D错误;易知选项C正确.3.水平放置的△ABC的直观图如图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC是一个( )A.等边三角形B.直角三角形C.三边中只有两边相等的等腰三角形D.三边互不相等的三角形解析:选A AO=2A′O′=2×32=3,在Rt△AOB中,AB=12+(3)2=2,同理AC=2,又由题意可知,BC=2,所以△ABC是等边三角形.故选A. 4.(2019届沈阳市教学质量监测一)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B.5.如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,则剩余的部分是( )A.三棱锥B.四棱锥C.三棱柱D.组合体解析:选B如图所示,在三棱台A′B′C′-ABC中,沿A′BC截去三棱锥A′-ABC,剩余部分是四棱锥A′-BCC′B′.6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是( )A.①③B.①④C.②④D.①②③④解析:选A 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.故选A.7.如图所示,网格纸上每个小方格都是边长为1的正方形,粗线画出的是一个几何体的三视图,记该几何体的各棱长度构成的集合为A,则( )A.3∈A B.3∈AC.23∈A D.22∈A解析:选D如图,该几何体可看成是由大三棱锥A-BCD(其中CD=DA=DB=2,CD,DA,DB两两垂直)截去小三棱锥A-CDE(其中E为BD中点)后形成的新三棱锥A-BCE,六条棱的长分别为22,22,22,1,5,5,故选D.8.如图是一个几何体的直观图、正视图和俯视图,该几何体的侧视图为( )解析:选B 由直观图和正视图、俯视图可知,该几何体的侧视图应为面PAD,EC投影在面PAD上且为实线,点E的投影点为PA的中点,故选B.9.一个正方体截去两个角后所得几何体的正视图、俯视图如图所示,则其侧视图为( )解析:选C 根据正方体截去两个角后所得几何体的正视图、俯视图可得,此几何体的直观图如图所示.所以侧视图为选项C.10.如图所示的纸篓,观察其几何结构,可以看出是由许多条直线围成的旋转体,该几何体的正视图为________(填序号).解析:①②④中的几何体是由圆台、圆锥、圆柱组成的,而圆台、圆锥、圆柱的侧面除了与旋转轴在同一平面的母线以外,没有其他直线,即①②④不可能为该几何体的正视图.答案:③11.如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为________.解析:根据题意,三棱锥P-BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P-BCD的正视图与侧视图的面积之比为1∶1.答案:1∶112.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).所以AB=122+52=13(cm).答案:13B级·素养提升|练能力|13.某多面体的三视图如图所示,其中正视图和侧视图都是由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.则该多面体的各个面中,面积最大的面的面积为( )A .2 3B .6C .6 2D .12解析:选B由三视图可画出直观图,如图所示,该多面体中两个全等的梯形的面,为该多面体的各个面中面积最大的面,S 梯形=12×2×(2+4)=6.故选B.14.一只蚂蚁从正方体ABCD -A 1B 1C 1D 1的顶点A 出发,经正方体的表面,按最短路线爬行到顶点C 1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A .①②B .①③C .③④D .②④解析:选D 由点A 经正方体的表面,按最短路线爬行到达顶点C 1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB 1A 1和平面BCC 1B 1展开到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过BB 1的中点,此时对应的正视图为②;若把平面ABCD 和平面CDD 1C 1展开到同一平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过CD 的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.15.如图1,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.则该几何体的俯视图的面积为________,棱PA的长度为________.解析:该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.由侧视图可求得PD=PC2+CD2=62+62=62(cm).由正视图可知AD=6 cm,且AD⊥PD,所以在Rt△APD中,PA=PD2+AD2=(62)2+62=63(cm).答案:36 cm26 3 cm16.如图所示,在侧棱长为23的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A作截面AEF,△AEF周长的最小值为________.解析:如图,将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,则线段AA1的长即为所求△AEF的周长的最小值.取AA1的中点D,连接VD,则VD⊥AA1,∠AVD=60°.在Rt△VAD中,AD=VA·sin 60°=3,所以AA1=2AD=6,即△AEF周长的最小值为6.答案:6。

空间几何体的结构、三视图、直观图

空间几何体的结构、三视图、直观图

第 8页
高考调研 ·高三总复习·数学(理)
棱台、圆台的特征 用平行于底面的平面去截棱锥、圆锥,截面与底面间的部分 叫棱台、圆台. 几何体的三视图 正视图、侧视图、俯视图.又称为:主视图、左视图、俯视 图.
第 9页
高考调研 ·高三总复习·数学(理)
三视图的画法要求 (1)在画三视图时, 重叠的线只画一条, 挡住的线要画成虚线, 单位不注明,则按 mm 计. (2)三视图的正视图、侧视图、俯视图分别是从几何体的正前 方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本 要求是:“正俯一样长、正侧一样高、俯侧一样宽”. (3)由三视图想象几何体特征时要根据“长对正、高平齐、宽 相等”的基本原则.
第12页
高考调研 ·高三总复习·数学(理)
(4) 直角三角形绕其任一边所在直线旋转一周所形成的几何 体都是圆锥. (5)若在圆柱的上、下底面的圆周上各取一点,则这两点的连 线是圆柱的母线. (6)正方体、球、圆锥各自的三视图中,三视图均相同.
第13页
高考调研 ·高三总复习·数学(理)
答案 (1)× (2)× (3)× (4)× (5)× (6)× 解析 (1)(2)(3)(4)的反例见下面四个图.
第 3页
高考调研 ·高三总复习·数学(理)
课前自助餐
第 4页
高考调研 ·高三总复习·数学(理)
棱柱的结构特征 (1)定义:有两个面互相平行,其余各面都是四边形,并且每 相邻两个四边形的公共边都互相平行. (2)性质:①侧棱长相等;②侧面都是平行四边形.
第 5页
高考调研 ·高三总复习·数学(理)
第28页
高考调研 ·高三总复习·数学(理)
【讲评】 立体几何中“截、展、拆、拼” ①“截”:指的是截面,平行于柱、锥底面的截面以及旋 转体的轴截面,它们集中反映了几何体的主要元素的数量关 系,能够列出有关量的关系. ②“展”:指的是侧面和某些面的展开图,在有关沿表面 的最短路径问题中,就是求侧面或某些面展开图上两点间的距 离.注意展开方式往往不止一种.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章立体几何第1讲空间几何体的结构及其三视图和直观图基础知识整合1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相01平行且02全等多边形互相03平行且04相似侧棱05平行且相等相交于06一点,但不一定相等延长线交于07一点侧面形状08平行四边形09三角形10梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相相交于12一延长线交—等,11垂直于底面点于13一点轴截面全等的14矩形全等的15等腰三角形全等的16等腰梯形17圆侧面展开图18矩形19扇形20扇环—2.直观图(1)21斜二测画法.(2)规则①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为22 45°(或135°),z′轴与x′轴和y′23垂直.24平行于坐标轴.平行于x 轴和z25不变,平行于y轴的线段长度在直观图26变为原来的一半.3.三视图(1)27正前方、28正左方、29正上方观察几何体画出的轮廓线.说明:正视图也称主视图,侧视图也称左视图.(2)三视图的画法①基本要求:30长对正,31高平齐,32宽相等.②画法规则:33正侧一样高,34正俯一样长,35侧俯一样宽;重叠的线只画一条,看不到的线画36虚线.1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图均为全等的矩形.2.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注意其中的虚线.3.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.4.直观图与原图形面积的关系S 直观图=24S 原图形(或S 原图形=22S 直观图).1.下列结论正确的是( )A .侧面都是等腰三角形的三棱锥是正三棱锥B .六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台答案 B解析底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,A错误;斜四棱柱也可能有两个侧面是矩形,C错误;截面平行于底面时,底面与截面之间的部分才叫圆台,D错误.2.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.②③C.②④D.③④答案 C解析由几何体的结构可知,如图放置的圆锥、正四棱锥各自的正视图和侧视图相同,且其不与俯视图相同;正方体的三个视图都相同;正三棱台的三个视图都不相同,故选C.3.一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2答案 D解析由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2.在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=42,因此,原平面图形的面积为2×42=82,故选D.4.(2019·广州期末)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()答案 B解析俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()答案 D解析由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2C.3 D.4答案 C解析根据三视图,还原四棱锥,如图.在四棱锥S-ABCD中,SD⊥底面ABCD,AB∥CD,AD⊥DC.AB=1,AD=DC=SD=2.显然△SDA,△SDC是直角三角形.另外SD⊥AB,AB⊥AD,SD∩AD=D,∴AB⊥平面SAD.又SA⊂平面SAD,∴AB⊥SA,即△SAB是直角三角形.又计算△SBC的三边长并由勾股定理知其不是直角三角形.故选C.核心考向突破考向一空间几何体的结构特征例1下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点答案 B解析A错误,如图1;B正确,如图2,其中PD⊥底面ABCD,且底面ABCD 是矩形,可以证明∠P AB,∠PCB都是直角,这样四个侧面都是直角三角形;C 错误,如图3;D错误,由棱台的定义知,其侧棱必相交于同一点.识别空间几何体的两种方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本要素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析,要说明一个结论是错误的,只要举出一个反例即可.[即时训练] 1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线答案 D解析如图1知,A不正确;如图2,当两个平行平面与底面不平行时,截得的几何体不是旋转体,B不正确;若六棱锥的所有棱长都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误;由母线的概念知,D 正确.考向二平面图形与其直观图的关系例2(1)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为()A.24 2 B.12 2C.48 2 D.20 2答案 A解析由题意知原图形OABC是平行四边形,且OA=BC=6,设平行四边形OABC的高为OE,则OE×12×22=O′C′,∵O′C′=2,∴OE=42,∴S▱OABC=6×42=24 2.故选A.(2)在等腰梯形ABCD中,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.答案22解析因为OE=(2)2-12=1,所以O′E′=12,E′F′=24,所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.[即时训练] 2.(2019·桂林模拟)已知正三角形ABC的边长为a,那么△ABC 的直观图△A′B′C′的面积为()A.34a2 B.38a2 C.68a2 D.616a2答案 D解析如图①、②所示的平面图形和直观图.由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a.所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.3.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为________.答案8 cm2解析解法一:依题意可知∠BAD=45°,则原平面图形为直角梯形,上、下底的长分别与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.解法二:依题意可知,S直观图=2 2 cm2,故S原图形=22S直观图=8 cm2.精准设计考向,多角度探究突破考向三空间几何体的三视图角度1由空间几何体的直观图识别三视图例3(1)(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案 A解析观察图形易知卯眼处应以虚线画出,俯视图为,故选A.(2)(2019·南昌联考)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()答案 C解析由题意,得该四棱锥的直观图如图1所示,则其三视图如图2.角度2 由空间几何体的三视图还原直观图例4(1)(2019·广州二模)如图是一个物体的三视图,则此三视图所描述物体的直观图是()答案 D解析先观察俯视图,由俯视图可知B和D中的一个正确,由正视图和侧视图,可知D正确.(2)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的所有面中直角三角形的个数是()A.2 B.3C.4 D.5答案 C解析由三视图知,可将此几何体还原在正方体中,为如图所示的四棱锥P -ABCD.易知四棱锥P-ABCD的四个侧面都是直角三角形,所以此几何体的所有面中直角三角形的个数是4,故选C.角度3由两个视图补画第三个视图例5(1)(2019·天津模拟)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正(主)视图与俯视图如图所示,则该几何体的侧(左)视图为()答案 B解析由几何体的正(主)视图、俯视图以及题意可画出几何体的直观图,如图所示.从左侧观察直观图,可知截面体现为从左上到右下的虚线.故选B.(2)(2019·沈阳模拟)一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()答案 C解析若俯视图为C,侧视图的宽应为俯视图中三角形的高3,所以俯视图2不可能是C.故选C.三视图问题的常见类型及求解策略(1)在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.(2)在由三视图还原空间几何体的实际形状时,要从三个视图综合考虑,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.(3)常见的三视图对应的几何体①三视图为三个三角形,对应三棱锥;②三视图为两个三角形,一个四边形,对应四棱锥;③三视图为两个三角形,一个圆,对应圆锥;④三视图为一个三角形,两个四边形,对应三棱柱;⑤三视图为两个四边形,一个圆,对应圆柱.[即时训练] 4.若某几何体的三视图如图所示,则此几何体的直观图是()答案 A解析该几何体是正方体的一部分,结合侧视图可知直观图为A中的图.故选A.5.(2019·广州市综合测试)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是()答案 D解析由题意可得该几何体可能为四棱锥,如图所示,其高为2,其底面为正方形,面积为2×2=4,因为该几何体的体积为13×4×2=83,满足条件,所以该几何体的俯视图可以为一个直角三角形.6.(2019·石河子模拟)如图,点E,F分别是正方体的侧面ADD1A1和侧面BCC1B1的中心,则四边形BFD1E在该正方体的各面上的正投影可能是图中的________.(要求把可能的序号都填上)答案②③解析其中②可以是四边形BFD1E在正方体的下底面ABCD上的投影;③可以是四边形BFD1E在正方体的侧面BCC1B1上的投影.课时作业1.给出下列命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③长方体一定是正四棱柱.其中正确的命题个数是()A.0 B.1C.2 D.3答案 A解析①底面是菱形的直平行六面体,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③显然错误.2.(2019·河北唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()答案 A解析由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.3.如图,直观图所表示的平面图形是()A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案 D解析由直观图中,A′C′∥y′轴,B′C′∥x′轴,还原后如图AC∥y 轴,BC∥x轴.所以△ABC是直角三角形.故选D.4.(2019·宁德质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()答案 C解析该几何体的侧视图是从左边向右边看.故选C.5.如图所示,从三棱台A′B′C′-ABC中截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台答案 B解析剩余部分是四棱锥A′-BB′C′C,选B.6.(2019·湖南长沙模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-BCD的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()答案 A解析正视图和俯视图中棱AD和BD均看不见,为虚线,故选A.7.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是()答案 D解析几何体的正视图和侧视图完全相同,则该几何体从正面看和从侧面看的长度相等,只有等边三角形不可能.故选D.8.(2019·临沂模拟)如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A -BCD,得到几何体BCDEF,如图乙,则该几何体的正(主)视图是()答案 C解析由于三棱柱为正三棱柱,故侧面ADEB⊥底面DEF,△DEF是等边三角形,所以CD在面ABED上的投影为AB的中点与D的连线,CD的投影与底面DEF不垂直.故选C.9.(2019·河北石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()答案D解析由图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.故选D.10.(2019·湖北武汉模拟)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②答案 D解析在空间直角坐标系中构建棱长为2的正方体,设A(0,0,2),B(2,2,0),C(1,2,1),D(2,2,2),则空间几何体ABCD即为满足条件的四面体,得出其正视图和俯视图分别为④和②,故选D.11.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2答案 B解析根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽、圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为42+22=25,故选B.12.某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.6答案 B解析由多面体的三视图还原直观图如图所示.该几何体由上方的三棱锥A-BCE和下方的三棱柱BCE-B1C1A1构成,其中侧面CC1A1A和侧=12.故选B.面BB1A1A是梯形,则梯形的面积之和为2×(2+4)×2213.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案262-1解析先求面数,有如下两种解法.解法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26个面.解法二:一般地,对于凸多面体顶点数(V)+面数(F)-棱数(E)=2.(欧拉公式)由题图知,棱数为48的半正多面体的顶点数为24.故由V+F-E=2,得面数F=2+E-V=2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH,如图,设其边长为x,则正八边形的边长即为棱长.连接AF,过H,G分别作HM⊥AF,GN⊥AF,垂足分别为M,N,则AM=MH=NG=NF=2 2x.又AM+MN+NF=1,∴22x+x+22x=1.∴x=2-1,即半正多面体的棱长为2-1.14.现有编号为①,②,③的三个三棱锥(底面水平放置),其俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的所有编号是________.答案①②解析编号为①的三棱锥,其直观图可能是图①,侧棱VC⊥底面ABC,则侧面VAC⊥底面ABC,满足题意;编号为②的三棱锥,其直观图可能是图②,侧面PBC⊥底面ABC,满足题意;编号为③的三棱锥,顶点的投影不在底面边上(如图③),不存在侧面与底面垂直.故答案为①②.15.已知某几何体的俯视图是如图所示的矩形,正(主)视图是一个底边长为8,高为4的等腰三角形,侧(左)视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.解由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.(1)V=13×(8×6)×4=64.(2)四棱锥的两个侧面VAD,VBC是全等的等腰三角形,取BC的中点E,连接OE,VE,则△VOE为直角三角形,VE为△VBC的边BC上的高,VE=VO2+OE2=4 2.同理侧面VAB ,VCD 也是全等的等腰三角形,AB 边上的高h = 42+⎝ ⎛⎭⎪⎫622=5.所以S 侧=2×⎝ ⎛⎭⎪⎫12×6×42+12×8×5=40+24 2. 16.若已知△ABC 的直观图△A ′B ′C ′是边长为a 的正三角形,求原△ABC 的面积.解 如图所示是△ABC 的直观图△A ′B ′C ′.作C ′D ′∥y ′轴交x ′轴于点D ′,则C ′D ′对应△ABC 的高CD ,∴CD =2C ′D ′=2×2×C ′O ′=22·32a =6a .而AB =A ′B ′=a ,∴S △ABC =12a ·6a =62a 2.17.(2019·合肥模拟)一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ;(2)求该几何体的表面积S .解 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为 3.所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A 1D ⊥平面ABCD ,CD ⊥平面BCC 1B 1,所以AA 1=2,侧面ABB 1A 1,CDD 1C 1均为矩形.S =2×(1×1+1×3+1×2)=6+2 3.18.(2019·河北衡水中学第二次调研)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,求最长的棱的长度.解由三视图可知,多面体是一个三棱锥,其直观图如图三棱锥A-BCD.将其放入棱长为2的正方体模型中,可求得最长的棱AB的长度为12+22+22=3.。

相关文档
最新文档