初中数学:利用二次函数解决距离、利润最值问题练习(含答案) (2)

合集下载

人教版九年级上册数学第二十二章二次函数应用题训练(含答案)

人教版九年级上册数学第二十二章二次函数应用题训练(含答案)

人教版九年级上册数学第二十二章二次函数应用题训练1.某品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?2.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系y=﹣80x+560,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)如果每天获得160元的利润,销售单价为多少元?(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?3.某批发商以每件40元的价格购进600件T恤,第一个月以单价60元销售,售出了200件,第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出20件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余T恤清仓销售,清仓时单价为30元,设第二个月单价降低x 元.(1)填表(不需要化简)(2)若批发商希望通过销售这批T恤获利7680元,则第二个月的单价应是多少元?(3)如果批发商希望通过销售这批T恤获利达到了最大值,则第二个月的单价应是多少元?可获利多少元?4.一大型商场经营某种品牌商品,该商品的进价为每件6元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,表格记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于17元/件,若某一周该商品的销售最不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于17元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.5.南浔区某校增设拓展课程之“开心农场”,如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB ⊥BC ,AB =3米,BC =1米)和总长为11米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,⊥设DF的长为x米,请用含x的代数式表示EF的长;⊥若要求所围成的小型农场DBEF的面积为9平方米,求DF的长;(2)DF的长为多少米时,小型农场DBEF的面积最大?最大面积为多少平方米?6.某经销商销售一种新品种壶瓶枣,这种新品种进价每千克50元(规定每千克销售利润不低于5元且不高于25元),现在以75元/千克的售价卖出,则每周可卖出80千克.该经销商通过对当地市场调查发现:若每千克降价5元,则每周多卖出20千克;因疫情原因,该经销商决定暂时降价销售,设每千克销售价降低x元,每周销售利润为y元.(1)当售价为每千克65元时,每周销售量为千克,利润为元.(2)求y与x之间的函数关系式并直接写出自变量x的取值范围.(3)当销售单价定为多少元时,该经销商每周可获得最大利润?最大利润是多少元?7.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.在双十二活动期间,商店将对某商品进行促销活动.已知进价为每件6元,平时以单价10元的价格售出一天可卖100件.根据调查单价每降低1元,每天可多售出50件;设商品单价降低x元(售价不低于进价),这批商品的日利润为y元(利润=售价-成本),请解决以下问题:(1)当商品的销售单价降低多少元时,销售这批商品的日利润最大,最大值为多少?(2)当日利润达到400元时,求x的值.(3)若商店以第(2)问中的方式销售2天后,第三天单价再减a元,当天的销售量不低于前两天总和的70%,求第三天的日利润最大值.9.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?10.某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本是多少万元?11.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间有如表关系:(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)该商店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为保证捐款后销售该商品每天获得的利润不低于650元,则每天的销售量最少应为多少件?12.成绵苍巴高速正在修建中,某单向通行隧道设计图由抛物线与矩形的三边组成,尺寸如图所示,隧洞限高4米,隧洞道路正中间标有一条实线.(1)水平安置一根限高杆,两端固定在洞门上,求限高杆的最小长度.(2)某卡车若装载一集装箱箱宽3m,车与车箱共高3.8m,此车能否不跨越标线通过隧道(标线宽度不计)?说明理由.13.某超市计划共进货50件饮料,其中A款饮料成本为每件20元;当B款饮料进货10件时,成本为每件48元,且每多进货1件,平均每件B款饮料成本降低2元.为保证饮料x x 件.的多样性,规定A款饮料必须进货至少20件,设进货B款饮料(10)(1)根据信息填表:(2)设总成本为W元,写出W关于x的函数关系式,并写出自变量x的取值范围;(3)为了增加盈利,降低进货成本,该超市如何进货才能使得进货总成本最低,最低成本是多少元.14.如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,⊥ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方60元、80元、40元.(1)探究1:如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需_____元;(2)探究2:如果木板边长为1米,当FC的长为多少时,一块木板需用墙纸的费用最省?最省是多少元?(3)探究3:设木板的边长为a(a为整数),当正方形EFCG的边长为多少时,墙纸费用最省?15.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为60元时,可售出300套.应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写表格:(2)若商店预计要在第二个月的销售中获利4000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少?此时第二个月的最大利润是多少?16.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式______;所得销售利润w(元)与销售单价x(元)之间的函数关系式______.(2)销售单价定为多少元时,所得销售利润最大,最大利润是多少?17.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)假设每千克涨价x元,商场每天销售这种水果的利润是y元,请写出y关于x的函数解析式;(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?(3)当每千克涨价为多少元时,每天的盈利最多?最多是多少?18.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?19.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每提高1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价提高x(元)之间的函数关系式.(2)求销售单价提高多少元时,该文具每天的销售利润最大?20.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.参考答案:1.(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个2.(1)如果每天获得160元的利润,销售单价为4元(2)当销售单价定为5元时,每天的利润最大,最大利润是240元3.(1)60﹣x ;200+20x ;600﹣200﹣(200+20x )(2)该T 恤第二个月单价为54或46元,该批T 恤总获利为7680元(3)降价10元,单价为50元,获利8000元4.(1)50012000y x =-+(2)这一周该商场销售这种商品获得的最大利润为54000元,售价为12元(3)36m ≤≤5.(1)⊥(12﹣3x )米;⊥3米(2)饲养场的宽DF 为52米时,饲养场DBEF 的面积最大,最大面积为758平方米 6.(1)120;1800(2)24202000y x x =-++(0≤x ≤20)(3)当销售单价定为72.5元时,该经销商每周可获得最大利润,最大利润是2025元 7.(1)2200y x =-+()3060x ≤≤(2)当销售单价为60元时,销售这种童装每月获得的利润最大,最大为1950元 8.(1)当商品的销售单价降低1元时,销售这批商品的日利润最大,最大值为450元(2)x =2(3)第三天的日利润最大值为1129.(1)50元或58元(2)54元10.(1)221361800z x x =-+-;(2)当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元;(3)制造这种产品每月的最低制造成本是648万元.11.(1)y =﹣2x +160(2)20件12.(1)(2)能不跨越标线通过隧道13.(1)50-x ;68-2x(2)W =22x -+48x +1000(10≤x ≤30)(3)当A 款饮料进货20件,B 款饮料进货30件时进货总成本最低,最低成本是640元 14.(1)220;(2)当FC 的长为12m 时,一块木板需用墙纸的费用最省,最省是55元; (3)当正方形EFCG 的边长为12a 时,墙纸费用最省. 15.(1)60x +,30010x -(2)第二个月销售定价每套应为80元(3)要使第二个月利润达到最大,应定价为65元,此时第二个月的最大利润是6250元 16.(1)10500y x =-+;21070010000w x x =-+-(2)销售单价定为35元时,所得销售利润最大,最大利润是2250元17.(1)2202004000y x x =-++(2)每千克应涨价3元(3)当每千克涨价为5元时,每天的盈利最多,最多是4500元18.(1)y =﹣2x +180(2)w =﹣2x 2+260x ﹣7200(3)55元,1050元19.(1)2102001250w x x =-++(2)10元20.(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元。

北师大版数学九年级下册-实际问题与二次函数——面积、利润问题课时对应练习(Word版含答案)

北师大版数学九年级下册-实际问题与二次函数——面积、利润问题课时对应练习(Word版含答案)

第11课时实际问题与二次函数——面积、利润问题1.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m22.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()月.A.5B.6C.7D.83.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定6.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为元时,可获得最大利润.5.(2019•天门)矩形的周长等于40,则此矩形面积的最大值是_____.6.如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD、AB平行,则矩形框架ABCD的最大面积为_____m2.7.(2019•丹东)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.9.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=﹣x 2+10x ,y 2=2x ,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为( ) A .30万元B .40万元C .45万元D .46万元10.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A .√3cm 2B .32√3cm 2C .92√3cm 2D .272√3cm 211.(2018•武汉)飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y =60t −32t 2.在飞机着陆滑行中,最后4s 滑行的距离是 _____ m . 12.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为 75 m 2.13.(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 _____ .14.(2017•常德)如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 与x 的函数关系为 __________ .15.(2019•盘锦)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?16.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:时间t/天1361036…日销售量m/件9490847624…未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=0.25t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式y2=﹣0.5+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品,就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,请直接写出a 的取值范围.17.已知抛物线y =12x 2+mx ﹣2m ﹣2(m ≥0)与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C(1)当m =1时,求点A 和点B 的坐标(2)抛物线上有一点D (﹣1,n ),若△ACD 的面积为5,求m 的值 (3)P 为抛物线上A 、B 之间一点(不包括A 、B ),PM ⊥x 轴于点M ,求AM⋅BM PM的值.【参考答案】1.C . 2.A . 3.B . 4.65. 5.100. 6.4.7.(1)由题意得:y =80+20×60−x10∴函数的关系式为:y =﹣2x +200 (30≤x ≤60) (2)由题意得:(x ﹣30)(﹣2x +200)﹣450=1800 解得x 1=55,x 2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元. (3)设每月获得的利润为w 元,由题意得: w =(x ﹣30)(﹣2x +200)﹣450 =﹣2(x ﹣65)2+2000 ∵﹣2<0∴当x ≤65时,w 随x 的增大而增大 ∵30≤x ≤60∴当x =60时,w 最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元. 8.(1)根据题意得:(30﹣2x )x =72, 解得:x =3,x =12, ∵30﹣2x ≤18, ∴x =12;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∴当x=152时,即平行于墙的一边长15>8米,y最大=112.5平方米;∵6≤x≤11,∴当x=11时,y最小=88平方米;(3)由题意得:﹣2x2+30x≥100,∵30﹣2x≤18,解得:6≤x≤10.9.D.10.C.提示:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,{AO=AOOD=OK,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=√3x,∴DE=6﹣2√3x,∴纸盒侧面积=3x(6﹣2√3x)=﹣6√3x2+18x,=﹣6√3(x−√32)2+9√32,∴当x=√32时,纸盒侧面积最大为9√32.11.24. 12.75.13.0<a <6.提示:设未来30天每天获得的利润为y , y =(110﹣40﹣t )(20+4t )﹣(20+4t )a 化简,得y =﹣4t 2+(260﹣4a )t +1400﹣20a每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴−260−4a2×(−4)>29.5解得,a <6, 又∵a >0,14.y =2x 2﹣4x +4.提示:如图所示:∵四边形ABCD 是边长为2的正方形, ∴∠A =∠B =90°,AB =2. ∴∠1+∠2=90°, ∵四边形EFGH 为正方形, ∴∠HEF =90°,EH =EF . ∴∠1+∠3=90°, ∴∠2=∠3,在△AHE 与△BEF 中, ∵{∠A =∠B∠2=∠3EH =FE,∴△AHE ≌△BEF (AAS ), ∴AE =BF =x ,AH =BE =2﹣x , 在Rt △AHE 中,由勾股定理得:EH 2=AE 2+AH 2=x 2+(2﹣x )2=2x 2﹣4x +4; 即y =2x 2﹣4x +4(0<x <2)。

人教版数学九年级上学期课时练习- 二次函数-销售与利润问题中考真题专练(人教版)

人教版数学九年级上学期课时练习- 二次函数-销售与利润问题中考真题专练(人教版)

专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)【专题说明】用二次函数解决销售与利润问题是中考的常考点,也是热点,解答这类问题最常用的方法之一是建立二次函数模式,利用二次函数的最大值或最小值。

运用二次函数的性质求实际问题的最大值和最小值的一般步骤:(1)设自变量x 和函数y ;(2)求出函数解析式和自变量的取值范围;(3)化为顶点式,求出最值;检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内,并作答。

相关等量关系:(1)利润=售价一进价;(2)总利润、单件利润、数量的关系;(3)总利润=单件利润×数量。

1.(2021·辽宁大连·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤, (1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?2.(2021·江苏泰州·中考真题)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).(1)求直线AB的函数关系式;(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=1100y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?3.(2021·辽宁丹东·中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?4.(2021·湖北荆门·中考真题)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;m ),公司为回馈消费者,规定该商品售价(3)因疫情期间,该商品进价提高了m(元/件)(0x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.5.(2021·贵州遵义·中考真题)为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.6.(2021·江苏淮安·中考真题)某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?7.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m =50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).8.(2021·辽宁盘锦·中考真题)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A 型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.x 时,完成以下两个问题:(1)当4①请补全下面的表格:①若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.9.(2021·内蒙古鄂尔多斯·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?10.(2021·辽宁营口·中考真题)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y (件)与售价x (元/件)满足如图所示的函数关系,(其中4070x ≤≤,且x 为整数)(1)直接写出y 与x 的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?11.(2021·四川雅安·中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.12.(2021·辽宁本溪·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?13.(2021·湖北湖北·中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)14.(2021·山东济宁·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?15.(2021·贵州铜仁·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?16.(2021·广东深圳·中考真题)某科技公司销售高新科技产品,该产品成本为8万元,销售单价x (万元)与销售量y (件)的关系如下表所示:(1)求y 与x 的函数关系式;(2)当销售单价为多少时,有最大利润,最大利润为多少?17.(2021·广东·中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x 元()0,565x y ≤≤表示该商家每天销售猪肉粽的利润(单位:元),求y 关于x 的函数解析式并求最大利润.18.(2021·湖北鄂州·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)19.(2021·湖北黄冈·中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.20.(2021·湖北武汉·中考真题)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品,A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.21.(2021·湖北十堰·中考真题)某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表:填空:(1)m与x的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?n<)给当地福利院,(3)在实际销售的前20天中,公司决定每销售1kg商品就捐赠n元利润(4后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.22.(2021·四川达州·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?23.(2021·浙江·中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;①问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?24.(2021·四川阿坝·中考真题)某商品的进价为每件40元,在销售过程中发现,每周的销售量y=+,且当售价定为50元/件时,(件)与销售单价x(元)之间的关系可以近似看作一次函数y kx b每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.25.(2021·辽宁鞍山·中考真题)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?26.(2021·四川南充·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)27.(2021·四川遂宁·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?28.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..; ①月利润=月租车费-月维护费;①两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元()0a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.参考答案1.(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得:501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩, ①y 关于x 的函数解析式为2200y x =-+;(2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,①-2<0,开口向下,对称轴为702b x a=-=, ①5080x ≤≤,①当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=;答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点拨】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.2.(1)55003y x =-+;(2)210. 【分析】(1)将()120,300A ,()240,100B 代入到y kx b =+,得到方程组300120100240k b k b =+⎧⎨=+⎩,解得k 与b 的值,即可求出直线AB 的解析式;(2)将55003y x =-+代入12100w y =+中,得到新的二次函数解析式,再表示出总销售额,配方成顶点式,求出最值即可.解:(1)设直线AB 的函数关系式为y kx b =+,将()120,300A ,()240,100B 代入可得:300120100240k b k b=+⎧⎨=+⎩, 解得:53500k b ⎧=-⎪⎨⎪=⎩, ①直线AB 的函数关系式55003y x =-+. 故答案为:55003y x =-+. (2)将55003y x =-+代入12100w y =+中,可得:1550021003w x ⎛⎫=-++ ⎪⎝⎭, 化简得:1760w x =-+, 设总销售额为z ,则1760z wx x x ⎛⎫==-+ ⎪⎝⎭ 21760z x x =-+ ()2142060x x =-- ()222114************x x =--++⨯ ()2121073560x =--+ ①1060a =-<, ①z 有最大值,当210x =时,z 取到最大值,最大值为735.故答案为:210.【点拨】本题考查了一次函数解析式的求解,二次函数的应用,能理解题意,并表示出其解析式是解题关键.3.(1)5550y x =-+;(2)70元;(3)80元.【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量⨯(售价-成本)4000=”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:(1)①依题意得()150100102y x =+-⨯⨯, ①y 与x 的函数关系式为5550y x =-+;(2)①依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =,①7090<①当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得()()()250555050580027500w y x x x x x =-=-+-=-+-①50-<,此图象开口向下①当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元), ①当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.【点拨】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.4.(1)3300y x =-+;(2)售价60元时,周销售利润最大为4800元;(3)5m =【分析】(1)①依题意设y=kx+b ,解方程组即可得到结论;(2)根据题意得(3300)()W x x a =-+-,再由表格数据求出20a =,得到2(3300)(20)3(60)4800W x x x =-+-=--+,根据二次函数的顶点式,求出最值即可;(3)根据题意得3(100)(20)(55)W x x m x =----,由于对称轴是直线60602m x =+>,根据二次函数的性质即可得到结论.解:(1)设y kx b =+,由题意有 401807090k b k b +=⎧⎨+=⎩,解得3300k b =-⎧⎨=⎩, 所以y 关于x 的函数解析式为3300y x =-+;(2)由(1)(3300)()W x x a =-+-,又由表可得:3600(340300)(40)a =-⨯+-,20a ∴=,22(3300)(20)336060003(60)4800W x x x x x ∴=-+-=-+-=--+.所以售价60x =时,周销售利润W 最大,最大利润为4800;(3)由题意3(100)(20)(55)W x x m x =----, 其对称轴60602m x =+>,055x ∴<时上述函数单调递增, 所以只有55x =时周销售利润最大,40503(55100)(5520)m ∴=----.5m ∴=.【点拨】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.5.(1)3216(832)120(3240)x xyx-+≤≤⎧=⎨≤⎩<;(2)最大利润为3840元【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价−成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.解:(1)当8≤x≤32时,设y=kx+b(k≠0),则22150 32120k bk b+=⎧⎨+=⎩,解得:3216kb=-⎧⎨=⎩,①当8≤x≤32时,y=−3x+216,当32<x≤40时,y=120,①3216(832)120(3240)x xyx-+≤≤⎧=⎨≤⎩<;(2)设利润为W,则:当8≤x≤32时,W=(x−8)y=(x−8)(−3x+216)=−3(x−40)2+3072,①开口向下,对称轴为直线x=40,①当8≤x≤32时,W随x的增大而增大,①x=32时,W最大=2880,当32<x≤40时,W=(x−8)y=120(x−8)=120x−960,①W随x的增大而增大,①x=40时,W最大=3840,①3840>2880,①最大利润为3840元.【点拨】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值.6.(1)y =-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【分析】(1)根据等量关系“利润=(售价﹣进价)×销量”列出函数表达式即可.(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值. 解:(1)根据题意,y =300﹣10(x ﹣60)=-10x+900,①y 与x 的函数表达式为:y =-10x+900;(2)设利润为w ,由(1)知:w =(x ﹣50)(-10x+900)=﹣10x 2+1400x ﹣45000,①w =﹣10(x ﹣70)2+4000,①每件销售价为70元时,获得最大利润;最大利润为4000元.【点拨】本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.7.(1)1y 204x =-+;(2)21165P x x =-+;(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是3265万元 【分析】 (1)利用待定系数法求函数关系式;(2)根据销售收入=销售价×销售量列出函数关系式;(3)设销售总利润为W ,根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式,然后根据二次函数的性质分析其最值.解:(1)设y 与x 之间的函数关系式为y kx b +=,将(20,15),(30,12.5)代入,可得:20153012.5k b k b +=⎧⎨+=⎩, 解得:1420k b ⎧=-⎪⎨⎪=⎩, ①y 与x 之间的函数关系式为1y 204x =-+; (2)设销售收入为P (万元),①()2411120%2016545P xy x x x x ⎛⎫=-=⨯-+=-+ ⎪⎝⎭, ①P 与x 之间的函数关系式为21165P x x =-+;(3)设销售总利润为W , ①()216.216 6.2500.25W P x m x x x x =--=-+--+, 整理,可得:()22148132650245555W x x x =-+-=--+, ①﹣15<0, ①当24x =时,W 有最大值为3265, ①原料的质量为24吨时,所获销售利润最大,最大销售利润是3265万元. 【点拨】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键.8.(1)①14x -,21x -;①10台;(2)分配产销A 型车床9台、B 型车床5台;或产销A 型车床8台、B 型车床6台,此时可获得总利润最大值170万元【分析】(1)①由题意可知,生产并销售B 型车床x 台时,生产A 型车床(14-x )台,当4x >时,每台就要比17万元少(4x -)万元,所以每台获利17(4)x --,也就是(21x -)万元;①根据题意可得根据题意:(21)10(14)70x x x ---=然后解方程即可;(2)当0≤x ≤4时,W =10(14)x -+17x =7140x +,当4<x ≤14时,W =2( 5.5)170.25x --+,分别求出两个范围内的最大值即可得到答案.解:(1)当4x >时,每台就要比17万元少(4x -)万元所以每台获利17(4)x --,也就是(21x -)万元①补全表格如下面:①此时,由A 型获得的利润是10(14x -)万元,由B 型可获得利润为(21)x x -万元,根据题意:(21)10(14)70x x x ---=, 2312100x x -+=,(21)(10)0x x --=,①0≤x ≤14, ①10x =,即应产销B 型车床10台;(2)当0≤x ≤4时,此时,W =10(14)x -+17x =7140x +,该函数值随着x 的增大而增大,当x 取最大值4时,W 最大1=168(万元);当4<x ≤14时,则W =10(14)x -+(21)x x -=211140x x -++=2( 5.5)170.25x --+,当5x =或6x =时(均满足条件4<x ≤14),W 达最大值W 最大2=170(万元),①W 最大2> W 最大1,①应分配产销A 型车床9台、B 型车床5台;或产销A 型车床8台、B 型车床6台,此时可获得总利润最大值170万元.【点拨】本题主要考查了一元二次方程的实际应用,一次函数和二次函数的实际应用,解题的关键在于能够根据题意列出合适的方程或函数关系式求解.9.(1)y 与x 之间的函数解析式为y=-0.1x+68,200x 320≤≤;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元【分析】(1)设y 与x 之间的函数解析式为y=kx+b ,根据待定系数法即可得出答案;(2)设宾馆每天的利润为W 元,利用房间数乘每一间房间的利润即可得到W 关于x 的函数解析式,配方法再结合增减性即可求得最大值.。

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)二次函数应用题1.某商场销售一种小商品,进货价为8元/件,当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为x(元/件)(10x≥的整数),每天销售利润为y(元).(1)求y与x的函数关系式,并写出x的取值范围;(2)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y的取值范围.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.北京冬奥会上,由于中国冰雪健儿们的发挥出色,中国金牌总数位列第三,向世界证明了中国是冰雪运动强国!青蛙公主谷爱凌发挥出色一人斩获两金一银.在数学上,我们不妨约定:在平面直角坐标系中,将点()2,1P 称为“爱凌点”,经过点()2,1P 的函数,称为“爱凌函数”.(1)若点()34,r s r s ++是“爱凌点”,关于x 的数2y x x t =-+都是“爱凌函数”,则r =_____,s =_____,t =_____.(2)若关于x 的函数y kx b =+和my x=都是“爱凌函数”,且两个函数图象有且只有一个交点,求k 的值.(3)如图,点()11,C x y 、()22,D x y 是抛物线232y x x =-+上两点,其中D 在第四象限,C 在第一象限对称轴右侧,直线AC 、AD 分别交y 轴于F 、E 两点: ①求点E ,F 的坐标;(用含1x ,2x 的代数式表示);②若1OE OF ⋅=,试判断经过C 、D 两点的一次函数()0y kx b k =+≠是否为“爱凌函数”,并说明理由.5.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同. (1)求A ,B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台,设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润,求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少6.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y (件)与每件销售价x (元)的关系数据如下: x 30 32 34 36 y40363228(1)已知y 与x 满足一次函数关系,根据上表,求出y 与x 之间的关系式(不写出自变量x 的取值范围);(2)设该商店每天销售这种商品所获利润为w (元),求出w 与x 之间的关系式,并求出每件商品销售价定为多少元时利润最大?7.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 8.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?9.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?10.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S 与x 的函数关系式; (2)若菜园的面积为96平方米,求x 的值;(3)若在墙的对面再开一个宽为a (0<a <3)米的门,且面积S 的最大值为124平方米,直接写出a 的值.【参考答案】二次函数应用题1.(1)2102801600y x x =-+- (10x ≥的整数) (2)200360y ≤≤ 【解析】 【分析】(1)销售单价为x 元/件时,每件的利润为(8)x -元,此时销量为[10010(10)]x --,由此计算每天的利润y 即可;(2)首先求出利润不超过100%时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可. (1)解:(1)根据题意得: (8)[10010(10)]y x x =--- 整理,得 2102801600y x x =-+-(10x ≥的整数) (2)解:∵每件小商品的利润不超过100%,∴8100%8x -⨯≤, ∴16x ≤,∵每天进货总成本不超过800元, ∴[100(10)10]8800x --⨯⨯≤, ∴10x ≥, ∴1016x ≤≤,∵2210280160010(14)360y x x x =-+-=--+, 当14x =时,有360y =最大值当10x =时,有210(1014)360200y =-⨯-+=最小值,∴小商品每天销售利润y 的取值范围是:200360y ≤≤ 【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数 (2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数 (3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =. z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小,10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)2;-1;-1;(2)12k =-;(3)①()20,2E x -+;()10,2F x -+;②经过C 、D 两点的一次函数y =kx +b (k ≠0)是“爱凌函数”;理由见解析 【解析】 【分析】(1)根据已知条件,代入求解即可;(2)首先用待定系数法求出反比例函数解析式,然后应用一元二次方程根的判别式求出k 的值;(3)首先根据前提条件推出x 1与x 2的关系,然后利用C ,D 坐标用x 1和x 2表示出直线斜率kCD ,进一步代入点C 或者点D 的坐标,表示出截距b ,然后将坐标(2,1)代入一次函数,和前面的结论比较是否符合条件. (1)解:∵(3r +4s ,r +s )为“爱凌点”,∴3421r s r s ⎧⎨⎩+=+=, 解得:21r s ⎧⎨-⎩==,将(2,1)代入y =x 2−x +t 得:2122t =-+,解得t =−1. 故答案为:2;-1;-1. (2)将(2,1)分别代入y =kx +b 与y =mx中, 得1212k bm =+⎧⎪⎨=⎪⎩,即122b k m =-⎧⎨=⎩,∵两个函数图象有且只有一个交点,∴kx +1−2k =2x只有一个根,即:kx 2+(1−2k )x −2=0, Δ=(1−2k )2+8k =0, ∴k =−12. (3)①令x 2−3x +2=0,得:11x =,x 2=2, ∴A (1,0),B (2,0), ∵C 、D 两点在抛物线上,∴C (x 1,x 12−3x 1+2),D (x 2,22232x x -+),设AD 的函数关系式为:11AD y k x b =+,则11212122032k b k x b x x +=⎧⎨+=-+⎩, 解得:121222k x b x =-⎧⎨=-+⎩,∴()()2222AD y x x x =-+-+, 令x =0,则22y x =-+,∴()202E x -+,, 设AC 的函数关系式为:22AC y k x b =+,则22221211032k b k x b x x +=⎧⎨+=-+⎩, 解得:212122k x b x =-⎧⎨=-+⎩,∴()()1122AC y x x x =-+-+, 令x =0,则12y x =-+,∴()102F x -+,; ②y =kx +b 是“爱凌函数”,理由如下: ∵若OE •OF =1,∴21221x x -+-+=, ∴(2−x 2)(x 1−2)−1=0, ∴2x 1−x 1x 2+2x 2−5=0,∵一次函数y =kx +b 经过C 、D 两点,∴211122223232kx b x x kx b x x ⎧+=-+⎨+=-+⎩, 解得:121232k x x b x x =+-⎧⎨=-⎩,∴CD 的关系式为:y =(x 1+x 2−3)x +2−x 1x 2, 将(2,1)代入得: 2(x 1+x 2−3)+2−x 1x 2=1,即2x 1−x 1x 2+2x 2−5=0,与前提条件OE•OF =1所得出的结论一致, ∴经过C ,D 的一次函数y =kx +b 是“爱凌函数”. 【点睛】本题考查一次函数、反比例函数和二次函数相关知识点,将结论与前提条件进行比较,整个题目涉及的未知数比较多,计算过程中需要仔细.5.(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元 (2)①B 型汽车的最低售价为414万元/台,②A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元 【解析】 【分析】(1)设未知数,用未知数分别表示A 型汽车、B 型汽车的进价,然后根据花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同列分式方程求解即可.(2)①用利润公式:利润=(售价-进价)×数量,分别表示出A 、B 型汽车利润,然后列不等式求解即可;②B 型号的汽车售价为t 万元/台,然后将两车的总利润相加得出一个二次函数,求二次函数的最值即可. (1)解:设B 型汽车的进货单价为x 万元,根据题意,得: 502x +=40x, 解得x =8,经检验x =8是原分式方程的根, 8+2=10(万元),答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元; (2)设B 型号的汽车售价为t 万元/台,则A 型汽车的售价为(t +1)万元/台, ①根据题意,得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14), 解得:t ≥414,∴t 的最小值为414,即B 型汽车的最低售价为414万元/台, 答:B 型汽车的最低售价为414万元/台; ②根据题意,得:w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14) =﹣2t 2+48t ﹣265 =﹣2(t ﹣12)2+23,∵﹣2<0,当t =12时,w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元. 【点睛】本题考查了分式方程的应用,不等式的应用,二次函数的应用,理清数量关系,明确等量关系是解题关键. 6.(1)2100y x =-+(2)221603000w x x =-+-,当销售单价为40元时获得利润最大 【解析】 【分析】(1)待定系数法求解一次函数解析式即可;(2)根据题意得210()(3)00w x x +--=,计算求出满足要求的解即可. (1)解:设该函数的表达式为y kx b =+,根据题意,得30403236k b k b +=⎧⎨+=⎩解得2100k b =-⎧⎨=⎩∴y 与x 之间的关系式为2100y x =-+. (2)解:根据题意,得210()(3)00w x x +--= 221603000x x =-+-224020(0)x =--+∵20a =-<∴当40x =时,w 的值最大∴当销售单价为40元时,获得利润最大. 【点睛】本题考查了一次函数的应用,二次函数的应用,二次函数的图象与性质.解题的关键在于熟练掌握一次函数与二次函数的知识. 7.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.8.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元【解析】【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可.(1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=, ∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =,当7x =时,5777W =,∵57785777>,∴6x =时,W 最大,最大利润为5778元.【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 9.(1)10500y x =-+(2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元.【解析】【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解. (1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩, 解得:2730x ≤≤,由(2)可知21070010000w x x =-+-,∵100-<,即开口向下,对称轴为直线352b x a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=;答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.10.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.。

二次函数综合应用题(有答案)中考23题必练经典

二次函数综合应用题(有答案)中考23题必练经典

二次函数综合应用题一、求利润的最值1.(2010·武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

当每个房间每天的房价每增加10元时,就会有一个房间空闲。

宾馆需对游客居住的每个房间每天支出20元的各种费用。

根据规定,每个房间每天的房价不得高于340元。

设每个房间的房价每天增加x 元(x 为10的正整数倍)。

(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围; (2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。

(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000;(3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。

答:一天订住34个房间时,宾馆每天利润最大,最大利润是10880元。

2.(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?解:(1)(且为整数); (2).,当时,有最大值2402.5. ,且为整数,当时,,(元),当时,,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当时,,解得:. 当时,,当时,.当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).3.(2008·武汉)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。

初中数学:利用二次函数解决距离、利润最值问题练习(含答案)

初中数学:利用二次函数解决距离、利润最值问题练习(含答案)

初中数学:利用二次函数解决距离、利润最值问题练习(含答案)一、选择题1.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的函数表达式为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最大的是( )A.第8秒 B.第10秒C.第12秒 D.第15秒2.某民俗旅游村为解决游客的住宿需求,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则租出床位相应地减少10张.如果每张床位每天以20元为单位提高收费,为使租出的床位少且所获租金高,那么每张床位每天最合适的收费是链接学习手册例3归纳总结( )A.140元 B.150元 C.160元 D.180元二、填空题3.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.4.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是________元时,才能在半月内获得最大利润.5.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:科学家经过猜想,推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为________℃.三、解答题6.小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9-x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的表达式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大,最大平均利润是多少.(注:平均利润=销售价-平均成本)7.如图K-7-1所示,甲船从A处起以15海里/时的速度向正北方向航行,这时乙船从A 的正东方20海里的B处以20海里/时的速度向正西方向航行,多长时间后,两船的距离最小?最小距离是多少?图K-7-18.某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x为偶数),每周销售量为y个.(1)直接写出销售量y(个)与降价x(元)之间的函数表达式;(2)设商户每周获得的利润为w元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?9.某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x(x为正整数)天销售的相关信息,如下表所示:(1)请计算第几天该商品的单价为25元/件;(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数表达式;(3)这30天中第几天获得的利润最大?最大利润是多少?实际探究如图K-7-2,某足球运动员站在点O处练习射门,将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c.已知足球飞行0.8 s时,离地面的高度为3.5 m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t.已知球门的高度为2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?图K-7-2[课堂达标]1.[解析] B 利用抛物线的轴对称性,当x =7+142=10.5时,炮弹达到最大高度,与对称轴最接近的应是第10秒,故选B.2.[解析] C 设每张床位提高x 个20元,每天收入为y 元. 则y =(100+20x)(100-10x)=-200x 2+1000x +10000. 当x =-b2a =2.5时,y 有最大值.又x 为整数,当x =2时,y =11200; 当x =3时,y =11200.故为使租出的床位少且所获租金高,每张床应收费100+3×20=160(元). 3.[答案] 1.6 4.[答案] 35 5.[答案] -16.解:(1)依题意,得⎩⎨⎧16a +4b +10=2,36a +6b +10=1,解得⎩⎨⎧a =14,b =-3.∴该二次函数的表达式为y =14x 2-3x +10.(2)依题意,得平均利润L =P -y =9-x -(14x 2-3x +10),化简,得L =-14x 2+2x -1(1≤x≤7且x 为整数),∴L =-14(x -4)2+3,∴当x =4时,L 的最大值为3(单位:元/千克).答:该蔬菜在4月份的平均利润L 最大,最大平均利润为3元/千克. 7.解:设x 小时后,两船相距y 海里.根据题意,得y =(15x )2+(20-20x )2=625x 2-800x +400=(25x -16)2+144, 所以,当x =1625时,y 有最小值,为12. 答:1625小时后,两船的距离最小,最小距离是12海里.8.解:(1)根据题意,得y =160+x2×20,即y =10x +160.(2)w =(30-x)(10x +160)=-10(x -7)2+5290. ∵x 为偶数,∴当x =6或8时,w 取最大值5280.当x =6时,销售单价为80-6=74(元/个);当x =8时,销售单价为80-8=72(元/个). ∴当销售单价定为74元/个或72元/个时,每周销售利润最大,最大利润是5280元. (3)∵w=-10(x -7)2+5290,∴当w =5200元时,-10(x -7)2+5290=5200.解得x 1=10,x 2=4. ∵销售量y =10x +160随x 的增大而增大, ∴当x =4时,进货成本最小.当x =4时,销售量y =10x +160=200,此时进货成本为200×50=10000(元).答:他至少要准备10000元进货成本. 9.解:(1)分两种情况:①当1≤x≤20时,将m =25代入m =20+12x,解得x =10;②当21≤x≤30时,将m =25代入m =10+420x ,得25=10+420x,解得x =28. 经检验,x =28是原分式方程的根,且符合题意, ∴x =28.答:第10天或第28天时该商品的单价为25元/件. (2)分两种情况:①当1≤x≤20时,y =(m -10)n =⎝ ⎛⎭⎪⎫20+12x -10(50-x)=-12x 2+15x +500;②当21≤x≤30时,y =(m -10)n =⎝ ⎛⎭⎪⎫10+420x -10(50-x)=21000x -420. 综上所述,y =⎩⎪⎨⎪⎧-12x 2+15x +500(1≤x≤20),21000x -420(21≤x≤30).(3)①当1≤x≤20时,y =-12x 2+15x +500=-12(x -15)2+12252.∵a =-12<0,∴当x =15时,y 最大值=12252;②当21≤x≤30时,由y =21000x-420,可知y 随x 的增大而减小,∴当x =21时,y 最大值=2100021-420=580. ∵580<12252, ∴第15天时获得的利润最大,最大利润为12252元.[素养提升]解:(1)由题意,得函数y =at 2+5t +c 的图象经过点(0,0.5),(0.8,3.5), ∴⎩⎨⎧0.5=c ,3.5=0.82a +5×0.8+c , 解得⎩⎪⎨⎪⎧a =-2516,c =12,∴抛物线的函数表达式为y =-2516t 2+5t +12.∵-b2a=-52×⎝ ⎛⎭⎪⎫-2516=1.6, 4ac -b 24a =4×⎝ ⎛⎭⎪⎫-2516×12-524×⎝ ⎛⎭⎪⎫-2516=4.5, ∴当t =1.6时,y 最大=4.5.答:足球飞行的时间为1.6 s 时,足球离地面最高,最大高度是4.5 m. (2)把x =28代入x =10t,得t =2.8, ∴当t =2.8时,y =-2516×2.82+5×2.8+12=2.25<2.44.∴他能将球直接射入球门.。

2023年二轮复习解答题专题十七:二次函数的应用(销售利润问题)(原卷版)

2023年二轮复习解答题专题十七:二次函数的应用(销售利润问题)(原卷版)

2023年二轮复习解答题专题十七:二次函数的应用——销售利润问题方法点睛二次函数解决销售问题是我们生活中经常遇到的问题,这类问题通常是根据实际条件建立二次函数关系式,然后利用二次函数的最值或自变量在实际问题中的取值解决利润最大问题.典例分析例1:(2022青岛中考)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?专题过关1. (2022鄂尔多斯中考)(10分)某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?2.(2022荆门中考)(10分)某商场销售一种进价为30元/个的商品,当销售价格x(元/个)满足40<x <80时,其销售量y (万个)与x 之间的关系式为y =﹣x +9.同时销售过程中的其它开支为50万元.(1)求出商场销售这种商品的净利润z (万元)与销售价格x 函数解析式,销售价格x 定为多少时净利润最大,最大净利润是多少?(2)若净利润预期不低于17.5万元,试求出销售价格x 的取值范围;若还需考虑销售量尽可能大,销售价格x 应定为多少元?3. (2022宁波中考)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ££,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大产量?最大产量为多少千克?4. (2022广元中考)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?4. (2022滨州中考)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.5. (2022营口中考)某文具店最近有A ,B 两款纪念册比较畅销,该店购进A 款纪念册5本和B 款纪念册4本共需156元,购进A 款纪念册3本和B 款纪念册5本共需130元.在销售中发现:A 款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B 款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价的之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)…22232425…每天销售量(本)…80787674…(1)求A ,B 两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A 款纪念册的利润,同时提高每本B 款纪念册的利润,且这两款纪念册每天销售总数不变,设A 款纪念册每本降价m 元.①直接写出B 款纪念册每天的销售量(用含m 的代数式表示);②当A 款纪念册售价为多少元时,该店每天所获利润最大,最大利润多少?6. (2022盘锦中考)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w 元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?7. (2022抚顺中考) 某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足如图所示的一次函数关系.是(1)求y 与x 之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?8.(2022葫芦岛中考)(12分)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,部分数据如表:每千克售价x (元)……202224……日销售量y (千克)……666054……(1)求y 与x 之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?9. (2022铜仁中考)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y (吨)与批发价x (千元/吨)之间的函数关系式,并直接写出自变量x 的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?10.(2022天门中考)(10分)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y (千克)与销售单价x (元/千克)有如下表所示的关系:销售单价x (元/千…2022.52537.540…克)销售量y (千克)…3027.52512.510…(1)根据表中的数据在如图中描点(x ,y ),并用平滑曲线连接这些点,请用所学知识求出y 关于x 的函数关系式;(2)设该超市每天销售这种商品的利润为w (元)(不计其它成本).①求出w 关于x 的函数关系式,并求出获得最大利润时,销售单价为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w =240(元)时的销售单价.11. (2022荆州中考)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?12. (2022十堰中考)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <£ì=í-+<£î,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <£时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?13 .(2022大庆中考) 果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg .在确保每棵果树平均产量不低于40kg 的前提下,设增种果树x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,它们之间的函数关系满足如图所示的图象.(1)图中点P 所表示的实际意义是________________________,每增种1棵果树时,每棵果树平均产量减少____________kg ;(2)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(3)当增种果树多少棵时,果园的总产量(kg)w 最大?最大产量是多少?14. (2022贺州中考) 2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品,某商家以每套34元的价格购进一批冰墩墩和雪容融套件,若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x 元时,求该商品销售量y 与x 之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W 最大,最大利润是多少元?15. (2022北部湾中考) 打油茶是广西少数民族特有的一种民俗,某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y (盒)与销售单价x (元)之间的函数图像如图所示.(1)求y 与x 的函数解析式,并写出自变量x 的取值范围;(2)当销售单价定为多少元时,该种油茶月销售利润最大求出最大利润.16.(2022郑州一模) 某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入,试销的30天中,该村第一天卖出土特产42千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出6千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为y =()()821202030mx m x n x ì-£<ïí££ïî,x 为正整数,且第14天的售价为34元/千克,第27天的售价为27元/千克.已知土特产的成本是21元/千克,每天的利润是W 元(利润=销售收入﹣成本).(1)m = ,n = ;(2)求每天的利润W 元与销售的天数x (天)之间的函数关系式;(3)在销售土特产的30天中,当天利润不低于1224元的共有多少天?17. (2022河南天一大联考)某体育用品专卖店新进一批篮球和足球,已知每个篮球的进的价比每个足球的进价多30元,用6000元购进篮球的数量与用4800元购进足球的数量相同.(1)求篮球、足球每个进价分别为多少元?(2)专卖店准备在进价基础上,篮球加价60%作为售价,足球加价50%作为售价.该专卖店平均每天卖出篮球120个,足球100个.为回馈顾客,减少库存,专卖店准备搞活动促销.经调查发现,篮球、足球的销售单价每降低10元,这两种商品每天都可多销售20个,为了使每天获取更大的利润,该专卖店决定把篮球、足球的销售单价都下降a 元.请通过计算说明,如何定价,专卖店才能获取最大利润.18. (2022河南商水二模)小强经营的网店以特色小吃为主,其中一品牌茶饼的进价为6元/袋,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:袋)与线下的售价x (单位:元/袋,1016x ££,且x 为整数)满足一次函数的关系,部分数据如下表所示.x (元/袋)1011121314y (袋)10090807060(1)求y 与x 的函数关系式.(2)若线上的售价始终比线下的售价每袋便宜1元,且线上的月销量固定为60袋.问当x 为多少时,线上和线下的月利润总和达到最大?并求出此时的最大利润.19.(2022河南虞城二模) 铁棍山药上有像铁锈一样的痕迹.故得名铁棍山药.某网店购进铁根山药若干箱.物价部门规定其销售单价不高于80元/箱,经市场调查发现:销件单价定为80元/箱时,每日销售20箱;如调整价格,每降价1元/箱,每日可多销售2箱.(1)已知某天售出铁棍山药70箱,则当天的销售单价为______元/箱.(2)该网店现有员工2名.每天支付员工的工资为每人每天100元,每天平均支付运费及其他费用250元,当某天的销售价为45元/箱时,收支恰好平衡.①铁棍山药的进价;②若网店每天的纯利润(收入-支出)全部用来偿还一笔15000元的贷款,则至少需多少天才能还清贷款?20. (2022平顶山一模)基商场以30元/台的价格购进500台新型电子产品,在销售过程中发现,其日销售量y (单位∶台)与销售单价x (单位∶元)之间存在如图所示的函数关系.(1)求y 与x 的函数关系式;(2)按物价部门规定,产品的利润率不得超过 80%,该电子产品每台最高售价为 元,此时的日销售量为台 ;(3)若按照日销售获得最大利润时的售价,计算商场销售完这批电子产品获得的总利润.21. (2022开封二模)“慈母手中线,游子身上衣”,为感恩母亲,许多子女选择用康乃馨这种鲜花来表达对母亲的祝福.某花店采购了一批康乃馨,进价是每支8元.当每支售价为12元时,可销售30支;当每支售价为10元时,可销售40支.在销售过程中,发现这种康乃馨的销售量y (支)是每支售价x (元)的一次函数()030x £<.(1)求y 与x 之间的函数关系式;(2)设此花店这种康乃馨的销售利润是w 元,根据题意:当销售单价为多少元时,商家获得利润最大.22. (2022河南安阳县一模)疫情期间,为满足市民防护需求,某药店想要购进A 、B 两种口罩,B 型口罩的每盒进价是A 型口罩的两倍少10元.用6000元购进A 型口罩的盒数与用10000元购进B 型口罩盒数相同.(1)A 、B 型口罩每盒进价分别为多少元?(2)经市场调查表明,B 型口罩受欢迎,当每盒B 型口罩售价为60元时,日均销量为100盒,B 型口罩每盒售价每增加1元,日均销量减少5盒.当B 型口罩每盒售价多少元时,销售B 型口罩所得日均总利润最大?最大日均总利润为多少元?23. (2022河南汝州一模)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.已知2盆盆景与1盆花卉的利润共330元,1盆盆景与3盆花卉的利润共240元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).①含x 的代数式分别表示1W ,2W ;②当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少元?。

初中数学二次函数的最值问题--练习题+答案

初中数学二次函数的最值问题--练习题+答案

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a-,无最小值. 【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值.解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【例3】当0x ≥时,求函数(2)y x x =--的取值范围.解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.练习A 组1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .3.求下列二次函数的最值:(1) 2245y x x =-+; (2) (1)(2)y x x =-+.4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.6.求函数3y =7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?B 组1.已知关于x 的函数222y x ax =++在55x -≤≤上.(1) 当1a =-时,求函数的最大值和最小值;(2) 当a 为实数时,求函数的最大值.2.函数223y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b 的值.4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).答案解析A 组1.4 14或2,322.2216l m 3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值. 4.当34x =时,min 318y =;当2x =-时,max 19y =.5.5y ≥- 6.当56x =时,min 36y =-23x =或1时,max 3y =. 7.当54t =-时,min 0y =. B 组1.(1) 当1x =时,min 1y =;当5x =-时,max 37y =.(2) 当0a ≥时,max 2710y a =+;当0a <时,max 2710y a =-.2.21m -≤≤-. 3.2,2a b ==-.4.14a=-或1a=-.5.当0t≤时,max22y t=-,此时1x=;当0t>时,max 22y t=+,此时1x=-.。

初中数学课件:第2课时 利用二次函数解决距离和利润问题(2021年浙教版)

初中数学课件:第2课时 利用二次函数解决距离和利润问题(2021年浙教版)

由题意,得抛物线 F1 的顶点坐标为(2,1.8), 设 F1 的表达式为 y=a(x-2)2+1.8(a≠0),
将 A(0,3)代入,得 4a+1.8=3,解得 a=0.3,
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
∴抛物线 F1 为 y=0.3(x-2)2+1.8, 当 x=3 时,y=0.3×1+1.8=2.1, ∴MN 的长度为 2.1 m; (3)∵MN=CD=3 m, ∴根据抛物线的对称性可知抛物线 F2 的顶点在 ND 的垂直平分线上, ∴抛物线 F2 的顶点坐标为12m+4,k, ∴抛物线 F2 的表达式为 y=14x-12m-42+k,
返回
基本知识必备
关键能力突破
核心素养应用
(1)求绳子最低点离地面的距离; (2)因实际需要,在离 AB 为 3 m 的位置处用一根立柱 MN 撑起绳子(如图②),使左 边抛物线 F1 的最低点距 MN 为 1 m,离地面 1.8 m,求 MN 的长; (3)将立柱 MN 的长度固定为 3 m,通过调整 MN 的位置,使抛物线 F2 对应函数的二 次项系数始终为14,设 MN 离 AB 的距离为 m,抛物线 F2 的顶点离地面距离为 k,当 2≤k≤2.5 时,求 m 的取值范围.
∴函数表达式为 h=-490(t-3)2+40,
把 h=30 代入表达式,得 30=-490(t-3)2+40,
解得 t=4.5 或 t=1.5,
∴小球的高度 h=30 m 时,t=1.5 s 或 4.5 s,故④错误,故选 D.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
4.[2019·襄阳]如图 1-4-12,若被击打的小球飞行高度 h(单位:m)与飞行时间 t(单 位:s)之间具有的关系为 h=20t-5t2,则小球从飞出到落地所用的时间为___4___s.

沪科版九年级数学上册21.4.1利用二次函数模型解决最值问题同步练习题

沪科版九年级数学上册21.4.1利用二次函数模型解决最值问题同步练习题

沪科版九年级数学上册利用二次函数模型解决最值问题同步练习题利用二次函数模型解决最值问题一、选择题1.某汽车出租公司一天的租车总收入y(元)与每辆出租车的日租金x(元)知足函数表达32式y=-5(x -120)+19440(0≤x≤200),那么该公司一天的租车总收入最多为()A.120元.200元C.1200元.19440元2.]某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙分开,并在如图1所示的三处各留1m宽的门,方案中的资料可建墙体(不包含门)总长为27m,那么能建成的两间饲养室总面积最大为( )图1A.75m2 B. 75m2C.48m2 D. 225m22 23.某商场的小王对该商场苹果的销售状况进行了统计,某种进价为 2元/千克的苹果每天的销售量y(千克)和当日的售价 x(元/千克)之间知足y=-20x+200(3≤x≤5),假定要使该种苹果当日的收益W抵达最高,那么其售价应为( )A.5元/千克B .6元/千克C.元/千克 D .3元/千克4.某公司在甲、乙两地同时销售某种品牌的汽车.在甲、乙两地的销售收益y(单位:万元)与销售量(单位:辆)之间分别知足:1=-+10,2=2.假定该公司在甲、乙两地共销售15辆该品牌的汽车,那么能获取的最大收益为)A .30万元B.40万元C .45万元D.46万元二、填空题5.某商品的收益y(元)与单价x(元/件)之间的函数表达式为y=-5x2+10x,当≤x≤2时,该商品的最大收益是________.6.某市新建成的一批楼房都是8层,房屋的价钱y(元/平方米)是楼层数x(楼)的二次函数.此中一楼价钱为4930元/平方米,二楼和六楼均为5080元/平方米,那么________楼房屋最贵,且价钱为________元/平方米.1/7沪科版九年级数学上册利用二次函数模型解决最值问题同步练习题7.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,2那么这两个正方形面积之和的最小值是________cm.8.一件工艺品的进价为100元,标价135元售出,每日可售出100件.依据销售统计,一件工艺品每降价1元销售,那么每日可多售出4件,要使每日获取的收益最大,每件需降价________元.三、解答题9.直线l过点A(a,0)和点B(0,b),此中a>0,b>0,假定a+b=12,点O为原点,△AOB的面积为S,那么当b为什么值时,S获得最大值?并求出这个最大值.10.某种商品每日的销售收益y(元)与每个商品的售价x(元)之间知足关系y=ax2+bx75,其图象如图2所示.当每个商品的售价为多少元时,该种商品每日的销售收益最大?最大收益为多少元?(2)每个商品的售价在什么范围时,该种商品每日的销售收益不低于1 6元.图2某公司踊跃响应政府“创新展开〞的呼吁,研发了一种新产品.研发、生产这类产品的本钱为30元/件,且年销售量y(万件)对于售价 x(元/件)的函数表达式为y=2/7沪科版九年级数学上册利用二次函数模型解决最值问题同步练习题2x+140(40≤x<60),x+80(60≤x≤70).(1)假定公司销售该产品获取的年收益为 W(万元),请直接写出年收益W(万元)对于售价x(元/件)的函数表达式;当该产品的售价为多少时,公司销售该产品获取的年收益最大?最大年收益是多少?12.如图3,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔2有一道篱笆的长方形花园(由两个小矩形花园构成).设花园的一边AB为xm,面积为Sm.(1)求S与x之间的函数表达式(写出自变量的取值范围 ).2(2)假如要围成面积为 45m的花园,那么AB的长是多少米?(3)能围成面积比 45m2更大的花园吗?假如能,恳求出最大面积,并说明围法;假如不能,请说明原因.图313为了节俭资料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图4所示的①②③三块矩形地区,并且这三块矩形地区的面积相2等.设BC的长度为xm,矩形地区ABCD的面积为ym.3/7沪科版九年级数学上册利用二次函数模型解决最值问题同步练习题(1)求y与x之间的函数表达式,并注明自变量x的取值范围;(2)x为什么值时,y有最大值?最大值是多少?图44/7沪科版九年级数学上册利用二次函数模型解决最值问题同步练习题答案1.D2.[分析]A 设垂直于现有墙的一边长为xm,那么平行于现有墙的一边长为27+3-3x=(30-3x)m,那么饲养室的总面积 S=x(30-3x)=-3x2+30x=-3(x-5)2+75,故能建成的饲2养室的最大面积为75m.3.[分析]A W=(x-2)(-20x+200)=-20(x-6)2+320,由于3≤x≤5,当x≤6时,W随x的增大而增大,故当x=5时,W取最大值.应选 A.4.[分析]D 设在甲地销售x辆,那么在乙地销售(15-x)辆.依据题意,得总收益W=y1+y2=-x2+10x+2(15-x)=-x2+8x+30=-(x-4)2+46,故能获取的最大收益为万元.5.[答案]5元[分析]当x=1时,函数有最大值5,且1在≤x≤2的范围内,因此当≤x≤2时,该商品的最大收益为5元.6.[答案]四 5200[分析]设y=ax2+bx+c,代入(1,4930),(2,5080),(6,5080),解得y=-30(x-4)2+5200.当x=4时,y=5200.7.[答案[分析]设这两个正方形的边长分别为xcm和ycm,它们的面积之和为2Scm.依据题意,得4x+4y=20,S=x2+y2,因此y=5-x,S=x2+(5-x)2=2x2-10x+25=2(x2-5x)+25=2 (x-)2+5.因此当x=时,这两个正方形的面积之和最小,最小是2.cm8.59.解:∵a+b=12,∴a=12-b.11-b)b=-212又∵S=ab,∴S =(12b+6b=-(b-6)+18.2221又∵-<0,2∴当b=6时,S获得最大值,最大值为18.10.解:(1)函数y=ax2+bx-75的图象过点(5,0),(7,16),那么5/7沪科版九年级数学上册利用二次函数模型解决最值问题同步练习题2 5a +5b-75=0,a=-1,4 9a +7b-75=16,解得b=20,那么y=-x2+20x-75=-(x-10)2+25,故函数图象的极点坐标是(10,25).∵a=-1<0,∴当x=10时,y最大值=25.故当每个商品的售价为10元时,该种商品每日的销售收益最大,最大收益为25元.(2)∵函数y=-x2+20x-75的图象的对称轴为直线x=10,∴点(7,16)对于对称轴的对称点是(13,16).2又∵函数y=-x+20x-75的图象张口向下,即每个商品的售价许多于7元且不超出13元时,该种商品每日的销售收益不低于16元.11.解:(1)当40≤x<60时,W=(x-30)(-2x+140)=-2x2+200x-4200,当60≤x≤70时,W=(x-30)(-x+80)=-x2+110x-2400. (2)当40≤x<60时,W=-2x2+200x-4200=-2(x-50)2+800,∴当x=50时,W获得最大值,最大值为8 00;当60≤x≤70时,W=-x2+110x-2400=-(x-55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W获得最大值,最大值为-(60-55)2+625=600.800>600,∴当x=50时,W获得最大值800.答:该产品的售价为50元/件时,公司销售该产品获取的年收益最大,最大年收益是800万元.21412.解:(1)S=x(24-3x)=-3x+24x(3≤x<8).(2)当S=45时,有-3x2+24x=45.解得x1=3,x2=5.143≤x<8,∴x=5,即AB的长为5m.2(3)能围成面积比45m更大的花园.6/7沪科版九年级数学上册利用二次函数模型解决最值问题同步练习题∵S=-3x2+24x=-3(x-4)2+48,其函数图象张口向下,对称轴为直线x=4,当x>4时,y随x的增大而减小,14141 40∴在3≤x<8的范围内,当x=3时,S获得最大值,S最大值3.即最大面积为1402,3m此时AB=14,BC=10.3m m113解:(1)方法一:设AE=am.由题意,得AE·AD=2BE·BC,AD=BC,因此BE=2a,3AB=2a.由题1331意,得2x+3a+a=80,因此a=20-2x,因此y=AB·BC=2a·x=220-2xx,3即y=-x2+30x,此中0<x<40.4方法二:依据题意,得CF·x=y,CF=y,DF·x=2y,DF=2y,因此2x+2×y+3×2y x33x3x3x3=80,整理得y=-4x2+30x,此中0<x<40.233(2)y=-4x +30x=-4(x-20)+300,由于-4<0,因此抛物线张口向下.又由于0<x<40,因此当x=20时,y获得最大值,最大值为300.7/7。

2020学年度九年级数学下册 第5章5.5.1 利用二次函数解决销售利润最值问题同步练习

2020学年度九年级数学下册 第5章5.5.1 利用二次函数解决销售利润最值问题同步练习

5.5 用二次函数解决问题第1课时利用二次函数解决销售利润最值问题知|识|目|标1.通过建立二次函数模型,利用二次函数性质解决实际生活中利润的最大(小)值问题.2.通过对函数图像的分析,能用二次函数解决利润与图像信息的相关问题目标一能构造二次函数模型解决最大利润问题例1 教材问题2变式某市某水产养殖中心2017年鱼塘饲养鱼苗10千尾,平均每千尾鱼的产量为1000千克,2018年计划继续向鱼塘投放鱼苗,每多投放鱼苗1千尾,每千尾的产量将减少50千克.(1)2018年应投放鱼苗多少千尾,可以使总产量达到10450千克?(2)该水产养殖中心2018年投放鱼苗多少千尾,可以达到最大总产量?最大总产量是多少千克?【归纳总结】利用二次函数求最值的“三注意”(1)要把实际问题正确地转化为二次函数问题.(2)列函数表达式时要注意自变量的取值范围.(3)若自变量的取值范围内函数图像不含抛物线的顶点,则应根据函数的增减性来确定最值.目标二会解决利润与图像信息相关问题例2 教材补充例题某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售.根据销售经验,提高销售单价会导致销售量的减少,销售量y(件)与销售单价x(元/件)的关系示意图如图5-5-1所示.(1)图中点P所表示的实际意义是______________________;销售单价每提高1元时,销售量相应减少________件.(2)请直接写出y与x之间的函数表达式:________;自变量x的取值范围为________.(3)第二个月的销售单价定为多少元/件时,可获得最大利润?最大利润是多少?图5-5-1知识点一与利润相关的量的关系(1)产品单件利润=单件售价-单件进价.(2)销售总利润=总收入-总成本.(3)利润率=售价-进价进价×100%. 知识点二 解决利润最值问题的基本步骤(1)认真审题,读懂题意.(2)正确列出函数表达式.(3)对函数表达式进行配方或根据顶点坐标公式进行整理.(4)根据题意进行合理解释并作答.某化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.当销售单价为x 元/千克时,日销售量为(-2x +200)千克.在销售过程中,每天还要支付其他费用450元.当销售单价为多少元/千克时,该公司日获利W (元)最大?最大日获利是多少元?解:W =(x -30)(-2x +200)-450=-2x 2+260x -6450=-2(x -65)2+2000.∴当x =65时,W 最大,W 最大值=2000.即当销售单价为65元/千克时,该公司日获利最大,最大日获利是2000元.找出以上解答中的错误,并改正.详解详析【目标突破】例1 解:(1)设2018年投放鱼苗m 千尾,那么鱼塘里共有鱼苗(10+m)千尾,每千尾鱼的产量为(1000-50m)千克.根据题意,得(10+m)(1000-50m)=10450,解得m 1=1,m 2=9.答:2018年应投放鱼苗1千尾或9千尾,可以使总产量达到10450千克.(2)设2018年投放鱼苗x 千尾,总产量为y 千克,则y =(1000-50x)(10+x)=-50(x -5)2+11250.当x =5时,y 的值最大,最大值是11250.答:2018年投放鱼苗5千尾,能使总产量最大,最大总产量为11250千克.例2 解:(1)图中点P 所表示的实际意义是当售价定为35元/件时,销售量为300件;第一个月该商品的售价为20×(1+50%)=30(元/件),∴销售单价每提高1元时,销售量相应减少的数量为(400-300)÷(35-30)=20(件).故答案为当售价定为35元/件时,销售数量为300件;20.(2)设y 与x 之间的函数表达式为y =kx +b.将点(30,400),(35,300)代入y =kx +b 中,得⎩⎪⎨⎪⎧400=30k +b ,300=35k +b ,解得⎩⎪⎨⎪⎧k =-20,b =1000. ∴y 与x 之间的函数表达式为y =-20x +1000.当y =0时,x =50,∴自变量x 的取值范围为30≤x ≤50.故答案为y =-20x +1000;30≤x ≤50.(3)设第二个月的利润为w 元.由已知,得w =(x -20)y =(x -20)(-20x +1000)=-20x 2+1400x -20000=-20(x -35)2+4500.∵-20<0,∴当x =35时,w 取得最大值,最大值为4500.故第二个月的销售单价定为35元/件时,可获得最大利润,最大利润是4500元.【总结反思】[反思] 错误:忽略了自变量的取值范围.改正:∵30≤x ≤60,∴顶点的横坐标65不在自变量的取值范围内,∴最大值不是顶点的纵坐标.由函数的增减性可知,当x =60时,W 有最大值,W 最大值=-2×(60-65)2+2000=1950.即当销售单价为60元/千克时,该公司日获利最大,最大日获利是1950元.。

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)二次函数应用题1.某商场销售一种小商品,进货价为8元/件,当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为x (元/件)(10x ≥的整数),每天销售利润为y (元). (1)求y 与x 的函数关系式,并写出x 的取值范围;(2)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y 的取值范围.2.东东在网上销售一种成本为30元/件的T 恤衫.销售过程中的其他各种费用(不再含T 恤衫成本)总计50(百元).若销售价格为x (元/件).销售量为y (百件).当4060x ≤≤时,y 与x 之间满足一次函数关系.且当40x =时,6y =,有关销售量y (百件)与销售价格x (元/件)的相关信息如下: 销售量y (百件) _____________ 240y x =销售价格x (元/件)4060x ≤≤6080x ≤≤(1)求当4060x ≤≤时.y 与x 的函数关系式:(2)①求销售这种T 恤衫的纯利润w (百元)与销售价格x (元/件)的函数关系式; ②销售价格定为每件多少元时.获得的利润最大?最大利润是多少?3.跳台滑雪是北京冬奥会的项目之一.某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系.抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出(即A 点坐标为(0,4)),滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到距A 处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C 2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?4.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如表:售价x(元/件)607080周销售量y(件)1008060周销售利润w(元)200024002400【注:周销售利润=周销售量×(售价﹣进价)】(1)①直接写出:此商品进价元,y关于x的函数解析式是.(不要求写出自变量的取值范围)②当售价是多少元/件时,周销售利润最大,并求出最大利润.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.5.为了“创建文明城市,建设美丽家园”,青春科技生态有限公司种植和销售一种有机绿色草皮.已知该草皮的成本是15元/2m,规定销售价格不低于成本,又不高于成本的两y与销售价格x(元/2m)的函数关系如图倍.经市场调查发现,某天该草皮的销售量()2m所示.(1)求y与x间的函数解析式;(2)求这一天销售草皮获得的利润w的最大值;(3)若该公司按每销售21m草皮提取1元用于捐资助学,且保证捐款后每天的销售利润不低于7200元,直接写出该草皮销售价格的范围.6.某数学兴趣小组对函数y=|x2+2x|的图象和性质进行了探究,探究过程如下所示,其中自变量x取全体实数,x与y的几组对应值如表所示.x﹣4﹣3﹣2﹣10123 y8m0n03815(1)根据如表数据填空:m = ,n = ;(2)在如图所示的平面直角坐标系中描点,并用平滑的曲线将函数图象补充完整; (3)观察该函数的图象,解决下列问题. ①该函数图象与直线y =12的交点有 个; ②若y 随x 的增大而减小,求此时x 的取值范围;③在同一平面内,若直线y =x +b 与函数y =|x 2+2x |的图象有a 个交点,且a ≥3,求b 的取值范围.7.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的成本y (万元)与产品数量x (件)之间具有函数关系220100y x x =++,B 城生产产品的每件成本为60万元.(1)当A 城生产多少件产品时,A ,B 两城生产这批产品成本的和最小,最小值是多少? (2)从A 城把该产品运往C ,D 两地的费用分别为1万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(1)的条件下,怎样调运可使A ,B 两城运费的和最小?8.某商店购进一批进价为40元/件的日用商品,第一个月,按进价提高50%的价格出售,售出600件;第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y (件)与销售单价x (元)的关系如图所示.(1)请直接写出y 与x 之间的函数表达式: ;自变量x 的取值范围为 ; (2)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?9.“互联网+”时代,网上购物备受消费者青睐.某网店销售某种儿童玩具,如果每件利润为30元,每天可售出40件.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每天可多销售2件.设销售单价降价x 元,每天售出y 件. (1)请写出y 与x 之间的函数表达式;(2)当销售单价降低多少元时,该网店每天销售这种玩具可获利润1248元?(3)当销售单价降低多少元时,该网店每天销售这种玩具获得的利润最大,最大利润是多少?10.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价为多少元时,才能在一个月内获得最大利润?【参考答案】二次函数应用题1.(1)2102801600y x x =-+- (10x ≥的整数) (2)200360y ≤≤ 【解析】 【分析】(1)销售单价为x 元/件时,每件的利润为(8)x -元,此时销量为[10010(10)]x --,由此计算每天的利润y 即可;(2)首先求出利润不超过100%时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可. (1)解:(1)根据题意得: (8)[10010(10)]y x x =--- 整理,得 2102801600y x x =-+-(10x ≥的整数) (2)解:∵每件小商品的利润不超过100%,∴8100%8x -⨯≤, ∴16x ≤,∵每天进货总成本不超过800元, ∴[100(10)10]8800x --⨯⨯≤, ∴10x ≥, ∴1016x ≤≤,∵2210280160010(14)360y x x x =-+-=--+, 当14x =时,有360y =最大值当10x =时,有210(1014)360200y =-⨯-+=最小值,∴小商品每天销售利润y 的取值范围是:200360y ≤≤ 【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键. 2.(1)0.110y x =-+(2)①当4060x ≤≤时,20.113350=-+-w x x ;当6080x <≤时,7200190=-+w x; ②销售价格定为80元/件时,获得的利润最大,最大利润是100百元 【解析】 【分析】(1)把把60x =代入240y x=得4y =,设y 与x 的函数关系式为:y =kx +b ,把x =40,y =6;x =60,y =4,代入解方程组即可得到结论;(2)①根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式; ②结合①中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可. (1)解:把60x =代入240y x=得4y =. 设y 与x 的函数关系式为:y kx b =+, ∵当40x =时,6y =,当60x =时,4y =,∴406604k b k b +=⎧⎨+=⎩, 解得:0.110k b =-⎧⎨=⎩,∴y 与x 的函数关系式为:0.110y x =-+. (2)①当4060x ≤≤时,()()2300.110500.113350w x x x x =--+-=-+-;当6080x <≤时,()24072003050190w x x x=-⋅-=-+; ②当4060x ≤≤时,()220.1133500.16572.5w x x x =-+-=--+, ∵4060,65,x x ω≤≤≤随x 的增大而增大. ∴当60,70x w ==最大 (百元). 当6080x ≤≤时,7200190xω=-+ ∵72000-<,∴w 随x 的增大而增大,当80x =时,100w =最大 (百元).答:销售价格定为80元/件时,获得的利润最大,最大利润是100百元. 【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.3.(1)213482y x x =-++(2)运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米. 【解析】 【分析】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b 、c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,解出m 即可.(1)由题意可知抛物线C 2:y =﹣18x 2+bx +c 过点(0,4)和(4,8),将其代入得:2414488c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:324b c ⎧=⎪⎨⎪=⎩, ∴抛物线C 2的函数解析式为:213482y x x =-++;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,整理得:(m ﹣12)(m +4)=0, 解得:m 1=12,m 2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米. 【点睛】本题考查了二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.4.(1)①40,y =﹣2x +220;②当售价是75元/件时,周销售利润最大,最大利润是2450元;(2)销售最大利润是1600元时,m 的值为10. 【解析】 【分析】(1)①该商品进价等于周销售利润除以周销售量,再减去进价;设y 关于x 的函数解析式为y =kx +b ,用待定系数法求解即可;②根据周销售利润=周销售量×(售价-进价),列出w 关于x 的二次函数,根据二次函数的性质可得答案;(2)根据周销售利润=周销售量×(售价-进价),列出w 关于x 的二次函数,根据题意及二次函数的性质得出取得最大利润时的售价,再列出关于m 的方程,求解即可. (1)解:(1)①该商品进价是60﹣2000÷100=40(元/件);设y 关于x 的函数解析式为y =kx +b ,将(60,100),(70,80)分别代入得:100608070k bk b =+⎧⎨=+⎩, 解得:k =﹣2,b =220.∴y 关于x 的函数解析式为y =﹣2x +220; 故答案为:40,y =﹣2x +220;②由题意得:w =y (x ﹣40)=(﹣2x +220)(x ﹣40)=﹣2x 2+300x ﹣8800=﹣2(x ﹣75)2+2450,∵二次项系数﹣2<0,抛物线开口向下,∴当售价是75元/件时,周销售利润最大,最大利润是2450元; (2)解∶ 由题意得:w =(﹣2x +220)(x ﹣40﹣m ) =﹣2x 2+(300+2m )x ﹣8800﹣220m ,∵二次项系数﹣2<0,抛物线开口向下,对称轴为:300217542m x m +=-=+-, 又∵x ≤70,∴当x <7512m +时,w 随x 的增大而增大,∴当x =70时,w 有最大值:(﹣2×70+220)(70﹣40﹣m )=1600, 解得:m =10.∴周销售最大利润是1600元时,m 的值为10. 【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键. 5.(1)()()200580015258002530x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩(2)最大值为12000元 (3)2030x ≤≤ 【解析】 【分析】(1)根据图象中的点,待定系数法求解析式即可;(2)根据(1)的解析式,分1525≤≤x ,2530x <≤,两种情况列出w 的解析式,根据二次函数和一次函数的性质分别求得最大值;(3)根据二次函数的性质解不等式求得当1525≤≤x 时的定价范围,解一元一次不等式求得当2530x <≤时的定价范围.(1)解:根据函数图像可知,当2530x <≤时,800y =, 当1525≤≤x 时,设y kx b =+ 将()()15,2800,25,800代入得,28001580025k bk b =+⎧⎨=+⎩ 解得2005800k b =-⎧⎨=⎩2005800y x ∴=-+综上所述,()()200580015258002530x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩(2)当1525≤≤x 时,()()()215152005800200880087000w x y x x x x =-=--+=-+-对称轴为8800222400b a --==- 22x ∴=时,w 最大,2max 20022880022870009800w =-⨯+⨯-=当2530x <≤时,()1580080012000w x x =-⨯=-当30x =时,取得最大值,最大值为12000元 综上所述,最大值为12000元 (3)①当1525≤≤x 时,()()()2151162005800200900092800w x y x x x x =--=--+=-+-当22009007209002800x x -+-= 解得:1220,25x x == ∴定价为2025x ≤≤②当2530x <≤时,()()151158007200w x y x =--=-⨯≥解得25x ≥∴定价范围为2030x ≤≤【点睛】本题考查了一次函数的应用,二次函数的应用,一元一次不等式的应用,根据题意列出函数关系式是解题的关键. 6.(1)3;1 (2)见解析(3)①4;②x ≤-2或-1≤x ≤0;③2≤b ≤94【解析】【分析】(1)分别把x=-3和x=-1代入函数解析式求出结果;(2)根据表格,利用描点、连线画出函数图象;的图象,观察交点个数得出结果;(3)①画出y=12②观察函数图象得出结果;③利用一元二次方程根的判别式计算即可.(1)解:当x=-3时,m=|x2+2x|=|9-6|=3,当x=-1时,m=|1-2|=|-1|=1,故答案为3,1;(2)如图;(3)①由图象知图象与直线y=1有4个交点,2故答案为4;②由图象知,当x≤-2或-1≤x≤0时,图象从左到右逐渐下降,故若y随x的增大而减小,此时x的取值范围x≤-2或-1≤x≤0;③由题意可得,3≤a≤4.当直线y=x+b过点(-2,0)和点(-1,1)时,该直线与函数y=|x2+2x|的图象有三个交点,此时b=2;由图象可得在-2≤x≤-1段的函数解析式为y=-x2-2x,令x+b=-x2-2x,整理得x2+3x+b=0. 当该段函数图象与直线y=x+b有交点时,判别式为9-4b≥0,∴b≤94.综上,b的取值范围是2≤b≤94.【点睛】本题考查画函数图象以及利用函数图象解决问题,数形结合思想的应用是解决问题的关键.7.(1)A城生产20件,最小值是5700万元;(2)从A城把该产品运往C地的产品数量为20件,则从A城把该产品运往D地的产品数量为0件;从B城把该产品运往C地的产品数量为70件,则从B城把该产品运往D地的产品数量为10件时,可使A,B两城运费的和最小.【解析】【分析】(1)设A,B两城生产这批产品的总成本的和为W(万元),则W等于A城生产产品的总成本加上B城生产产品的总成本,由此可列出W关于x的二次函数,将其写成顶点式,根据二次函数的性质可得答案;(2)设从A城把该产品运往C地的产品数量为n件,分别用含n的式子表示出从A城把该产品运往D地的产品数量、从B城把该产品运往C地的产品数量及从B城把该产品运往D地的产品数量,再列不等式组求得n的取值范围,然后用含n的式子表示出A,B两城总运费之和P ,根据一次函数的性质可得答案.(1)解:设A ,B 两城生产这批产品的总成本的和为W (万元),则22010060(100)W x x x =+++-2406100x x =-+2(20)5700x =-+,∴当20x时,W 取得最小值,最小值为5700万元, ∴城生产20件,A ,B 两城生产这批产品成本的和最小,最小值是5700万元;(2) 设从A 城把该产品运往C 地的产品数量为n 件,则从A 城把该产品运往D 地的产品数量为(20)n -件,从B 城把该产品运往C 地的产品数量为(90)n -件,则从B 城把该产品运往D 地的产品数量为(1020)n -+件,运费的和为P (万元),由题意得:20010200n n -⎧⎨-+⎩, 解得1020n ,3(20)(90)2(1020)P n n n n =+-+-+-+60390220n n n n =+-+-+-2130n n =-+130n =-+,根据一次函数的性质可得:P 随n 增大而减小,∴当20n =时,P 取得最小值,最小值为110,∴从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A 、B 两城运费的和最小.【点睛】本题考查了二次函数和一次函数在实际问题中的应用,解题的关键是理清题中的数量关系并熟练掌握一次函数和二次函数的性质.8.(1)y =-20x +1800,60≤x ≤90(2)第二个月的销售单价定为65元/件时,可获得最大利润,最大利润是12500元【解析】【分析】(1)利用待定系数法求解即可;(2)根据总利润=单件利润乘以销售量,列出函数解析式,根据二次函数的性质求解即可.(1)第一个月该商品的售价为40×(1+50%)=60(元),设y 与x 之间的函数解析式为y =kx +b ,将点(60,600),(70,400)代入y =kx +b 中,得6006040070k b k b=+⎧⎨=+⎩, 解得201800k b =-⎧⎨=⎩, ∴y 与x 之间的函数解析式为y =-20x +1800;当y =0时,x =90,∴自变量x 的取值范围为60≤x ≤90;故答案为:y =-20x +1800;60≤x ≤90;(2)设第二个月的利润为w 元,由题意得,24040201()()()8002(0651250)0w x y x x x =-=-=+--+-.∵200-<,∴当x =65时,w 的最大值为12500.∴第二个月的销售单价定为65元/件时,可获得最大利润,最大利润是12500元.【点睛】本题主要考查了二次函数及一次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式,并根据题意确定等量关系,列出函数解析式.9.(1)402y x =+(2)当销售单价降低4元或6元时,该网店每天销售这种玩具可获利润1248元;(3)当销售单价降低5元时,该网店每天销售这种玩具获得的利润最大,最大利润是1250元.【解析】【分析】(1)根据销售单价每降1元,则每天可多销售2件.即可列出关于x 、y 的等式,即得出y 与x 之间的函数表达式;(2)根据题意可列出关于x 的一元二次方程,解出x 即得出答案;(3)设最大利润为w 元,根据题意可得出w 与x 的关系为二次函数关系,再根据二次函数的性质解题即可.(1)根据题意可列出等式:402y x =+.故y 与x 之间的函数表达式为402y x =+;(2)根据题意可列方程:(30)(402)1248x x -+=,解得:1246x x ==,.故当销售单价降低4元或6元时,该网店每天销售这种玩具可获利润1248元;(3)设最大利润为w 元,根据题意得:2(30)(402)2(5)1250w x x x =-+=--+∵20-<,∴当5x =时,w 有最大值,max 1250w =.故当销售单价降低5元时,该网店每天销售这种玩具获得的利润最大,最大利润是1250元.【点睛】本题考查一次函数、二次函数的实际应用,一元二次方程的实际应用.根据题意找出等量关系,列出等式是解题关键.10.售价为35元时,才能在一个月内获得最大利润【解析】【分析】设销售单价为x 元,月销售利润为y 元,根据月销售利润=单件利润×月销量,求得函数关系式,利用二次函数的性质即可解决问题.【详解】解:设销售单价为x 元,销售利润为y 元,依题意得,单件利润为(20)x -元,月销量为[]40020(30)x --件,月销售利润[](20)40020(30)y x x =---,整理得220140020000y x x =-+-,配方得220(35)4500y x =--+,所以35x =时,y 取得最大值4500.故售价为35元时,才能在一个月内获得最大利润,最大利润为4500元.【点睛】本题考查了二次函数的实际应用,解题的关键是能够根据题意构建二次函数解决最值问题.。

部编数学九年级上册22.39二次函数销售与利润问题(基础篇)(人教版)含答案

部编数学九年级上册22.39二次函数销售与利润问题(基础篇)(人教版)含答案

专题22.39 二次函数专题-销售与利润问题(基础篇)(专项练习)【专题说明】用二次函数解决销售与利润问题是中考的常考点,也是热点,解答这类问题最常用的方法之一是建立二次函数模式,利用二次函数的最大值或最小值。

运用二次函数的性质求实际问题的最大值和最小值的一般步骤:(1)设自变量x 和函数y ;(2)求出函数解析式和自变量的取值范围;(3)化为顶点式,求出最值;检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内,并作答。

相关等量关系:(1)利润=售价一进价;(2)总利润、单件利润、数量的关系;(3)总利润=单件利润×数量。

一、单选题1.某商场降价销售一批名牌衬衫,已知所获得利润y (元)与降价金额x (元)之间的关系是2260800y x x =-++,则获利最多为( )A .15元B .400元C .80元D .1250元2.某旅行社有100张床位,每张床位每晚收费10元时,客床可全部租出,若每张床每晚收费提高2元,则减少10张床位的租出;若每张床每晚收费再提高2元,则再减少10张床位的租出;以每次提高2元的这种方法变化下去,为了投资少而获利大,每张床每晚应提高( )A .4元或16元B .4元C .6元D .8元3.服装店将进价为每件100元的服装按每件x (x >100)元出售,每天可销售(200﹣x )件,若想获得最大利润,则x 应定为( )A .150元B .160元C .170元D .180元4.某畅销书的售价为每本30元,每星期可卖出200本,经调研,如果调整书籍的售价,每降价2元,每星期可多卖出40本,设每件商品降价x 元后,每星期售出此畅销书的总销售额为y 元,则y 与x 之间的函数关系为( )A .(30)(20040)y x x =-+B .(30)(20020)y x x =-+C .(30)(20040)y x x =--D .(30)(20020)y x x =--5.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x (x >0),设2015,2016,2017这三年该产品的总产量为y 吨,则y 关于x 的函数关系式为( )A .y =100(1﹣x )2B .y =100(1+x )C .y =2100(1)x + D .y =100+100(1+x )+100(1+x )26.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间的函数关系式为21424y n n =-+-,则该企业一年中应停产的月份是( )A .1月、2月、3月B .2月、3月、4月C .1月、2月、12月D .1月、11月、12月7.某海滨浴场有100把遮阳伞,每把每天收费10元时,可全部租出,若每把每天收费提高1元,则减少5把伞租出,若每把每天收费再提高1元,则再减少5把伞租出,……,为了投资少而获利大,每把伞每天应提高收费( )A .7元B .6元C .5元D .4元8.一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A .60B .65C .70D .759.某店销售一款运动服,每件进价100元,若按每件128元出售,每天可卖出100件,根据市场调查结果,若每件降价1元,则每天可多卖出5件,要使每天获得的利润最大,则每件需要降价(元)( )A .3元B .4元C .5元D .8元10.某种商品每件的进价为30元,在某时间段内若以每件x 元出售,可卖出(100-x )件.若想获得最大利润,则定价x 应为( )A .35元B .45元C .55元D .65元11.某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x 元,则依据题意可列方程为( )A .(5040)(500)8000-+-=x x B .(40)(50010)8000+-=x x C .(5040)(50010)8000-+-=x x D .(50)(50010)8000--=x x 二、填空题12.数量关系:(1)销售额= 售价×____________;(2)利润= 销售额-总成本=___________×销售量;(3)单件利润=售价-__________.13.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,那么y 与x 之间的关系应表示为_____.14.某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是_________元,销售利润_______元.15.进价为80元的某衬衣定价为100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y (件)与衬衣售价x (元)之间的函数关系式为______,每月利润w (元)与衬衣售价x (元)之间的函数关系式为__________.(以上关系式只列式不化简).16.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100)x -件,当出售价格是__________元时,才能使利润最大.17.随着新冠疫情逐渐好转,某口罩厂将减少口罩的出厂量,6月份的出厂量为20000只,若口罩出厂量每月下降百分率为x ,8月份的出厂量为y 只,则y 关于x 的函数解析式为 ___.18.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为y 元,那么y 与x 的函数关系式是____________.19.为庆祝嫦娥五号登月成功,某工艺厂生产了一款纪念品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就多售出5件,但要求销售单价不得低于成本.则该工艺厂将每件的销售价定为________元时,可使每天所获销售利润最大.20.某产品现在售价为每件60元,每星期可卖出300件.市场调查反映:如果调价,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使每周利润最大化,并确定x的取值范围?【销售最大利润问题】先通过价格与利润关系得到二次函数的关系式,根据函数图象及性质求最大值.(1)设每件涨价x元,则此时每星期少卖______件,实际卖出________件,此时每件产品的销售价为________元,每周产品的销售额__________元,此时每周产品的成本_______元,因此周利润合计为:y=(60+x)(300-10x)-40×(300-10x)=−10x2+100x+6000=−10(x−5)2+6250当产品单价涨价5元,即售价_____元,利润最大,最大利润为______元(2)设每件降价x元,则此时每星期多卖______件,实际卖出_________件,此时每件产品的销售价为______元,每周产品的销售额__________元,此时每周产品的成本________元,因此周利润合计为:y=(60-x)(300+20x)-40×(300+20x)=−20x2+100x+6000=−20(x−2.5)2+6125当产品单价降价2.5元,即售价______元,利润最大,最大利润为_____元当产品单价涨价5元,即售价65元,利润最大,最大利润为6250元.当产品单价降价2.5元,即售价57.5元,利润最大,最大利润为6125元.综上所述,当涨价5元时利润最大,最大利润6250元21.某高档游泳健身馆每人每次游泳健身的票价为80元,每日平均客流量为136人,为了促进全民健身运动,游泳馆决定降价促销,经市场调查发现,票价每下降1元,每日游泳健身的人数平均增加2人.当每日销售收入最大时,票价下调_______元.22.学子书店购进了一批单价为20元的中华传统文化丛书.在销售的过程中发现,这种图书每天的销售数量y(本)与销售单价x(元)满足一次函数关系:y=-3x+108(29 ≤x≤ 36).如果销售这种图书每天的利润为p(元),那么在这种关系下销售单价定为________元时,每天获得的利润最大?23.某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.24.某体育用品商店购进一批涓板,每块滑板利润为30元,一星期可卖出80块.商家决定降价促销,根据市场调查,每降价1元,则一星期可多卖出4块,设每块滑板降价x元,商店一星期销售这种滑板的利润是y元,则y与x之间的函数表达式为_____.25.某企业研发出了一种新产品准备销售,已知研发、生产这种产品的成本为30元/件,据调查年销售量y(万件)关于售价x(元/件)的函数解析式为:()()21404060806070x xyx xì-+£<ï=í-+££ïî,则当该产品的售价x为________.(元/件)时,企业销售该产品获得的年利润最大.三、解答题26.某服装店销售一款卫衣,该款卫衣每件进价为60元,规定每件售价不低于进价.经市场调查发现,该款卫衣每月的销售量y(件)与每件售价x(元)满足一次函数关系y=-20x+2800.(1)若服装店每月既想从销售该款卫衣中获利24000元,又想尽量给顾客实惠,售价应定为多少元?(2)为维护市场秩序,物价部门规定该款卫衣的每件利润不允许超过每件进价的50%.设该款卫衣每月的总利润为w(元),那么售价定为多少元时服装店可获得最大利润?最大利润是多少元?27.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.28.冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x 元(x 是大于20的正整数),每周总利润是w 元.①求w 关于x 的函数解析式,并求每周总利润的最大值;②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x 的范围.29.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ££,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?30.为响应国家提出的由中国制造向中国创造转型的号召,某公司自主设计了一款可控温杯,每个的生产成本为18元,投放市场进行试销,经过调查得到每月销售量y (万/个)与销售单价x(元/个)之间的部分数据如下:销售单价x(元/个)…20253035…y(万/个)…60504030…每月销售量(1)试判断y与x之间的函数关系,并求出函数关系式;(2)设每月的利润为w(万元),求w与x之间的函数关系式;(3)该公司既要获得一定利润,又要符合相关部门规定(产品利润率不高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?求出最大利润.参考答案1.D【分析】利用配方法即可解决问题.解:对于抛物线()222608002151250y x x x =-++=--+,20a =-<Q ,15x \=时,y 有最大值,最大值为1250,故选:D .【点拨】本题考查二次函数的应用、配方法等知识,解题的关键是熟练掌握配方法,学会利用二次函数的性质解决最值问题.2.C【分析】首先设为了投资少而获利大,每床每晚收费应提高x 个2元,获得最大利润为y 元,然后根据题意可得函数解析式:y =(10+2x )(100-10x ),再利用配方法可求得当x 取何值时,y 最大,因为此题中x 取整数,根据二次函数的性质即可求得答案.解:设每床每晚收费应提高x 个2元,获得利润为y 元,根据题意得:y =(10+2x )(100-10x )=-20x 2+100x+1000=-20(x -52)2+1125,∵x 取整数,∴当x =2或3时,y 最大,当时,每床收费提高6元,床位最少,即投资少,∴为了投资少而获利大,每床每晚收费应提高6元.所以C 选项是正确的.【点拨】本题考查了二次函数的应用,根据题意找出数量关系,列出二次函数关系式是解答本题的关键.3.A【分析】设获得的利润为y 元,由题意得关于x 的二次函数,配方,写成顶点式,利用二次函数的性质可得答案.解:设获得的利润为y元,由题意得:()()=--y x x100200230020000+=--x x()2x-+=-1502500∵a=﹣1<0∴当x=150时,y取得最大值2500元.故选A.【点拨】本题考查了二次函数在实际问题中的应用,正确地写出函数关系式,并明确二次函数的性质,是解题的关键.4.B【分析】根据降价x元,则售价为(30−x)元,销售量为(200+20x)本,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.解:设每本降价x元,则售价为(30−x)元,销售量为(200+20x)本,根据题意得,y=(30−x)(200+20x),故选B.【点拨】本题考查由实际问题列二次函数关系式,解答本题的关键是明确题意,列出相应的函数关系式.5.D【分析】直接表示出2016年,2017年的产量进而得出y关于x的函数关系式.解:设2015,2016,2017这三年该产品的总产量为y吨,则y关于x的函数关系式为:y=100+100(1+x)+100(1+x)2.故选:D.【点拨】此题主要考查了根据实际问题列二次函数解析式,正确表示出2017年的产量是解题关键.6.C【分析】根据解析式,求出函数值y等于0时对应的月份,依据开口方向以及增减性,再求出y小于0时的月份即可解答.解:∵21424(2)(12)y n n n n =-+-=---∴当y =0时,n =2或者n =12.又∵抛物线的图象开口向下,∴1月时,y <0;2月和12月时,y =0.∴该企业一年中应停产的月份是1月、2月、12月.故选:C .【点拨】本题考查二次函数的应用.能将二次函数由一般式化为顶点式并理解二次函数的性质是解决此题的关键.7.C【分析】设每个遮阳伞每天应提高x 元,每天获得利润为S ,每个每天应收费(10+x )元,每天的租出量为(100-5x )个,由此列出函数解析式即可解答.解:设每个遮阳伞每天应提高x 元,每天获得利润为S ,由此可得,S=(10+x )(100-5x ),整理得S=-5x 2+50x+1000,=-5(x-5)2+1125,∵-5<0∴当x=5时,S 最小,即为了投资少而获利大,每把伞每天应提高收费5元故选C .【点拨】此题考查运用每天的利润=每个每天收费×每天的租出量列出函数解析式,进一步利用题目中实际条件解决问题.8.C【分析】根据题意,可以先设出每顶头盔降价x 元,利润为w 元,然后根据题意可以得到w 与x 的函数关系式,再将函数解析式化为顶点式,即可得到降价多少元时,w 取得最大值,从而可以得到该商店每月获得最大利润时,每顶头盔的售价.解:每顶头盔降价x 元,利润为w 元,由题意可得,w =(80﹣x ﹣50)(200+20x )=﹣20(x ﹣10)2+8000,∴当x =10时,w 取得最大值,此时80﹣x =70,即该商店每月获得最大利润时,每顶头盔的售价为70元,故选:C .【点拨】本题主要考查了二次函数的应用,准确计算是解题的关键.9.B【分析】设每件降价x 元,每天获得的利润为W 元,根据销售问题的数量关系表示出W 与x 之间的关系式,转化为顶点式即可.解:设每件降价x 元,每天获得的利润为W 元,则(128100)(1005)W x x =--+25(4)2880x =--+.50a \=-<,4x \=时,2880y =最大,故选:B .【点拨】本题考查了利润问题的数量关系的运用,二次函数的运用,二次函数的性质的运用,解题的关键是求出二次函数的解析式.10.D【分析】设所获得的利润为W ,根据利润=(售价-进价)×数量,列出W 关于x 的二次函数,利用二次函数的性质求解即可.解:设所获得的利润为W ,由题意得()()()2230100100300030651225W x x x x x x =--=--+=--+,∵10-<,∴当65x =时,W 有最大值1225,故选D .【点拨】本题主要考查了二次函数的应用,解题的关键在于能够根据题意列出利润关于售价的二次函数.11.C【分析】设这种衬衫每件涨价x 元,则销售量为(500-10x )件,根据“总利润=每件衬衫的利润×销售量”列出一元二次方程,解方程后根据题意取舍即可得.解:设这种衬衫每件涨价x 元,则销售量为(500-10x )件,根据题意,得(5040)(50010)8000-+-=x x ,故选:C .【点拨】本题主要考查一元二次方程的应用,解题的关键是理解题意找到题目中蕴含的相等关系,列出一元二次方程.12. 销售量 单件利润 进价略13.y=20(x+1)2解:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x 倍,∴一年后产品是:20(1+x ),∴两年后产品y 与x 的函数关系是:y=20(1+x )2.故答案为y=20(x+1)2.【点拨】本题考查了函数关系式,利用增长问题获得函数解析式是解题关键,注意增加x 倍是原来的(x+1)倍.14. 18000 6000略15. y =2000-5(x -100) w =[2000-5(x -100)](x -80)略16.65【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值.解:设最大利润为w 元,则w =(x -30)(100-x )=-(x -65)2+1225,∵-1<0,0<x <100,∴当x =65时,二次函数有最大值1225,∴定价是65元时,利润最大.故答案为:65.【点拨】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.17.y =20000(1-x )2【分析】根据降低率的特点即可得到8月份的出厂量与6月份的出厂量的关系,故可求解.解:若口罩出厂量每月下降百分率为x ,则8月份的出厂量y 关于x 的函数解析式为y =20000(1-x )2,故答案为:y =20000(1-x )2.【点拨】此题主要考查列二次函数,解题的关键是根据题意找到数量关系列函数.18.()2101002000012y x x x =-++££【分析】根据题意可得:涨价后的售价为()60x +元,销售量为()20010x -件,依据每件利润,销售数量,总利润之间的关系可得函数关系式,根据每件售价不能高于72元,可得自变量的取值范围.解:根据题意可得:涨价后的售价为()60x +元,销售量为()20010x -件,∴()()2605020010101002000y x x x x =+--=-++,∵每件售价不能高于72元,∴012x ££,故答案为:()2101002000012y x x x =-++££.【点拨】题目主要考查二次函数的应用,理解题意,列出相应函数解析式是解题关键.19.80【分析】根据每天获得利润=单件利润×销售量列出二次函数即可求解.解:设销售单价降低x 元时,则销售单价是(100-x )元时,每天获利y 元.根据题意,得y=(100-50-x )(50+5x )=-5x 2+200x+2500=-5(x-20)2+4500∵-5<0,当x=20时,y 有最大值,即100-x=80,80>50,答:当销售单价是80元时,每天获利最多.故答案为80.【点拨】本题考查了二次函数的应用,解决本题的关键是掌握销售问题的数量关系.20. 10x 60+x 300-10x (030x <£) (60+x )(300-10x ) 40´(300-10x ) 65 6250 20x 60+x 300+20x (020x ££) (60-x )(300+20x ) 40´(300+20x ) 57.5 6125略21.6【分析】设总利润为y 元,根据“总利润=每件商品的利润×销售量”列出函数关系式,转化为顶点式就可以求出结论.解:总利润为y 元,票价下调x 元,根据题意得(80)(1362)y x x =-+=22(6)10952x --+∵20a =-<,∴抛物线开口向下,∴当x =6时,函数胡最大值∴当每日销售收入最大时,票价下调6元故答案为6【点拨】本题考查了把实际问题转化为二次函数,再对二次函数进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22.29【分析】由利润=每本书的利润×数量就可以得出解析式,再根据函数的性质即可得到最大利润.解:由题意得22(20)(3108)316821603(218)92p x x x x x =--+=-+-=+--∵2936x ££且30a =<,∴当x =29时,y 最大=189,故答案为:29.【点拨】本题主要考查了二次函数的应用,解题的关键在于能够根据题意得到p 关于x 的二次函数表达式.23.2【分析】设每件商品售价降低x 元,则每天的利润为:()()5026402W x x =--´+,024x ££然后求解计算最大值即可.解:设每件商品售价降低x 元则每天的利润为:()()5026402W x x =--´+,024x ££()()24402W x x =-´+228960x x =-++()222968x =--+∵()2220x --£∴当2x =时,W 最大为968元故答案为2.【点拨】本题考查了一元二次函数的应用.解题的关键在于确定函数解析式.24.24402400y x x =-++【分析】根据销售利润为=销量´每件利润进而得出答案.解:由于每块滑板降价x 元,商店一星期销售这种滑板的利润是y 元,则y 与x 之间的函数表达式为:(30)(804)y x x =-+24402400x x =-++.故答案为:24402400y x x =-++.【点拨】本题考查了根据实际问题抽象出二次函数关系式,解题的关键是掌握利用利润=销量´每件商品利润进而得出利润与定价之间的函数关系式.25.50【分析】设企业销售该产品获得的年利润为w 元,根据题意分别列出当4060x £<时和当6070££x 时的函数关系式,再根据二次函数的性质,即可求解.解:设企业销售该产品获得的年利润为w 元,根据题意得:当4060x £<时,22(30)(2140)220042002(50)800W x x x x x =--+=-+-=--+,∵-2<0,∴当x =50时,w 有最大值,最大值为800;当6070££x 时,22(30)(80)1102400(55)625W x x x x x =--+=-+-=--+,∵-1<0,∴当x >55时,w 随x 的增大而减小,∴当x =60时,w 有最大值,最大值为600;∵800>600,∴当x =50时,w 有最大值,即当该产品的售价x 为50(元/件)时,企业销售该产品获得的年利润最大.故答案为:50【点拨】本题主要考查了二次函数的实际应用,明确题意,准确得到函数关系式是解题的关键.26.(1)80(2)售价定为90元时,服装店可获得最大利润,最大利润是30000元【分析】(1)由总利润=每件利润×数量列出方程,解方程取符合题意的解即可;(2)先算出x 的范围,再根据总利润=每件利润×数量列出函数关系式,根据二次函数性质可得答案.(1)解:根据题意得:(x -60)(-20x +2800)=24000,解得x 1=120或x 2=80,∵尽量给顾客实惠,∴x =120,不符合题意,舍去,答:售价应定为80元;(2)解:∵每件利润不允许超过每件进价的50%,∴x -60≤60×50%,解得x ≤90,∴60≤x ≤90,根据题意得W =(x -60)(-20x +2800)=-20x 2+4000x -168000=-20(x -100)2+32000,∵-20<0,∴当x ≤100时,W 随x 的增大而增大,∴当x =90时,W 取最大值,最大值为-20×(90-100)2+32000=30000(元),答:售价定为90元时,服装店可获得最大利润,最大利润是30000元.【点拨】本题考查一元二次方程和二次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.27.(1)()y 309601032x x =-+££(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【分析】(1)设()0y kx b k =+¹,把20x =,360y =和30x =,60y =代入求出k 、b 的值,从而得出答案;(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.(1)解:设()0y kx b k =+¹,把20x =,360y =和30x =,60y =代入可得203603060k b k b +ìí+î==,解得30960k b =-ìí=î,则()y 309601032x x =-+££;(2)解:每月获得利润()()3096010P x x =-+-()()303210x x =-+-()23042320x x =-+-()230213630x =--+.∵300-<,∴当21x =时,P 有最大值,最大值为3630.答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.【点拨】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.28.(1)每个冰墩墩钥匙扣的进价为12元(2)①()210261960w x =--+,最大值为1960元;②每个冰墩墩玩偶售价x 的范围为:2329x ££【分析】(1)设每个冰墩墩钥匙扣的进价为x 元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得x 的范围,根据题意取整数解即可.解:(1)设每个冰墩墩钥匙扣的进价为x 元,由题意得:()2400240050120%x x +=-,解得12x =,经检验,12x =是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①()()122001020w x x =---éùëû2105204800x x =-+-()210261960x =--+∵0a <且x 是大于20的正整数∴当26x =时,w 有最大值,最大值为1960元②售价为24元或25元或26元或27元或28元.解析如下:②由题意得,21052048001870x x -+-=,解得23x =或29∵抛物线开口向下,x 是大于20的正整数∴当2329x ££时,每周总利润不低于1870元,【点拨】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键.29.(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得:501008040k b k b +=ìí+=î,解得:2200k b =-ìí=î,∴y 关于x 的函数解析式为2200y x =-+;(2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=,∵5080x ££,∴当70x =时,w 有最大值,即为22702807080001800w =-´+´-=;答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点拨】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.30.(1)y 是x 的一次函数,2100y x =-+(2)w =-2x 2+136x -1800;(3)当销售单价为27元时,公司每月获得的利润最大,最大利润为414万元.【分析】(1)根据题意先判断为一次函数关系,再利用待定系数法即可得到结论;(2)根据利润=销售量×(销售单价-成本),代入代数式求出函数关系式;(3)根据产品利润率不得高于50%且成本价18元,得出销售单价的取值范围,进而利用二次函数的性质得出最大利润.(1)解:由单价每增加5元,销售量减少10万个,可判断y 是x 的一次函数,设销售量y (万件)与销售单价x (元)之间的函数关系式为:y =kx +b ,把(20,60),(30,40)代入y =kx +b 得20603040k b k b ì+=ïí+=ïî, 解得:2100k b =-ìí=î, ∴每月销售量y (万件)与销售单价x (元)之间的函数关系式为:y =-2x +100;(2)由题意得,w =y (x -18)=(-2x +100)(x -18)=-2x 2+136x -1800;(3)∵销售利润率不能高于50%, 则x ≤(1+50%)×18=27,∵w =-2x 2+136x -1800=-2(x -34)2+512,∴图象开口向下,对称轴左侧w 随x 的增大而增大,∴x =27时,w 最大为:414万元. 当销售单价为27元时,公司每月获得的利润最大,最大利润为414万元.【点拨】本题考查了二次函数的应用,解答本题的关键是得出销售利润的表达式,要求同学们熟练掌握配方法求二次函数最值的应用.。

初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题(附答案)1. 某网店经营一种品牌水果, 其进价为10元/千克, 保鲜期为25天, 每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品牌水果定价为多少元时, 每天销售所获得的利润最大?(3)若该网店一次性购进该品牌水果3000千克, 根据(2)中每天获得最大利润的方式进行销售, 发现在保鲜期内不能及时销售完毕, 于是决定在保鲜期的最后5天一次性降价销售, 求最后5天每千克至少降价多少元才能全部售完?2. 特产店销售一种水果, 其进价每千克40元, 按60元出售, 平均每天可售100千克, 后来经过市场调查发现, 单价每降低2元, 则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元, 每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大, 每千克水果应降多少元?3.某文具店购进A, B两种钢笔, 若购进A种钢笔2支, B种钢笔3支, 共需90元;购进A种钢笔3支, B种钢笔5支, 共需145元.(1)求该文具店购进A.B两种钢笔每支各多少元?(2)经统计, B种钢笔售价为30元时, 每月可卖64支;每涨价3元, 每月将少卖12支, 求该文具店B种钢笔销售单价定为多少元时, 每月获利最大?最大利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本), 成功研发出一种产品, 公司按订单生产(产量=销售量), 第一年该产品正式投产后, 生产成本为8元/件, 此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+28.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元, 那么该产品第一年的售价是多少?(3)第二年, 该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发, 使产品的生产成本降为6元/件, 为保持市场占有率, 公司规定第二年产品售价不超过第一年的售价, 另外受产能限制, 销售量无法超过14万件, 请计算该公司第二年的利润W2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来, 购进一批电学实验盒子, 一台电学实验盒的成本是30元, 当售价定为每盒50元时, 每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品, 专营店准备对它进行降价销售.根据以往经验, 售价每降低3元, 销量增加6盒.设售价降低了x(元), 每天销量为y(盒).(1)求y与x之间的函数表达式;日销售利润w875 1875 1875 875(元)(注: 日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时, 日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时, 日销售利润w在1500元以上?(请直接写出x的范围)7. 某公司销售一批产品, 进价每件50元, 经市场调研, 发现售价为60元时, 可销售800件, 售价每提高1元, 销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元, 问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大, 问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品, 又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销, 已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.其中点为抛物线的顶点.结合图象, 求出(万台)与外地广告费用(万元)之间的函数关系式;()2求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;如何安排广告费用才能使销售总量最大?9.某电子厂生产一种新型电子产品, 每件制造成本为20元, 试销过程中发现, 每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 厂商每月获得的利润为400万元?(3)根据相关部门规定, 这种电子产品的销售单价不能高于40元, 如果厂商每月的制造成本不超过520万元, 那么当销售单价为多少元时, 厂商每月获得的利润最大?最大利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏, 生产并销售一盏A型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯, 则每盏B型台灯可以获利90元, 如果超出20盏B型台灯, 则每超出1盏, 每盏B型台灯获利将均减少2元.设生产并销售B型台灯x盏.(其中x>20)(2)当A型台灯所获得的利润比B型台灯所获得利润少200元时, 求生产并销售A, B 两种台灯各多少盏?(3)如何设计生产销售方案可以获得最大利润, 最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件, 每件盈利40元, 为了扩大销售量, 增加盈利, 尽快减少库存, 商场决定采取适当的降价促销措施, 经市场调查发现:如果每件衬衫降价1元, 那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(1)请直接写出a的值为;(2)从第21天到第40天中, 求q与x满足的关系式;(3)若该网店第x天获得的利润y元, 并且已知这40天里前20天中y与x的函数关系式为y=﹣x2+15x+500i请直接写出这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?13. 某工厂生产甲、乙两种产品, 已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A. 根据市场调研, 产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时, y=2.6;x=3时, y=3.6产品乙: y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨, 请设计方案, 应怎样分配给甲、乙两种产品组织生产, 才能使得最终两种产品的所获利润最大.14. 某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40元. 为了扩大销售, 增加盈利, 商场采取了降价措施. 假设在一定范围内, 衬衫的单价每降1元, 商场平均每天可多售出2件, 设衬衫的单价降x元, 每天获利y元.(1)如果商场里这批衬衫的库存只有44件, 那么衬衫的单价应降多少元, 才能使得这批衬衫一天内售完, 且获利最大, 最大利润是多少?种成本为25元/件的新型商品.在40天内, 其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时, ;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系, 具体情况记录如下表(天数为整数):时间x(天)日销售量m(件)45 40 35 30 25 …(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元, 试写出日销售利润w(元)与时间x(天)的函数关系式;16.某体育用品商店试销一款成本为50元的排球, 规定试销期间单价不低于成本价, 且获利不得高于40%.经试销发现, 销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元, 试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时, 该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元, 请确定销售单价x的取值范围.销售单价q(元/件)与x满足: 当1≤x<25时q=x+60;当25≤x≤50时q=40+ . (1)请分析表格中销售量p与x的关系, 求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(1)请你根据表中的数据, 用所学知识确定与之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格, 才能使日销售利润最大?(3)根据(2)中获得最大利润的方式进行销售, 判断一个月能否销售完这批文具盒, 并说明理由.20. 某工厂加工一种商品, 每天加工件数不超过100件时, 每件成本80元, 每天加工超过100件时, 每多加工5件, 成本下降2元, 但每件成本不得低于70元.设工厂每天加工商品x(件), 每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量x(件)之间的函数关系式, 并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%, 求每天加工多少件商品时利润最大, 最大利润是多少?21.家用电器开发公司研制出一种新型电子产品, 每件的生产成本为18元, 按定价40元出售, 每月可销售20万件, 为了增加销量, 公司决定采取降价的办法, 经过市场调研, 每降价1元, 月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润, 每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围, 使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心, 城隍庙商业步行街某商场购进一批品牌女装, 购进时的单价是600元, 根据市场调查, 在一段时间内, 销售单价是800元时, 销售量是200件, 销售单价每降低10元, 就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;倍,且y是x的二次函数,它们的关系如下表:x(10万元)y 1 1.5 1.8 …(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费, 试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果投入的年广告费为10~30万元, 问广告费在什么范围内, 公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品, 每日最多生产130kg, 假设生产出的产品能全部售出, 每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣x+168, 生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.(1)求生产成本y2(元)与产量x(kg)之间的函数关系式;(2)求日利润为W(元)与产量x(kg)之间的函数关系式;(3)当产量为多少kg时, 这种产品获得的日利润最大?最大日利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品, 该产品的成本为每件40元, 市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80, 且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)新鑫公司计划五年收回投资, 如何确定售价(假定每年收回投资一样多)?26. 某商品的进价是每件40元, 原售价每件60元. 进行不同程度的涨60 61 62 63 …价后, 统计了商品调价当天的售价和利润情况, 以下是部分数据:售价(元/件)利润(元)6000 6090 6160 6210 …(1)当售价为每件60元时, 当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装, 每件成本为65元, 规定不低于10件可以批发, 其批发价y (元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式, 并写出x的取值范围;(1)由题意知商品的最低销售单价是元, 当销售单价不低于最低销售单价时, y是x的一次函数. 求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下, 当销售单价为多少元时, 所获销售利润最大, 最大利润是多少元?29. 某店只销售某种进价为40元/kg的产品, 已知该店按60元kg出售时, 每天可售出100kg, 后来经过市场调查发现, 单价每降低1元, 则每天的销售量可增加10kg.(1)若单价降低2元, 则每天的销售量是_____千克, 每天的利润为_____元;若单价降低x元, 则每天的销售量是_____千克, 每天的利润为______元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元, 单价应降价多少元?(3)当单价降低多少元时, 该店每天的利润最大, 最大利润是多少元?30. 某文具店出售一种文具, 每个进价为2元, 根据长期的销售情况发现:这种文具每个售价为3元时, 每天能卖出500个, 如果售价每上涨0.1元, 其销售量将减少10个. 物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润, 每个文具的售价应是多少?(2)该如何定价, 才能使这种文具每天的利润最大?最大利润是多少?31.某制衣企业直销部直销某类服装,价格(元)与服装数量(件)之间的关系如图所示,现有甲乙两个服装店,计划在"五一”前到该直销部购买此类服装, 两服装店所需服装总数为件,乙服装店所需数量不超过件,设甲服装店购买件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为元.(1)求y关于x的函数关系式,并写出x的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱32. 某企业接到生产一批手工艺品订单, 须连续工作15天完成. 产品不能叠压, 需专门存放, 第x天每件产品成本p(元)与时间x(天)之间的关系为p=0.5x+7(1≤x≤5, x 为整数). 约定交付产品时每件20元. 李师傅作了记录, 发现每天生产的件数y(件)与时间X(天)满足关系:(1)写出李师傅第x天创造的利润W(不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范围.)(2)李师傅第几天创造的利润最大?是多少元?(3)这次订单每名员工平均每天创造利润299元. 企业奖励办法是: 员工某天创造利润超过平均值, 当天计算奖金30元. 李师傅这次获得奖金共多少元?33. 某手机专营店, 第一期进了品牌手机与老年机各50部, 售后统计, 品牌手机的平均利润是160元/部, 老年机的平均利润是20元/部, 调研发现:①品牌手机每增加1部, 品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部, 设品牌手机比第一期增加x部. (1)第二期品牌手机售完后的利润为8400元, 那么品牌手机比第一期要增加多少部?(2)当x取何值时, 第二期进的品牌手机与老年机售完后获得的总利润W最大, 最大总利润是多少?34.某公司经销一种水产品, 在一段时间内, 该水产品的销售量W(千克)随销售单价x(元/千克)的变化情况如图所示.(1)求W与x的关系式;(2)若该水产品每千克的成本为50元, 则当销售单价定为多少元时, 可获得最大利润?(3)若物价部门规定这种水产品的销售单价不得高于90元/千克, 且公司想要在这段时间内获得2250元的销售利润, 则销售单价应定为多少元?35. 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示, 成本y2与销售月份x之间的关系如图2所示(图1的图象是线段, 图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低, 此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜, 每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元, 且5月份的销售量比4月份的销售量多2万千克, 求4、5两个月的销售量分别是多少万千克?36. 某商品的进价为每件20元, 市场调查反映, 若按每件30元销售, 每天可销售100件;若销售单价每上涨1元, 每天的销售就减少5件.(1)设每天该商品的销售利润为y元, 销售单价为x元(x≥30), 求y与x的函数解析式;(2)求销售单价为多少元时, 该商品每天的销售利润最大, 最大利润是多少?37. 数学兴趣小组几名同学到商场调查发现, 一种纯牛奶进价为每箱40元, 厂家要求售价在40~70元之间, 若以每箱70元销售平均每天销售30箱, 价格每降低1元平均每天可多销售3箱.(1)求出y 与x 之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w (元), 求w 关于x 的函数表达式, 并指出销售单价为多少元时利润最大, 最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大, 厂家又进行了改装, 此时超市老板发现进价提高了m 元, 当每月销售量与销售单价仍满足上述一次函数关系, 随着销量的增大, 最大利润能减少1750元, 求m 的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%, 则可以多购买该花卉20盆.市场调查反映, 该花卉每盆售价25元时, 每天可卖出25盆.若调整价格, 每盆花卉每涨价1元, 每天要少卖出1盆. (1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时, 且销量尽可能大, 该花卉每盆售价是多少元? (3)为了让利给顾客, 该花店决定每盆花卉涨价不超过5元, 问该花卉一天最大的销售利润是多少元?40. 某商店经营一种小商品, 进价为3元, 据市场调查, 销售单价是13元时平均每天销售量是400件, 而销售价每降低一元, 平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x 元, 商店每天销售这种小商品的利润y 元, 请写出y 与x 之间的函数关系. (注:销售利润=销售收入-购进成本)(Ⅱ)当每件小商品降低多少元时, 该商店每天能获利4800元?40元, 根据市场调查:在一段时间内, 销售单价是50元时, 销售量是600件,而销售单价每涨2元, 就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50), 请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元, 并把结果填写在表格中:销售单价(元)销售量y(件)①销售玩具获得利润ω(元)②(2)在(1)问条件下, 若玩具厂规定该品牌玩具销售单价不低于54元, 且商场要完成不少于400件的销售任务, 求商场销售该品牌玩具获得的最大利润是多少元?42.如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地.已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元.设该工厂有吨产品销往地.(利润=售价—进价—运费)(1)用的代数式表示购买的原材料有吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨, 且每吨售价不得低于1440元, 记销完产品的总利润为元, 求关于的函数表达式, 及最大总利润.43. 水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变), 据市场推测, 经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克, 在围养过程中(最多围养20天), 平均每围养一天有10千克的鳊鱼会缺氧浮水。

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)二次函数应用题1.李大爷每年春节期间都会购进一批新年红包销售,根据往年的销售经验,这种红包平均每天可销售50袋,每袋盈利3元,若每袋降价0.5元,平均每天可多售出25袋,设每袋降x 元,平均每天的利润为y 元. (1)请求出y 与x 的函数表达式;(2)若李大爷想让每天的利润最大化,应该降价多少元销售?最大利润为多少元? 2.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y (件)与每件销售价x (元)的关系数据如下: x 30 32 34 36 y40363228(1)已知y 与x 满足一次函数关系,根据上表,求出y 与x 之间的关系式(不写出自变量x 的取值范围);(2)设该商店每天销售这种商品所获利润为w (元),求出w 与x 之间的关系式,并求出每件商品销售价定为多少元时利润最大?3.某市政府大力扶持大学生创业,小明在政府的扶持下投资销售一种进价为每千克6元的农产品.销售过程中发现,每天的销售量y (千克)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示,另外在销售过程中小明每天需要支付其他费用200元. 销售单价x (元/千克) 10 11销售量y (千克)300 270(1)求y 与x 的函数关系式:(2)根据物价部门的规定,这种农产品的销售单价不得高于12元,那么如何定价才能使小明每天获得的纯利润最大?最大纯利润是多少元?4.两段相互垂直的墙AB 和AC 的长分别为12m 和3m ,用一段长为23m 的篱笆成一个矩形菜园(篱笆全部使用完),如图所示,矩形菜园的一边AD 由墙AC 和一节篱笆CD 构成,一边AF 靠在墙AB 上,一边EF 上有一个2m 的门.假设篱笆CD 的长为xm ,矩形菜园的面积为2m (0)S S ,回答下面的问题:(1)用含x 的式子表示篱笆DE 的长为________m ,x 的取值范围是________; (2)菜园的最大面积是多少2m 求出此时x 的值是多少?5.用总长为24m 的篱笆围成如图的花圃(四边形ABEF 和四边形CDFE 均为矩形),现一面利用墙(墙的最大可用长度为10m ),设花圃的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式及x 的取值范围; (2)要围成面积为45m 2的花圃,AB 的长是多少米?(3)AB 的长为多少米时,围成的花圃面积最大,请直接写出AB 的长度.6.蔗糖是决定杨梅果实中糖度的主要成分,某果农种植东魁杨梅,5月26日检测到杨梅果实中的蔗糖含量为2%,从5月27日开始到6月1日,测量出蔗糖含量数据,并根据这些数据建立蔗糖含量变化率y (蔗糖含量变化率=当天的蔗糖含量-上一天的蔗糖含量/上一天的蔗糖含量100%⨯)与生长天数(0x x = 表示5月26日)的函数关系是: 20.00210.0630.21y x x =-+-. 根据这一函数模型解决下列问题:(1)这种杨梅果实中蔗糖含量增长最快的是哪一天?请说明理由. (2)求出这种杨梅果实中蔗糖含量在哪一天最高;(3)当蔗糖含量最高时,杨梅口感最好,计划用6天时间采摘完这批杨梅,请给这位果农提出采摘日期的合理化建议.7.如图,用18米长的篱笆(虚线部分),围成两面靠墙的矩形苗圃.(1)设矩形一边为x (米),面积为y (平方米),求y 与x 的函数表达式; (2)当矩形苗圃面积为72平方米时,求矩形的边长; (3)当x 为何值时,所围苗甫面积最大,最大值是多少?8.一商场经营某种品牌商品,该商品的进价为每件4元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元/件)之间满足一次函数关系,下表记录的是某三周的有关数据: x (元/件)6 7 8 y (件)1000900800(1)求y 与x 的函数关系式;(2)在销售过程中要求销售单价不低于成本价,求一周该商场销售这种商品获得的最大利润和售价分别为多少元?9.我国铅球运动员巩立姣在2021年8月1日东京奥运会铅球比赛中以20.53米的成绩力压群雄夺得冠军.如图是在她的一次赛前训练中,铅球行进高度y (米)与水平距离x (米)之间存在的函数关系式是2119512123y x x =-++.求:(1)这次训练中,巩立姣推铅球的成绩是多少米; (2)这次训练中,铅球距离地面的最大高度为多少米.10.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间有如下表的一次函数关系: 销售单价x (元) 30 35 40 … 70 … 每天的销售量y (件)1009080…20…(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)该商店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为保证捐款后销售该商品每天获得的利润不低于650元,则每天的销售量最少应为多少件?【参考答案】二次函数应用题1.(1)y =−50x 2+100x +150(2)应该降价1元销售,最大利润为200元. 【解析】 【分析】(1)根据题意和题目中的数据,可以写出y 与x 的函数表达式;(2)将(1)中函数关系式化为顶点式,然后利用二次函数的性质即可得到x 为何值时,y 取得最大值. (1)解:由题意可得, y =(3−x )(50+0.5x×25)=−50x 2+100x +150, 即y 与x 的函数表达式是y =−50x 2+100x +150;(2)由(1)知:y =−50x 2+100x +150=−50(x −1)2+200, ∴当x =1时,y 取得最大值,此时y =200,答:若李大爷想让每天的利润最大化,应该降价1元销售,最大利润为200元. 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,写出相应的函数关系式,利用二次函数的性质求最值. 2.(1)2100y x =-+(2)221603000w x x =-+-,当销售单价为40元时获得利润最大 【解析】 【分析】(1)待定系数法求解一次函数解析式即可;(2)根据题意得210()(3)00w x x +--=,计算求出满足要求的解即可. (1)解:设该函数的表达式为y kx b =+,根据题意,得30403236k b k b +=⎧⎨+=⎩解得2100k b =-⎧⎨=⎩∴y 与x 之间的关系式为2100y x =-+. (2)解:根据题意,得210()(3)00w x x +--= 221603000x x =-+-224020(0)x =--+∵20a =-<∴当40x =时,w 的值最大∴当销售单价为40元时,获得利润最大. 【点睛】本题考查了一次函数的应用,二次函数的应用,二次函数的图象与性质.解题的关键在于熟练掌握一次函数与二次函数的知识. 3.(1)y =-30x +600(2)当销售单价定为12元时,小明每月获得的纯利润最大,最大纯利润是1240元 【解析】 【分析】(1)根据待定系数法设y =kx +b (k ≠0),代入数值组成二元一次方程组求解即可; (2)设每天获得的纯利润为W 元,可列出二次函数表达式,根据二次函数的性质可得. (1)解:设y =kx +b (k ≠0)根据题意得:10+=30011+=270k b k b ⎧⎨⎩,解得:=-30 =600 kb⎧⎨⎩∴y=-30x+600(2)解:设每天获得的纯利润为W元,根据题意得:W=(-30x+600)(x-6) -200=-30x2+780x-3800=-30(x-13)2+1270∵-30<0∴抛物线开口向下∵抛物线对称轴为x=13,销售单价不得高于12元∴当x≤12时,W随x的增大而增大∴当x=12时,W有最大值,W最大值=-30× (12-13)2+1270=1240 (元)答:当销售单价定为12元时,小明每月获得的纯利润最大,最大纯利润是1240元【点睛】本题考查的是求一次函数的解析式和二次函数的应用,学会用待定系数法求解析式和求最大值是解题的关键.4.(1)22-2x 5≤x<11(2)菜园的最大面积是296m,此时x=5【解析】【分析】(1)根据矩形的性质,由EF= AD= 3+x,再根据EF上有一个2m的门,DE= 23- CD- EF+ 2得出DE,并根据0< 22- 2x≤12,求出自变量x的取值范围;(2)根据矩形的面积公式写出函数解析式,再根据函数的性质,在自变量范围内求最值.(1)解:∵AC=3,CD=x,∴EF= AC+ CD= 3+x,∴DE= 23- CD- EF+2= 23- x-(3+x)+2= 23-x-3-x+2= 22-2x,∵0< 22- 2x≤12,∴5≤x< 11;(2)由题意,得:S= (3+x)(22- 2x)= -2x2+ 16x+66= - 2(x-4)2 + 98,∵-2 <0,∴当x>4时,S随x的增大而减小,∵5≤x< 11,∴当x= 5时,S有最大值,最大值= -2×(5-4)2+ 98 = 96.【点睛】本题考查了二次函数的应用,解题关键是根据题意正确表示出矩形的边长.5.(1)S与x的函数关系式为S=﹣3x2+24x,x值的取值范围是143≤x<8;(2)AB的长为5m;(3)当AB的长是143m时,围成的花圃的面积最大,最大面积是2140m3【解析】【分析】(1)根据矩形的面积即可写出函数关系式;(2)根据(1)中所得函数关系式当S为45时,列出一元二次方程即可求出AB的长;(3)根据(1)中所得函数关系式化为顶点式,再根据自变量的取值范围即可求出最大面积.(1)解:根据题意,得:S=x(24﹣3x)=﹣3x2+24x,∵0<24﹣3x≤10,∴143≤x<8.答:S与x的函数关系式为S=﹣3x2+24x,x值的取值范围是143≤x<8;(2)解:根据题意,得:当S=45时,﹣3x2+24x=45,整理,得x2﹣8x+15=0,解得x1=3,x2=5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立.答:AB的长为5m;(3)解:S=﹣3x2+24x=﹣3(x﹣4)2+48,∵143≤x<8,且抛物线的对称轴x=4,开口向下,∴当x=143时,S最大,最大值=﹣3(143﹣4)2+481403.答:当AB的长是143m时,围成的花圃的面积最大,最大面积是2140m3【点睛】本题考查了二次函数的应用、一元二次方程的应用,解决本题的关键是综合掌握二次函数的性质和一元二次方程的解法.6.(1)6月10日,蔗糖增加速度最快,理由见解析;(2)6月21日;(3)见解析【解析】【分析】(1)求出顶点横坐标即可得答案;(2)求出y=0时x的值,即可得答案;(3)在杨梅果实中蔗糖含量最高的6天采摘,而当x>26时,含糖量降低的速度比x=23时上升的速度快,解可得到答案.(1)∵y=−0.0021x2+0.063x−0.21=−0.0021(x−15)2+0.2625,∴在第15天,即6月10日,这种杨梅果实中蔗糖含量增长最快;(2)当蔗糖含量比前一天增加时,y>0,当蔗糖含量比前一天减少时,y<0。

初中数学:利用二次函数解决距离、利润的最值问题练习(含答案)

初中数学:利用二次函数解决距离、利润的最值问题练习(含答案)

初中数学:利用二次函数解决距离、利润的最值问题练习(含答案)知识点1 有关距离最值问题1.一小球被抛出后,距离地面的高度h(m)和飞行时间t(s)满足下列函数表达式:h=-5(t-1)2+6,则小球距离地面的最大高度是( )A.1 m B.5 m C.6 m D.7 m图1-4-122.如图1-4-12,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数表达式是y=-112x2+23x+53,则该运动员此次掷铅球的成绩是( )A.6 m B.8 m C.10 m D.12 m3.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数表达式是s=60t-32t2,则飞机着陆后滑行的最长时间为________秒.4.甲船和乙船分别从A港和C港同时出发,各沿所指方向航行(如图1-4-13所示),甲,乙两船的速度分别是16海里/时和12海里/时.已知A,C两港之间的距离为10海里.经过多长时间,甲船和乙船之间的距离最短?最短距离为多少?图1-4-13知识点2 最大利润问题5.商店出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒获得的总利润y最大.6.为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售.经过调查发现,该产品每天的销售量y(件)与销售单价x(元/件)满足一次函数关系:y=-10x+1200.(1)求出利润S(元)与销售单价x(元/件)之间的函数表达式(不需写出x的取值范围,利润=销售额-成本)(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?7.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数表达式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?8.某网店销售某款童装,每件售价60元,每星期可卖300件.为了促销,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数表达式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)若该网店每星期想要获得不低于6480元的利润,则每星期至少要销售该款童装多少件?9.某超市销售一种商品,成本每千克40元,规定销售单价不低于成本,且不高于80元/千克.经市场调查,每天的销售量y(千克)与单价x(元/千克)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入—成本);(3)试说明(2)中总利润W 随单价x 的变化而变化的情况,并指出单价为多少时获得最大利润,最大利润是多少?10.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)之间的函数表达式为y 1=⎩⎨⎧k 1x (0≤x <600),k 2x +b (600≤x ≤1000),其图象如图1-4-14所示;栽花所需费用y 2(元)与x (m 2)之间的函数表达式为y 2=-0.01x 2-20x +30000(0≤x ≤1000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1000 m 2空地的绿化总费用为W (元),请利用W 与x 之间的函数表达式求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用W 的最小值.图1-4-14详解详析1.C2.C [解析] 把y=0代入y=-112x2+23x+53,得-112x2+23x+53=0,解得x1=10,x2=-2.又x>0,∴x=10.故选C.3.20 [解析] 求滑行的最长时间实际上是求s取最大值时t的值,即s=60t-32t2=-32(t-20)2+600,当t=20秒时,s的最大值为600米.4.[解析] 设经过x小时,甲,乙两船的距离为y海里,甲到D点,乙到E点,则AD=16x海里,CD=(10-16x)海里,CE=12x海里,由勾股定理,得出y与x之间的函数表达式.解:设经过x小时,甲到达D点,乙到达E点,甲、乙两船的距离为y海里.由题意知AD=16x海里,CD=(10-16x)海里,CE=12x海里.∴y=DE=CD2+CE2=(10-16x)2+(12x)2=400x2-320x+100=400⎝⎛⎭⎪⎫x 2-45x +14 =400⎣⎢⎡⎦⎥⎤x 2-45x +⎝ ⎛⎭⎪⎫252-⎝ ⎛⎭⎪⎫252+14 =20⎝ ⎛⎭⎪⎫x -252+9100. 当x =25时,y 最小值=20×310=6, ∴经过25小时,甲、乙两船之间的距离最短,最短距离为6海里. 5.3 [解析] 由题意可得y =(6-x )x ,即y =-x 2+6x ,当x =-b 2a =-6-2=3时,y 有最大值,即当x =3时,一天出售该种文具盒的总利润y 最大.6.解:(1)根据题意,得S =(x -40)y =(x -40)(-10x +1200)=-10x 2+1600x -48000.所以利润S (元)与销售单价x (元)之间的函数表达式是S =-10x 2+1600x -48000.(2)S =-10x 2+1600x -48000,因为a =-10<0,所以当x =-b 2a =-16002×(-10)=80时,S 有最大值,最大值是16000. 答:当销售单价定为80元/件时,该公司每天获取的利润最大,最大利润是16000元.7.解:(1)y =60+10x ,1≤x ≤12,且x 为整数.(2)利润w =(36-x -24)(60+10x )=-10x 2+60x +720=-10(x -3)2+810,所以当超市降价3元,即每箱售价为33元时,每月销售牛奶的利润最大,最大利润为810元.8.(1)y =300+30(60-x )=-30x +2100.(2)设每星期的销售利润为W 元.依题意,得W =(x -40)(-30x +2100)=-30x 2+3300x -84000=-30(x -55)2+6750.∵a =-30<0,∴当x =55时,W 最大值=6750.即每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3)由题意,得-30(x -55)2+6750=6480.解这个方程,得x 1=52,x 2=58.∵抛物线W =-30(x -55)2+6750的开口向下,对称轴为直线x =55,∴当52≤x ≤58时,每星期的销售利润不低于6480元.∵在y =-30x +2100中,y 随x 的增大而减小,∴当x =58时,y 最小值=-30×58+2100=360,即每星期至少要销售该款童装360件.9.解:(1)根据题意,设y =kx +b ,其中k ,b 为待定的常数,由表中的数据得⎩⎨⎧50k +b =100,60k +b =80,解得⎩⎨⎧k =-2,b =200,所以y =-2x +200(40≤x ≤80). (2)根据题意得W =y ·(x -40)=(-2x +200)(x -40)=-2x 2+280x -8000(40≤x ≤80).(3)由(2)可知W =-2(x -70)2+1800,所以当售价x 在满足40≤x ≤70的范围内时,利润W 随着x 的增大而增大;当售价x 在满足70<x ≤80的范围内时,利润W 随着x 的增大而减小.当x =70,即单价为70元/千克时,可获得最大利润,最大利润为1800元.10.解:(1)k 1=30,k 2=20,b =6000.(2)当0≤x<600时,W=30x+(-0.01x2-20x+30000)=-0.01x2+10x+30000. ∵-0.01<0,W=-0.01(x-500)2+32500,∴当x=500时,W取最大值为32500元;当600≤x≤1000时,W=20x+6000+(-0.01x2-20x+30000)=-0.01x2+36000. ∵-0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W的最大值为32400元.∵32400<32500,∴W的最大值为32500元.(3)由题意,得1000-x≥100,解得x≤900.又x≥700,∴700≤x≤900.∵当700≤x≤900时,W随x的增大而减小.∴当x=900时,W取最小值为27900元.。

1.4(2)用二次函数解决距离、利润问题

1.4(2)用二次函数解决距离、利润问题

2.已知抛物线 y=x2+px+q 与 x 轴交于 A,B 两点,且 过点(-1,-1),设线段 AB 的长为 d,则当 p=____ 时,d2 取得最小值.
【解】 ∵抛物线 y=x2+px+q 过点(-1,-1), ∴-1=1-p+q,则 p-2=q. ∵x1+x2=-p,x1·x2=q=p-2, ∴d2=(x1-x2)2=(x1+x2)2-4x1·x2=p2-4(p-2)=(p- 2)2+4, ∴当 p=2 时,d2 有最小值.
例题探究:(二次函数的利润问题)
例3、某超市销售一种饮料,每瓶进价为9元.经市场调查表明, 当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每 增加0.5元,日均销售量减少40瓶;当售价为每瓶12元时,日 均销售量为400瓶.问销售价格定为每瓶多少元时,所得日均毛 利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润 为多少元?
要点小结
1.求解“距离”问题:需要构造直角三角形,利用勾股 定理建立如 s= ax2+bx+c型的函数(这不是二次函 数),本质是求二次函数 y=ax2+bx+c 的最值.
2.求解“利润”问题:一般先运用“总利润=总销售额 -总成本”或“总利润=每件商品的利润×销售 量”来建立二次函数的表达式,再求出顶点坐标,即 可求得最大利润.
则 y=60-x2 -(10-x)(6-x)
F
6பைடு நூலகம்
=-2x2 + 16x
AE
=-2(x-4)2 + 32
B
(0<x<6)
10 所以当x=4时,花园的最大面积为32
169t2-260t+676. 因此,只要求出 169t2-260t+676 的最小值,就可以求出 两船之间的距离的最小值.

人教版九年级数学上册 实际问题与二次函数-详解与练习(含答案)

人教版九年级数学上册  实际问题与二次函数-详解与练习(含答案)

实际问题与二次函数一、利用函数求图形面积的最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1) 设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米),根据题意,得:x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧-(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y有最大值,即当9)1(2182=-⨯-=-=a b x 时,81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。

例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x-)(米), 根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>xx >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值,即当25)21(2252=-⨯-=-=abx 时,2625)21(42504422max=-⨯-=-=a b ac y故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。

例3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm由题意得: 17)420()4(22=-+x x解得: 4,1621==x x当161=x 时,20-x=4;当42=x 时,20-x=16答:这段铁丝剪成两段后的长度分别是16厘米、4厘米。

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题。

解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量的取值范围。

2.几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论。

3.构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题。

练习题1、(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案2【分析】分别计算三个方案的菜园面积进行比较即可.【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:解法一:如图,过点B作BH⊥AC于H,则BH≤AB=4,∵S△ABC=•AC•BH,∴当BH=4时,△ABC的面积最大为×4×4=8;解法二:过点A作AD⊥BC于D,设CD=x,AD=y,则x2+y2=16,∴S=•BC•AD=•2x•y=xy,∵(x﹣y)2=x2+y2﹣2xy≥0,∴16﹣2xy≥0,∴xy≤8,∴当且仅当x=y=2时,菜园最大面积=8米2;方案3:半圆的半径=米,∴此时菜园最大面积==米2>8米2;故选:C . 2、(2022•襄阳)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m 高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm ,与跳台底部所在水平面的竖直高度为ym ,y 与x 的函数关系式为y =2213212++−x x (0≤x ≤20.5),当她与跳台边缘的水平距离为 m 时,竖直高度达到最大值.【分析】把抛物线解析式化为顶点式,由函数的性质求解即可.【解答】解:y =x 2+x +2=﹣(x ﹣8)2+4,∵﹣<0, ∴当x =8时,y 有最大值,最大值为4,∴当她与跳台边缘的水平距离为8m 时,竖直高度达到最大值.故答案为:8.3、(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y =﹣121x 2+32x +35,则铅球推出的水平距离OA 的长是 m .【分析】根据题目中的函数解析式和图象可知,OA 的长就是抛物线与x 轴正半轴的交点的横坐标的值,然后令y =0求出相应的x 的值,即可得到OA 的长.【解答】解:∵y =﹣x 2+x +,∴当y=0时,0=﹣x2+x+,解得x1=﹣2,x2=10,∴OA=10m,故答案为:10.4、(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为s时,小球达到最高点.【分析】把二次函数解析式化为顶点式,即可得出结论.【解答】解:h=﹣5t2+20t=﹣5(t﹣2)2+20,∵﹣5<0,∴当t=2时,h有最大值,最大值为20,故答案为:2.5、(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).【分析】利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.【解答】解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.6、(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再根据通过把x=4代入抛物线解析式得出y,即可得出答案.【解答】解:以水面所在的直线AB为x轴,以过拱顶C且垂直于AB的直线为y轴建立平面直角坐标系,O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,把A点坐标(﹣3,0)代入抛物线解析式得,9a+2=0,解得:a=﹣,所以抛物线解析式为y=﹣x2+2,当x=4时,y=﹣×16+2=﹣,∴水面下降米,故答案为:.7、(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为m2.【分析】设与墙垂直的一边长为xm,然后根据矩形面积列出函数关系式,从而利用二次函数的性质分析其最值.【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(16﹣2x)m,∴矩形围栏的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x﹣4)2+32,∵﹣2<0,∴当x=4时,矩形有最大面积为32m2,故答案为:32.8、(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t (单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.9、(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为 3.05m,则他距篮筐中心的水平距离OH是m.【分析】根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.【解答】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.10、(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O 点3m.那么喷头高m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.。

二次函数应用题 面积、经济利润、抛物线、最值问题 例题+练习(分类全面)

二次函数应用题 面积、经济利润、抛物线、最值问题 例题+练习(分类全面)

教学内容二次函数的应用教学目标掌握二次函数的应用重点最值问题难点利润问题教学准备纸、笔教学过程类型一:最大面积问题例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?类型三:实际抛物线问题例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示。

(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由。

4米,水位上升3米变式练习3:如图是抛物线型的拱桥,已知水位在AB位置时,水面宽64米,若洪水到来时,水位以每小时0.25米的速度上就达到警戒水位线CD,这时水面宽3升,求水过警戒线后几小时淹到拱桥顶?变式训练4:如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。

(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;课后练习:一,利润问题:1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?3. 有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中,如图该抛物线的解析式为。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:利用二次函数解决距离、利润最值问题练习(含答案)
一、选择题
1.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的函数表达式为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最大的是( )
A.第8秒 B.第10秒
C.第12秒 D.第15秒
2.某民俗旅游村为解决游客的住宿需求,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则租出床位相应地减少10张.如果每张床位每天以20元为单位提高收费,为使租出的床位少且所获租金高,那么每张床位每天最合适的收费是( )
A.140元 B.150元 C.160元 D.180元
二、填空题
3.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.4.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是________元时,才能在半月内获得最大利润.
5.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:
科学家经过猜想,推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为________℃.
三、解答题
6.小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:
①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9-x;
②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.
(1)求该二次函数的表达式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大,最大平均利润是多少.(注:平均利润=销售价-平均成本)
7.如图K-7-1所示,甲船从A处起以15海里/时的速度向正北方向航行,这时乙船从A 的正东方20海里的B处以20海里/时的速度向正西方向航行,多长时间后,两船的距离最小?最小距离是多少?
图K-7-1
8.某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x为偶数),每周销售量为y个.
(1)直接写出销售量y(个)与降价x(元)之间的函数表达式;
(2)设商户每周获得的利润为w元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?
9.某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x(x为正整数)天销售的相关信息,如下表所示:
(1)请计算第几天该商品的单价为25元/件;
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数表达式;
(3)这30天中第几天获得的利润最大?最大利润是多少?
10如图K-7-2,某足球运动员站在点O处练习射门,将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c.已知足球飞行0.8 s时,离地面的高度为3.5 m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t.已知球门的高度为2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?
图K-7-2
1.[解析] B 利用抛物线的轴对称性,当x =7+14
2
=10.5时,炮弹达到最大高度,与对称轴最接近的应是第10秒,故选B.
2.[解析] C 设每张床位提高x 个20元,每天收入为y 元. 则y =(100+20x)(100-10x)=-200x 2+1000x +10000. 当x =-b
2a =2.5时,y 有最大值.
又x 为整数,当x =2时,y =11200; 当x =3时,y =11200.
故为使租出的床位少且所获租金高,每张床应收费100+3×20=160(元). 3.[答案] 1.6 4.[答案] 35 5.[答案] -1
6.解:(1)依题意,得⎩⎨⎧16a +4b +10=2,
36a +6b +10=1,
解得⎩⎨⎧a =14,
b =-3.
∴该二次函数的表达式为y =1
4
x 2-3x +10.
(2)依题意,得平均利润L =P -y =9-x -(14x 2
-3x +10),
化简,得L =-1
4
x 2+2x -1(1≤x≤7且x 为整数),
∴L =-14
(x -4)2
+3,
∴当x =4时,L 的最大值为3(单位:元/千克).
答:该蔬菜在4月份的平均利润L 最大,最大平均利润为3元/千克. 7.解:设x 小时后,两船相距y 海里.
根据题意,得y =(15x )2+(20-20x )2=625x 2-800x +400=(25x -16)2+144, 所以,当x =16
25
时,y 有最小值,为12.
答:16
25小时后,两船的距离最小,最小距离是12海里.
8.解:(1)根据题意,得y =160+x
2×20,即y =10x +160.
(2)w =(30-x)(10x +160)=-10(x -7)2+5290. ∵x 为偶数,∴当x =6或8时,w 取最大值5280.
当x =6时,销售单价为80-6=74(元/个);当x =8时,销售单价为80-8=72(元/个). ∴当销售单价定为74元/个或72元/个时,每周销售利润最大,最大利润是5280元. (3)∵w=-10(x -7)2+5290,
∴当w =5200元时,-10(x -7)2+5290=5200.解得x 1=10,x 2=4. ∵销售量y =10x +160随x 的增大而增大, ∴当x =4时,进货成本最小.
当x =4时,销售量y =10x +160=200,此时进货成本为200×50=10000(元). 答:他至少要准备10000元进货成本. 9.解:(1)分两种情况:
①当1≤x≤20时,将m =25代入m =20+1
2
x,解得x =10;
②当21≤x≤30时,将m =25代入m =10+
420x ,得25=10+420
x
,解得x =28. 经检验,x =28是原分式方程的根,且符合题意, ∴x =28.
答:第10天或第28天时该商品的单价为25元/件. (2)分两种情况:
①当1≤x≤20时,y =(m -10)n =⎝ ⎛⎭⎪⎫
20+12x -10(50-x)=-12x 2+15x +500;
②当21≤x≤30时,y =(m -10)n =⎝ ⎛⎭⎪⎫
10+420x -10(50-x)=21000x -420. 综上所述,
y =⎩⎪⎨⎪⎧-1
2x 2
+15x +500(1≤x≤20),21000x -420(21≤x≤30).
(3)①当1≤x≤20时,y =-12x 2+15x +500=-12(x -15)2+12252.
∵a =-12<0,∴当x =15时,y 最大值=1225
2

②当21≤x≤30时,由y =
21000
x
-420,可知y 随x 的增大而减小, ∴当x =21时,y 最大值=21000
21
-420=580.
∵580<
1225
2
,
∴第15天时获得的利润最大,最大利润为
1225
2
元. 10解:(1)由题意,得函数y =at 2+5t +c 的图象经过点(0,0.5),(0.8,3.5), ∴⎩⎨⎧0.5=c ,3.5=0.82
a +5×0.8+c , 解得⎩⎪⎨⎪⎧a =-25
16,c =12

∴抛物线的函数表达式为y =-2516t 2+5t +12.
∵-b
2a
=-
5
2×⎝ ⎛⎭
⎪⎫-2516=1.6, 4ac -b 2
4a =4×⎝ ⎛⎭⎪⎫-2516×12
-524×⎝ ⎛⎭⎪⎫
-2516=4.5, ∴当t =1.6时,y 最大=4.5.
答:足球飞行的时间为1.6 s 时,足球离地面最高,最大高度是4.5 m. (2)把x =28代入x =10t,得t =2.8, ∴当t =2.8时,y =-
2516×2.82+5×2.8+1
2
=2.25<2.44. ∴他能将球直接射入球门.。

相关文档
最新文档