全等三角形复习学案

合集下载

第十二章全等三角形总复习导学案(付淑)

第十二章全等三角形总复习导学案(付淑)

《全等三角形》复习学案复习目标1. 全等三角形的概念和性质。

2.掌握全等三角形的判定条件 ,并能进行简单的证明和计算。

3.掌握角平分线的性质及判定,并能灵活应用。

题组练习一(问题习题化)1.(2013•柳州)如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x =4.(2013•铁岭)如图,在△ABC 和△DEC 中,已知AB =DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC =EC ,∠B =∠E B .BC =EC ,AC =DC C .BC =DC ,∠A =∠D D .∠B =∠E ,∠A =∠D 3.(2013•巴中)如图,已知点B 、C 、F 、E 在同一直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是2.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .梳理知识点:。

一、全等图形的定义和性质 1.概念能够 的两个图形叫做全等图形. 能够 的两个三角形叫做全等三角形. 2.性质全等图形的__________、__________相等. 二、全等三角形的性质与判定 1.全等三角形的性质全等三角形的__________、__________分别相等. 2.全等三角形的判定(1)有三边对应相等的两个三角形全等,简记为( );(2)有两边和它们的夹角对应相等的两个三角形全等,简记为( ); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为( ); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为( ); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为( ).三、角平分线的性质与判定1.角平分线的性质:__________角平分线的判定:__________B题组练习二(知识网络化)7.(2013•舟山)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABE ≌△DCE ; (2)当∠AEB =50°,求∠EBC 的度数?6.如图,CD ⊥AB ,BE ⊥AC ,OB =OC.求证:∠1=∠2.5.如图,AB =DE ,AC =DF ,BE =CF.求证:AB ∥DE.题组练习三(选做题)如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE.21E D C BAOABCDE FABCDE。

全等三角形复习学案

全等三角形复习学案

第27课时《全等三角形》复习学案一、命题与定理1、 叫做命题.正确的命题称为 ,错误的命题称为 。

如:(1) 如果两个角是对顶角,那么这两个角相等;( ) (2) 三角形的内角和是180°;( ) (3) 同位角相等;( )(4) 平行四边形的对角线相等;( ) (5) 菱形的对角线相互垂直( )2、把一个命题改写成“如果……那么……”的形式.其中,用“如果”开始的部分是 ,用“那么”开始的部分是 .3、从公理或其他真命题出发,用逻辑推理的方法判断是正确的命题,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做 .二、逆命题与逆定理1、原命题和逆命题的关系: 。

每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,使可得到原命题的逆命题。

例如: 条件 结论原命题:两直线平行,同位角相等。

逆命题: , 2.定理、逆定理: 例如:勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(1) 勾股定理的逆命题: (是真还是假命题)(2)∴(1)与(2)互为逆定理3..等腰三角形的判定 1)。

等腰三角形的判定: 。

2)。

勾股定理的逆定理: 。

例1.如图7,P 是等边三角形ABC 内的一点,连结PAPB PC ,,,以BP 为边作60PBQ ∠=,且BQ BP =,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.2.如图,在△ABC 中,AB=AC,∠BAD=20°,且AE=AD,则∠CDE= 。

例3.如图在6×6的网格(小正方形的边长为1)中有一个△ABC ,则△ABC 的周长是 。

图7Q C P A B例3.请作一条直线,将下面的三角形分成两个三角形,是每个三角形都是 等腰三角形,并标出相关的数据。

三.角平分线、线段的垂直平分1)。

角平分线性质定理: 。

逆定理: 。

2)。

垂直平分线定理: 。

逆定理: 。

例1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm . 例2. 如图,在△ABC 中,BC =8cm, AB 的垂直平分线交AB 于点D , 交AC 于点E , △BCE 的周长等于18cm, 则AC 的长等于( ) (A) 6cm (B) 8cm(C)10cm (D) 12cm例3. 如图,Rt △ABC 中,∠C=90°, ∠CAB=30°, 用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).例4.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数.5.如图,△ABC 中,AB 与AC 的垂直平分线相交于F,且分别交AB 于D ,交AC 于E 。

三角形的全等复习学案教案

三角形的全等复习学案教案

全等三角形一、知识梳理1、_________的两个三角形全等;2、全等三角形的对应边_____;对应角______;3、证明全等三角形的基本思路 (1)已知两边⎪⎩⎪⎨⎧_____)(___________)(_____________)__________看是否是直角三角形找夹角找第三边( (2)已知一边一角⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧(_____)(_______)(_____)(_____)(______)已知是直角,找一边找一角已知一边与对角找这边的对角找这个角的另一边找这边的另一邻角已知一边与邻角(3)已知两角 ⎪⎩⎪⎨⎧_____)(_____________)__________找夹边外任意一边找夹边( 4、角平分线的性质为________________________________________ 用法:∵_____________;_________;_________∴QD=QE5、角平分线的判定_____________________________________ 用法:∵_____________;_________;_________∴点Q 在∠AOB 的平分线上(4与5的图如下)二、基础过关1、下列条件能判断△ABC和△DEF全等的是()A)、AB=DE,AC=DF,∠B=∠EB)、∠A=∠D,∠C=∠F,AC=EFC)、∠A=∠F,∠B=∠E,AC=DED)、AC=DF,BC=DE,∠C=∠D2、在△ABC和△DEF中,如果∠C=∠D,∠B=∠E,要证这两个三角形全等,还需要的条件是()A)、AB=ED B)、AB=FD C)、AC=DF D)、∠A=∠F3、在△ABC和△A’B’C’中,AB=A’B’,AC=A’C’,要证△ABC≌△A’B’C’,有以下四种思路证明: ①BC=B’C’;②∠A=∠A’;③∠B=∠B’;④∠C=∠C’,其中正确的思路有() A)、①②③④B)、②③④C)、①②D)、③④4、判断下列命题:①对顶角相等;②两条直线平行,同位角相等;③全等三角形的各边对应相等;④全等三角形的各角对应相等。

全等三角形复习导学案

全等三角形复习导学案

全等三角形复习导学案一、学习目标1、理解全等三角形的概念,掌握全等三角形的性质和判定方法。

2、能够运用全等三角形的性质和判定解决相关的几何问题。

3、通过复习,提高逻辑推理能力和空间想象能力。

二、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应线段(角平分线、中线、高线)相等;(4)全等三角形的面积相等,周长相等。

3、全等三角形的判定方法(1)“SSS”(边边边):三边对应相等的两个三角形全等。

(2)“SAS”(边角边):两边和它们的夹角对应相等的两个三角形全等。

(3)“ASA”(角边角):两角和它们的夹边对应相等的两个三角形全等。

(4)“AAS”(角角边):两角和其中一角的对边对应相等的两个三角形全等。

(5)“HL”(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

三、典型例题例 1:已知:如图,△ABC ≌△DEF,∠A = 70°,∠B = 50°,BF = 4,求∠DFE 的度数和 EC 的长。

解:因为△ABC ≌△DEF,所以∠DFE =∠ACB。

在△ABC 中,∠ACB = 180°∠A ∠B = 180° 70° 50°= 60°,所以∠DFE = 60°。

因为△ABC ≌△DEF,所以 BC = EF。

又因为 BF = 4,所以 EC = BC BF = EF BF = 0。

例 2:如图,在△ABC 中,AD 是中线,BE 交 AD 于点 F,且 AE = EF,求证:AC = BF。

证明:延长 AD 至点 G,使 DG = AD,连接 BG。

因为 AD 是中线,所以 BD = CD。

在△ADC 和△GDB 中,AD = GD,∠ADC =∠GDB,CD = BD,所以△ADC ≌△GDB(SAS),所以 AC = GB,∠CAD =∠G。

全等三角形复习教案

全等三角形复习教案

方法
利用全等三角形的对应角 相等,结合角度的性质来 证明线段垂直。
05
全等三角形的练习题及解析
基础练习题
01
02
03
04
题目1
两个直角三角形,一个锐角和 斜边分别相等,则这两个三角 形全等。
题目2
两个三角形,两边和夹角分别 相等,则这两个三角形全等。
题目3
两个三角形,两角和夹边分别 相等,则这两个三角形全等。
题目4
两个三角形,三边分别相等, 则这两个三角形全等。
提高练习题
题目5
题目6
两个三角形,两边和其中一边的对角分别 相等,则这两个三角形全等。
两个三角形,两角和其中一角的对边分别 相等,则这两个三角形全等。
题目7
题目8
两个三角形,其中一组等角的对边相等, 并且这组等角的对边上的中线与另一边相 等,则这两个三角形全等。
全等三角形复习教案

CONTENCT

• 全等三角形的定义和性质 • 全等三角形的应用 • 全等三角形的证明方法 • 全等三角形的常见题型及解题思路 • 全等三角形的练习题及解析
01
全等三角形的定义和性质
全等三角形的定义
02
01
03
两个三角形能够完全重合,则这两个三角形是全等的 。 全等三角形的大小和形状完全相同。
两个三角形,其中一组等角的对边相等, 并且这组等角的对边上的高与另一边相等 ,则这两个三角形全等。
综合练习题
题目9
两个三角形,其中一组等角的对边相等,并且这组等角的对边上 的中线与另一边相等,同时另一组等角的对边上的高与另一边相 等,则这两个三角形全等。
题目10
两个三角形,其中一组等角的对边相等,并且这组等角的对边上 的高与另一边相等,同时另一组等角的对边的中线与另一边相等 ,则这两个三角形全等。

人教版八年级数学上册1三角形全等的判定复习学案

人教版八年级数学上册1三角形全等的判定复习学案

12.2全等三角形的判定复习【学习目标】1、进一步熟练掌握三角形全等的判定方法,并能利用全等三角形的判定证明有关线段相等、角相等的问题;2、经历运用三角形全等的条件解决问题的过程,发展合情推理能力和演绎推理能力.【重点难点】重点:利用全等三角形的判定证明有关线段相等、角相等的问题;难点:根据已知条件选择合适的判定方法证明两个三角形全等【学习过程】一、知识回顾:1、判定两个三角形全等的方法有哪些?2、判定两个直角三角形全等的方法有哪些?二、合作探究:证明两个三角形全等常见思路有哪些?(1)当条件中有两条边对应相等时,如何选择判定方法?(2)当条件中有一条边对应相等,一个角对应相等时,如何选择判定方法?(3)当条件中有两个角对应相等时,如何选择判定方法?三、例题探究:例1、已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEF(1)若要以“SAS”为依据,还缺条件__;(2) 若要以“ASA”为依据,还缺条件__;(3) 若要以“AAS”为依据,还缺条件__;(4)若要以“SSS”为依据,还缺条件__;(5)若∠B=∠DEF=90°要以“HL”为依据还缺条件__;例2、已知:如图,AD是△ABC 的中线,求证:ACABAD+<2四、尝试应用1、如图,已知AB=AC,BE=CE,延长AE交BC于D,则图中全等三角形共有()A、1对B、2对C、3对D、4对2、下列条件中,不能判定两个直角三角形全等的是()A、一锐角和斜边对应相等B、两条直角边对应相等C、斜边和一直角边对应相等D、两个锐角对应相等3、下列四组中一定是全等三角形的为()A.三内角分别对应相等的两三角形B、斜边相等的两直角三角形C、两边和其中一条边的对角对应相等的两个三角形D、三边对应相等的两个三角形4、已知:如图∠ABC=∠DCB, AB=DC,求证: (1)AC=BD; (2)S△AOB = S△DOC5、如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,只需添加一个条件是_____________。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形复习教案(全)

全等三角形复习教案(全)

全等三角形一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)基本概念 1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质 (1)全等三角形对应边相等; (2)全等三角形对应角相等; (3)全等三角形周长、面积相等。

3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。

运用定理证明三角形全等时要注意以下几点。

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找: ①夹边相等(ASA )②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS) (三)疑点、易错点 1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。

全等三角形的复习课教学设计

全等三角形的复习课教学设计

课题:全等三角形复习课一、教材分析:本节课是全等三角形的全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形的概念,理解性质、判定和运用;掌握角的平分线的性质和判定的证明及运用。

其次对学生所学的全等三角形知识进行查缺补漏,再次通过拓展延伸以及展望中考的习题训练,提高学生综合运用全等三角形解决问题的能力,并对中考对全等三角形考察方向有一个初步的感知,为以后的复习指明方向。

在练习的过程中,要注意强调知识之间的相互联系,使学生养成以联系和发展的观点学习数学的习惯.二、学情分析在知识上,学生经历全等三角形全章的学习,对全等三角形和角平分线的概念、性质、判定以及应用基本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何的基础和工具也是中考必考内容。

对全等三角形的综合应用以及全章知识脉络的形成正是以上各种能力的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理能力、发散思维能力和概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形的概念及角平分线的性质,掌握三角形全等的条件和性质;会应用全等三角形的性质与判定及角平线的性质解决有关问题.2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生归纳总结的能力,使学生体会数形结合思想、转化思想在解决问题中的作用.3.培养学生把已有的知识建立在联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。

四、教学重难点重点:全等三角形及角平分线的性质与判定的应用.难点:能理解运用三角形全等解题的基本过程,灵活应用角平分线的判定的证明及运用.五、教法与学法以“尝试指导效果回授”为主,以自学、练习法为辅;在具体的教学活动中,要给予学生充足的时间让学生自主学习,先形成自己的全等三角形知识认知体系,尝试完成练习;给予学生充足的空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课的教学目的.六、教具准备多媒体课件,三角尺,圆规.七、课时安排1课时八、教学过程问题与情境活动1创设情境,引出课题.1、某同学把一块三角形玻璃打碎成三片,现在他只需带上第块就可配到与原来一样的三角形玻璃.师:上述问题实质是判断三角形全等需要什么条件的问题.2.有一个简易平分角的仪器(如图),其中AB二AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是NBAD的平分线,为什么?◊E今天我们这节课来复习全等三角形章节.(引出课题)师生互动设计理念【教师活动】1.创设情境,引出课题.2.板书课题.【学生活动】独立思考,并小组交流意见.1、让学生在情境中明白这节课学习的重点.2、复习旧知识,回忆全等三角形的概念、性质及判定方法和实际应用的解决;3、角的平分线的定义,让学生体验利用证明三角形全等的方法来对画法角形;已知两角及两边作三角形;作一个角等于已知角;作角的平分线。

全等三角形的复习学案

全等三角形的复习学案

全等三角形的复习学案
【学习目标】
1、熟练掌握全等三角形的判定方法和性质,并能熟练应用.
2、通过对图形的剖析,培养学生观察、对图形结构特征识别的能力以及概括综合分析能力,从而进一步提高学生的推理论证能力.
【学习重点、难点】
重点:熟练掌握全等三角形的性质以及判定三角形全等的条件,灵活运用它们解决与线段、角有关的问题.
难点:能较熟练地进行文字语言、符号语言和图形语言之间的表达和相互转化.
【学习过程】
(一)知识回顾
引例:已知:△ABC 中,AB=AC,在AB,AC 上分别取点D,E, 使得AD=AE.
问题:图中全等三角形共有几对?如何证明呢?
归纳:全等三角形性质:
全等三角形判定:
(二)基本应用
已知:如图,ED ⊥AB,FC ⊥AB,垂足分别为D,C , AC=BD,AF=BE.
(1)求证:△ACF ≌△BDE
(2)求证:AE ∥BF
A
F
E
C B A
D
(三)拓展应用
例题:已知△ACM和△BCN是等边三角形,点A,B,C在同一直线上.(注:等边三角形的三条边相等,三个角都是60°)
求证:AN=BM
A
B
变式1:变式1:将△BCN沿着直线AB翻折,探究(1)AN=BM (2)CE=CD,EN=BD
(3)∠DFN=60°
A
B
变式2:将△ACM绕着点C逆时针方向旋转180°,使得点A落在CB上,“
AN=MB”是否还成立?
(四)小结思考。

全等三角形判定复习教案

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

全等三角形复习学案

全等三角形复习学案

全等三角形- 中考总复习学案学习目标1.复习巩固全等三角形的概念、性质和判定方法,使学生能够熟练地利用全等三角形知识进行简单证明,掌握综合法证明的表达格式。

2.通过对图形的观察和分析,鼓励学生探索并发现规律,培养学生的探究意识和能力。

3.渗透图形变换和转化等数学思想,引导学生拓展思维空间,提升解题能力。

学习重点:运用全等三角形的性质和判定,证明简单的几何问题,规范综合法证明的格式。

学习难点:引导学生通过添加辅助线构造全等三角形解决综合问题。

学习过程:(一)以小组内讨论提问方式呈现知识要点。

1、什么叫全等三角形2.一个三角形通常可以通过怎样的变换,得到与它全等的三角形?ppt 展示三种变换.全等变换:平移、翻折、旋转。

观察变化的过程,体会重合含义。

3、全等三角形有哪些性质?4、全等三角形的判定方法有哪些?每一种方法的具体含义是什么?(1)一般三角形的判定方法:4种 SSS 、SAS 、ASA 、AAS(2)直角三角形全等的判定方法:5种 SSS 、SAS 、ASA 、AAS 、HL5.请注意:(1)有三个角对应相等的两个三角形不一定全等。

(2)有两边及其中一边的对角对应相等的两个三角形不一定全等。

(二)基础练习1、判断对错(1)面积相等的两个三角形一定全等。

( )(2)有一个角及两条边对应相等的两个三角形全等。

( )(3)边长相等的两个等边三角形全等。

( )(4)有两边分别相等的两个直角三角形全等。

( )2、如图,△ABD ≌△COD ,∠A=∠C ,则∠ADB 的对应角是_____,图中相等的线段有___________ 。

3、如图,将长方形纸片ABCD 沿AE 向上折叠,使B 落在DC 边上的F 点处,若△AFD 的周长为9,△ECF 的周长为3,则长方形ABCD 的周长为 。

4、已知:如图,D 、C 、F 、B 共线,已知AC ∥EF 且AC=EF,若只添加一个条件,使△ABC ≌△EDF, F A B C D ED则还需要补充的条件可以是________、(三)简单证明 5.已知:如图,OP 是∠AOC 和∠BOD 的平分线,OA=OC,OB=OD.求证:AB=CD.6.已知:如图,C 为BE 上一点,点A 、D 分别在BE 两侧,AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .7.已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点=BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =FC .(四)尝试探究8、已知:如图,在直线ABC 的同一侧作两个等边三角形△ABD 与△BCE ,连结AE 与CD ,请问: AE 与CD 有怎样的大小关系?并说明理由。

课题全等三角形的复习教案

课题全等三角形的复习教案

课题:全等三角形复习教案(第一课时)欧阳荣富教学目标1.知识与技能(1)知道全等三角形的概念、弄清全等三角形性质和判定,会用全等三角形的性质与判定定理来证明线段相等和角相等的问题.(2)发展学生的逻辑思维,提高合情推理能力2.过程与方法经历探究、合作、交流、展示全等三角形有关性质和判定的运用,掌握几何的分析思想,能应用“综合法”表达问题.3.情感、态度与价值观(1) 让学生体会几何学的实际应用价值。

(2)感受合作交流、展示带来的成功体验,激发学生学习数学的热情享受快乐,树立自信心。

教法与学法;启发探究法、合作交流法、自主探究法。

重点:弄清全等三角形性质和判定难点:会用全等三角形的性质与判定定理来证明线段相等和角相等的问题.教学过程;一、创设问题情境:(1′)某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?请同学们先独立思考上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。

二、自主学习(2′)1、将一个平面图形上的每一点,绕这个平面内一定点旋转 ,得到的图形,图形的这种变换叫 。

2、对应点到旋转中心的 。

3、对应点与旋转中心的连线所成的角 ,且等于 ,旋转不改变图形的 。

4、_________的两个三角形全等;、5、全等三角形的对应边_____;对应角______;6、全等三角形的判定定理有7、如图1,若 △ABC ≌△DEF ,则∠E= 。

1 2 38、如图2△ABC 以A 为旋转中心,逆时针旋转至△ADE ,∠1=30°,则∠2= 9、如图3,要使△ABC ≌△DEC ,除公共边BC 外,请再添加两个条件使它全等,你有哪几种方法?图2 三、合作探究。

(20′)1、已知:如图A B ∥DE ,且AB=DE ,BE=CF,你认为∠A 与∠B 相等吗?请你说明理由。

分析 :要证△ABF ≌△DEC 只要找出 :直接的一个条件 和间接的两个条件A2、、已知:如图AB=AC,BD=CD,D 在AM 上,求证:∠BDM=∠CDM.分析:、要证∠BDM=∠CDM. 只要证∠ =∠ .再要证△ ≌△3. 如图,已知AB 平分∠BAC ,∠C=∠D 求证:AC=AD分析:1、要证AC=AD 只要证△ABC ≌△ABD,2、由AB 平分∠BAC 得3、由图可得 四、拓展创新(15′)4. 如图,∠1=∠2,AE 平分∠BAC ,你认为AB 与AC 相等吗?请你说明理由。

人教版数学八年级上册《全等三角形的复习课》教学设计

人教版数学八年级上册《全等三角形的复习课》教学设计

人教版数学八年级上册《全等三角形的复习课》教学设计一. 教材分析人教版数学八年级上册《全等三角形的复习课》是对全等三角形概念、性质和判定方法的回顾和巩固。

全等三角形是初中数学中的重要内容,是学习几何的基础知识。

本节课通过对全等三角形的复习,使学生能够熟练掌握全等三角形的性质和判定方法,提高解决问题的能力。

二. 学情分析学生在之前的学习中已经掌握了全等三角形的概念、性质和判定方法,但部分学生对于全等三角形的应用还不够熟练,对于一些复杂图形的全等判定还存在困难。

因此,在复习课中,需要通过具体的例子和练习,帮助学生巩固全等三角形的基本知识,提高解决问题的能力。

三. 教学目标1.知识与技能:通过复习,使学生能够熟练掌握全等三角形的性质和判定方法,能够运用全等三角形的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的观察能力、动手能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 教学重难点1.重点:全等三角形的性质和判定方法。

2.难点:复杂图形的全等判定和应用。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生主动探索全等三角形的性质和判定方法。

2.互动法:教师与学生进行互动,让学生通过实际操作,体验全等三角形的性质和判定方法。

3.讨论法:学生分组讨论,共同解决问题,培养学生的团队合作意识。

六. 教学准备1.教师准备:全等三角形的复习资料、PPT、黑板、粉笔等。

2.学生准备:全等三角形的复习资料、笔记本、尺子、圆规等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾全等三角形的概念、性质和判定方法,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT或黑板,呈现全等三角形的性质和判定方法,引导学生观察、思考。

3.操练(15分钟)教师给出一些全等三角形的例子,让学生分组讨论,运用全等三角形的性质和判定方法进行判定。

《全等三角形的复习》优秀教案.docx

《全等三角形的复习》优秀教案.docx

全等三角形的复习【教学目标】:(1)知识与技能目标:通过对典型例题评析,使学生进一步熟悉三角形全等的判定、性质及其综合应用,提高学生的逻辑推理能力和逻辑表达能力;学生通过参与开放性变式题的练习、分析,培养思维的发散性、探究性、发展性、创新性,进一步深化学生对全等三角形的认识。

(2)过程与方法目标:利用相关的知识和例题,通过学生的观察、思考、论证,培养学生的观察能力、逻辑推理能力、发散思维能力;通过同桌间的合作交流,培养学生的合作探究意识;通过学生的猜想,培养学生敢于发表见解的勇气。

利用“归纳小结”这一环节,培养学生自我反思的习惯及归纳概括能力。

(3)情感与态度目标:利用图形的变换,对学生进行所谓“形变质不变,万变不离其宗”的数学思想渗透;让学生知道数学内容中普遍存在着的运动、变化、相互联系和相互转化的规律,体会事物之问相互联系相互转化的辩证唯物主义观点;通过展示多彩的几何变换图形,激发学生的学习动机,拓宽学生的信息量、思维角度,激发学生的探索欲望;通过对几个变式问题的探究分析,培养学生多角度探究问题的习惯。

【教学重点】:常握全等三角形的性质与判定方法【教学难点】:对全等三角形性质及判定方法的运用【教学突破点】:学生通过在探究问题时的合作交流与对结论的探求猜想、教师对例题及学生回答的评析,培养学生的观察能力、发现问题能力、探究问题的兴趣、发散思维能力、归纳概括能力。

【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件、三角板【教学弓程设计】:教学环节教学活动~设计意图已知一边一角(边与角相邻):找夹这个角的另一边 —AD=CB(SAS)找夹这条边的另一角—a zACD=zCA«ASA),找边的对角 —► zD=zB(AAS)思路引导9 促 进 发展 1、如图,已知△ ABC 和ADCB 屮,AB 二DC,请补充一个条 件 ______________________ ,使AABC 竺 ADCBo 找夹角一► ZABC=ZDCB (SAS)培养学生结合 题目中的已知 条件、图形中 的隐含条件, 分析和寻找全 等三角形证明 的所须条件, 训练学生的解 题思路和解题 技巧。

1.八年级第十一章全等三角形复习教案

1.八年级第十一章全等三角形复习教案

1.八年级第十一章全等三角形复习教案第一篇:1.八年级第十一章全等三角形复习教案第十一章全等三角形一、知识点:本章主要内容:全等三角形的性质;三角形全等的判定;角的平分线的性质.本章重点:探究三角形全等的条件和角的平分线的性质.难点:三角形全等的判定方法及应用;角的平分线的性质及应用.基础知识梳理教材知识全扫描1.全等三角形:1.⑴全等形:能够完全重合的两个图形叫全等形。

⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。

表示:△ABC≌△DEF教材P3一句话:2.三角形全等的性质:全等三角形对应边相等,对应角相等。

全等三角形对应边上的中线、高、对应角平分线相等。

全等三角形的周长、面积相等。

3.全等三角形的判定:SAS,ASA,AAS,SSS,HL(直角三角形)特别提醒: “有两个角和一边分别相等的两个三角形全等”这句话正确吗?由于没有“对应”二字,结论不一定正确,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.SSA不能判定两三角形全等的例子在教材P10.4.尺规作图:(1)作一个角等于已知角(教材P7_8):步骤(2)作已知角的平分线(教材P19):步骤3.角平分线的性质:⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。

⑵角平分线的判定:教的内部到角两边距离相等的点在角的平分线上。

⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。

3.角的平分线是射线,三角形的角平分线是线段。

4.证明线段相等的方法:(1)中点定义;(2)等式的性质;(3)全等三角形的对应边相等;(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。

随着知识深化,今后还有其它方法。

人教版数学八年级上册《全等三角形复习》教学设计

人教版数学八年级上册《全等三角形复习》教学设计

人教版数学八年级上册《全等三角形复习》教学设计一. 教材分析人教版数学八年级上册《全等三角形复习》主要包括全等三角形的定义、性质、判定和应用。

本节内容是学生在学习了全等三角形的基础上进行的复习,旨在加深学生对全等三角形知识的理解,提高学生的解题能力。

二. 学情分析学生在七年级时已经学习了全等三角形的基本知识,对本节内容有一定的了解。

但部分学生在理解上还存在一定的困难,如对全等三角形的判定条件的理解,以及如何运用全等三角形解决实际问题。

因此,在教学过程中,教师需要针对学生的实际情况进行讲解,引导学生深入理解全等三角形的性质和判定方法。

三. 教学目标1.理解全等三角形的定义和性质;2.掌握全等三角形的判定方法;3.能够运用全等三角形解决实际问题;4.提高学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.全等三角形的定义和性质;2.全等三角形的判定方法;3.运用全等三角形解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,提高学生的理解能力和解决问题的能力。

六. 教学准备1.教学PPT;2.相关练习题;3.教学黑板。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾全等三角形的基本知识,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT呈现全等三角形的定义、性质和判定方法,引导学生认真观察和思考。

3.操练(10分钟)教师给出几个全等三角形的例子,让学生分组讨论,判断给出的三角形是否全等。

通过实际操作,让学生加深对全等三角形知识的理解。

4.巩固(10分钟)教师针对学生的讨论结果,进行讲解和总结,巩固学生对全等三角形的判定方法的掌握。

5.拓展(10分钟)教师提出一些实际问题,引导学生运用全等三角形知识进行解决。

学生分组讨论,分享解题过程和结果。

6.小结(5分钟)教师引导学生对本次课程的内容进行总结,巩固所学知识。

7.家庭作业(5分钟)教师布置一些有关全等三角形的练习题,让学生课后巩固所学知识。

三角形全等复习学案

三角形全等复习学案

图6图7 第11章全等三角形复习学习目标:1.对本章知识系统化;2.推理更严密化,有逻辑性知识回顾:一、全等三角形1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?2:全等三角形有哪些性质?方法指引证明两个三角形全等的基本思路:(1):已知两边----已知一边和它的邻角(2):已知一边一角---已知一边和它的对角(3):已知两角---例题分析:例2如图2,AE=CF,AD∥BC,例3AD=CB,求证:已知△ADF≌△CBE例3已知:如图3,△ABC≌△A1B1C1,AD、A1D1分别是△ABC和△A1B1C1的高.求证:AD=A1D1用语言叙述此命题是:例5:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

已知:求证:证明:练习1、如图6,已知:△ABC中,DF=FE,BD=CE,AF⊥BC于F,则此图中全等三角形共有()A、5对B、4对C、3对D2对2、如图7,已知:在△ABC中,AD是BC边上的高,AD=BD,DE=DC,延长BE交AC于F,求证:BF是△ABC中边上的高. (提示:关键证明△ADC≌△BFC)3、如图8,已知:∠A=90°,AB=BD,ED⊥BC于D.求证:AE=ED(提示:构造两个三角形,证明全等)图8例4、如图5ACEBDACEBD拓展题14.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF拓展题25.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD(提示:要证明两条线段的和与一条线段相等时常用的两种方法:1、(用割的方法)可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。

2、(用补的方法)把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。

)二.角的平分线:角平分线的性质:练习1、如图:在△ABC中,∠C =900,AD平分∠BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE= 。

全等三角形专题复习教学设计(优秀范文5篇)

全等三角形专题复习教学设计(优秀范文5篇)

全等三角形专题复习教学设计(优秀范文5篇)第一篇:全等三角形专题复习教学设计《全等三角形专题复习课》教学设计哈尔滨市第三十五中学佟艳面对数学课堂中几何图形的变换、试题的灵活变化,学生总是很打怵,很容易让学生对数学有畏难情绪,甚至有的学生认为学习数学没有什么用,生活中也用不上,其实不然,数学的学习过程中所渗透的思想方法和思维的严谨性、思维的细致性、思维的灵活性是其它学科不能渗透的,所以我们应该交给学生学习数学的方法,学习数学的能力,让学生轻松的学习数学,让数学不再成为学生的负担所以我们应该在非毕业班的阶段多教给学生方法,在习题课中,以变式习题的形式,形成系列,这种思维方式是渗透在平时的所有教学中,我们应该引导学生发现解决几何问题的方法,让学生做一道题会多道题,一把钥匙开多把锁,以不变应万变.一、设计理念本课的设计本着关注学生的已有的认知结构、从学生已有的解决问题的经验出发的原则,注重人人参与数学活动,实现人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同发展的目标.二、教材分析处理本节课是在学生学完全等三角形一章后进行的,是一节全等三角形的专题复习课,全等三角形是解决几何证明题重要数学模型.本节课是前面所学全等三角形的有关知识的提升,教学过程中渗透着“类比思想”和“方法迁移”的研究方法,这些数学思想和研究方法为后面学习相似三角形奠定了基础,在学生学习全等三角形这部分内容时,经常会遇到依托于一对等角、一组边来构建三角形全等,所以本节课以一个基本型为主线进行方法的渗透,可以采取类比和迁移的教学方法进行,让学生探究解决问题的方法、灵活掌握方法并应用,同时对角互补型在相似中应用的也很广泛,如果能在全等三角形这部分内容中将常见的图形、方法、辅助线总结全面,那么学习相似时学生会很轻松.所以本节课的知识有承上启下的作用.《课程标准》提出数学教师不是教教材,而是用教材教,所以我创造性的使用教材,自编例习题.在教学过程中,精心设计问题,关注学生兴趣和经验,鼓励学生参与探索,在活动的过程中获得对数学的积极体验和应用.通过本节课的学习力争达到以下教学目标:知识与技能:学生能够熟练地运用全等三角形的判定,解决全等三角形有关分类讨论计算、证明问题,培养学生解决分类讨论问题的能力.过程与方法:通过合作探究的学习方式,培养学生处理数学信息的能力,并作出合理的推断或大胆的猜测,体会转化的思想方法.情感态度与价值观: 使学生深刻理解数学知识的密切关系、及数学知识的应用价值,增强学习数学的兴趣.根据教学目标确定本节课的教学重点、难点如下:教学重点:将所见的习题善于转化为基本型:直接对角互补型.教学难点: 准确做出辅助线,构建三角形全等.三、教法、学法及教学手段教学方法:所以我运用的主要教学方法是:分析、讨论、归纳.学法指导:引导学生运用自主探究、合作交流的学习方式.教学手段:运用多媒体与实物投影相结合的手段辅助教学.四、教学过程设计环节一复习回顾:环节二探究发现环节三典例剖析:环节四变式训练:环节五拓展应用:复习回顾:射线OC是∠BOA的平分线,PE⊥OB,PD⊥OA,在图形中你能得出哪些结论?学生活动:学生认真读题,直接回答问题.设计意图:复习回顾角平分线的性质,引导学生从线段、角、和三角形去发现结论初步认识基本图形,为后续学习做铺垫,引导学生观察四边形ODPE的对角的特征,培养学生形成善于思考、善于观察、善于总结的良好的数学思维习惯.教学预设:观察四边形ODPE对角特征时,学生可能不易想到对角和的特征,而只是在研究两个直角,要让学生多说达成共识.探究发现:射线OC是∠BOA的平分线,∠PEO+∠PDO=180°,在图形中你能得出哪些结论?EPD 学生活动:学生独立思考,书写过程,探究不同的解法,学生进行讲解,其他同学进行补充评价,达成共识,只要有思维的碰撞就会有智慧的火花,形成对此题图形转化的认识.设计意图:培养学生分析题意,获取主要信息,将问题转化为基本型,得出直接对角互补型,为后续的习题做铺垫,打下坚实的基础.教学预设:学生的结论会说很多,教师要抓到想要的结论,进行总结归纳,本节课的主线要突出,否责就会贪多,学生不能消化理解本节课的数学思维训练.典例剖析:如图,在△ABC中,∠ABC=90°,AB=BC,D为AC中点,∠EDF=90°, 求证:DE=DF.ADEBF方法转化:CEM P DFN学生活动:学生分析题意,讲解不同的方法,同学之间互相补充评价,进行书写,培养规范书写的能力.设计意图:培养学生善于挖掘隐含条件的能力,BD仍然是∠ABC 的角平分线,转化为基本型,达到巩固提升的目的,学生也可以构建等腰三角形的方法转化线段,达到解决问题的目的.教学预设:学生不能灵活运用等腰三角形的性质,挖掘隐含条件BD仍然是∠ABC的角平分线,而是反复在证明三角形全等,教师要适当引导学生,学会灵活运用所学知识解决问题,形成体系.变式训练:那么当∠EDF绕点D旋转一定的角度后,上述结论还成立吗?EDDBFEFB常见方法:M N基本型挖掘:(连接形成四边形―隐含对角互补型)学生活动:学生独立分析,小组合作研究,得出不同的方法.设计意图:在变式训练中巩固基本型,引导学生挖掘隐含条件,观察图形的特征,得出与直接对角互补型相同的条件,同时得出隐含对角互补型.(对顶直角蝴蝶型)教学预设:挖掘“对顶直角蝴蝶型”后,学生不易转化为对角互补型四边形,要让学生先独立观察、讨论、分析、得出结论.拓展应用:如图,在平面直角坐标系中,Rt△PQR的直角顶点P的坐标为(3,3),两直角边与坐标轴交于点A和点B.(1)求OA+OB的值.y(2)求OA-OB的值.yBQOPPOAxRARxBQ(2)题(1)题学生活动:学生独立解决问题,同学之间互相评价、补充、解决坐标中的对角互补型.设计意图:培养学生分析问题、解决问题的能力,加强变试题的训练,达到巩固的目的,为本节课的学习达到巩固提升的目的.教学预设:数形结合时学生会遇到困难,要引导学生“先分离再结合”即分别研究数和形,再结合到一起进行研究.课后思考:如图在四边形OBAC中,AN⊥OB,现有:(1)∠COA=∠BOA;(2)AC=AB;(3)∠ACO+∠ABO=180°;(4)OC+OB=2ON.如果任意选取两个作为条件,能得到剩下的两个结论吗?学生活动:课下独立解决问题,小组交流意见,课上选代表进行展示.设计意图:完全放手,训练学生的发散思维,获取整理信息的能力.教学预设:一部分同学解决此题会有困难,让他们选择一部分解决._C_A_O_N_B我的收获:(1)直接对角互补型_C_O方法小结_A_B(2)隐含对角互补型 方法深入挖掘隐含条件巧妙构建旋转全等对角互补型转等角灵活转化为基本型基本型小结_C_A__OB_C__A__ONB 7第二篇:全等三角形-优秀教学设计教学内容三角形全等教学时间2021.9.22教学地点湟中区康川学校教师窦启莲全等三角形教学设计教学目标①通过实例理解全等形的概念和特征,并能识别图形的全等.②知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.③能运用性质进行简单的推理和计算,解决一些实际问题.④通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.教学重点全等三角形的有关概念和性质.知识难点理解全等三角形边、角之间的对应关系.教学准备复写纸、剪刀、半透明的纸、多媒体课件(几个重要片断中使用)等.教材分析本节是初中几何比较重要的一节入门课它的基础是学生已经了解三角形的基本概念,教师准备引导学生学习全等三角形,为后面进一步学习全等三角形的判定打一个良好的基础.通过本节学习要让学生了解怎样的两个图形是全等形,会用符号语言表示两个三角形全等.知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角.掌握全等三角形的性质,通过演绎变换两个重合的三角形,呈现出它们之间的各种不同位置的活动,从中了解体会图形变换的思想,逐步培养动态研究几何的意识.本节课的重点是全等三角形的性质.难点是确认全等三角形的对应元素.本节课可以通过丰富多彩的实验、投影、多媒体手段等让学生取得充分的感性认识在此基础上,教学重心应放在“全等三角形的性质”上,因而对它的处理,不论从时间分配上,还是从教学手段的应用上都应给予高度重视.在激发学生兴趣的同时,要对学生进行必要的能力训练.教学过程(师生活动)设计理念问题情境1.展现生活中的大量图片或录像片断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形 一、知识梳理
1、_________的两个三角形全等;
2、全等三角形的对应边_____;对应角______;
3、证明全等三角形的基本思路 (1)已知两边
⎪⎩⎪

⎧_____)(___________)(_____________)__________看是否是直角三角形找夹角找第三边(
(2)已知一边一角
⎪⎪⎪⎩⎪⎪⎪⎨
⎧⎪⎩⎪
⎨⎧⎪⎩⎪⎨⎧(_____)(_______)(_____)(_____)(______)已知是直角,找一边找一角已知一边与对角找这边的对角找这个角的另一边
找这边的另一邻角
已知一边与邻角(3)已知
两角
⎪⎩⎪⎨⎧
_____)(_____________)__________找夹边外任意一边找夹边(
4、角平分线的性质为
________________________________________ 用法:∵_____________;_________;_________
∴QD=QE
5、角平分线的判定
_____________________________________ 用法:∵_____________;_________;_________
∴点Q 在∠AOB 的平分线上 (4与5的图如下)
二、基础过关
1、下列条件能判断△ABC 和△DEF 全等的是( ) A )、AB=DE ,AC=DF ,∠B=∠E B )、∠A=∠D ,∠C=∠F ,AC=EF C )、∠A=∠F ,∠B=∠E ,AC=DE D )、AC=DF ,BC=DE ,∠C=∠D
2、在△ABC 和△DEF 中,如果∠C=∠D ,∠B=∠E ,要证这两个三角形全等,还需要的条件是( ) A )、AB=ED B )、AB=FD C )、AC=DF D )、∠A=∠F
3、在△ABC 和△A’B’C’中,AB=A’B’,AC=A’C’,要证△ABC ≌△A’B’C’,有以下四种思路证明
: ①BC=B’C’;②∠A=∠A’;③∠B=∠B’;④∠C=∠C’,其中正确的思路有( ) A )、①②③④ B )、②③④ C )、①② D )、③④
4、判断下列命题:①对顶角相等;②两条直线平行,同位角相等;③全等三角形的各边对应相等;④全等三角形的各角对应相等。

其中有逆定理的是( )
A )、①②
B )、①④
C )、②④
D )、②③ 三、解答题
1、如图:A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE=BF ,AC=BD 。

求证:△ACF ≌△BDE
2、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MC
3、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。

求证:(1)AM=AN ;(2)AM ⊥AN 。

4、如图:∠BAC=90°,CE ⊥BE ,AB=AC ,∠1=∠2,求证:BD=2EC
5、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF. 求证:BC ∥EF
6、如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过
A B C E F B C M F E F A M N
E 1
2
34B C
E
D
点E,则AB与AC+BD相等吗?请说明理由
7、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。

求证:
(1)EC=BF;(2)EC⊥BF
8、如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上
A
E
B
M
C
F
图12
A E
B M
C
F。

相关文档
最新文档