知识点33 圆的基本性质 2017(解答题)
圆的基本性质 知识点整理
在同一平面内,线段OP绕它固定的一个端点O旋转一周,
所经过
的封闭曲线叫做圆,定点O叫做
,线段OP叫做
。
如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,
那么就有:
d<r 点P在圆 ;
d r 点P在圆上;
d>r 点P在圆 ;
如图,在中,∠BAC=Rt∠,AO是BC边上的中线,BC为O的直径. (1)点A是否在圆上?请说明理由. (2)写出圆中所有的劣弧和优弧.
。
作图:已知△ABC,用直尺和圆规作出△ABC的外接圆
3.2图形的旋转
图形旋转的性质
图形经过旋转所得的图形和原图形
;
对应点到 的距离相等,任何一对对应点与
连线所成的角度
等于
。
1、
2、 如图,射线OP经过怎样的旋转,得到射线OQ?
3.3垂径定理(1)
3、 如图,以点O为旋转中心,将△ABC按顺时针方向旋转60°,作出经 旋转所得的图形。
2.如图为某水管截面中水面面积示意图,其中水管的直径为2.5米, ∠AOB=45°,求截面中有水部分的面积.
3.如图所示,折扇的骨柄长a=16cm,折扇扇面的宽度是骨柄长的一半, 折扇张开的角度为120°,求折扇扇面的面积.
(1)经过一个已知点能作
个圆;
(2)经过两个已知点A,B 能作 个圆;过点A,B任意作一个圆,圆心
应该在怎样的一条直线上?
(3)不在同一条直线上的三个点
一个圆
经过三角形各个顶点的圆叫做
的
,三角形叫做圆的
三角形的外心是
,这个外接圆的圆心叫做三角形 ;
的交点。
锐角三角形的外心在
;
直角三角形的外心在
圆的基本性质
圆的基本性质1.圆的有关性质:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;900的圆周角所对的弦是直径.2.三角形的内心和外心:(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心: (3)三角形的内心:3. 圆心角的度数等于它所对弧的度数.圆周角的度数等于它所对弧的度数一半. 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.【例题精讲】例1. AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为cm 3,则弦CD 的长为( )A .3cm 2B .3cm C. D .9cm 例2、BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、..(1)仔细观察图形并写出四个不同的正确结论:①___ ___,②___ _____ ,③_____ _,④________(不添加其它字母和辅助线) (2)A ∠=30°,CDO ⊙的半径r .例3、如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 长.P B CEA 例3题图直线与圆、圆与圆的位置关系【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°练习、1.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O •的位置关系是____2.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.3、如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 。
解读圆的基本性质与计算问题(知识点总结)
解读圆的基本性质与计算问题(知识点总结)圆的基本性质与计算问题圆是数学中一种重要的几何形状,它具有独特的性质与计算问题。
本文将对圆的基本性质及与之相关的计算问题进行解读与总结。
一、圆的基本性质1. 圆的定义圆是由平面上与一个固定点距离相等于定长的所有点组成的集合。
这个固定点称为圆心,定长称为半径。
2. 圆的要素一个圆有三个要素,即圆心、半径和圆周。
圆心是圆上任意一点到圆周的距离都相等的点;半径是圆心到圆周上任意一点的距离;圆周是圆心到圆上各点的连线。
3. 圆的直径直径是通过圆心的一条线段,其两个端点同时位于圆周上。
直径的长度恰好是圆的半径长度的两倍。
4. 圆的周长圆的周长又称为圆周长,用符号C表示。
根据圆的定义可知,圆周上的任意一点到圆心的距离都等于半径长度,因此圆的周长可以计算为C = 2πr,其中r为圆的半径。
5. 圆的面积圆的面积用符号S表示,计算公式为S = πr²,其中r为圆的半径。
二、圆的计算问题1. 已知圆的周长求半径根据圆的周长计算公式C = 2πr,给定圆的周长C,可通过求解方程来计算半径r的值。
2. 已知圆的面积求半径根据圆的面积计算公式S = πr²,给定圆的面积S,可通过求解方程来计算半径r的值。
3. 已知圆的半径求周长已知圆的半径r,可以直接使用圆的周长计算公式C = 2πr,计算得到圆的周长。
4. 已知圆的半径求面积已知圆的半径r,可以直接使用圆的面积计算公式S = πr²,计算得到圆的面积。
5. 圆的扇形与弧长扇形是由圆心和两个半径所夹的区域组成,而弧是扇形上的一段弯曲部分。
扇形的面积可以通过扇形夹角的大小来计算,而弧长可以通过弧所对的圆心角的大小来计算。
6. 圆与其他几何图形的关系圆与其他几何图形有着丰富的关系,如圆与直线的交点、圆与三角形的内切与外切等。
这些关系可以通过几何定理与推导来解决相应的计算问题。
综上所述,圆作为数学中的一种重要几何形状,具有独特的性质与计算问题。
圆的基本性质(解答题)
21.圆的基本性质(解答题)三、解答题85.(2009柳州)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.【关键词】圆证明:(1)连结AC,如图。
∵C是弧BD的中点∴∠BDC=∠DBC又∠BDC=∠BAC在三角形ABC中,∠ACB=90°,CE⊥AB∴ ∠BCE=∠BAC∠BCE=∠DBC∴ CF=BF因此,CF=BF.(2)证法一:作CG⊥AD于点G,∵C 是弧BD 的中点∴ ∠CAG=∠BAC , 即AC 是∠BAD 的角平分线.∴ CE=CG ,AE =AG在Rt△BCE 与Rt△DCG 中,CE =CG , CB =CD∴Rt△BCE≌Rt△DCG∴BE=DG∴AE=AB-BE =AG =AD+DG即 6-BE =2+DG∴2BE=4,即 BE =2又 △BCE∽△BAC∴ 212BC BE AB ==·32±=BC (舍去负值) ∴32=BC(2)证法二:∵AB 是⊙O 的直径,CE⊥AB∴∠BEF=︒=∠90ADB ,在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠∴ADB △∽FEB △,则BF AB EF AD = 即BFEF 62=, ∴EF BF 3= 又∵CF BF =, ∴EF CF 3=利用勾股定理得:EF EF BF BE 2222=-=又∵△EBC∽△ECA则CE BE AE CE =,即则BE AE CE ⋅=2 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF ∴3222=+=CE BE BC .86.(2009年四川省内江市)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E 、F 在AC 上,AB =AD ,∠BFC =∠BAD =2∠DFC.求证:(1)CD ⊥DF ;(2)BC =2CD【关键词】三角形全等的判定.【答案】证:(1)设∠DFC =θ,则∠BAD =2θ在△ABD 中,∵AB =AD , ∴∠ABD =∠ADB∠ABD =12(180°-∠BAD )=90°-θ又∠FCD =∠ABD =90°-θ∴∠FCD+∠DFC =90°∴CD ⊥DF(2)过F 作FG ⊥BC 于G在△FGC 和△FDC 中 ,∠FCG =∠ADB =∠ABD =∠FCD∠FGC =∠FDC =90°,FC =FC∴△FGC ≌△FDC∴GC =CD 且∠GFC =∠DFC又∠BFC =2∠DFC∴∠GFB =∠GFC∴BC =2GC , ∴BC =2CD.87.(2009年甘肃庆阳)(10分)如图,在边长为2的圆内接正方形ABCD 中,AC 是对角线,P 为边CD 的中点,延长AP 交圆于点E .(1)∠E = 度; (2)写出图中现有的一对不全等的相似三角形,并说明理由; (3)求弦DE 的长.【关键词】圆周角和圆心角;相似三角形【答案】本小题满分10分解:(1)45.(2)△ACP∽△DEP.理由:∵∠AED=∠ACD,∠APC=∠DPE,∴ △ACP∽△DEP.(3)方法一: ∵ △ACP∽△DEP, ∴ .AP AC DP DE = 又 AP =522=+DP AD ,AC =2222=+DC AD ,∴ DE=5102.方法二:如图2,过点D 作DF AE ⊥于点F .在Rt ADP △中, AP 225,AD DP +又1122ADP S AD DP AP DF ==△, ∴ DF=552.∴ 51022==DF DE .88.(2009年衢州)如图,AD 是⊙O 的直径.(1) 如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是 ,∠B 2的度数是 ;(2) 如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2, ∠B 3的度数;(3) 如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,请你用含n 的代数式表示∠B n 的度数(只需直接写出答案).【关键词】开放性试题【答案】解:(1) 22.5°,67.5°(2) ∵ 圆周被6等分,∴ 11B C =12C C =23C C =360°÷6=60°.∵ 直径AD ⊥B 1C 1,∴ 1AC =1211B C =30°,∴ ∠B 1m =121AC =15°. ∠B 2m =122AC =12×(30°+60°)=45°, ∠B 3m =123AC =12×(30°+60°+60°)=75°. (3) 11360360[(1)]2222n B n n n ︒︒∠=⨯+-⨯(9045)n n-︒=. (或3604590908n B n n︒︒∠=︒-=︒-)89. (2009年广州市)如图,在⊙O 中,∠ACB =∠BDC=60°,AC =cm 32,(1)求∠BAC 的度数; (2)求⊙O 的周长【关键词】圆【答案】90.(2009年广西钦州)(2)已知:如图2,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 15.求⊙O 1的半径.B A O图2 x y A BO 1O【关键词】垂径定理、勾股定理、坐标系【答案】(2)解:过点O 1作O 1C ⊥AB ,垂足为C ,则有AC =BC . B A O图2 x yA BO 1O C由A (1,0)、B (5,0),得AB =4,∴AC =2.在1Rt AO C △中,∵O 15,∴O 1C 5.∴⊙O 1的半径O 1A 22221(5)2O C AC ++3.91.(2009年南充)如图8,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.P BCE A【关键词】圆的性质,三角形相似的性质【答案】解:AB 是半圆的直径,点C 在半圆上,90ACB ∴∠=°.在Rt ABC △中,22221068AC AB BC =-=-= (2)PE AB ⊥,90APE ∴∠=°.90ACB ∠=°,APE ACB ∴∠=∠.又PAE CAB ∠=∠,AEP ABC ∴△∽△,PE AP BC AC∴= 110268PE ⨯∴= 301584PE ∴==.92.(2009年哈尔滨)如图,在⊙O 中,D 、E 分别为半径OA 、OB 上的点,且AD =BE . 点C 为弧AB 上一点,连接CD 、CE 、CO ,∠AOC=∠BOC.求证:CD =CE .【关键词】圆的半径,圆心角【答案】此题证明△OCD 与△OCE 全等即可,给出了一对角相等,再利用半径相等的性质即可得证OA OB AD BE ==,,OA AD OB BE ∴-=-,即OD OE =.93.(2009年中山)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13. (2)如图2,若DOE ∠保持120°角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.【关键词】圆的内接三角形【答案】(1)如图1,连结OA OC ,,因为点O 是等边三角形ABC 的外心,所以Rt Rt Rt OFC OGC OGA △≌△≌△.2OFCG OFC OAC S S S ==△△,因为13OAC ABC S S =△△, 所以13OFCG ABC S S =△. (2)解法一:连结OA OB ,和OC ,则AOC COB BOA △≌△≌△,12∠=∠,不妨设OD 交BC 于点F ,OE 交AC 于点G ,3412054120AOC DOE ∠=∠+∠=∠=∠+∠=°,°,35∴∠=∠.在OAG △和OCF △中,1235OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, OAG OCF ∴△≌△,13OFCG AOC ABC S S S ∴==△△.解法二:不妨设OD 交BC 于点F ,OE 交AC 于点G ,作OH BC OK AC ⊥⊥,,垂足分别为H K 、,在四边形HOKC 中,9060OHC OKC C ∠=∠=∠=°,°,360909060120HOK ∴∠=-︒-︒=︒°-?,即12120∠+∠=°.又23120GOF ∠=∠+∠=°,13∴∠=∠.AC BC =, OH OK ∴=,OGK OFH ∴△≌△,13OFCG OHCK ABC S S S ∴==△.在ODC △ 和OEC △中,OD OE DOC EOC OC OC =⎧⎪∠=∠⎨⎪=⎩ODC OEC ∴△≌△.CD CE ∴=.94.(2009年广州市)如图,在⊙O 中,∠ACB =∠BDC=60°,AC =cm 32,(1)求∠BAC 的度数; (2)求⊙O 的周长【关键词】圆【答案】95. (2009年株洲市)(本题满分10分)如图,点A 、B 、C 是O 上的三点,//AB OC .(1)求证:AC 平分OAB ∠.(2)过点O 作OE AB ⊥于点E ,交AC 于点P . 若2AB =,30AOE ∠=︒,求PE 的长.【关键词】与圆有关的综合题【答案】(1)∵//AB OC , ∴C BAC ∠=∠;∵OA OC =,∴C OAC ∠=∠ ∴BAC OAC ∠=∠ 即AC 平分OAB ∠.(2)∵OE AB ⊥ ∴112AE BE AB === 又30AOE ∠=︒,90PEA ∠=︒∴60OAE ∠=︒∴1302EAP OAE ∠=∠=︒, ∴12PE PA =,设PE x =,则2PA x =,根据勾股定理得2221(2)x x +=,解得3x =tan PE EAP AE ∠=) 即PE 397.(2009年潍坊)如图所示,圆O 是ABC △的外接圆,BAC ∠与ABC ∠的平分线相交于点I ,延长AI 交圆O 于点D ,连结BD DC 、.(1)求证:BD DC DI ==;(2)若圆O 的半径为10cm ,120BAC ∠=°,求BDC △的面积.(1)证明:AI 平分BAC ∠BAD DAC BD DC ∴∠=∠∴=,BI 平分ABC ABI CBI ∠∴∠=∠,BAD DAC DBC DAC ∠=∠∠=∠,BAD DBC ∴∠=∠,又DBI DBC CBI DIB ABI BAD ∠=∠+∠∠=∠+∠, DBI DIB BDI ∴∠=∠∴,△为等腰三角形 BD ID BD DC DI ∴=∴==,(2)解:当120BAC ∠=°时,ABC △为钝角三角形,∴圆心O 在ABC △外,连结OB OD OC 、、,2120DOC BOD BAD ∴∠=∠=∠=°, 60DBC DCB ∴∠=∠=°,∴BDC △为正三角形.又知10cm OB =,32sin 60210103cm BD OB ∴==⨯⨯=° 223(103)753cm BDC S ∴=⨯=△.答:BDC △的面积为7532.98.(09湖北宜昌)已知:如图,⊙O 的直径AD =2,BC CD DE ==,∠BAE =90°.(1)求△CAD的面积;(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?【关键词】圆的基本性质、圆周角和圆心角【答案】解:(1)∵AD为⊙O的直径,∴∠ACD=∠BAE=90°.∵ BC CD DE==,∴ ∠BAC=∠CAD=∠DAE.∴∠BAC=∠CAD=∠DAE =30°.∵在Rt△ACD中,AD=2,CD=2sin30°=1, AC=2cos30°=3.∴S△ACD=1 2AC×CD =32.(2) 连BD,∵∠A BD=90°,∠BAD==60°,∴∠BDA=∠BCA=30°,∴BA=BC.作BF⊥AC,垂足为F,(5分)∴AF=12AC=32,∴BF=AFtan30°=12,∴S△ABC=12AC×BF =34,∴S ABCD=334.∵S⊙O=π ,∴P点落在四边形ABCD区域的概率=334π=334π.(2)解法2:作CM⊥AD,垂足为M.∵∠BCA=∠CAD(证明过程见解法),∴BC∥AD.∴四边形ABCD为等腰梯形.∵CM=ACsin30°=32,∴S ABCD=12(BC+AD)CM=334.∵S⊙O=π,∴P点落在四边形ABCD区域的概率=334π=334π.99.(2009年黄冈市)如图,已知AB是⊙O的直径,点C是⊙O上一点,连结BC,AC,过点C 作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连结BF,与直线CD交于点G.求证:BFBGBC⋅=2.【关键词】圆周角性质【答案】∵AB是⊙O的直径,∴∠ACB=90°又∵CD⊥AB于点D,∴∠BCD=90°-∠ABC=∠A=∠F∵∠BCD==∠F,∠FBC=∠CBG∴△FBC∽△CBG∴CBFBBGBC=∴BFBGBC⋅=2100. (2009襄樊市)如图12,已知:在O中,直径4AB=,点E是OA上任意一点,过E作弦CD AB⊥,点F是BC上一点,连接AF交CE于H,连接AC、CF、BD、OD.(1)求证:ACH AFC△∽△;(2)猜想:AH AF与AE AB的数量关系,并说明你的猜想;(3)探究:当点E 位于何处时,14?AEC BOD S S =△△::并加以说明.证明:(1)∵直径AB CD ⊥ ∴AC AD = ∴F ACH ∠=∠ 又CAF FAC ∠=∠ ∴ACH AFC △∽△(2)答:AH AF AE AB =,连接FB ∵AB 是直径,∴90AFB AEH ==︒∠∠ 又EAH FAB =∠∠ ∴Rt Rt AEH AFB △∽△∴AE AHAF AB =∴AH AF AE AB =(3)当32OE =(或12AE =)时,14AEC BOD S S =△△.::∵直径AB CD ⊥ ∴CE ED =∵1122AEC BOD S AE EC S OB ED ==△△,∴14AEC BOD S AE S OB ==△△∵O 的半径为2∴2124OE -= ∴32OE =101.(2009湖北省荆门市)如图,半径为25的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA·PB=PC·PD;(2)设BC中点为F,连接FP并延长交AD于E,求证:EF⊥AD;(3)若AB=8,CD=6,求OP的长.解:(1)∵∠A、∠C所对的圆弧相同,∴∠A=∠C.∴Rt△APD∽Rt△CPB,∴AP PDCP PB=,∴PA·PB=PC·PD;(2)∵F为BC中点,△BPC为Rt△,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°.∴EF⊥AD.(3)作OM⊥AB于M,ON⊥CD于N,由垂径定理:∴OM2=(52-42=4,ON2=(52-32=11又易证四边形MONP是矩形,2215OM ON+=.102. 44.(2009年泸州)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cosE的值.【关键词】三角函数及切线的判定. 【答案】(1)如图,连结OD 、BD. ∵AB 是⊙O 的直径, ∴∠ADB =90°,∴BD ⊥AC. ∵AB =BC,∴AD =DC. ∵OA =OB,∴OD ∥BC, ∵DE ⊥BC,OD ⊥DE, ∴直线DE 是⊙O 的切线.(2)作DH ⊥AB,垂足为H,则∠EDH+∠E =90°, 又∵DE ⊥OD,∴∠ODH+∠EDH =90°,∴∠E =∠ODH, ∵AD =DC,AC =8,∴AD =4. 在Rt △ADB 中,3452222=-=-=AD AB BD ,由三角形面积公式得:AB ·DH =DB ·DA,即5DH =4×3,解得512=DH , 在Rt △ODH 中,cos ∠ODH =5.2512=2524,∴cosE =2524.103. (2009年常德市)如图,△ABC 内接于⊙O,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.【关键词】圆 【答案】△ABE 与△ADC 相似.理由如下: 在△ABE 与△ADC 中∵AE 是⊙O 的直径, ∴∠ABE=90o, ∵AD 是△ABC 的边BC 上的高, ∴∠ADC=90o, ∴∠ABE=∠ADC.又∵同弧所对的圆周角相等, ∴∠BEA=∠DCA. ∴△ABE ~△ADC.104.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC = 60︒,AB 与PC 交于Q 点. (1)判断△ABC 的形状,并证明你的结论; (2)求证:QBAQPB AP =; (3)若∠ABP = 15︒,△ABC 的面积为43,求PC 的长.解:(1) 证明:∵ ∠ABC =∠APC = 60︒,∠BAC =∠BPC = 60︒,∴ ∠ACB = 180︒-∠ABC -∠BAC = 60︒, ∴ △ABC 是等边三角形.(2)如图,过B 作BD ∥PA 交PC 于D ,则 ∠BDP =∠APC = 60︒.又 ∵ ∠AQP =∠BQD , ∴ △AQP ∽△BQD ,BDAPQB AQ =. ∵ ∠BPD =∠BDP = 60︒, ∴ PB = BD . ∴PBAPQB AQ =. (3)设正△ABC 的高为h ,则 h = BC · sin 60︒.∵21BC · h = 43, 即21BC · BC · sin 60︒ = 43,解得BC = 4.连接OB ,OC ,OP ,作OE ⊥BC 于E .由△ABC 是正三角形知∠BOC = 120︒,从而得∠OCE = 30︒, ∴ 3430cos =︒=CE OC .由∠ABP = 15︒ 得 ∠PBC =∠ABC +∠ABP = 75︒,于是 ∠POC = 2∠PBC = 150︒. ∴ ∠PCO =(180︒-150︒)÷2 = 15︒.如图,作等腰直角△RMN ,在直角边RM 上取点G ,使∠GNM = 15︒,则∠RNG = 30︒,作GH ⊥RN ,垂足为H .设GH = 1,则 cos ∠GNM = cos15︒ = MN . ∵ 在Rt △GHN 中,NH = GN · cos30︒,GH = GN · sin30︒. 于是 RH = GH ,MN = RN · sin45︒,∴ cos15︒ =462+. 在图中,作OF ⊥PC 于E ,∴ PC = 2FD = 2 OC ·cos15︒ =36222+.105.(2009年福建省泉州市)已知:直线y =kx(k ≠0)经过点(3,-4).(1)求k 的值;(2)将该直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相离(点O 为坐标原点),试求m 的取值范围.【关键词】直线与⊙O 相离【答案】解:(1)依题意得:-4=3k ,∴k =34-(2)由(1)及题意知,平移后得到的直线l 所对应的函数关系式为y =34-x+m(m >0) 设直线l 与x 轴、y 轴分别交于点A 、B ,(如图所示)当x =0时,y =m;当y =0时,x =43m. ∴A(43m,0),B(0,m),即OA =43m ,OB =m 在Rt △OAB 中,AB =22OB OA + 2=m m m 4516922=+ 过点O 作OD ⊥AB 于D ,∵S △ABO =21OD ·AB =21OA ·OB ∴21OD ·m 45=21·43m ·m ∵m >0,解得OD =53m依题意得:53m >6,解得m >10即m 的取值范围为m >10.。
初三辅导6《圆的基本性质》的知识点及典型例题
《圆的基本性质》的知识点及典型例题知识框图1、过一点可作个圆。
过两点可作个圆,以这两点之间的线段的上任意一点为圆心即可。
过三点可作个圆。
过四点可作个圆。
2、垂径定理:垂直于弦的直径,并且平分垂径定理的逆定理1:平分弦()的直径垂直于弦,并且平分垂径定理的逆定理2:平分弧的直径3、圆心角定理:在同圆或等圆中,相等的圆心角所对的,所对的圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么都相等。
注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与A B,那么所求的是弧长劣弧相等,优弧与优弧相等。
在题目中,若让你求⌒4.圆周角性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.练习一、 填空题:1、 如图,在⊙O 中,弦AB ∥OC ,115AOC ∠=︒,则BOC ∠=_________2、如图,在⊙O 中,AB 是直径,15C ∠=︒,则BAD ∠=__________3、如图,点O 是ABC ∆的外心,已知40OAB ∠=︒,则ACB ∠=___________(1题图) (2题图) (3题图) (4题图) 4、如图,AB 是⊙O 的直径,弧BC=弧BD ,25A ∠=︒,则BOD ∠= .(5题图) (6题图) (7题图) 5、如图,⊙O 的直径为8,弦CD 垂直平分半径OA ,则弦CD = .6、已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 .7、如图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的=____________8、在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 9、在半径为1的⊙O 中,弦AB 、AC 分别是3和2,则∠BAC 的度数为__________________10、如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm ,水面到管道顶部距离为20cm ,则修理工应准备内直径是_________cm 的管道..半径为5cm 的圆O中有一点P ,OP=4,则过P 的最短弦长_________,最长弦是__________,二、 选择题:12.如图,矩形与⊙O 相交,若AB=4,BC=5,DE=3,则EF 的长为( )A . 3.5B . 6.5C . 7D . 813、如图,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( )A.2个B.3个C.4个D.5个B OCAO ABCDOABCD BOACDBOACOABPABCON M OFEDC B A1、已知如图,AB 为⊙O 的弦,半径OE 、OF 分别交AB 于点C 、D ,且AC=BD 。
初中数学圆的知识点
初中数学圆的知识点初中数学圆的知识点概述一、圆的基本概念1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(O):圆的中心点,通常用字母O表示。
3. 半径(r):圆心到圆上任意一点的距离,用r表示。
4. 直径(d):通过圆心的圆上两点之间的线段,是半径的两倍长,用d表示。
5. 弦(c):圆上任意两点之间的线段。
6. 弧(a):圆上两点之间的圆周部分。
7. 优弧:大于半圆的弧。
8. 劣弧:小于半圆的弧。
9. 半圆:圆的一半,由直径所界定。
10. 切线(t):与圆只有一个交点的直线。
二、圆的基本性质1. 半径性质:圆上任意两点间的所有线段中,直径是最长的。
2. 圆周角定理:圆周上同弧所对的圆周角等于该弧所对的圆心角的一半。
3. 切线性质:圆的切线垂直于过切点的半径。
4. 弦切角定理:从圆外一点引两条切线,这两切线与过该点的直径所成的角相等。
5. 圆内接四边形性质:圆内接四边形的对角互补。
三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(S):S = πr²3. 扇形面积:S = (θ/360)πr²,其中θ是扇形的中心角,单位为度。
4. 弓形面积:S = (θ/360)πr² - (θ/360)rθ/2,适用于扇形减去三角形的部分。
5. 圆环面积:S = π(R² - r²),其中R是大圆的半径,r是小圆的半径。
四、圆的应用问题1. 圆与直线的关系:通过圆心作直线的垂线,可以判断直线与圆的位置关系(相离、相切、相交)。
2. 圆与圆的位置关系:两圆的圆心距与半径之和、差相比较,判断两圆的位置关系(外离、外切、相交、内含、内切、同心)。
3. 圆的切线问题:求作圆的切线,以及切线与圆的交点问题。
4. 圆的滚动问题:解决圆在直线或曲线上滚动时的周长、直径、面积的变化问题。
五、圆的作图方法1. 用圆规画圆:确定圆心和半径,固定圆规的宽度,绕圆心旋转一周即可画出圆。
高中圆公式知识点总结
高中圆公式知识点总结在高中数学中,圆是一个非常重要的几何形状,而圆的公式则是掌握圆的性质和计算圆的周长、面积等问题的关键。
本文将从圆的基本性质开始,逐步介绍圆的相关公式和知识点,方便同学们系统地掌握圆的知识。
1. 圆的基本性质(1) 圆的定义:圆是平面上所有距离等于定长的点的集合。
(2) 圆的要素:圆由圆心O和半径r决定,记为⊙O(r)。
其中,圆心是圆上所有点到圆心的距离都相等,记为r。
(3) 圆的直径:通过圆心,并且与圆相交,并且在圆上的直线叫做圆的直径,通常记为d。
(4) 圆的半径:从圆心到圆上的任一点的线段称为圆的半径,通常记为r。
(5) 圆的周长:圆的周长指的是圆的边长,通常记为L。
根据圆的性质得知,圆的周长等于直径的长度乘以π。
(6) 圆的面积:圆的面积指的是圆内的面积,通常记为S。
根据圆的性质得知,圆的面积等于半径的平方乘以π。
2. 圆的相关公式(1) 圆的周长公式:L = πd,其中d为直径的长度。
(2) 圆的面积公式:S = πr²,其中r为半径的长度。
(3) 圆的直径和半径的关系:d = 2r,即直径等于半径的两倍。
3. 圆的相关知识点(1) 弧长和弧度的关系:弧长指的是圆的一部分弧的长度,通常记为l。
弧的弧度指的是弧所对的圆心角的角度大小。
根据圆的性质得知,弧长等于弧度乘以半径的长度。
(2) 弧长公式:l = rθ,其中θ为弧所对的圆心角的角度大小。
4. 例题解析(1) 例题一:已知圆的周长为20π,求圆的直径和面积。
解:根据周长的公式L = πd,可得圆的直径d = 20。
将直径带入圆的面积公式S = πr²中,可得圆的面积S = π*10² = 100π。
(2) 例题二:已知圆的半径为3,求圆的周长和面积。
解:根据半径的长度r = 3,可得圆的周长L = 2πr = 6π,圆的面积S = πr² = π*3² = 9π。
5. 综合应用圆作为一个重要的几何形状,在日常生活中有很多实际应用,比如建筑设计中的圆形窗户、钟表表盘等。
《圆的基本性质》各节知识点
圆(帆的自豪,是能在风浪中挺起胸膛;你的自豪,是在中考中崭露头角)考点一、与圆相关的命题的说法正确的个数,绝大多数是选择题,也有少部分是填空题(填序号)1、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。
其中正确的有()A.4个B.3个C.3个D.2个2、下列四个命题:①经过任意三点可以作一个圆;②三角形的外心在三角形的内部;③等腰三角形的外心必在底边的中线上;④菱形一定有外接圆,圆心是对角线的交点。
其中真命题的个数()A.4个 B.3个 C.3个 D.2个3、下列命题中,正确的是()A.相等的圆心角所对弦的弦心距相等B.相等的圆心角所对的弦相等C.同圆或等圆中,两弦相等,所对的弧相等D.同圆或等圆中,相等的弦所对的弦心距也相等考点二、求旋转图形中某一点移动的距离,这就要利用弧长公式4、如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O所经过的路径总长为考点三、求半径、弦长、弦心距,这就要利用勾股定理和垂径定理及逆定理5、⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P 有( )个A.2 B.3 C.4 D.56、工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB 是7、如图,半径为5的⊙P 与y 轴交于点M (0,-4)、N(0,-10),函数y=k x (x<0)的图象过点P ,则k= 8、如图所示,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上。
(1)若∠AOD=52°,求∠DEB 的度数;(2)若OA=5,OC=3,求AB 的长考点四、求圆心角、圆周角9、将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A 、B 的读数分别为86°,30°,则∠ACB 的大小为10、如图所示,在△ABC 中,∠A=70°,⊙O 截△ABC的三边所得的弦长相等,则∠BOC 等于( )A.140°B.135°C.130°D.125°11.如图,AB 为⊙O 的直径,CD 为⊙O 的弦,AB 、CD的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC的度数考点五、求阴影部分面积一般遵循“四步曲”,即:一套,二分,三补,四换.一套:直接套用基本几何图形面积公式计算;二分:将其分割成规则图形面积的和或差;三补:用补形法拼凑成规则图形计算;四换:将图形等积变换后计算。
圆的基本性质知识点及经典例题总复习
圆的基本性质总复习(一)【知识理解】知识点一:圆的定义及相关概念1.圆:在同一平面内,线段OP绕它固定的一个端点 O旋转一周,另一端点P所经过的封闭曲线叫做圆,定点O叫做圆心,线段OP叫做圆的半径.记作“⊙O”.第二种定义:到定点O的距离等于定长r的点的集合.弦;直径;注:在同一个圆中,直径是最长的弦,一个圆中有无数条弦和直径.弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示.半圆;优弧;劣弧;等弧2. 等圆:半径相等的圆.同圆:同一个圆.同心圆:圆心相同,半径不相等的圆.知识点二:点与圆的位置关系设⊙O的半径为r,平面内任一点P到圆心的距离为d,则:⇔点在圆外⇔点在圆上⇔点在圆内知识点三:确定圆的条件不在同一条直线上的三个点确定一个圆知识点四:三角形的外接圆1、经过三角形的各个顶点的圆叫做三角形的外接圆,这个外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形.2、三角形的外心是三角形三条边的垂直平分线的交点注:一个三角形有且只有一个外接圆,而一个圆有无数个内接三角形知识点五:圆的对称性1、圆是轴对称图形,对称轴是直径所在的直线,每个圆都有无数条对称轴2、圆是中心对称图形,对称中心是圆心知识点六:图形的旋转由一个图形变为另一个图形,在运动的过程中,原图形上的所有点 都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形改变叫做图形的旋转变换,简称旋转.这个固定的点叫做旋转中心.(1)旋转的三要素旋转中心、旋转方向、旋转角度(2)图形旋转的性质①图形经过旋转所得的图形和原图形全等;②对应点到旋转中心的距离相等;③任何一对对应点与旋转中心连线所成的角度等于旋转的角度.知识点七:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的弧.弦心距:圆心到圆的一条弦的距离叫做弦心距.垂径定理的逆定理:定理1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.定理2:平分弧的直径垂直平分弧所对的弦.总结: 如图, 对于一个圆和一条直线来说,如果在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.CD 是直径,CD ⊥AB, AM=BM,⌒AC =⌒BC ,⌒AD =⌒BD .知识点七:圆心角及圆心角定理圆心角:顶点在圆心的角叫做圆心角.圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等.知识点八:圆周角及圆心角定理圆周角:顶点在圆上,两边都和角相交的角.注:同一条弦所对的圆周角有2个圆周角定理:圆周角的度数等于它所对的弧上的圆心角度数的一半.推论1:半圆(或直径)所对的圆周角是直角●O A B C D M └推论2:90°的圆周角所对的弦是直径推论3:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.知识点九:圆的内接四边形圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.定理一:圆内接四边形的对角互补.定理二:圆内接四边形的外角等于它的内对角(内角的对角).判定定理:(1)定理:如果一个四边形的对角互补,那么它的四个顶点在同一个圆上(简称四点共圆).(2)推论:如果四边形的一个外角等于它内对角,那么这个四边形的四个顶点共圆.知识点十:正多边形各边相等、各内角也相等的多边形叫做正多边形.经过一个正多边形的各个顶点的圆叫做这个正多边形的外接圆,这个正多边形叫做圆内接正多边形.任何正多边形都有一个外接圆.性质:(1)正n边形的内角度数的和为:,正n边形每个内角的度数为:;(2)任意正n边形的外角度数的和都为360°,正n边形每个外角的度数为;(3)正多边形是对称图形.当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点十一:弧长及扇形的面积1. 弧长公式半径为R的圆,周长公式为C=2πR半径为R的圆中,n°圆心角所对的弧长为:l=2. 扇形面积公式半径为R的圆,面积公式为S=πR2扇形半径为R,圆心角为n°,扇形弧长为l,扇形面积为S,则:S= =【知识应用】(例题)例1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。
圆的基础性质知识点
第三章圆
1、圆的定义(重点)
2、和圆相关的概念:
(1)弦:连结圆上任意两点的线段;(弦不一定是直径,直径一定是弦,直径是圆中最长的弦)
(2)直径:经过圆心的弦;
(3)弧:圆上任意两点间的部分;(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)
(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;
(5)优弧:大于半圆的弧,用三个大写字母表示;
(6)劣弧:小于半圆的弧,用两个大写字母表示;
(7)弓形由弦及其所对的弧组成的图形;
(8)等圆:能够重合的两个圆;
(9)等弧:在同圆或等圆中,能够互相重合的弧;
(10)同心圆:圆心相同,半径不相等的两个圆;
(11)圆心角:定点是圆心的角;
(12)圆周角:顶点在圆上,并且两边都和圆相交的角;
(13)弦心距:圆心到弦的距离。
注意:(1)直径等于半径的2倍;
(2)同圆或等圆的半径相等;
(3)等弧必须是同圆或等圆中的弧;
(4)弧长相等的弧不一定是等弧,但等弧的弧长必相等。
第2节圆的对称性1、圆的旋转不变性
2、与圆有关的概念
3、垂径定理及其推论(重点)
4、圆心角、弧、弦、弦心距之间的相等关系
第3节圆周角和圆心角的关系圆周角要具备两个特征:①角的顶点在圆上;
4、圆内接四边形对角互补。
圆的基本性质(含答案).docx
.圆的基本性质基础知识回放考点 1对称性圆既是① _____对称图形,又是______②对称图形。
任何一条直径所在的直线都是它的____③。
它的对称中心是 _____④。
同时圆又具有旋转不变性。
温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。
考点 2垂径定理定理:垂直于弦的直径平分⑤并且平分弦所对的两条___⑥。
常用推论:平分弦(不是直径)的直径垂直于⑦,并且平分弦所对的两条_____⑧。
温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。
在这里总结一下:( 1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;( 2)常用的辅助线:连接半径;过顶点作垂线;( 3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;( 4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧;考点 3圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧⑨,所对的弦也 _____⑩。
常用的还有:( 1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角○,所对的弦___11○。
_____12( 2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角○,所对的弧○____13______14。
方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。
温馨提示:(1)上述定理中不能忽视“在同圆或等圆中”这个条件。
否则,虽然圆心角相等,但是所对的弧、弦也不相等。
以同心圆中的圆心角为例,相等的圆心角在同心圆中,所对的弧与弦都不相等。
圆的基本性质
圆的基本性质
1 圆的概念
圆是这样一种几何形状,它的特点是沿着一个完美的圆弧,所有距离它中心点的距离都是相等的。
圆的英文名字是circle,它的半径是圆的一个重要的基本概念,由它构成。
2 圆的基本性质
(1)圆的中心点。
圆的中心点是指圆的左右两侧的点的位置,也就是圆的基本位置。
(2)圆的外切矩形。
圆的外切矩形是圆的外围定义出的矩形,即圆的正视图形:它是一个有两条边的矩形,与圆弧围成了一个空间图形。
(3)圆形面积。
圆形面积是指一个圆内部的面积,它是与半径相关的定量特性,它可以用“角度”来近似描述,但可以实际测量圆弧和圆心之间的距离求出准确的圆形面积。
(4)圆的周长。
圆的周长是指圆的围成的周长,它是等于圆弧形长度乘以半径的积,公式为:2πr=2πR(R为圆的半径)。
(5)圆的曲率。
圆的曲率是指圆的弧线的曲率,也就是圆弧形上一点处的曲率,其定义为:曲率=∆l÷∆s(∆l为圆弧的余弦值;∆s为弧的长度)。
通过以上描述,我们可以了解到圆的基本性质。
圆是一种十分美丽且有规律性的几何形状,可以用于制作各种精美的艺术品和实用仪器,从而在各类领域中发挥多种k作用。
圆的基本性质与计算公式(知识点总结)
圆的基本性质与计算公式(知识点总结)圆是几何学中的重要概念,具有许多特殊的性质和计算公式。
本文将从不同的角度来总结和介绍圆的基本性质和计算公式,以帮助读者更好地理解和应用这些知识。
一、圆的基本概念和性质1. 定义:圆是由平面上任意一点到一个固定点的距离等于常数的所有点的集合。
2. 圆心:固定点称为圆心,通常用字母O表示。
3. 半径:圆心到圆上任意一点的距离称为半径,通常用字母r表示。
4. 直径:通过圆心的一条线段,两个端点在圆上的线段称为直径,直径等于半径的两倍。
5. 弦:在圆上任意两点之间的线段称为弦,圆的直径也是一种特殊的弦。
6. 弧:在圆上两点之间的一段弧,圆心夹的角称为圆心角,它等于所对圆弧的一半。
7. 切线:与圆相切于圆上一点的直线称为切线,切线与半径的夹角为90度。
二、圆的计算公式1. 圆的周长:周长即圆的周长,用C表示,由于圆是一个闭合曲线,所以其周长是所有弧长的总和。
周长计算公式为C = 2πr,其中π取近似值3.14。
2. 圆的面积:面积是圆所包围的平面区域,用A表示,计算公式为A = πr²。
3. 弧长:弧长是指圆上一段弧的长度,用字母L表示。
弧长的计算公式为L = 2πr(θ/360),其中θ表示圆心角的度数。
4. 扇形面积:扇形是由圆心和两个弧上的点组成的区域,扇形面积即扇形所包围的平面区域,用字母S表示。
扇形面积的计算公式为S = 0.5πr²(θ/360),其中θ表示圆心角的度数。
5. 弓形面积:弓形是由圆上的弧和圆心到弧的两条切线组成的区域,弓形面积即弓形所包围的平面区域,用字母A表示。
弓形面积的计算公式为A = 0.5r²(θ/360 - sinθ),其中θ表示圆心角的度数。
三、应用举例1. 例题一:已知一个圆的半径为6cm,求其周长和面积。
解:周长C = 2πr = 2π × 6 ≈ 37.68 cm,面积A = πr² = π × 6² ≈ 113.04 cm²。
专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)
专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
圆的基本性质知识点及典型例题
圆的基本性质一、知识点梳理★知识点一:圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。
2、有关概念:弦、直径; 弧、等弧、优弧、劣弧、半圆; 弦心距 ; 等圆、同圆、同心圆。
圆上任意两点间的部分叫做圆弧,简称弧。
连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
在同圆或等圆中,能够重合的两条弧叫做等弧。
★知识点二:平面内点与圆的位置关系:r 表示圆的半径, d 表示同一平面内点到圆心的距离,则有点在圆外;点在圆上;点在圆内。
例 1、如图,在Rt△ ABC中,直角边AB3,BC4,点E,F分别是BC ,AC的中点,以点 A 为圆心,AB的长为半径画圆,则点 E 在圆 A 的 _________ ,点F在圆 A 的 _________.例2、在直角坐标平面内,圆O的半径为,圆心O的坐标为 (1, 4) .试判断5点 P(3, 1) 与圆 O 的位置关系.例 3、下列说法中,正确的是。
(1)直径是弦,但弦不一定是直径;(2)半圆是弧,但弧不一定是直径;(3)半径相等的两个半圆是等弧;( 4)一条弦把圆分成两段弧中,至少有一段优弧。
例 4、有下列四个命题:( 1)直径相等的两个圆是等圆;( 2)长度相等的两条弧是等弧;( 3)圆中最大的弦是通过圆心的弦;(4)一条弦把圆分成两条弧,这两条弧不可能是等弧,其中真命题是。
★知识点三:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论:平分弦()的直径垂直于这条弦,并且平分弦所对的弧。
平分弧的直径垂直平分弧所对的弦。
垂径定理最重要的应用是通过勾股定理来解决有关弦、半径、弦心距等问题例 1:下列语句中正确的是。
( 1)相等的圆心角所对的弧相等;( 2)相等的弧所对的弦相等;(3)平分弦的直径垂直于弦;(4)弦的垂直平分线必过圆心。
例 2、过⊙内一点 M的最长弦长为10cm,最短弦长为8cm,那么 OM的长为()( A) 3cm( B) 6cm( C)cm( D) 9cm例 3、如图所示 , 以为圆心的两个同心圆中 , 小圆的弦AB 的延长线交大圆于, 若AD BCO C =6,=1, 则与圆环的面积是OAB BC例 4、在半径为 5 厘米的圆内有两条互相平行的弦, 一条弦长为8 厘米 , 另一条弦长为 6 厘米 , 则两弦之间的距离为 _______.7 厘米或 1 厘米例 5、如图,矩形 ABCD与与圆心在 AB上的⊙ O交于点 G、 B、 F、 E, GB=8cm, AG=1cm,DE=2cm,则 EF=cm .例 6、如图所示,是一个直径为 650mm的圆柱形输油管的横截面,若油面宽 AB=600mm,求油面的最大深度。
圆的基本性质和计算
圆的基本性质和计算圆是一种几何形状,其在数学和日常生活中都扮演着重要的角色。
本文将介绍圆的基本性质,并探讨一些与圆相关的计算方法。
一、圆的基本性质圆由一条闭合曲线组成,其内部的所有点到圆心的距离都相等。
以下是圆的一些基本性质:1. 圆心和半径:- 圆心是圆的中心点,通常用大写字母O表示。
- 半径是圆心到圆上任意一点的距离,通常用小写字母r表示。
2. 直径和周长:- 直径是通过圆心的两个点之间的距离,它等于半径的两倍,通常用字母d表示。
- 周长是圆的边界长度,也称为圆的周长或圆周长,通常用字母C 表示。
周长可以通过以下公式计算:C = 2πr,其中π是一个数学常数,近似值为3.14159。
3. 弧长和扇形面积:- 弧长是圆上一段弧的长度。
弧长的计算公式可以通过以下方式推导得出:弧长 = (圆心角/360°) × 2πr,其中圆心角是弧对应的圆心的角度。
- 扇形面积是由一个圆心角所确定的圆上的一个扇形部分的面积。
扇形面积的计算方法可以通过以下公式得出:扇形面积= (圆心角/360°) × πr²。
二、圆的计算方法1. 已知半径求周长、面积:- 周长的计算公式为:C = 2πr。
- 面积的计算公式为:A = πr²。
2. 已知直径求周长、面积:- 周长的计算公式为:C = πd。
- 面积的计算公式为:A = π(d/2)²。
3. 已知弧长和圆心角求半径:- 根据弧长公式,我们可以得到:弧长 = (圆心角/360°) × 2πr,通过该公式可以解出半径r。
4. 已知扇形面积和圆心角求半径:- 根据扇形面积公式,我们可以得到:扇形面积 = (圆心角/360°) ×πr²,通过该公式可以解出半径r。
5. 已知两点求圆心和半径:- 如果我们已知圆上的两点坐标,我们可以通过计算两点之间的距离得到半径,并计算出圆心的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题1.,(2017四川成都,20,10分) 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是圆O 的切线;(2)若A 为EH 的中点,求EF FD的值; (3)若1EA EF ==,求e O 的半径.思路分析:(1)连接OD ,因为DH AC ⊥于点H ,只需证明//OD AC ,即可得到DH OD ⊥,得证,或者再连接AD ,利用直径所对的圆周角为直角,证明∠ODA +∠ADH =90°也可;(2)通过证明AEF ODF ∆∆∽,可得到,EF AE FD OD =再利用OD 是△ABC 的中位线,等腰△DEC 的性质,求出AE AC 的比值,进而求得EF FD的值; (3)由EA =EF ,OD ∥EC ,可得△ODF 和△BDF 都是等腰三角形,设O e 半径为r ,则DF =OD =r ,所以BF =BD =DC =DE =DF +EF =r +1,AF =AB -BF =2r -(r +1)=r -1.通过BFD EFA ∆∆∽,即可求出r .解:(1)连接OD ,∵OB OD =,∴OBD ∆是等腰三角形,OBD ODB ∠=∠ ①,又 ∵AB AC =,∴ABC ACB ∠=∠ ②,∴ODB OBD ACB ∠=∠=∠,∴//OD AC ,∵DH AC ⊥,∴DH OD ⊥,∴DH 是O e 的切线;(2)∵E B ∠=∠,E B C ∠=∠=∠,∴EDC ∆是等腰三角形,又∵DH AC ⊥,点A 是EH 中点,设,4AE x EC x ==,则3AC x =,连接AD ,由090ADB ∠=,即AD BD ⊥, 又∵ABC ∆是等腰三角形,∴D 是BC 中点,∴OD 是ABC ∆中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠, 在AEF ∆和ODF ∆中,E ODF OFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEF ODF ∆∆∽,∴2,332EF AE AE x FD OD OD x ===,∴23EF FD =. (3)设O e 半径为r ,即OD OB r ==,∵EF EA =, ∴EFA EAF ∠=∠,又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴DF OD r ==,∴1DE DF EF r =+=+,∴1BD CD DE r ===+,∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠,∵BF BD =,BDF ∆是等腰三角形,∴1BF BD r ==+, ∴()2211AF AB BF OB BF r r r =-=-=-+=-,在BFD ∆与EFA ∆中BFD EFA B E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆∽, ∴11,1EF BF r FA DF r r+==-,解得12r r ==(舍) ∴综上,O e的半径为12.2. (2017安徽中考20.·10分)如图,在四边形ABCD 中,AD =BC ,∠B =∠D ,AD 不平行于BC ,过点C 作CE∥AD 交△ABC 的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;(2)连接CO ,求证:CO 平分∠BCE .思路分析:(1)由于CE ∥AD ,通过证AE ∥DC 得到四边形AECD 为平行四边形;(2)连接OB ,OE ,通过证△OCE ≌△OCB 得到∠ECO =∠BCO ,得证.解:(1)根据圆周角定理知∠E =∠B ,又∵∠B =∠D ,∴∠E =∠D ,又∵AD ∥CE ,∴∠D +∠DCE =180°, ∴∠E +∠DCE =180°,∴AE ∥DC ,∴四边形AECD 为平行四边形.(2)连接OE ,OB ,由(1)得四边形AECD 为平行四边形,∴AD =EC ,∵AD =BC ,∴EC =BC ,∵OC =OC ,OB =OE ,∴△OCE ≌△OCB (SSS ),∴∠ECO =∠BCO ,即OC 平分∠ECB .3. (2017四川内江,27,12分)如图,在⊙O 中,直径CD 垂直于不过圆心O 的弦AB ,垂足为点N ,连接AC ,点E 在AB 上,且AE =CE .(1)求证:AC 2=AE ·AB ;(2)过点B 作⊙O 的切线交EC 的延长线于点P ,试判断PB 与PE 是否相等,并说明理由;(3)设⊙O 半径为4,点N 为OC 中点,点Q 在⊙O 上,求线段PQ 的最小值.思路分析: (1)要证AC 2=AE·AB ,可连接CB ,通过证明△CAE ~△BAC 即可;(2)先根据已知判断出PB 与PE 可能相等,欲证明PB =PE ,可通过证明∠PBE =∠PEB 即可;(3)根据“两点之间,线段最短”可得当Q 运动到PO 与⊙O 的交点时,线段PQ 能取得最小值,再根据勾股定理等知识点可求得其最小值.解:(1)如图,连接BC ,∵CD ⊥AB ,∴CB =CA ,∴∠CAB =∠CBA .又∵AE =CE ,∴∠CAE =∠ACE .∴∠ACE =∠ABC .∵∠CAE =∠BAC ,∴△CAE ∽△BAC . ∴ACAE AB AC =,即AC 2=A E ·AB . (2)PB =PE .理由如下:如图,连接BC ,BD ,OB .∵CD 是直径,∴∠CBD =90°.∵BP 是⊙O 的切线,∴∠OBP =90°.∴∠BCD +∠D =∠PBC +∠OBC =90°.∵OB =OC ,∠OBC =∠OCB .∴∠PBC =∠D .∵∠A =∠D ,∴∠PBC =∠A .∵∠ACE =∠ABC ,∵∠PEB =∠A +∠ACE ,∠PBN =∠PBC +∠ABC ,∴∠PEB =∠PBN .∴PE =PB .(3)如图,连接PO 交⊙O 于点Q ,则此时线段PQ 有最小值.∵N 是OC 的中点,∴ON =2.∵OB =4,∴∠OBN =30°,∴∠PBE =60°.∵PE =PB ,∴△PEN 是等边三角形.∴∠PEB =60°,PB =BE .在Rt △BON 中,BN =22ON OB -=2224-=23.在Rt △CEN 中,EN =︒60tan CN =32=323.∴BE =BN +EN =338. ∴PB =BE =338. ∴PQ =PO -OQ =.421344)338(42222-=-+=-+OQ PB OB4. (2017山东临沂,23,9分)如图,BAC ∠的平分线交ABC V 的外接圆于点D ,ABC ∠的平分线交AD 于点E .(1)求证:DE DB =;(2)若∠BAC =90°,BD =4,求△ABC 的外接圆半径.思路分析:(1)利用角平分线的定义和圆周角的性质通过判定∠EBD =∠BED ,得出结论;(2)根据等弧得出CD 的长,根据∠BAC =90°得出BC 为直径,进而利用勾股定理求得BC 的长度,进而得出△ABC 外接圆半径的长度.证明:⑴连接BD ,CD .∵AD 平分∠BAC∴∠BAD =∠CAD又∵∠CBD =∠CAD∴∠BAD =∠CBD∵BE 平分∠ABC∴∠CBE =∠ABE∴∠DBE =∠CBE +∠CBD =∠ABE +∠BAD又∵∠BED =∠ABE +∠BAD∴∠DBE =∠BED∴BD =DEEB⑵∵∠BAC =90°∴BC 是直径∴∠BDC =90°∵AD 平分∠BAC ,BD =4∴BD =CD =4∴BC =22CD BD +=42 ∴半径为225.23.(2017四川德阳,23,11 分)如图,已知AB 、CD 为⊙O 的两条直径,DF 为切线,过AO 上一点N 作NM ⊥DF 于M ,连接DN 并延长交⊙O 于点E ,连接CE .(1)求证:△DMN ∽△CED(2)设G 为点E 关于AB 的对称点,连接GD 、GN ,如果∠DNO = 45°,⊙O 的半径为3,求22GN DN 的值.思路分析:圆中直径和圆周角,垂径定理,勾股定理,三角形相似综合题.(1)证明两组角相等即可(2)构建等腰直角△HNO .由勾股定理求解.解:(1)∵DF 为⊙O 的切线,∴DO ⊥DF .又NM ⊥DF ,∴NM ∥DO ,∴∠MND =∠NDC ,∵CD 为⊙O 的直径,∴∠CED =90°,而∠NMD =90°,∴△DMN ∽△CED(2)∵G ,E 关于AB 对称,∴GN =EN ,∴2222NE DN GN DN +=+,过O 作OH 垂直DE 于点H ,则由垂径定理可得:HD =HE ,由∠DNO =45°,可得△NHO 为等腰直角三角形,设NH =OH =M ,NE =N ,则HD =HE =M +N ,在RT △HDO 中,9)(22=++m n m ,∴2222)2(m n m GN DN ++=+189222=⨯=+GN DN6. (2017江苏苏州,27,10分)如图,已知△ABC 内接于e O ,AB 是直径,点D 在e O 上,OD ∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F .(1)求证:△DOE ∽△ABC ;(2)求证:∠ODF =∠BDE ;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若1227S S =,求sinA 的值.思路分析:(1)利用两角对应相等,证明两三角形相似;(2)相似三角形对应角相等,同弧所对的圆周角相等;(3)转化角度,放在直角三角形ODE 中,即可求∠A 的正弦值.解:(1)AB Q 是⊙O 的直径,90.,90.ACB DE AB DEO DEO ACB ∴∠=⊥∴∠=∴∠=∠o oQ .//,OD BC DOE ABC ∴∠=∠Q ,DOE ∴∆∽ABC ∆.(2)DOE ∆Q ∽ABC ∆.ODE A A ∴∠=∠∠Q 和BDC ∠是»BC所对的圆周角,,.A BDC ODE BDC ODF BDE ∴∠=∠∴∠=∠∴∠=∠.(3)21,4DOE ABC S OD DOE ABC S AB ∆∆⎛⎫∆∆∴== ⎪⎝⎭Q ∽ ,即144ABC DOE S S S ∆∆== , OA OB =Q ,12BOC ABC S S ∆∆∴=, 即12BOC S S ∆= .121122,27BOC DOE DBE DBE S S S S S S S S S ∆∆∆∆==++=++Q , 112DBE S S ∆∴= ,12BE OE ∴= , 即222,sin sin 333OE OE OB OD A ODE OD ==∴=∠==.7. 21.(2017湖北宜昌)(本小题满分8分)已知,四边形ABCD 中,E 是对角线AC 上一点,ED=EC ,以AE 为直径的⊙O 与边CD 相切于D, B 点在⊙O 上,连接OB .A(1)求证:DE=OE ;(2)若A B ∥CD ,求证:四边形ABCD 是菱形.思路分析:(1)利用切线的性质构建直角三角形,进而运用等角的余角相等求证相等的边;(2)先证一组对边相等,借助平行得到平行四边形,再根据邻边相等的平行四边形是菱形求证.解:(1)证明:连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD∴∠2+∠3=∠1+∠COD =90°又∵DE=EC ,∴∠2=∠1,∴∠3=∠COD ,∴DE=EO(2)∵OD=OE ,∴OD=ED=OE ,∴∠3=∠COD =∠DEO =60°∴∠2=∠1=30°,∵OA=OB=OE ,而OE=DE=EC ,∴OA=OB=DE=EC ,又∵AB ∥CD ,∴∠4=∠1∴∠2=∠1=∠4=∠OBA =30°∴△ABO ≌△CDE∴AB=CD四边形ABCD 是平行四边形.CA ∴∠DAE = 12∠DOE =30° ∴∠1=∠DAE∴CD=AD∴四边形ABCD 是菱形.8. (2017·湖南株洲,25,12分)如图,AB 为⊙O 的一条弦,点C 是劣弧AB 的中点,E 是优弧AB 上一点,点F 在AE 的延长线上,且BE =EF ,线段CE 交弦AB 于点D .(1)求证:CE ∥BF ;(2)若线段BD 的长为2,且EA ∶EB ∶EC =3∶1∶5,求△BCD 的面积.(注:根据圆的对称性可知OC ⊥AB )第25题图解:(1)∵C 为⌒AB的中点,∴∠1=∠3, ∵BE =EF ,∴∠F =∠4,∵∠F +∠4+∠BEF =∠1+∠3+BEF =180°,∠1=∠3,∠F =∠4,∴∠1=∠F , ∴CE ∥BF ;(2)∵∠1=∠CBA ,∠1=∠3,∴∠3=∠CBA ,∴△CBD ∽△CEB ,∴CE CB =BE BD ,即BD CB =BECE ,∴BD =2,CE ∶BE =5∶1, ∴2CB =5,即CB =25. ∵∠1=∠3,∠2=∠C ,∴△ADE ∽△CBE ,∴CB AD =CE AE , ∵CB =25,AE ∶CE =3∶5,∴52AD =53,即AD =6, ∴AB =AD +BD =8.∵C 为⌒AB的中点, ∴OC ⊥AM ,∴BM =21AB =4, ∵Rt △CMB ,∠CMB =90°,C =25,BM =4,∴CM =2,∴S △BCD =21BD ·CM =21×2×2=2.9. 13.(2017安徽中考·5分)如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E两点,则劣弧»DE 错误!未定义书签。